dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X, and PIC24EPXXXGP/MC20X Data Sheet

High-Performance, 16-bit Digital Signal Controllers and Microcontrollers

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, KEELOQ, KEELoq logo, MPLAB, PIC, PICmicro, PICSTART, PIC ${ }^{32}$ logo, rfPIC and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MXDEV, MXLAB, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.
Analog-for-the-Digital Age, Application Maestro, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE, rfLAB, Select Mode, Total Endurance, TSHARC, UniWinDriver, WiperLock and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.
SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.
© 2011, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

P Printed on recycled paper.

ISBN: 978-1-61341-421-7
Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC ${ }^{\circledR}$ MCUs and dsPIC® DSCs, KEELOQ ${ }^{\circledR}$ code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

High-Performance, 16-bit Digital Signal Controllers and Microcontrollers

Key Features:

- High accuracy less than $\pm 1 \%$ internal FRC oscillator
- Up to 60 MIPS operation
- High-performance Motor Control PWM
- Three Op amps/Comparators
- One Analog Comparator
- Charge Time Measurement Unit (CTMU) with mTouch ${ }^{\text {TM }}$ capacitive sensing capability
- 10-bit and 12-bit ADC Modules with up to four Sample and Hold (S\&H) Circuits
- On-Chip Temperature Measurement Capability (CTMU)
- Peripheral Trigger Generator (PTG)

System Management:

- High accuracy, less than $\pm 1 \%$ internal FRC from $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
- Flexible clock options:
- High accuracy, less than $\pm 15 \%$ internal LPRC from $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
- External, crystal, resonator, internal FRC
- Fully integrated Phase-Locked Loop (PLL)
- Extremely low-jitter PLL
- Power-up Timer (PWRT)
- Oscillator start-up timer/stabilizer
- Watchdog Timer with its own RC oscillator
- Class B, Fail-Safe Clock Monitor (FSCM), IEC 60730 compliant
- Multiple sources for Reset

Operating Range:

- Up to 60 MIPS operation (at $3.0 \mathrm{~V}-3.6 \mathrm{~V}$):
- Industrial temperature range $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$
- Extended temperature range $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$

Analog Peripherals:

- One 10-bit, 1.1 Msps ADC (with four simultaneous samples using four S\&H circuits) and one 12-bit, 500 Ksps ADC (with one S\&H circuit):
- Up to 16 input channels with auto-scanning
- Conversion start can be manual or synchronized with one of 13 trigger sources
- Conversion possible in Sleep mode

Analog Peripherals (Cont.):

- Four Op amps/Comparators:
- Three Comparators that can be configured as Op amps
- One dedicated comparator
- Multiple input sources
- Blanking and filtering options
- Internal or external voltage references
- Charge Time Measurement Unit (CTMU):
- mTouch capacitive sensing
- Supports capacitive touch sensing for touch screens and capacitive switches
- Provides high-resolution time measurement
- 1 ns resolution for time measurement
- On-chip temperature measurement capability

Motor Control Peripherals:

- High-performance Motor Control PWM:
- Up to three PWM generators with two outputs per generator
- Individual time base and duty cycle for each PWM generator
- Independent PWM frequency, duty cycle and phase shift changes
- Duty cycle, dead time, phase shift and frequency resolution of 8.33 ns
- Independent Fault and current-limit inputs
- Dual trigger from PWM to ADC per PWM period
- Enhanced Leading-Edge Blanking (LEB) functionality
- Quadrature Encoder Interface (QEI):
- Four input channels for two phase signals, index pulse, and home pulse
- 32-bit up/down position counter
- Count direction status
- Position Measurement (x2 and $x 4$) mode
- Programmable digital noise filters on inputs
- Alternate Timer/Counter mode
- Multiple interrupt sources

High-Performance MCU CPU Features (All Devices):

- Modified Harvard architecture
- C Compiler optimized instruction set
- 16-bit wide data path
- 24-bit wide instructions
- Linear program memory addressing up to 4M instruction words
- Linear data memory addressing up to 64 Kbytes
- 73 base instructions: most with an effective instruction execution throughput of one instruction per cycle
- Flexible and powerful Indirect Addressing mode
- Software stack
- 16×16 integer multiply operations
- 32/16 and 16/16 integer divide operations
- Up to ± 16-bit shifts

Additional High-Performance DSC CPU Features (dsPIC33EPXXGP30X and dsPIC33EPXXMC30X Devices Only):

- 11 additional instructions to support DSP functions
- Two 40-bit accumulators with rounding and saturation options
- Additional flexible and powerful addressing modes:
- Modulo
- Bit-Reversed
- Single-cycle multiply and accumulate:
- Accumulator write back for DSP operations
- Dual data fetch
- Shifts for up to 40-bit data in one cycle
- 16x16 fractional multiply/divide operations

Timers/PTG/Capture/Compare:

- 15 user-definable Timers/Counters:
- Timer/Counters, up to five 16-bit Timers
- Can pair up to make two 32-bit timers
- Programmable prescaler
- Peripheral Trigger Generator (PTG):
- Provides the ability to schedule complex peripheral operations
- Can trigger peripherals such as Output Compare, Input Capture, Op Amp/Comparator, ADC, and PWM
- Input Capture (up to four channels):
- Dedicated 16-bit timers/counters
- Capture on up, down or both edges
- 4-deep FIFO on each channel
- Synchronous, Triggered and Cascaded modes
- Configurable as independent general purpose timers

Timers/PTG/Capture/Compare (Cont.):

- Output Compare (up to four channels):
- Dedicated 16-bit timer/counter
- Single or Dual 16-bit Compare mode
- 16-bit Glitchless PWM mode
- Synchronous, Triggered and Cascaded modes
- Configurable as independent general purpose timers

Interrupt Controller:

- 13-cycle fixed latency or nine to 13 -cycle variable latency (user-selectable)
- Up to 115 Available Interrupt Sources
- Up to three external interrupts
- Seven programmable priority levels
- Seven processor exceptions

Digital I/O:

- Peripheral Pin Select (PPS) functionality:
- PPS allows remapping of most of the input and output function pins of peripherals for maximum utilization and flexibility
- Up to 53 programmable digital I/O pins
- Wake-up/interrupt-on-change for up to 53 pins
- Output pins can drive up to 3.6 V
- Up to 5 V output with open drain configuration
- 20 mA sink on all I/O pins

On-Chip Flash and SRAM:

- Flash program memory (up to 64 Kbytes)
- Data SRAM (up to 8 Kbytes)
- Code security for program Flash

Power Management:

- Single-supply on-chip 1.8 V voltage regulator
- Switch between clock sources in real-time
- Idle, Sleep, and Doze modes with fast wake-up

CMOS Flash Technology:

- Low-power, high-speed Flash technology
- Fully static design
- 3.0V-3.6V operating voltage
- Industrial and Extended temperature ranges
- Low-power consumption (0.5 mA per MIPS)

Communication Modules:

- 4-wire SPI (two modules):
- Up to 25 MHz operation
- Framing supports I/O interface to simple codecs
- Supports 8-bit and 16-bit data formats
- Supports all serial clock formats and sampling modes
- $\mathrm{I}^{2} \mathrm{C}^{\text {TM }}$ (two modules):
- Full Multi-Master Slave mode support
- 7-bit and 10-bit addressing modes
- Bus collision detection and arbitration
- Integrated signal conditioning
- Slave address masking
- UART (two modules):
- Interrupt on address bit detect
- Interrupt on UART error
- Wake-up on START bit from Sleep mode
- 4-character TX and RX FIFO buffers
- LIN bus support
- $\operatorname{IrDA}{ }^{\circledR}$ encoding and decoding in hardware
- High-Speed Baud mode, up to 15 Mbps
- Hardware flow control with CTS and RTS
- Enhanced CAN (ECAN ${ }^{\text {TM }}$) 2.0B active:
- Multiple transmit and receive buffers
- 16 receive filters and three masks
- Loopback, Listen Only and Listen All Messages modes for diagnostics and bus monitoring
- Wake-up on CAN message
- Automatic processing of remote transmission requests
- FIFO mode using DMA
- DeviceNet ${ }^{\text {TM }}$ addressing support
- Programmable Cyclic Redundancy Check (CRC):
- Programmable bit length for the CRC generator polynomial (up to 32-bit length)
- 8-deep, 32-bit FIFO for data input

Packaging:

- 28-pin SPDIP/SOIC/SSOP
- 28-pin QFN-S, $6 \times 6 \mathrm{~mm}$
- 36-pin TLA, $5 \times 5 \mathrm{~mm}$
- 44-pin TQFP, $10 \times 10 \mathrm{~mm}$
- 44-pin QFN, $8 \times 8 \mathrm{~mm}$
- 44-pin TLA, $6 \times 6 \mathrm{~mm}$
- 64-pin TQFP, $10 \times 10 \mathrm{~mm}$
- 64-pin QFN, $9 \times 9 \mathrm{~mm}$

Example Applications:

- Induction heating
- Uninterruptable Power Supplies (UPS)
- DC/AC inverters
- Compressor motor control
- Washing machine 3-phase motor control
- BLDC motor control
- Automotive HVAC, cooling fans, fuel pumps
- Stepper motor control
- Audio and fluid sensor monitoring
- Camera lens focus and stability control
- Speech (playback, hands-free kits, answering machines, VoIP)
- Consumer audio
- Industrial and building control (security systems and access control)
- Barcode reading
- Networking: LAN switches, gateways
- Data storage device management
- Smart cards and smart card readers

dsPIC33EPXXXGP50X,
 dsPIC33EPXXXMC20XI50X, AND
 PIC24EPXXXGP/MC20X PRODUCT
 FAMILIES

The device names, pin counts, memory sizes, and peripheral availability of each device are listed in Table 1 (General Purpose Families) and Table 2 (Motor Control Families). Their pinout diagrams appear on the following pages.

TABLE 1: dsPIC33EP64GP50X and PIC24EP64GP20X GENERAL PURPOSE FAMILIES

						map	le P	riph											
Device	$\stackrel{n}{2}$	$\begin{aligned} & \text { Program Flash Memor } \\ & \text { (Kbyte) } \end{aligned}$					$\stackrel{\leftarrow}{\frac{1}{4}}$	$\frac{\bar{a}}{\bar{a}}$			$\begin{aligned} & \text { E. } \\ & \underline{N} \end{aligned}$					\sum_{\vdots}^{2}	$\frac{0}{2}$	$\begin{aligned} & \text { n } \\ & \underset{\sim}{0} \\ & 0 \end{aligned}$	
PIC24EP64GP202	28	64	8	5	4	4	2	2	-	3	2	1	6	$1^{(1)}$	2	Yes	Yes	21	$\begin{aligned} & \hline \text { SPDIP, } \\ & \text { SOIC, } \\ & \text { SSOP, } \\ & \text { QFN-S } \end{aligned}$
PIC24EP64GP203	36	64	8	5	4	4	2	2	-	3	2	1	8	1	3	Yes	Yes	25	TLA
PIC24EP64GP204	44	64	8	5	4	4	2	2	-	3	2	1	9	1	3	Yes	Yes	35	$\begin{gathered} \text { TLA, } \\ \text { TQFP, } \\ \text { QFN } \\ \hline \end{gathered}$
PIC24EP64GP206	64	64	8	5	4	4	2	2	-	3	2	1	16	1	3	Yes	Yes	53	$\begin{gathered} \text { TQFP, } \\ \text { QFN } \end{gathered}$
dsPIC33EP64GP502	28	64	8	5	4	4	2	2	1	3	2	1	6	$1^{(1)}$	2	Yes	Yes	21	SPDIP, SOIC, SSOP QFN-S
dsPIC33EP64GP503	36	64	8	5	4	4	2	2	1	3	2	1	8	1	3	Yes	Yes	25	TLA
dsPIC33EP64GP504	44	64	8	5	4	4	2	2	1	3	2	1	9	1	3	Yes	Yes	35	$\begin{gathered} \text { TLA, } \\ \text { TQFP, } \\ \text { QFN } \end{gathered}$
dsPIC33EP64GP506	64	64	8	5	4	4	2	2	1	3	2	1	16	1	3	Yes	Yes	53	TQFP, QFN

Note 1: On 28-pin devices, Comparator 4 does not have external connections. Refer to Section 25.0 "Op amp/Comparator Module" for details. Only SPI2 is remappable.
INTO is not remappable.

