Dual CMOS Video Amplifier

General Description

The MAX457 contains two unity-gain stable video amplifiers that are capable of driving 75Ω loads with a -3 dB bandwidth of 70 MHz . The amplifiers operate from $\pm 5 \mathrm{~V}$ supplies and together consume about 350 mW of power. Closed loop gain is set by two external resistors. The pinout of the MAX457 follows that of conventional 8 -pin, dual op amps.
The amplifiers require no external compensation and because of the CMOS process offer low input bias current of typically 100 pA . The isolation between the amplifiers is typically 72 dB at 5 MHz and differential phase and gain are 0.2 degrees and 0.5% respectively.

Applications

75Ω Cable Drivers

Output Amplifiers for Video Crosspoint Switches
High Speed, Low Gain Applications
Driving Flash Converters
Video Distribution Amplifiers

Typical Operating Circuit

- Unity-Gain Bandwidth of 70MHz
- Low Input Capacitance: 4pF
- No Frequency Compensation Required
- Low Input Bias Current: 100pA
- Directly Drives 75Ω Cables
- High Isolation Between Amplifiers: 72dB at 5MHz
- Low Offset Voltage: 2mV

Ordering Information

PART	TEMP. RANGE	PACKAGE
MAX 457 CPA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 Lead Plastic DIP
MAX 457 CSA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 Lead SO
MAX457C/D	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Dice
MAX457EPA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 Lead Plastic DIP
MAX457EJA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 Lead CERDIP

Pin Configuration

Top View

Dual CMOS Video Amplifier

ABSOLUTE MAXIMUM RATINGS

Lead temperature (Soldering 10 sec) $\ldots \ldots . \ldots . .+300^{\circ} \mathrm{C}$ Duration of Output Short Circuit to Ground ... Indefinite Input Current, power on or off $\ldots \pm 50 \mathrm{~mA}$ Continuous Total Power Dissipation at $70^{\circ} \mathrm{C}$
Plastic DIP (derate $8.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $70^{\circ} \mathrm{C}$) 660 mW
CERDIP (derate $8.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $70^{\circ} \mathrm{C}$) $\ldots640 \mathrm{~mW}$
Small Outline (derate $5.9 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $70^{\circ} \mathrm{C}$) ... 470 mW

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specification is nol implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