TABLE 2: dsPIC33EP64MC20X/50X and PIC24EP64MC20X MOTOR CONTROL FAMILIES

Device	$\stackrel{n}{2}$			Remappable Peripherals									$\begin{aligned} & \text { EU } \\ & \text { Nِ } \end{aligned}$					$\sum_{\underset{U}{2}}^{2}$	$\stackrel{0}{6}$	$\begin{aligned} & \text { n } \\ & \underset{n}{n} \\ & 0 \end{aligned}$	
					을 든 0 Un ㅡㅡㄹ	Output Compare			$\stackrel{-}{\frac{\alpha}{4}}$	$\frac{\overline{\mathrm{y}}}{\bar{\omega}}$											
PIC24EP64MC202	28	64	8	5	4	4	6	1	2	2	-	3	2	1	6	$1^{(1)}$	2	Yes	Yes	21	$\begin{aligned} & \hline \text { SPDIP, } \\ & \text { SOIC, } \\ & \text { SSOP, } \\ & \text { QFN-S } \end{aligned}$
PIC24EP64MC203	36	64	8	5	4	4	6	1	2	2	-	3	2	1	8	1	3	Yes	Yes	25	TLA
PIC24EP64MC204	44	64	8	5	4	4	6	1	2	2	-	3	2	1	9	1	3	Yes	Yes	35	$\begin{aligned} & \text { TLA, } \\ & \text { TQFP, } \\ & \text { QFPN } \end{aligned}$
PIC24EP64MC206	64	64	8	5	4	4	6	1	2	2	-	3	2	1	16	1	3	Yes	Yes	53	TQFP, QFN
dsPIC33EP64MC202	28	64	8	5	4	4	6	1	2	2	-	3	2	1	6	$1^{(1)}$	2	Yes	Yes	21	SPDIP, SOIC, SSOP, QFN-S
dsPIC33EP64MC203	36	64	8	5	4	4	6	1	2	2	-	3	2	1	8	1	3	Yes	Yes	25	TLA
dsPIC33EP64MC204	44	64	8	5	4	4	6	1	2	2	-	3	2	1	9	1	3	Yes	Yes	35	TLA, TQFP, QFN
dsPIC33EP64MC206	64	64	8	5	4	4	6	1	2	2	-	3	2	1	16	1	3	Yes	Yes	53	TQFP, QFN
dsPIC33EP64MC502	28	64	8	5	4	4	6	1	2	2	1	3	2	1	6	$1^{(1)}$	2	Yes	Yes	21	$\begin{aligned} & \text { SPDIP, } \\ & \text { SOIC, } \\ & \text { SSOP, } \\ & \text { QFN-S } \end{aligned}$
dsPIC33EP64MC503	36	64	8	5	4	4	6	1	2	2	1	3	2	1	8	1	3	Yes	Yes	25	TLA
dsPIC33EP64MC504	44	64	8	5	4	4	6	1	2	2	1	3	2	1	9	1	3	Yes	Yes	35	$\begin{aligned} & \text { TLA, } \\ & \text { TQFP, } \\ & \text { QFN } \end{aligned}$
dsPIC33EP64MC506	64	64	8	5	4	4	6	1	2	2	1	3	2	1	16	1	3	Yes	Yes	53	$\begin{aligned} & \text { TQFP, } \\ & \text { QFN } \end{aligned}$

Note 1: On 28-pin devices, Comparator 4 does not have external connections. Refer to Section 25.0 "Op amp/Comparator Module" for details. Only SPI2 is remappable.
INT0 is not remappable.
4: Only the PWM Faults are remappable.

Pin Diagrams

Note 1: The RPn/RPIn pins can be used by any remappable peripheral with some limitation. See Section 11.4 "Peripheral Pin Select" for available peripherals and for information on limitations.
2: Every I/O port pin (RAx-RGx) can be used as change notification (CNAx-CNGx). See Section 11.0 "I/O Ports" for more information.

Pin Diagrams (Continued)

Note 1: The RPn/RPIn pins can be used by any remappable peripheral with some limitation. See Section 11.4 "Peripheral Pin Select" for available peripherals and for information on limitations.
2: Every I/O port pin (RAx-RGx) can be used as change notification (CNAx-CNGx). See Section 11.0 "I/O Ports" for more information.

3: The metal pad at the bottom of the device is not connected to any pins and is recommended to be connected to Vss externally.

Pin Diagrams (Continued)

28-Pin QFN-S ${ }^{(3)}$
$\square=$ Pins are up to 5 V tolerant

Note 1: The RPn/RPIn pins can be used by any remappable peripheral with some limitation. See Section 11.4 "Peripheral Pin Select" for available peripherals and for information on limitations.
2: Every I/O port pin (RAx-RGx) can be used as change notification (CNAx-CNGx). See Section 11.0 "I/O Ports" for more information.
3: The metal pad at the bottom of the device is not connected to any pins and is recommended to be connected to Vss externally.

Pin Diagrams (Continued)

```
36-Pin TLA (3)
```

$\square=$ Pins are up to 5 V tolerant

Note 1: The RPn/RPIn pins can be used by any remappable peripheral with some limitation. See Section 11.4 "Peripheral Pin Select" for available peripherals and for information on limitations.
2: Every I/O port pin (RAx-RGx) can be used as change notification (CNAx-CNGx). See Section 11.0 "I/O Ports" for more information.

3: The metal pad at the bottom of the device is not connected to any pins and is recommended to be connected to Vss externally.

Pin Diagrams (Continued)

36-Pin TLA ${ }^{(3)}$

$\overline{\text { FLT32/SCL2/RP36/RB4 }}$
CVREF2O/RP20/T1CK/RA4
VSS
VDD
VDD
PGED2/ASDA2/RP37/RB5
PGEC2/ASCL2/RP38/RB6
SCK1/RP39/INT0/RB7

RPI45/PWM2L/CTPLS/RB13
RPI44/PWM2H/RB12
TDI/RP43/PWM3L/RB11
TDO/RP42/PWM3H/RB10
VDD
Vcap
Vss
RP56/RC8
TMS/ASDA1/SDI1/RP41/RB9 TCK/CVREF10/ASCL1/SDO1/RP40/T4CK/RB8
\qquad

Pin Diagrams (Continued)

Note 1: The RPn/RPIn pins can be used by any remappable peripheral with some limitation. See Section 11.4 "Peripheral Pin Select" for available peripherals and for information on limitations.

2: Every I/O port pin (RAx-RGx) can be used as change notification (CNAx-CNGx). See Section 11.0 "I/O Ports" for more information.

Pin Diagrams (Continued)

Note 1: The RPn/RPIn pins can be used by any remappable peripheral with some limitation. See Section 11.4 "Peripheral Pin Select" for available peripherals and for information on limitations.
2: Every I/O port pin (RAx-RGx) can be used as change notification (CNAx-CNGx). See Section 11.0 "I/O Ports" for more information.

Pin Diagrams (Continued)

```
44-Pin TLA \({ }^{(3)} \quad \square=\) Pins are up to 5 V tolerant
```


LVy/+ LNIZJ/LNV
OVY/
yาวw
व0^V
SSA \forall
$\angle \forall प / I G \perp$
OLVY/OC1

Note 1: The RPn/RPIn pins can be used by any remappable peripheral with some limitation. See Section 11.4 "Peripheral Pin Select" for available peripherals and for information on limitations.
2: Every I/O port pin (RAx-RGx) can be used as change notification (CNAx-CNGx). See Section 11.0 "I/O Ports" for more information.
3: The metal pad at the bottom of the device is not connected to any pins and is recommended to be connected to Vss externally.

Pin Diagrams (Continued)

44-Pin TLA ${ }^{(3)}$
= Pins are up to 5V tolerant

Note 1: The RPn/RPIn pins can be used by any remappable peripheral with some limitation. See Section 11.4 "Peripheral Pin Select" for available peripherals and for information on limitations.

2: Every I/O port pin (RAx-RGx) can be used as change notification (CNAx-CNGx). See Section 11.0 "I/O Ports" for more information.
3: The metal pad at the bottom of the device is not connected to any pins and is recommended to be connected to Vss externally.

Pin Diagrams (Continued)

```
44-Pin QFN \({ }^{(3)} \quad \square=\) Pins are up to 5 V tolerant
```


Note 1: The RPn/RPIn pins can be used by any remappable peripheral with some limitation. See Section 11.4 "Peripheral Pin Select" for available peripherals and for information on limitations.
2: Every I/O port pin (RAx-RGx) can be used as change notification (CNAx-CNGx). See Section 11.0 "I/O Ports" for more information.

3: The metal pad at the bottom of the device is not connected to any pins and is recommended to be connected to Vss externally.

Pin Diagrams (Continued)

Note 1: The RPn/RPIn pins can be used by any remappable peripheral with some limitation. See Section 11.4 "Peripheral Pin Select" for available peripherals and for information on limitations.

2: Every I/O port pin (RAx-RGx) can be used as change notification (CNAx-CNGx). See Section 11.0 "I/O Ports" for more information.

3: The metal pad at the bottom of the device is not connected to any pins and is recommended to be connected to Vss externally.

Pin Diagrams (Continued)

Note 1: The RPn/RPIn pins can be used by any remappable peripheral with some limitation. See Section 11.4 "Peripheral Pin Select" for available peripherals and for information on limitations.
2: Every I/O port pin (RAx-RGx) can be used as change notification (CNAx-CNGx). See Section 11.0 "I/O Ports" for more information.

Pin Diagrams (Continued)

64-Pin TQFP		$\square=$ Pins are up to 5V tolerant
RPI46/PWM1H/T3CK/RB14	47	RC13
RPI47/PWM1L/T5CK/RB15	46	RP39/INT0/RB7
RP118/RG6	$4{ }^{4}$	RPI58/RC10
RPI119/RG7	5 星 44	PGEC2/ASCL2/RP38/RB6
RP120/RG8	6 - 43	PGED2/ASDA2/RP37/RB5
$\overline{\text { MCLR }}$	7 PIC24EP64MC206 42	RD8
RPI121/RG9		Vss
	9 dSPIC33EP64MC206 40	OSC2/CLKO/RC15
Vdo	10 dsPIC33EP64MC506 39	OSC1/CLKI/RC12
AN10/RPI28/RA12	11 38	$\square \mathrm{VDD}$
AN9/RPI27/RA11		SCL1/RPI53/RC5
ANO/OA2OUT/RAO		SDA1/RPI52/RC4
AN1/C2IN1+/RA1		SCK1/RPI51/RC3
PGED3/VREF-/AN2/C2IN1-/SS1/RPI32/CTED2/RB0		SDI1/RPI25/RA9

Note 1: The RPn/RPIn pins can be used by any remappable peripheral with some limitation. See Section 11.4 "Peripheral Pin Select" for available peripherals and for information on limitations.
2: Every I/O port pin (RAx-RGx) can be used as change notification (CNAx-CNGx). See Section 11.0 "I/O Ports" for more information.

Pin Diagrams (Continued)

Note 1: The RPn/RPIn pins can be used by any remappable peripheral with some limitation. See Section 11.4 "Peripheral Pin Select" for available peripherals and for information on limitations.
2: Every I/O port pin (RAx-RGx) can be used as change notification (CNAx-CNGx). See Section 11.0 "I/O Ports" for more information.

3: The metal pad at the bottom of the device is not connected to any pins and is recommended to be connected to Vss externally.

Pin Diagrams (Continued)

Note 1: The RPn/RPIn pins can be used by any remappable peripheral with some limitation. See Section 11.4 "Peripheral Pin Select" for available peripherals and for information on limitations.
2: Every I/O port pin (RAx-RGx) can be used as change notification (CNAx-CNGx). See Section 11.0 "I/O Ports" for more information.
3: The metal pad at the bottom of the device is not connected to any pins and is recommended to be connected to Vss externally.

Table of Contents

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X, and PIC24EPXXXGP/MC20X Product Families. 6
1.0 Device Overview 25
2.0 Guidelines for Getting Started with 16-bit Digital Signal Controllers and Microcontrollers 31
3.0 CPU 37
4.0 Memory Organization 47
5.0 Flash Program Memory 109
6.0 Resets 113
7.0 Interrupt Controller 117
8.0 Direct Memory Access (DMA) 129
9.0 Oscillator Configuration 143
10.0 Power-Saving Features. 153
11.0 I/O Ports 163
12.0 Timer1 193
13.0 Timer2/3 and Timer4/5 195
14.0 Input Capture 201
15.0 Output Compare 205
16.0 High-Speed PWM Module (dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X Devices Only) 211
17.0 Quadrature Encoder Interface (QEI) Module (dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X Devices Only). 231
18.0 Serial Peripheral Interface (SPI). 245
19.0 Inter-Integrated Circuit ${ }^{T M M}\left(I^{2} \mathrm{C}^{\top M}\right)$. 253
20.0 Universal Asynchronous Receiver Transmitter (UART). 261
21.0 Enhanced CAN ${ }^{\text {TM }}$ (ECAN ${ }^{\text {TM }}$) Module (dsPIC33EPXXXGP/MC50X Devices Only) 267
22.0 Charge Time Measurement Unit (CTMU) 293
23.0 10-bit/12-bit Analog-to-Digital Converter (ADC) 297
24.0 Peripheral Trigger Generator (PTG) Module 311
25.0 Op amp/Comparator Module 327
26.0 Programmable Cyclic Redundancy Check (CRC) Generator 343
27.0 Special Features 349
28.0 Instruction Set Summary 357
29.0 Development Support. 367
30.0 Electrical Characteristics 371
31.0 Packaging Information 435
Appendix A: Revision History. 459
Index 461
The Microchip Web Site 467
Customer Change Notification Service 467
Customer Support 467
Reader Response 468
Product Identification System 469

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.
If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at docerrors@microchip.com or fax the Reader Response Form in the back of this data sheet to (480) 792-4150.
We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at: http://www.microchip.com
You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.
To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Web site; http://www.microchip.com
- Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our web site at www.microchip.com to receive the most current information on all of our products.

1.0 DEVICE OVERVIEW

Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X, and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive resource. To complement the information in this data sheet, refer to the related section of the "dsPIC33E/ PIC24E Family Reference Manual", which is available from the Microchip web site (www.microchip.com)
2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

This document contains device-specific information for the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X, and PIC24EPXXXGP/MC20X Digital Signal Controller (DSC) and Microcontroller (MCU) devices. The dsPIC33EPXXXMC20X/50X and dsPIC33EPXXXGP50X devices contain extensive Digital Signal Processor (DSP) functionality with a high-performance 16-bit MCU architecture.
Figure 1-1 illustrates a general block diagram of the core and peripheral modules in the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X, and PIC24EPXXXGP/MC20X families of devices.

Table 1-1 lists the functions of the various pins shown in the pinout diagrams.

FIGURE 1-1: dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X, AND PIC24EPXXXGP/MC20X BLOCK DIAGRAM

TABLE 1-1: PINOUT I/O DESCRIPTIONS ${ }^{(5)}$

Pin Name	$\begin{gathered} \text { Pin } \\ \text { Type } \end{gathered}$	Buffer Type	PPS	Description
AN0-AN15	I	Analog	No	Analog input channels.
CLKI CLKO	1 0	ST/ CMOS	No	External clock source input. Always associated with OSC1 pin function. Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode. Optionally functions as CLKO in RC and EC modes. Always associated with OSC2 pin function.
OSC1	I	$\begin{gathered} \hline \text { ST/ } \\ \text { CMOS } \end{gathered}$	No	Oscillator crystal input. ST buffer when configured in RC mode; CMOS otherwise. Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode. Optionally functions as CLKO in RC and EC modes.
REFCLKO	0	-	Yes	Reference clock output.
IC1-IC4	I	ST	Yes	Capture inputs 1 through 4.
OCFA OCFB OC1-OC4	$\begin{aligned} & \hline 1 \\ & 1 \\ & 0 \\ & \hline \end{aligned}$	ST	$\begin{aligned} & \text { Yes } \\ & \text { No } \\ & \text { Yes } \\ & \hline \end{aligned}$	Compare Fault A input (for Compare channels). Compare Fault B input (for Compare channels). Compare outputs 1 through 4.
$\begin{array}{\|l\|l\|} \hline \text { INT0 } \\ \text { INT1 } \\ \text { INT2 } \\ \hline \end{array}$	$\begin{aligned} & \hline \text { I } \\ & \text { I } \end{aligned}$	$\begin{aligned} & \text { ST } \\ & \text { ST } \\ & \text { ST } \end{aligned}$	$\begin{aligned} & \text { No } \\ & \text { Yes } \\ & \text { Yes } \end{aligned}$	External interrupt 0. External interrupt 1. External interrupt 2.
RA0-RA4, RA7-RA12	I/O	ST	No	PORTA is a bidirectional I/O port.
RB0-RB15	I/O	ST	No	PORTB is a bidirectional I/O port.
RC0-RC13, RC15	I/O	ST	No	PORTC is a bidirectional I/O port.
RD5, RD6, RD8	I/O	ST	No	PORTD is a bidirectional I/O port.
RE12-RE15	I/O	ST	No	PORTE is a bidirectional I/O port.
RF0, RF1	I/O	ST	No	PORTF is a bidirectional I/O port.
RG6-RG9	I/O	ST	No	PORTG is a bidirectional I/O port.
T1CK	I	ST	No	Timer1 external clock input.
T2CK	I	ST	Yes	Timer2 external clock input.
T3CK	I	ST	No	Timer3 external clock input.
T4CK	1	ST	No	Timer4 external clock input.
T5CK	1	ST	No	Timer5 external clock input.
CTPLS	0	ST	No	CTMU pulse output.
CTED1	1	ST	No	CTMU external edge input 1.
CTED2	1	ST	No	CTMU external edge input 2.
U1CTS	1	ST	No	UART1 clear to send.
U1RTS	0	-	No	UART1 ready to send.
U1RX	1	ST	Yes	UART1 receive.
U1TX	0	-	Yes	UART1 transmit.
BCLK1	0	ST	No	UART1 IrDA baud clock output.

Legend: $\mathrm{CMOS}=\mathrm{CMOS}$ compatible input or output \quad Analog $=$ Analog input $\mathrm{P}=$ Power ST = Schmitt Trigger input with CMOS levels $\quad \mathrm{O}=$ Output $\quad \mathrm{I}=$ Input PPS = Peripheral Pin Select

TTL = TTL input buffer
Note 1: This pin is available on dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices only.
2: This pin is available on dsPIC33EPXXXGP/MC50X devices only.
3: This is the default Fault on Reset for dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices. See Section 16.0 "High-Speed PWM Module (dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X Devices Only)" for more information.
4: Output of Comparator when configured as an Op amp.
5: Not all pins are available in all packages variants. See the "Pin Diagrams" section for pin availability.

TABLE 1-1: PINOUT I/O DESCRIPTIONS ${ }^{(5)}$ (CONTINUED)

Pin Name	Pin Type	Buffer Type	PPS	Description
U2CTS	1	ST	No	UART2 clear to send.
U2RTS	0	-	No	UART2 ready to send.
U2RX	1	ST	Yes	UART2 receive.
U2TX	0	-	Yes	UART2 transmit.
BCLK2	0	ST	No	UART2 IrDA baud clock output.
SCK1	I/O	ST	No	Synchronous serial clock input/output for SPI1.
SDI1	1	ST	No	SPI1 data in.
SDO1	0	-	No	SPI1 data out.
SS1	I/O	ST	No	SPI1 slave synchronization or frame pulse I/O.
SCK2	I/O	ST	Yes	Synchronous serial clock input/output for SPI2.
SDI2	1	ST	Yes	SPI2 data in.
SDO2	0	-	Yes	SPI2 data out.
SS2	1/O	ST	Yes	SPI2 slave synchronization or frame pulse I/O.
SCL1	I/O	ST	No	Synchronous serial clock input/output for I2C1.
SDA1	I/O	ST	No	Synchronous serial data input/output for I2C1.
ASCL1	I/O	ST	No	Alternate synchronous serial clock input/output for I2C1.
ASDA1	I/O	ST	No	Alternate synchronous serial data input/output for I2C1.
SCL2	I/O	ST	No	Synchronous serial clock input/output for I2C2.
SDA2	I/O	ST	No	Synchronous serial data input/output for I2C2.
ASCL2	I/O	ST	No	Alternate synchronous serial clock input/output for I2C2.
ASDA2	1/O	ST	No	Alternate synchronous serial data input/output for I2C2.
TMS	I	ST	No	JTAG Test mode select pin.
TCK	I	ST	No	JTAG test clock input pin.
TDI	I	ST	No	JTAG test data input pin.
TDO	0	-	No	JTAG test data output pin.
C1RX ${ }^{(2)}$	1	ST	Yes	ECAN1 bus receive pin.
C1TX ${ }^{(2)}$	0	-	Yes	ECAN1 bus transmit pin.
$\overline{\mathrm{FLT}}^{(1)}, \overline{\mathrm{FLT2}}^{(1)}$	1	ST	Yes	PWM Fault input 1 and 2.
$\overline{\text { FLT3 }}^{(1)}, \overline{\text { FLT4 }}^{(1)}$	I	ST	No	PWM Fault input 3 and 4.
$\overline{\text { FLT32 }}$ (1,3)	1	ST	No	PWM Fault input 32 (Class B Fault).
DTCMP1-DTCMP3 ${ }^{(1)}$	1	ST	Yes	PWM Dead Time Compensation Input 1 through 3.
PWM1L-PWM3L ${ }^{(1)}$	0	-	No	PWM Low Output 1 through 3.
PWM1H-PWM3 ${ }^{(1)}$	0	-	No	PWM High Output 1 through 3.
SYNCI1 ${ }^{(1)}$	1	ST	Yes	PWM Synchronization Input 1.
SYNCO1 ${ }^{(1)}$	0	-	Yes	PWM Synchronization Output 1.
INDX1 ${ }^{(1)}$	1	ST	Yes	
HOME1 ${ }^{(1)}$	1	ST	Yes	Quadrature Encoder Home1 Pulse input.
QEA1 ${ }^{(1)}$	1	ST	Yes	Quadrature Encoder Phase A input in QEI1 mode. Auxiliary Timer External Clock/Gate input in Timer mode.
QEB1 ${ }^{(1)}$	1	ST	Yes	Quadrature Encoder Phase A input in QEI1 mode. Auxiliary Timer External Clock/Gate input in Timer mode.
CNTCMP1 ${ }^{(1)}$	O	-	Yes	Quadrature Encoder Compare Output 1.

Legend: CMOS = CMOS compatible input or output Analog = Analog input $\mathrm{P}=$ Power ST = Schmitt Trigger input with CMOS levels $\quad \mathrm{O}=$ Output $\quad \mathrm{I}=$ Input PPS = Peripheral Pin Select

TTL = TTL input buffer
Note 1: This pin is available on dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices only.
2: This pin is available on dsPIC33EPXXXGP/MC50X devices only.
3: This is the default Fault on Reset for dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices. See Section 16.0 "High-Speed PWM Module (dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X Devices Only)" for more information.
4: Output of Comparator when configured as an Op amp.
5: Not all pins are available in all packages variants. See the "Pin Diagrams" section for pin availability.