$\left(\mathrm{V}^{+}=+5 \mathrm{~V}, \mathrm{~V}^{-}=-5 \mathrm{~V},-2 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq+2 \mathrm{~V}\right.$, Output Load Resistor $=150 \Omega, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Input Voltage Range	V IN	Over Temperature Range	-2		+2	\checkmark
Input Offset Voltage	Vos		-5	± 2	+5	mV
Offset Voltage Drift	dV OS/dT			20	100	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Bias Current	I_{B}	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=+70^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=+85^{\circ} \mathrm{C} \end{aligned}$		$\begin{gathered} 0.1 \\ 5 \\ 15 \end{gathered}$	$\begin{gathered} 1 \\ 40 \\ 100 \end{gathered}$	nA
Input Resistance	$\mathrm{R}_{\text {IN }}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		10		G Ω
Input Capacitance	$\mathrm{CIN}_{\text {IN }}$	Plastic Package		4		pF
Open Loop Voltage Gain	Avol	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=1000 \Omega \\ & \mathrm{R}_{\mathrm{L}}=150 \Omega \\ & \mathrm{R}_{\mathrm{L}}=75 \Omega \end{aligned}$	$\begin{gathered} 200 \\ 45 \\ 25 \end{gathered}$	$\begin{aligned} & 300 \\ & 65 \\ & 35 \end{aligned}$		V/V
Open Loop Gain Drift Temperature Coefficient	dAvol/dT	$R_{L}=150 \Omega$		-0.6		\%/ ${ }^{\circ} \mathrm{C}$
Common Mode Rejection Ratio	CMRR	$-2 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq+2 \mathrm{~V}$	54	66		dB
Power Supply Rejection Ratio	PSRR	$\pm 4.5 \mathrm{~V}$ to $\pm 5.5 \mathrm{~V}$	54	66		dB
Slew Rate	SR	(Note 1)	150	300		$\mathrm{V} / \mu \mathrm{s}$
-3dB Bandwidth	GBW1	$A_{V}=0 \mathrm{~dB}, \mathrm{R}_{\mathrm{L}}=75 \Omega$ (Note 1)	50	70		MHz
-3dB Bandwidth	GBW2	$A_{V}=6 \mathrm{~dB}, \mathrm{R}_{L}=150 \Omega$ (Note 1)	35	50		MHz
Differential Phase Error	DP	(Notes 1, 2)		0.2		deg
Differential Gain Error	DG	(Notes 1, 2)		0.5		\%
Settling Time to 1\%	ts	$R_{L}=150 \Omega, A_{V}=6 \mathrm{~dB}$		50		ns
Output Impedance	Rout	$f=100 \mathrm{kHz}, A_{V}=0 \mathrm{~dB}$		2		Ω
Full Scale Output Current	lout	$R_{L}=150 \Omega$	± 15	± 20		mA
Output Voltage Swing	Vout	$R_{L}=150 \Omega$	± 2.1	± 2.5		\checkmark
Input Noise, DC to 50 MHz	V_{N}	(Note 1)		0.15	0.5	mV RMS
Isolation Between Amplifiers	ISOL	$\mathrm{f}=5 \mathrm{MHz}$ (Note 1)	60	72		dB
Operating Supply Voltage	$\mathrm{V}^{+}, \mathrm{V}^{-}$		± 4.5		± 5.5	V
Supply Current	Is	$T_{A}=+25^{\circ} \mathrm{C}$ $\mathrm{T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}$ Both Amplifiers	$\begin{aligned} & 30 \\ & 34 \end{aligned}$	$\begin{aligned} & 35 \\ & 39 \end{aligned}$	$\begin{aligned} & 42 \\ & 50 \end{aligned}$	mA

Note 1: Guaranteed by design.
Note 2: Input test signal: 3.58 MHz sine wave of amplitude 40 IRE superimposed on a linear ramp (0 to 100 IRE). The amplifier is operated at a gain of $2 \mathrm{~V} / \mathrm{V}$ while driving a 150Ω load. 140 IRE $=1.0 \mathrm{~V}$.

Dual CMOS Video Amplifier

Typical Operating Characteristics

Detailed Description

The MAX457＇s dual video amplifiers are similar in design to the MAX452 single video amplifier，how－ ever，improvements have been made in gain linearity and bandwidth．The MAX457 video amplifier is similar to a transconductance amplifier that has an output current proportional to the difference of the voltages at the input terminals．That is，

$$
\mathrm{I}_{\mathrm{OUT}}=\mathrm{Gm} \times\left[\left(\mathrm{V}_{\mathrm{IN}^{+}}\right)-\left(\mathrm{V}_{\mathrm{IN}^{-}}^{-}\right)\right]
$$

where Gm is about $0.6 \mathrm{amps} / \mathrm{V}$ ．The output impe－ dance of the amplifier is about $1.1 \mathrm{k} \Omega$ ．This gives an unloaded voltage gain of $\mathrm{Gm} \times \mathrm{R}_{\text {OUT }}=660 \mathrm{~V} / \mathrm{V}$ ．This open loop gain is drastically reduced when driving conventional loads of 75 or 150Ω ．

Figure 1．Typical Application
Figure 1 shows a typical application of one of the amplifiers of a MAX457 being used to drive a doubly terminated 75Ω cable．The closed loop gain of the amplifier is $2.00 \mathrm{~V} / \mathrm{V}$ ．R1 is $1.05 \mathrm{k} \Omega$ instead of $1 \mathrm{k} \Omega$ to make up for the low open loop gain of the MAX457． R1 can be calculated from the following equation：