TABLE 1-1: PINOUT I/O DESCRIPTIONS ${ }^{(5)}$ (CONTINUED)

Pin Name	$\begin{gathered} \text { Pin } \\ \text { Type } \end{gathered}$	Buffer Type	PPS	Description
C1IN1-	1	ANA	No	Op amp/Comparator 1 Negative Input 1.
C1IN2-	1	ANA	No	Op amp/Comparator 1 Negative Input 2.
C1IN1+	1	ANA	No	Op amp/Comparator 1 Positive Input 1.
OA1OUT ${ }^{(4)}$	0	ANA	No	Op amp/Comparator 1 Output ${ }^{(5)}$.
C10UT	0	-	Yes	Comparator 1 Output.
C2IN1-	I	ANA	No	Op amp/Comparator 2 Negative Input 1.
C2IN2-	1	ANA	No	Op amp/Comparator 2 Negative Input 2.
C2IN1+	1	ANA	No	Op amp/Comparator 2 Positive Input 1.
OA2OUT ${ }^{(4)}$	0	ANA	No	Op amp/Comparator 2 Output.
C2OUT	0	-	Yes	Comparator 2 Output.
C3IN1-	1	ANA	No	Op amp/Comparator 3 Negative Input 1.
C3IN2-	1	ANA	No	Op amp/Comparator 3 Negative Input 2.
C3IN1+	1	ANA	No	Op amp/Comparator 3 Positive Input 1.
OA3OUT ${ }^{(4)}$	0	ANA	No	Op amp/Comparator 3 Output.
C3OUT	0	-	Yes	Comparator 3 Output.
C4IN1-	1	ANA	No	Comparator 4 Negative Input 1.
C4IN1+	1	ANA	No	Comparator 4 Positive Input 1.
C4OUT	0	-	Yes	Comparator 4 Output.
CVREF10	0	ANA	No	Op amp/Comparator Voltage Reference Output.
CVRef20	0	ANA	No	Op amp/Comparator Voltage Reference divided by 2 Output.
PGED1	I/O	ST	No	Data I/O pin for programming/debugging communication channel 1.
PGEC1	1	ST	No	Clock input pin for programming/debugging communication channel 1.
PGED2	1/O	ST	No	Data I/O pin for programming/debugging communication channel 2.
PGEC2	1	ST	No	Clock input pin for programming/debugging communication channel 2.
PGED3	I/O	ST	No	Data I/O pin for programming/debugging communication channel 3.
PGEC3	1	ST	No	Clock input pin for programming/debugging communication channel 3.
$\overline{\mathrm{MCLR}}$	I/P	ST	No	Master Clear (Reset) input. This pin is an active-low Reset to the device.
AVDD	P	P	No	Positive supply for analog modules. This pin must be connected at all times.
AVss	P	P	No	Ground reference for analog modules. This pin must be connected at all times.
VDD	P	-	No	Positive supply for peripheral logic and I/O pins.
Vcap	P	-	No	CPU logic filter capacitor connection.
Vss	P	-	No	Ground reference for logic and I/O pins.
VREF+	I	Analog	No	Analog voltage reference (high) input.
VREF-	1	Analog	No	Analog voltage reference (low) input.
Legend: CMOS = CMOS compatible input or output ST = Schmitt Trigger input with CMOS levels PPS = Peripheral Pin Select				or output Analog = Analog input $\mathrm{P}=$ Power MOS levels $O=$ Output $\mathrm{I}=$ Input TTL = TTL input buffer

Note 1: This pin is available on dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices only.
2: This pin is available on dsPIC33EPXXXGP/MC50X devices only.
3: This is the default Fault on Reset for dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices. See Section 16.0 "High-Speed PWM Module (dsPIC33EPXXXMC20XI50X and PIC24EPXXXMC20X Devices Only)" for more information.
4: Output of Comparator when configured as an Op amp.
5: Not all pins are available in all packages variants. See the "Pin Diagrams" section for pin availability.

1.1 Referenced Sources

This device data sheet is based on the following individual chapters of the "dsPIC33E/PIC24E Family Reference Manual". These documents should be considered as the general reference for the operation of a particular module or device feature.

Note:	To access the documents listed below, browse to the documentation section of
	the Microchip web site
	(www.microchip.com).

- Section 1. "Introduction" (DS70573)
- Section 2. "CPU" (DS70359)
- Section 3. "Data Memory" (DS70595)
- Section 4. "Program Memory" (DS70613)
- Section 5. "Flash Programming" (DS70609)
- Section 6. "Interrupts" (DS70600)
- Section 7. "Oscillator" (DS70580)
- Section 8. "Reset" (DS70602)
- Section 9. "Watchdog Timer and Power-Saving Modes" (DS70615)
- Section 10. "I/O Ports" (DS70598)
- Section 11. "Timers" (DS70362)
- Section 12. "Input Capture" (DS70352)
- Section 13. "Output Compare" (DS70358)
- Section 14. "High-Speed PWM" (DS70645)
- Section 15. "Quadrature Encoder Interface (QEI)" (DS70601)
- Section 16. "Analog-to-Digital Converter (ADC)" (DS70621)
- Section 17. "UART" (DS70582)
- Section 18. "Serial Peripheral Interface (SPI)" (DS70569)
- Section 19. "Inter-Integrated Circuit ($\mathbf{I}^{2} C^{T M}$)" (DS70330)
- Section 20. "Data Converter Interface (DCI)" (DS70356)
- Section 21. "Enhanced Controller Area Network (ECAN ${ }^{\text {TM }}$)" (DS70353)
- Section 22. "Direct Memory Access (DMA)" (DS70348)
- Section 23. "CodeGuard ${ }^{\text {TM }}$ Security" (DS70634)
- Section 24. "Programming and Diagnostics" (DS70608)
- Section 25. "USB On-The-Go (OTG)" (DS70571)
- Section 26. "Op amp/Comparator" (DS70357)
- Section 27. "Programmable Cyclic Redundancy Check (CRC)" (DS70346)
- Section 30. "Device Configuration" (DS70618)
- Section 32. "Peripheral Trigger Generator (PTG)" (document publication pending)
- Section 33. "Charge Time Measurement Unit (CTMU)" (DS70661)

2.0 GUIDELINES FOR GETTING STARTED WITH 16-BIT DIGITAL SIGNAL CONTROLLERS AND MICROCONTROLLERS

Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X, and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the related section of the "dsPIC33E/PIC24E Family Reference Manual", which is available from the Microchip web site (www.microchip.com)
2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

2.1 Basic Connection Requirements

Getting started with the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X, and PIC24EPXXXGP/MC20X families requires attention to a minimal set of device pin connections before proceeding with development. The following is a list of pin names, which must always be connected:

- All VDD and Vss pins (see Section 2.2 "Decoupling Capacitors")
- All AVDD and AVss pins (regardless if ADC module is not used)
(see Section 2.2 "Decoupling Capacitors")
- Vcap
(see Section 2.3 "CPU Logic Filter Capacitor Connection (Vcap)")
- $\overline{M C L R}$ pin
(see Section 2.4 "Master Clear (MCLR) Pin")
- PGECx/PGEDx pins used for In-Circuit Serial Programming ${ }^{\text {TM }}$ (ICSP ${ }^{\text {TM }}$) and debugging purposes (see Section 2.5 "ICSP Pins")
- OSC1 and OSC2 pins when external oscillator source is used
(see Section 2.6 "External Oscillator Pins")
Additionally, the following pins may be required:
- Vref+/Vref- pins are used when external voltage reference for ADC module is implemented

Note:	The AVDD and AVss pins must be
connected independent of the ADC	
voltage reference source.	

2.2 Decoupling Capacitors

The use of decoupling capacitors on every pair of power supply pins, such as VDD, VSs, AVDD and AVss is required.
Consider the following criteria when using decoupling capacitors:

- Value and type of capacitor: Recommendation of $0.1 \mu \mathrm{~F}(100 \mathrm{nF}), 10-20 \mathrm{~V}$. This capacitor should be a low-ESR and have resonance frequency in the range of 20 MHz and higher. It is recommended to use ceramic capacitors.
- Placement on the printed circuit board: The decoupling capacitors should be placed as close to the pins as possible. It is recommended to place the capacitors on the same side of the board as the device. If space is constricted, the capacitor can be placed on another layer on the PCB using a via; however, ensure that the trace length from the pin to the capacitor is within one-quarter inch (6 mm) in length.
- Handling high frequency noise: If the board is experiencing high frequency noise, above tens of MHz , add a second ceramic-type capacitor in parallel to the above described decoupling capacitor. The value of the second capacitor can be in the range of $0.01 \mu \mathrm{~F}$ to $0.001 \mu \mathrm{~F}$. Place this second capacitor next to the primary decoupling capacitor. In high-speed circuit designs, consider implementing a decade pair of capacitances as close to the power and ground pins as possible. For example, $0.1 \mu \mathrm{~F}$ in parallel with $0.001 \mu \mathrm{~F}$.
- Maximizing performance: On the board layout from the power supply circuit, run the power and return traces to the decoupling capacitors first, and then to the device pins. This ensures that the decoupling capacitors are first in the power chain. Equally important is to keep the trace length between the capacitor and the power pins to a minimum, thereby reducing PCB track inductance.

FIGURE 2-1: RECOMMENDED MINIMUM CONNECTION

2.2.1 TANK CAPACITORS

On boards with power traces running longer than six inches in length, it is suggested to use a tank capacitor for integrated circuits including DSCs to supply a local power source. The value of the tank capacitor should be determined based on the trace resistance that connects the power supply source to the device, and the maximum current drawn by the device in the application. In other words, select the tank capacitor so that it meets the acceptable voltage sag at the device. Typical values range from $4.7 \mu \mathrm{~F}$ to $47 \mu \mathrm{~F}$.

2.3 CPU Logic Filter Capacitor Connection (VcAP)

A low-ESR (< 1 Ohms) capacitor is required on the VCAP pin, which is used to stabilize the voltage regulator output voltage. The VCAP pin must not be connected to VDD, and must have a capacitor greater than $4.7 \mu \mathrm{~F}(10 \mu \mathrm{~F}$ is recommended), 16 V connected to ground. The type can be ceramic or tantalum. See Section 30.0 "Electrical Characteristics" for additional information.
The placement of this capacitor should be close to the VCAP pin. It is recommended that the trace length not exceeds one-quarter inch (6 mm). See Section 27.2 "On-Chip Voltage Regulator" for details.

2.4 Master Clear (MCLR) Pin

The $\overline{\mathrm{MCLR}}$ pin provides two specific device functions:

- Device Reset
- Device Programming and Debugging.

During device programming and debugging, the resistance and capacitance that can be added to the pin must be considered. Device programmers and debuggers drive the $\overline{\mathrm{MCLR}} \mathrm{pin}$. Consequently, specific voltage levels (VIH and VIL) and fast signal transitions must not be adversely affected. Therefore, specific values of R and C will need to be adjusted based on the application and PCB requirements.
For example, as shown in Figure 2-2, it is recommended that the capacitor C , be isolated from the $\overline{\mathrm{MCLR}}$ pin during programming and debugging operations.
Place the components as shown in Figure 2-2 within one-quarter inch (6 mm) from the MCLR pin.

FIGURE 2-2: EXAMPLE OF $\overline{M C L R}$ PIN CONNECTIONS

Note 1: $\mathrm{R} \leq 10 \mathrm{k} \Omega$ is recommended. A suggested starting value is $10 \mathrm{k} \Omega$ Ensure that the MCLR pin VIH and VIL specifications are met.
2: $\mathrm{R} 1 \leq 470 \Omega$ will limit any current flowing into $\overline{M C L R}$ from the external capacitor C, in the event of $\overline{M C L R}$ pin breakdown, due to Electrostatic Discharge (ESD) or Electrical Overstress (EOS). Ensure that the $\overline{M C L R}$ pin VIH and VIL specifications are met.

2.5 ICSP Pins

The PGECx and PGEDx pins are used for ICSP and debugging purposes. It is recommended to keep the trace length between the ICSP connector and the ICSP pins on the device as short as possible. If the ICSP connector is expected to experience an ESD event, a series resistor is recommended, with the value in the range of a few tens of Ohms, not to exceed 100 Ohms.
Pull-up resistors, series diodes and capacitors on the PGECx and PGEDx pins are not recommended as they will interfere with the programmer/debugger communications to the device. If such discrete components are an application requirement, they should be removed from the circuit during programming and debugging. Alternatively, refer to the AC/DC characteristics and timing requirements information in the respective device Flash programming specification for information on capacitive loading limits and pin input voltage high (VIH) and input low (VIL) requirements.
Ensure that the "Communication Channel Select" (i.e., PGECx/PGEDx pins) programmed into the device matches the physical connections for the ICSP to MPLAB ${ }^{\circledR}$ PICkit ${ }^{\text {TM }}$ 3, MPLAB ICD 3, or MPLAB REAL $I C E^{\text {TM }}$.

For more information on ICD 2, ICD 3 and REAL ICE connection requirements, refer to the following documents that are available on the Microchip web site.

- "Using MPLAB ${ }^{\circledR}$ ICD 3 " (poster) DS51765
- "MPLAB ${ }^{\circledR}$ ICD 3 Design Advisory" DS51764
- "MPLAB ${ }^{\circledR}$ REAL ICE ${ }^{\text {TM }}$ In-Circuit Emulator User's Guide" DS51616
- "Using MPLAB ${ }^{\circledR}$ REAL ICE ${ }^{\text {TM } " ~ I n-C i r c u i t ~ E m u l a t o r ~}$ (poster) DS51749

2.6 External Oscillator Pins

Many DSCs have options for at least two oscillators: a high-frequency primary oscillator and a low-frequency secondary oscillator. For details, see Section 9.0 "Oscillator Configuration" for details.
The oscillator circuit should be placed on the same side of the board as the device. Also, place the oscillator circuit close to the respective oscillator pins, not exceeding one-half inch (12 mm) distance between them. The load capacitors should be placed next to the oscillator itself, on the same side of the board. Use a grounded copper pour around the oscillator circuit to isolate them from surrounding circuits. The grounded copper pour should be routed directly to the MCU ground. Do not run any signal traces or power traces inside the ground pour. Also, if using a two-sided board, avoid any traces on the other side of the board where the crystal is placed. A suggested layout is shown in Figure 2-3.

FIGURE 2-3: SUGGESTED PLACEMENT OF THE OSCILLATOR CIRCUIT

2.7 Oscillator Value Conditions on Device Start-up

If the PLL of the target device is enabled and configured for the device start-up oscillator, the maximum oscillator source frequency must be limited to 3 MHz < FIN < 5.5 MHz to comply with device PLL start-up conditions. This means that if the external oscillator frequency is outside this range, the application must start-up in the FRC mode first. The default PLL settings after a POR with an oscillator frequency outside this range will violate the device operating speed.
Once the device powers up, the application firmware can initialize the PLL SFRs, CLKDIV and PLLDBF to a suitable value, and then perform a clock switch to the Oscillator + PLL clock source. Note that clock switching must be enabled in the device Configuration Word.

2.8 Unused I/Os

Unused I/O pins should be configured as outputs and driven to a logic-low state.
Alternatively, connect a 1 k to 10 k resistor between Vss and unused pins and drive the output to logic low.

2.9 Application Examples

Examples of typical application connections are shown in Figure 2-4 through Figure 2-8.

FIGURE 2-4: BOOST CONVERTER IMPLEMENTATION

FIGURE 2-5: SINGLE-PHASE SYNCHRONOUS BUCK CONVERTER

FIGURE 2-6:
MULTI-PHASE SYNCHRONOUS BUCK CONVERTER

FIGURE 2-7: INTERLEAVED PFC

FIGURE 2-8: BEMF VOLTAGE MEASURED USING THE ADC MODULE

3.0 CPU

Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X, and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 2. "CPU" (DS70359) in the "dsPIC33E/PIC24E Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X, and PIC24EPXXXGP/MC20X CPU have a 16-bit (data) modified Harvard architecture with an enhanced instruction set, including significant support for digital signal processing. The CPU has a 24 -bit instruction word, with a variable length opcode field. The Program Counter (PC) is 24 bits wide and addresses up to $4 \mathrm{M} \times$ 24 bits of user program memory space.
An instruction prefetch mechanism helps maintain throughput and provides predictable execution. Most instructions execute in a single-cycle effective execution rate, with the exception of instructions that change the program flow, the double-word move (MOV.D) instruction, PSV accesses, and the table instructions. Overhead free program loop constructs are supported using the DO and REPEAT instructions, both of which are interruptible at any point.

3.1 Registers

The dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X, and PIC24EPXXXGP/MC20X devices have sixteen 16-bit Working registers in the programmer's model. Each of the Working registers can act as a data, address or address offset register. The 16th Working register (W15) operates as a software Stack Pointer for interrupts and calls.

3.2 Instruction Set

The instruction set for dsPIC33EPXXXGP50X and dsPIC33EPXXXMC20X/50X devices has two classes of instructions: the MCU class of instructions and the DSP class of instructions. The instruction set for PIC24EPXXXGP/MC20X devices has the MCU class of instructions only and does not support DSP instructions. These two instruction classes are seamlessly integrated into the architecture and execute from a single execution unit. The instruction set includes many addressing modes and was designed for optimum C compiler efficiency.

3.3 Data Space Addressing

The base data space can be addressed as 4 K words or 8 Kbytes and is split into two blocks, referred to as X and Y data memory. Each memory block has its own independent Address Generation Unit (AGU). The MCU class of instructions operate solely through the X memory AGU, which accesses the entire memory map as one linear data space. On dsPIC33EPXXXMC20X/ 50X and dsPIC33EPXXXGP50X devices, certain DSP instructions operate through the X and Y AGUs to support dual operand reads, which splits the data address space into two parts. The X and Y data space boundary is device specific.
The upper 4 Kbytes of the data space memory map can optionally be mapped into program space at any 16K program word boundary. The program-to-data-space mapping feature, known as Program Space Visibility (PSV), lets any instruction access program space as if it were data space. Moreover, the Base Data Space address is used in conjunction with a read or write page register (DSRPAG or DSWPAG) to form an Extended Data Space (EDS) address. The EDS can be addressed as 8 Mwords or 16 Mbytes. Refer to Section 3. "Data Memory" (DS70595) and Section 4. "Program Memory" (DS70613) in the "dsPIC33E/ PIC24E Family Reference Manual" for more details on EDS, PSV and table accesses.
On dsPIC33EPXXXMC20X/50X and dsPIC33EPXXXGP50X devices, overhead-free circular buffers (Modulo Addressing) are supported in both X and Y address spaces. The Modulo Addressing removes the software boundary-checking overhead for DSP algorithms. The X AGU circular addressing can be used with any of the MCU class of instructions. The X AGU also supports Bit-Reverse Addressing to greatly simplify input or output data reordering for radix-2 FFT algorithms. PIC24EPXXXGP/MC20X devices do not support Modulo and Bit-Reverse Addressing.

3.4 Addressing Modes

The CPU supports these addressing modes:

- Inherent (no operand)
- Relative
- Literal
- Memory Direct
- Register Direct
- Register Indirect

Each instruction is associated with a predefined Addressing mode group, depending upon its functional requirements. As many as six Addressing modes are supported for each instruction.

FIGURE 3-1: dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20XI50X, AND PIC24EPXXXGP/MC20X CPU BLOCK DIAGRAM

3.5 Programmer's Model

The programmer's model for the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X, and PIC24EPXXXGP/MC20X is shown in Figure 3-2. All registers in the programmer's model are memory mapped and can be manipulated directly by instructions. Table 3-1 lists a description of each register.
In addition to the registers contained in the programmer's model, the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X, and PIC24EPXXXGP/ MC20X devices contain control registers for Modulo Addressing (dsPIC33EPXXXMC20X/50X and dsPIC33EPXXXGP50X devices only), Bit-Reversed Addressing (dsPIC33EPXXXMC20X/50X and dsPIC33EPXXXGP50X devices only) and interrupts. These registers are described in subsequent sections of this document.
All registers associated with the programmer's model are memory mapped, as shown in Table 4-1.

TABLE 3-1: PROGRAMMER'S MODEL REGISTER DESCRIPTIONS

Register(s) Name	Description
W0 through W15	Working register array
ACCA, ACCB	40-bit DSP Accumulators
PC	23-bit Program Counter
SR	ALU and DSP Engine Status register
SPLIM	Stack Pointer Limit Value register
TBLPAG	Table Memory Page Address register
DSRPAG	Extended Data Space (EDS) Read Page register
DSWPAG	Extended Data Space (EDS) Write Page register
RCOUNT	REPEAT Loop Count register
DCOUNT ${ }^{(\mathbf{1})}$	DO Loop Count register
DOSTARTH ${ }^{(\mathbf{1 , 2})}$, DOSTARTL ${ }^{(\mathbf{1 , 2)}}$	DO Loop Start Address register (High and Low)
DOENDH ${ }^{(\mathbf{1})}$, DOENDL ${ }^{(1)}$	DO Loop End Address register (High and Low)
CORCON	Contains DSP Engine, DO Loop control and trap status bits

Note 1: This register is available on dsPIC33EPXXXMC20X/50X and dsPIC33EPXXXGP50X devices only.
2: The DOSTARTH and DOSTARTL registers are read-only.

FIGURE 3-2: PROGRAMMER'S MODEL

3.6 CPU Control Registers

REGISTER 3-1: SR: CPU STATUS REGISTER

| R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/C-0 | $R / C-0$ | $R-0$ | $R / W-0$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{OA}^{(\mathbf{1})}$ | $\mathrm{OB}^{(\mathbf{1})}$ | $\mathrm{SA}^{(\mathbf{1 , 4})}$ | $\mathrm{SB}^{(\mathbf{1 , 4})}$ | $\mathrm{OAB}^{(\mathbf{1})}$ | $\mathrm{SAB}^{(\mathbf{1})}$ | $\mathrm{DA}^{(\mathbf{1})}$ | DC |
| bit 15 | | | | | | | |

R/W-0 ${ }^{(2,3)}$	R/W-0 ${ }^{(2,3)}$	$\mathrm{R} / \mathrm{W}-0^{(2,3)}$	R-0	R/W-0	R/W-0	R/W-0	R/W-0
	IPL<2:0>		RA	N	OV	Z	C
bit $7 \times$ bit 0							

Legend:		$\mathrm{U}=$ Unimplemen	as '0'
$\mathrm{R}=$ Readable bit	$\mathrm{W}=$ Writable bit	C = Clearable bit	
-n = Value at POR	' 1 '= Bit is set	' 0 ' = Bit is cleared	$x=$ Bit is unknown

bit 15 OA: Accumulator A Overflow Status bit ${ }^{(1)}$
1 = Accumulator A has overflowed
0 = Accumulator A has not overflowed
bit $14 \quad$ OB: Accumulator B Overflow Status bit ${ }^{(1)}$
$1=$ Accumulator B has overflowed
$0=$ Accumulator B has not overflowed
bit 13 SA: Accumulator A Saturation 'Sticky' Status bit ${ }^{(1,4)}$
1 = Accumulator A is saturated or has been saturated at some time
$0=$ Accumulator A is not saturated
bit 12 SB: Accumulator B Saturation 'Sticky' Status bit ${ }^{(1,4)}$
$1=$ Accumulator B is saturated or has been saturated at some time
$0=$ Accumulator B is not saturated
bit $11 \quad$ OAB: OA || OB Combined Accumulator Overflow Status bit ${ }^{(1)}$
$1=$ Accumulators A or B have overflowed
$0=$ Neither Accumulators A or B have overflowed
bit $10 \quad$ SAB: SA || SB Combined Accumulator 'Sticky' Status bit ${ }^{(\mathbf{1})}$
1 = Accumulators A or B are saturated or have been saturated at some time
$0=$ Neither Accumulator A or B are saturated
bit 9 DA: DO Loop Active bit ${ }^{(1)}$
1 = DO loop in progress
0 = DO loop not in progress
bit 8
DC: MCU ALU Half Carry/Borrow bit
1 = A carry-out from the 4th low order bit (for byte-sized data) or 8th low order bit (for word-sized data) of the result occurred
$0=$ No carry-out from the 4th low order bit (for byte-sized data) or 8th low order bit (for word-sized data) of the result occurred

Note 1: This bit is available on dsPIC33EPXXXMC20X/50X and dsPIC33EPXXXGP50X devices only.
2: The IPL<2:0> bits are concatenated with the IPL<3> bit (CORCON $<3>$) to form the CPU Interrupt Priority Level. The value in parentheses indicates the IPL, if IPL<3> = 1 . User interrupts are disabled when $\mid P L<3>=1$.
3: The IPL<2:0> Status bits are read only when the NSTDIS bit (INTCON1<15>) = 1 .
4: A data write to the SR register can modify the SA and SB bits by either a data write to SA and SB or by clearing the SAB bit. To avoid a possible SA or SB bit write race condition, the SA and SB bits should not be modified using bit operations.