DC OPEN LOOP GAIN vs TEMPERATURE

where A is the closed loop gain of the amplifier，and G is the open loop gain of the amplifier（approx－ imately equal to $G m \times R_{\text {LOAD }}$ ）．In this particular example， Gm is $0.6, \mathrm{R}_{\text {LOAD }}$ is about 124Ω［（ $\mathrm{R}_{\text {OUT }}$ para－ lleled with（R1＋R2）paralleled with 150Ω load）］，and $R 2$ is $1 \mathrm{k} \Omega$ ．Thus，G is $0.6 \times 124=74.4 \mathrm{~V} / \mathrm{V}$ ，and A is $2 \mathrm{~V} / \mathrm{V}$（the targeted closed loop gain value）．This gives a value of $1.05 \mathrm{k} \Omega$ for R1．C1 and C2 are power supply bypass capacitors．C3 helps prevent peaking at high frequencies．This peaking results from the input capacitance of the amplifier which is driven by the relatively high impedance of the feedback resistors， R1 and R2．At 50 MHz ，the feedback resistors cause a substantial phase delay．Adding C3 eliminates this delay．At higher closed loop gains（about 5V／V or more），C3 serves little purpose and should be omitted．
The MAX457 is unity gain stable when driving a 75Ω load．To insure that the amplifier doesn＇t oscillate， the load resistor should be nominally $75 \times \mathrm{A}_{\mathrm{VCL}}$ ， where $A_{V C L}$ is the closed loop gain of the amplifier． Following this rule will result in a minimum amount of ringing or overshoot．Higher values may be used， but peaking of the output signal may occur in the 30 to 60 MHz range．It is generally safe to use loads less than $150 \times A_{\mathrm{VCL}}$ ．Table 1 gives suggested loads for various closed loop gains．R2 is arbitrarily chosen to be $1 \mathrm{k} \Omega$ ．R1 is calculated to give the nominal closed loop gain with the specified load．Note that the gain－ bandwidth product increases as $\mathrm{R}_{\text {LOAD }}$ increases．

Table 1．Gain and Load Resistor Selection

GAIN $(\mathrm{V} / \mathrm{V})$	$\mathbf{f - 3 d B}$ (MHz)	R1 (Ω)	R2 (Ω)	$\mathbf{R}_{\text {load }}$ (Ω)
1	70	39	1000	75
2	50	1050	1000	150
5	40	4170	1000	390
10	25	9420	1000	750

$$
R 1=[(A G+A-G) /(G-A)] \times R 2
$$

Dual CMOS Video Amplifier

If the MAX457 is used to drive a capacitive load, such as the input to a flash converter, the load capacitance should be isolated by a series resistor to limit amplifier ringing. Figure 2 shows how this is done. As a rule, the resistor should be chosen such that the RC product is 10 ns or longer. This scheme needn't be used if $\mathrm{C}_{\text {LOAD }}$ is less than 100 pF .

Figure 2. Isolating a Capacitive Load

Chip Topography

Package Information
For the latest package outline information, go to www.maxim-ic.com/packages.

8 Lead Plastic DIP (PA)
$\theta_{\mathrm{JA}}=120^{\circ} \mathrm{C} / \mathrm{W}$
$\theta_{\mathrm{JC}}=70^{\circ} \mathrm{C} / \mathrm{W}$

8 Lead Small Outline (SA)

$$
\theta_{\mathrm{JA}}=170^{\circ} \mathrm{C} / \mathrm{W}
$$

$$
\theta_{\text {IC }}=80^{\circ} \mathrm{C} / \mathrm{W}
$$

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery \& Lifecycle Information:

Analog Devices Inc.:
MAX457CPA+ MAX457CSA+ MAX457CSA+T MAX457EPA+