REGISTER 3-1: SR: CPU STATUS REGISTER (CONTINUED)

bit 7-5 IPL<2:0>: CPU Interrupt Priority Level Status bits ${ }^{(\mathbf{1}, \mathbf{2})}$
111 = CPU Interrupt Priority Level is 7 (15). User interrupts disabled
110 = CPU Interrupt Priority Level is 6 (14)
101 = CPU Interrupt Priority Level is 5 (13)
100 = CPU Interrupt Priority Level is 4 (12)
011 = CPU Interrupt Priority Level is 3 (11)
010 = CPU Interrupt Priority Level is 2 (10)
001 = CPU Interrupt Priority Level is 1 (9)
000 = CPU Interrupt Priority Level is 0 (8)
bit 4 RA: REPEAT Loop Active bit
1 = REPEAT loop in progress
$0=$ REPEAT loop not in progress
bit $3 \quad N$: MCU ALU Negative bit
1 = Result was negative
$0=$ Result was non-negative (zero or positive)
bit $2 \quad$ OV: MCU ALU Overflow bit
This bit is used for signed arithmetic (2's complement). It indicates an overflow of the magnitude that causes the sign bit to change state.
1 = Overflow occurred for signed arithmetic (in this arithmetic operation)
0 = No overflow occurred
bit 1
Z: MCU ALU Zero bit
1 = An operation that affects the Z bit has set it at some time in the past
$0=$ The most recent operation that affects the Z bit has cleared it (i.e., a non-zero result)
bit $0 \quad$ C: MCU ALU Carry/Borrow bit
1 = A carry-out from the Most Significant bit of the result occurred
$0=$ No carry-out from the Most Significant bit of the result occurred

Note 1: This bit is available on dsPIC33EPXXXMC20X/50X and dsPIC33EPXXXGP50X devices only.
2: The IPL<2:0> bits are concatenated with the IPL<3> bit (CORCON $<3>$) to form the CPU Interrupt Priority Level. The value in parentheses indicates the IPL, if IPL<3> =1. User interrupts are disabled when $\mid P L<3>=1$.
3: The IPL<2:0> Status bits are read only when the NSTDIS bit (INTCON1<15>) $=1$.
4: A data write to the SR register can modify the SA and SB bits by either a data write to SA and SB or by clearing the SAB bit. To avoid a possible SA or SB bit write race condition, the SA and SB bits should not be modified using bit operations.

REGISTER 3-2: CORCON: CORE CONTROL REGISTER

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R-0	R-0	R-0
VAR	-	US<1:0>(1)	EDT $^{(\mathbf{1}, \mathbf{2})}$		$\mathrm{DL}<2: 0 \gg^{(\mathbf{1})}$		
bit 15			bit 8				

R/W-0	R/W-0	R/W-1	R/W-0	R/C-0	R-0	R/W-0	R/W-0
SATA $^{(\mathbf{1})}$	SATB $^{(\mathbf{1})}$	SATDW $^{(\mathbf{1})}$	ACCSAT $^{(\mathbf{1})}$	IPL3 $^{(\mathbf{3})}$	SFA	RND $^{(\mathbf{1})}$	IF $^{(\mathbf{1})}$
bit 7				bit 0			

Legend:

$R=$ Readable bit	$W=$ Writable bit	$U=$ Unimplemented bit, read as ' 0 '
$-n=$ Value at POR	$' 1$ ' = Bit is set	$' 0$ ' = Bit is cleared

bit 15 VAR: Variable Exception Processing Latency Control bit 1 = Variable exception processing enabled
0 = Fixed exception processing enabled
bit 14 Unimplemented: Read as ' 0 '
bit 13-12 US<1:0>: DSP Multiply Unsigned/Signed Control bits ${ }^{(\mathbf{1})}$
11 = Reserved
10 = DSP engine multiplies are mixed-sign
01 = DSP engine multiplies are unsigned
00 = DSP engine multiplies are signed
bit 11 EDT: Early DO Loop Termination Control bit ${ }^{(1,2)}$
1 = Terminate executing DO loop at end of current loop iteration
$0=$ No effect
bit 10-8 DL<2:0>: DO Loop Nesting Level Status bits ${ }^{(\mathbf{1})}$
111 = 7 DO loops active
-
-
-
$001=1$ DO loop active
$000=0$ DO loops active
bit 7 SATA: AccA Saturation Enable bit ${ }^{(1)}$
1 = Accumulator A saturation enabled
0 = Accumulator A saturation disabled
bit 6 SATB: AccB Saturation Enable bit ${ }^{(1)}$
1 = Accumulator B saturation enabled
0 = Accumulator B saturation disabled
bit 5 SATDW: Data Space Write from DSP Engine Saturation Enable bit ${ }^{(1)}$
1 = Data space write saturation enabled
$0=$ Data space write saturation disabled
bit 4 ACCSAT: Accumulator Saturation Mode Select bit ${ }^{(1)}$
$1=9.31$ saturation (super saturation)
$0=1.31$ saturation (normal saturation)
bit $3 \quad$ IPL3: CPU Interrupt Priority Level Status bit $3^{(\mathbf{3})}$
$1=$ CPU interrupt priority level is greater than 7
$0=$ CPU interrupt priority level is 7 or less

Note 1: This bit is available on dsPIC33EPXXXMC20X/50X and dsPIC33EPXXXGP50X devices only.
2: This bit is always read as ' 0 '.
3: The IPL3 bit is concatenated with the IPL<2:0> bits ($\mathrm{SR}<7: 5>$) to form the CPU interrupt priority level.

REGISTER 3-2: CORCON: CORE CONTROL REGISTER (CONTINUED)

bit 2 SFA: Stack Frame Active Status bit
1 = Stack frame is active. W14 and W15 address 0x0000 to 0xFFFF, regardless of DSRPAG and DSWPAG values
0 = Stack frame is not active. W14 and W15 address of EDS or Base Data Space
bit 1
RND: Rounding Mode Select bit ${ }^{(1)}$
1 = Biased (conventional) rounding enabled
$0=$ Unbiased (convergent) rounding enabled
bit $0 \quad$ IF: Integer or Fractional Multiplier Mode Select bit ${ }^{(1)}$
1 = Integer mode enabled for DSP multiply
0 = Fractional mode enabled for DSP multiply

Note 1: This bit is available on dsPIC33EPXXXMC20X/50X and dsPIC33EPXXXGP50X devices only.
2: This bit is always read as ' 0 '.
3: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU interrupt priority level.

3.7 Arithmetic Logic Unit (ALU)

The dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X, and PIC24EPXXXGP/MC20X ALU is 16 bits wide and is capable of addition, subtraction, bit shifts and logic operations. Unless otherwise mentioned, arithmetic operations are two's complement in nature. Depending on the operation, the ALU can affect the values of the Carry (C), Zero (Z), Negative (N), Overflow (OV) and Digit Carry (DC) Status bits in the SR register. The C and DC Status bits operate as Borrow and Digit Borrow bits, respectively, for subtraction operations.
The ALU can perform 8 -bit or 16 -bit operations, depending on the mode of the instruction that is used. Data for the ALU operation can come from the W register array or data memory, depending on the addressing mode of the instruction. Likewise, output data from the ALU can be written to the W register array or a data memory location.
Refer to the "16-bit MCU and DSC Programmer's Reference Manual" (DS70157) for information on the SR bits affected by each instruction.
The core CPU incorporates hardware support for both multiplication and division. This includes a dedicated hardware multiplier and support hardware for 16 -bit divisor division.

3.7.1 MULTIPLIER

Using the high-speed 17-bit x 17-bit multiplier, the ALU supports unsigned, signed, or mixed-sign operation in several MCU multiplication modes:

- 16-bit x 16 -bit signed
- 16 -bit x 16 -bit unsigned
- 16-bit signed $\times 5$-bit (literal) unsigned
- 16 -bit signed $\times 16$-bit unsigned
- 16-bit unsigned x 5 -bit (literal) unsigned
- 16 -bit unsigned $\times 16$-bit signed
- 8-bit unsigned x 8-bit unsigned

3.7.2 DIVIDER

The divide block supports 32-bit/16-bit and 16-bit/16-bit signed and unsigned integer divide operations with the following data sizes:

- 32-bit signed/16-bit signed divide
- 32-bit unsigned/16-bit unsigned divide
- 16-bit signed/16-bit signed divide
- 16-bit unsigned/16-bit unsigned divide

The quotient for all divide instructions ends up in WO and the remainder in W1. 16-bit signed and unsigned DIV instructions can specify any W register for both the 16-bit divisor (Wn) and any W register (aligned) pair $(W(m+1): W m)$ for the 32-bit dividend. The divide algorithm takes one cycle per bit of divisor, so both 32 -bit/16-bit and 16-bit/16-bit instructions take the same number of cycles to execute.

3.8 DSP Engine
 (dsPIC33EPXXXMC20X/50X and dsPIC33EPXXXGP50X Devices Only)

The DSP engine consists of a high-speed 17-bit x 17-bit multiplier, a 40-bit barrel shifter and a 40-bit adder/subtracter (with two target accumulators, round and saturation logic).
The DSP engine can also perform inherent accumula-tor-to-accumulator operations that require no additional data. These instructions are ADD, SUB and NEG.

The DSP engine has options selected through bits in the CPU Core Control register (CORCON), as listed below:

- Fractional or integer DSP multiply (IF)
- Signed, unsigned, or mixed-sign DSP multiply (US)
- Conventional or convergent rounding (RND)
- Automatic saturation on/off for ACCA (SATA)
- Automatic saturation on/off for ACCB (SATB)
- Automatic saturation on/off for writes to data memory (SATDW)
- Accumulator Saturation mode selection (ACCSAT)

TABLE 3-2: DSP INSTRUCTIONS SUMMARY

Instruction	Algebraic Operation	ACC Write Back
CLR	$A=0$	Yes
ED	$A=(x-y)^{2}$	No
EDAC	$A=A+(x-y)^{2}$	No
MAC	$A=A+(x \cdot y)$	Yes
MAC	$A=A+x^{2}$	No
MOVSAC	No change in A	Yes
MPY	$A=x \cdot y$	No
MPY	$A=x^{2}$	No
MPY. N	$A=-x \bullet y$	No
MSC	$A=A-x \cdot y$	Yes

NOTES:

4.0 MEMORY ORGANIZATION

Note: This data sheet summarizes the features of the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X, and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 4. "Program Memory" (DS70613) of the "dsPIC33E/PIC24E Family Reference Manual", which is available from the Microchip web site (www.microchip.com).

The dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X, and PIC24EPXXXGP/MC20X architecture features separate program and data memory spaces and buses. This architecture also allows the direct access of program memory from the data space during code execution.

4.1 Program Address Space

The program address memory space of the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X, and PIC24EPXXXGP/MC20X devices is 4M instructions. The space is addressable by a 24 -bit value derived either from the 23-bit PC during program execution, or from table operation or data space remapping as described in Section 4.6 "Interfacing Program and Data Memory Spaces".
User application access to the program memory space is restricted to the lower half of the address range (0×000000 to $0 \times 7 F F F F F$). The exception is the use of TBLRD operations, which use TBLPAG<7> to read Device ID sections of the configuration memory space.
The memory map for the dsPIC33EP64GP50X, dsPIC33EP64MC20X/50X, and PIC24EP64GP/ MC20X devices is shown in Figure 4-1.

FIGURE 4-1: PROGRAM MEMORY MAP FOR dsPIC33EP64GP50X, dsPIC33EP64MC20X/50X, AND PIC24EP64GP/MC20X DEVICES ${ }^{(1)}$

Note 1: Memory areas are not shown to scale.
2: On reset, these bits are automatically copied into the device Configuration Shadow registers.

4.1.1 PROGRAM MEMORY ORGANIZATION

The program memory space is organized in wordaddressable blocks. Although it is treated as 24 bits wide, it is more appropriate to think of each address of the program memory as a lower and upper word, with the upper byte of the upper word being unimplemented. The lower word always has an even address, while the upper word has an odd address (Figure 4-2).

Program memory addresses are always word-aligned on the lower word, and addresses are incremented or decremented by two during code execution. This arrangement provides compatibility with data memory space addressing and makes data in the program memory space accessible.

4.1.2 INTERRUPT AND TRAP VECTORS

All dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X, and PIC24EPXXXGP/MC20X devices reserve the addresses between 0×00000 and 0×000200 for hard-coded program execution vectors. A hardware Reset vector is provided to redirect code execution from the default value of the PC on device Reset to the actual start of code. A GOTO instruction is programmed by the user application at address 0×000000 of Flash memory, with the actual address for the start of code at address 0×000002 of Flash memory.
A more detailed discussion of the interrupt vector tables is provided in Section 7.1 "Interrupt Vector Table".

FIGURE 4-2: PROGRAM MEMORY ORGANIZATION

4.2 Data Address Space

The dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X, and PIC24EPXXXGP/MC20X CPU has a separate 16 -bit wide data memory space. The data space is accessed using separate Address Generation Units (AGUs) for read and write operations. The data memory maps are shown in Figure 4-3 and Figure 4-4.
All Effective Addresses (EAs) in the data memory space are 16 bits wide and point to bytes within the data space. This arrangement gives a base data space address range of 8 Kbytes or 4 K words.
The base data space address is used in conjunction with a read or write page register (DSRPAG or DSWPAG) to form an extended data space, which has a total address range of 16 MB .
dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X, and PIC24EPXXXGP/MC20X devices implement up to 56 Kbytes of data memory. If an EA point to a location outside of this area, an all-zero word or byte is returned.

4.2.1 DATA SPACE WIDTH

The data memory space is organized in byte addressable, 16 -bit wide blocks. Data is aligned in data memory and registers as 16 -bit words, but all data space EAs resolve to bytes. The Least Significant Bytes (LSBs) of each word have even addresses, while the Most Significant Bytes (MSBs) have odd addresses.

4.2.2 DATA MEMORY ORGANIZATION AND ALIGNMENT

To maintain backward compatibility with PIC ${ }^{\circledR}$ MCU devices and improve data space memory usage efficiency, the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X, and PIC24EPXXXGP/ MC20X instruction set supports both word and byte operations. As a consequence of byte accessibility, all effective address calculations are internally scaled to step through word-aligned memory. For example, the core recognizes that Post-Modified Register Indirect Addressing mode [Ws++] results in a value of Ws + 1 for byte operations and Ws + 2 for word operations.
A data byte read, reads the complete word that contains the byte, using the LSB of any EA to determine which byte to select. The selected byte is placed onto the LSB of the data path. That is, data memory and registers are organized as two parallel byte-wide entities with shared (word) address decode but separate write lines. Data byte writes only write to the corresponding side of the array or register that matches the byte address.

All word accesses must be aligned to an even address. Misaligned word data fetches are not supported, so care must be taken when mixing byte and word operations, or translating from 8-bit MCU code. If a misaligned read or write is attempted, an address error trap is generated. If the error occurred on a read, the instruction underway is completed. If the error occurred on a write, the instruction is executed but the write does not occur. In either case, a trap is then executed, allowing the system and/or user application to examine the machine state prior to execution of the address Fault.
All byte loads into any W register are loaded into the LSB. The MSB is not modified.
A Sign-Extend instruction (SE) is provided to allow user applications to translate 8 -bit signed data to 16 -bit signed values. Alternatively, for 16-bit unsigned data, user applications can clear the MSB of any W register by executing a Zero-Extend (ZE) instruction on the appropriate address.

4.2.3 SFR SPACE

The first 4 Kbytes of the Near Data Space, from 0x0000 to $0 \times 0 F F F$, is primarily occupied by Special Function Registers (SFRs). These are used by the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X, and PIC24EPXXXGP/MC20X core and peripheral modules for controlling the operation of the device.
SFRs are distributed among the modules that they control, and are generally grouped together by module. Much of the SFR space contains unused addresses; these are read as ' 0 '.

Note:	The actual set of peripheral features and interrupts varies by the device. Refer to
the corresponding device tables and	
pinout diagrams for device-specific	
information.	

4.2.4 NEAR DATA SPACE

The 8 Kbyte area between 0×0000 and $0 x 1 F F F$ is referred to as the near data space. Locations in this space are directly addressable through a 13-bit absolute address field within all memory direct instructions. Additionally, the whole data space is addressable using MOV instructions, which support Memory Direct Addressing mode with a 16 -bit address field, or by using Indirect Addressing mode using a working register as an Address Pointer.

FIGURE 4-3: DATA MEMORY MAP FOR dsPIC33EP64MC20X/50X AND dsPIC33EP64GP50X DEVICES

FIGURE 4-4: DATA MEMORY MAP FOR PIC24EP64GP/MC20X/50X DEVICES

Note: Memory areas are not shown to scale.

4.2.5 $\quad X$ AND Y DATA SPACES

The dsPIC33EPXXXMC20X/50X and dsPIC33EPXXXGP50X core has two data spaces, X and Y . These data spaces can be considered either separate (for some DSP instructions), or as one unified linear address range (for MCU instructions). The data spaces are accessed using two Address Generation Units (AGUs) and separate data paths. This feature allows certain instructions to concurrently fetch two words from RAM, thereby enabling efficient execution of DSP algorithms such as Finite Impulse Response (FIR) filtering and Fast Fourier Transform (FFT).

The X data space is used by all instructions and supports all addressing modes. X data space has separate read and write data buses. The X read data bus is the read data path for all instructions that view data space as combined X and Y address space. It is also the X data prefetch path for the dual operand DSP instructions (MAC class).

The Y data space is used in concert with the X data space by the MAC class of instructions (CLR, ED, EDAC, MAC, MOVSAC, MPY, MPY.N and MSC) to provide two concurrent data read paths.
Both the X and Y data spaces support Modulo Addressing mode for all instructions, subject to addressing mode restrictions. Bit-Reversed Addressing mode is only supported for writes to X data space. Modulo Addressing and Bit-Reversed Addressing are not present in PIC24EPXXXGP/ MC20X devices.
All data memory writes, including in DSP instructions, view data space as combined X and Y address space. The boundary between the X and Y data spaces is device-dependent and is not user-programmable.

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	$\underset{\text { Resets }}{\text { RII }}$
wo	0000	W0 (WREG) ${ }^{\text {a }}$ (${ }^{\text {a }}$																
w1	0002	W1																${ }_{\text {xxx }} \times$
W2	0004	W2																xxxx
w3	0006	w3																xxxx
W4	0008	W4																xxxx
w5	000A	w5																xxxx
w6	000C	W6																xxxx
W7	000E	W7																x \times xx
w8	0010	W8																$x^{\text {xxxx }}$
w9	0012	w9																xxxx
W10	0014	W10																xxxx
W11	0016	W11																xxxx
W12	0018	W12																x \times xx
W13	001A	W13																xxxx
W14	001 C	W14																${ }_{\text {xxx }} \times 1$
W15	001E	W15																xxxx
SPLIM	0020	SPLIM																0000
ACCAL	0022	ACCAL																0000
ACCAH	0024	ACCAH																0000
ACCAU	0026	Sign-extension of ACCA<39> ${ }^{\text {P }}$ ACCAU																0000
ACCBL	0028	ACCBL																0000
ACCBH	002A	ACCBH																0000
Accbu	002 C	Sign-extension of ACCB<39> ACCBU																0000
PCL	002E	PCL															-	0000
PCH	0030	-	-	-	-	-	-	-	-	-	PCH							0000
DSRPAG	0032	-	-	-	-	-	-		DSRPAG									0001
DSWPAG	0034	-	-	-	-	-	-	-	DSWPAG									0001
RCOUNT	0036	RCOUNT																0000
DCOUNT	0038	DCOUNT																0000
DOSTARTL	003A								Start								-	0000
DOSTARTH	003C	-	-	-	-	-	-	-	-	-	-	DOSTARTH						0000
DOENDL	003E	DOENDL															-	0000
DOENDH	0040	-	-	-	-	-	-	-	-	-	-	DOENDH						0000

TABLE 4-3: INTERRUPT CONTROLLER REGISTER MAP FOR PIC24EPXXXGP20X DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
IFS0	0800	-	DMA1IF	AD1IF	U1TXIF	U1RXIF	SPI11F	SPI1EIF	T3IF	T2IF	OC21F	IC2IF	DMAOIF	T1IF	OC1IF	IC1IF	INTOIF	0000
IFS1	0802	U2TXIF	U2RXIF	INT2IF	T5IF	T4IF	OC4IF	OC31F	DMA2IF	-	-	-	INT11F	CNIF	CMIF	MI2C11F	SI2C1IF	0000
IFS2	0804	-	-	-	-	-	-	-	-	-	IC4IF	IC3IF	DMA3IF	-	-	SPI21F	SPI2EIF	0000
IFS3	0806	-	-	-	-	-	-	-	-	-	-	-	-	-	MI2C2IF	SI2C2IF	-	0000
IFS4	0808	-	-	CTMUIF	-	-	-	-	-	-	-	-	-	CRCIF	U2EIF	U1EIF	-	0000
IFS8	0810	JTAGIF	ICDIF	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
IFS9	0812	-	-	-	-	-	-	-	-	-	PTG31F	PTG21F	PTG11F	PTGOIF	PTGWDTIF	PTGSTEPIF	-	0000
IECO	0820	-	DMA1IE	AD1IE	U1TXIE	U1RXIE	SPI1IE	SPI1EIE	T3IE	T2IE	OC2IE	IC2IE	DMAOIE	T1IE	OC1IE	IC1IE	INTOIE	0000
IEC1	0822	U2TXIE	U2RXIE	INT2IE	T5IE	T4IE	OC4IE	OC3IE	DMA2IE	-	-	-	INT11E	CNIE	CMIE	MI2C1IE	SI2C1IE	0000
IEC2	0824	-	-	-	-	-	-	-	-	-	IC4IE	IC3IE	DMA3IE	-	-	SPI2IE	SPI2EIE	0000
IEC3	0826	-	-	-	-	-	-	-	-	-	-	-	-	-	MI2C2IE	SI2C2IE	-	0000
IEC4	0828	-	-	CTMUIE	-	-	-	-	-	-	-	-	-	CRCIE	U2EIE	U1EIE	-	0000
IEC8	0830	JTAGIE	ICDIE	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
IEC9	0832	-	-	-	-	-	-	-	-	-	PTG3IE	PTG21E	PTG1IE	PTGOIE	PTGWDTIE	PTGSTEPIE	-	0000
IPC0	0840	-	T11P<2:0>			-	OC11P<2:0>			-	IC11P<2:0>			-	INTOIP<2:0>			4444
IPC1	0842	-	T21P<2:0>			-	OC2IP<2:0>			-	IC2IP<2:0>			-	DMAOIP<2:0>			4444
IPC2	0844	-	U1RXIP<2:0>			-	SPI11P<2:0>			-	SPI1EIP<2:0>			-	T31P<2:0>			4444
IPC3	0846	-	-	-	-	-	DMA11P<2:0>			-	AD1IP<2:0>			-	U1TXIP<2:0>			0444
IPC4	0848	-	CNIP<2:0>			-	CMIP<2:0>			-	MI2C11P<2:0>			-	SI2C1IP<2:0>			4444
IPC5	084A	-	-	-	-	-	-	-	-	-	-	-	-	-	INT11P<2:0>			0004
IPC6	084C	-	T4\|P<2:0>			-	OC4IP<2:0>			-	OC3IP<2:0>			-		DMA21P<2:0>		4444
IPC7	084E	-	U2TXIP<2:0>			-	U2RXIP<2:0>			-	INT21P<2:0>			-	T5IP<2:0>			4444
IPC8	0850	-	-	-	-	-	-	-	-	-	SP121P<2:0>			-	SPI2EIP<2:0>			0044
IPC9	0852	-	-	-	-	-	IC4IP<2:0>			-	IC31P<2:0>			-	DMA3IP<2:0>			0444
IPC12	0858	-	-	-	-	-	M12C2IP<2:0>			-	SI2C21P<2:0>			-	-	-	-	0440
IPC16	0860	-	CRCIP<2:0>			-	U2EIP<2:0>			-	U1EIP<2:0>			-	-	-	-	4440
IPC19	0866	-	-	-	-	-	-	-	-	-	CTMUIP<2:0>			-	-	-	-	0040
IPC35	0886	-	JTAGID<2:0>			-	ICDIP<2:0>			-	-	-	-	-	-	-	-	4400
IPC36	0888	-	PTGOIP<2:0>			-	PGWDTIP<2:0>			-	PTGSTEPIP<2:0>			-	-	-	-	4440
IPC37	088A	-	-	-	-	-	PTG3IP<2:0>			-	PTG2IP<2:0>			-	PTG11P<2:0>			0444

Bit 0
INTOIF

Bit 1

$\underline{\underline{v}}$	$\begin{aligned} & \stackrel{u}{\bar{U}} \\ & \tilde{N} \end{aligned}$	$\frac{\frac{u}{\mathrm{~N}}}{\frac{\mathrm{~N}}{\omega}}$	$\left\|\begin{array}{c} \stackrel{u}{\tilde{N}} \\ \underset{\sim}{\omega} \end{array}\right\|$	$\frac{\stackrel{4}{\Psi}}{5}$	1	｜
$\left\|\begin{array}{l} \frac{4}{\bar{c}} \\ 0 \end{array}\right\|$	\sum_{U}^{U}	1	$\left.\begin{aligned} & \mathrm{N} \\ & \mathrm{~N} \\ & \mathrm{~N} \end{aligned} \right\rvert\,$	$\begin{aligned} & \stackrel{u}{山 ゙} \\ & \stackrel{N}{S} \end{aligned}$	1	1
$\|\stackrel{\stackrel{u}{\mid}}{\stackrel{\rightharpoonup}{\mid}}\|$	$\frac{\mathrm{L}}{\bar{Z}}$	｜	｜	$\begin{aligned} & \underline{u} \\ & \mathbf{O} \\ & \text { y } \end{aligned}$	｜	｜

 U2EIE
111

DMA1P1P＜2：0＞

Bit 2

Bit 3
人7NO S
Legend：$\quad-=$ unimplemented，read as＇ 0 ＇．Reset values are shown in hexadecimal．
TABLE 4-5: INTERRUPT CONTROLLER REGISTER MAP FOR dsPIC33EPXXXGP50X DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	$\begin{gathered} \text { All } \\ \text { Resets } \end{gathered}$
IFS0	0800	-	DMA1IF	AD1IF	U1TXIF	U1RXIF	SPI11F	SPI1EIF	T31F	T2IF	OC2IF	IC2IF	DMAOIF	T1IF	OC1IF	IC1IF	INTOIF	0000
IFS1	0802	U2TXIF	U2RXIF	INT2IF	T5IF	T4IF	OC4IF	OC3IF	DMA21F	-	-	-	INT11F	CNIF	CMIF	MI2C1IF	SI2C1IF	0000
IFS2	0804	-	-	-	-	-	-	-	-	-	IC4IF	IC3IF	DMA3IF	C1IF	C1RXIF	SPI21F	SPI2EIF	0000
IFS3	0806	-	-	-	-	-	-	-	-	-	-	-	-	-	M12C2IF	SI2C2IF	-	0000
IFS4	0808	-	-	CTMUIF	-	-	-	-	-	-	C1TXIF	-	-	CRCIF	U2EIF	U1EIF	-	0000
IFS6	080C	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	PWM3IF	0000
IFS8	0810	JTAGIF	ICDIF	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
IFS9	0812	-	-	-	-	-	-	-	-	-	PTG31F	PTG21F	PTG11F	PTGOIF	PTGWDTIF	PTGSTEPIF	-	0000
IEC0	0820	-	DMA1IE	AD1IE	U1TXIE	U1RXIE	SPI1IE	SPI1EIE	T3IE	T21E	OC2IE	IC2IE	DMAOIE	T1IE	OC1IE	IC1IE	Intoie	0000
IEC1	0822	U2TXIE	U2RXIE	INT2IE	T5IE	T4IE	OC4IE	OC3IE	DMA2IE	-	-	-	INT1IE	CNIE	CMIE	MI2C1IE	SI2C1IE	0000
IEC2	0824	-	-	-	-	-	-	-	-	-	IC4IE	IC3IE	DMA3IE	C1IE	C1RXIE	SPI21E	SPI2EIE	0000
IEC3	0826	-	-	-	-	-	-	-	-	-	-	-	-	-	MI2C2IE	SI2C2IE	-	0000
IEC4	0828	-	-	CTMUIE	-	-	-	-	-	-	C1TXIE	-	-	CRCIE	U2EIE	U1EIE	-	0000
IEC8	0830	JTAGIE	ICDIE	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
IEC9	0832	-	-	-	-	-	-	-	-	-	PTG3IE	PTG21E	PTG1IE	PTGOIE	PTGWDTIE	PTGSTEPIE	-	0000
IPC0	0840	-	T11P<2:0>			-	OC11P<2:0>			-	IC11P<2:0>			-	INTOIP<2:0>			4444
IPC1	0842	-	T21P<2:0>			-	OC2IP<2:0>			-	IC2IP<2:0>			-	DMAOIP<2:0>			4444
IPC2	0844	-	U1RXIP<2:0>			-	SPI11P<2:0>			-	SPI1EIP<2:0>			-	T31P<2:0>			4444
IPC3	0846	-	-	-	-	-	DMA11P<2:0>			-	AD11P<2:0>			-	U1TXIP<2:0>			0444
IPC4	0848	-	CNIP<2:0>			-	CMIP<2:0>			-	M12C1IP $<2: 0>$			-	S12C11P<2:0>			4444
IPC5	084A	-	-	-	-	-	-	-	-	-	-	-	-	-	INT1\|P <2:0>			0004
IPC6	084C	-	T4\|P<2:0>			-	OC4IP<2:0>			-	OC3IP<2:0>			-		DMA21P<2:0>		4444
IPC7	084E	-	U2TXIP<2:0>			-	U2RXIP<2:0>			-	INT21P<2:0>			-	T51P<2:0>			4444
IPC8	0850	-	C11P<2:0>			-	C1RXIP<2:0>			-	SPI21P<2:0>			-	SPI2EIP<2:0>			4444
IPC9	0852	-	-	-	-	-	IC4IP<2:0>			-	IC31P<2:0>			-	DMA31P<2:0>			0444
IPC11	0856	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
IPC12	0858	-	-	-	-	-	M12C2IP<2:0>			-	SI2C2IP<2:0>			-	-	-	-	0440
IPC16	0860	-	CRCIP<2:0>			-	U2EIP<2:0>			-	U1EIP<2:0>			-	-	-	-	4440
IPC17	0862	-	-	-	-	-	C1TXIP<2:0>			-	-	-	-	-	-	-	-	0400
IPC19	0866	-	-	-	-	-	-	-	-	-	CTMUIP<2:0>			-	-	-	-	0040
IPC35	0886	-	JTAGID<2:0>			-	ICDIP<2:0>			-	-	-	-	-	-	-	-	4400
IPC36	0888	-	PTGOIP<2:0>			-	PGWDTIP<2:0>			-	PTGSTEPIP<2:0>			-	-	-	-	4440
IPC37	088A	-	-	-	-	-	PTG31P<2:0>			-	PTG21P<2:0>			-	PTG11P<2:0>			0444

TABLE 4-6: INTERRUPT CONTROLLER REGISTER MAP FOR dsPIC33EPXXXMC20X DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	$\begin{gathered} \text { All } \\ \text { Resets } \end{gathered}$
IFS0	0800	-	DMA1IF	AD1IF	U1TXIF	U1RXIF	SPI1IF	SPI1EIF	T3IF	T2IF	OC21F	IC2IF	DMAOIF	T1IF	OC1IF	IC1IF	INTOIF	0000
IFS1	0802	U2TXIF	U2RXIF	INT2IF	T5IF	T4IF	OC4IF	OC3IF	DMA21F	-	-	-	INT11F	CNIF	CMIF	MI2C11F	SI2C1IF	0000
IFS2	0804	-	-	-	-	-	-	-	-	-	IC4IF	IC3IF	DMA3IF	-	-	SPI21F	SPI2EIF	0000
IFS3	0806	-	-	-	-	-	QEI11F	PSEMIF	-	-	-	-	-	-	MI2C2IF	SI2C2IF	-	0000
IFS4	0808	-	-	CTMUIF	-	-	-	-	-	-	-	-	-	CRCIF	U2EIF	U1EIF	-	0000
IFS5	080A	PWM2IF	PWM1IF	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
IFS6	080C	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	PWM31F	0000
IFS8	0810	JTAGIF	ICDIF	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
IFS9	0812	-	-	-	-	-	-	-	-	-	PTG3IF	PTG21F	PTG11F	PTGOIF	PTGWDTIF	PTGSTEPIF	-	0000
IECO	0820	-	DMA1IE	AD1IE	U1TXIE	U1RXIE	SPI1IE	SPI1EIE	T3IE	T2IE	OC2IE	IC2IE	DMAOIE	T1IE	OC1IE	IC1IE	INTOIE	0000
IEC1	0822	U2TXIE	U2RXIE	INT2IE	T5IE	T4IE	OC4IE	OC3IE	DMA2IE	-	-	-	INT1IE	CNIE	CMIE	MI2C1IE	SI2C1IE	0000
IEC2	0824	-	-	-	-	-	-	-	-	-	IC4IE	IC3IE	DMA3IE	-	-	SPI21E	SPI2EIE	0000
IEC3	0826	-	-	-	-	-	QEI1IE	PSEMIE	-	-	-	-	-	-	MI2C2IE	SI2C2IE	-	0000
IEC4	0828	-	-	CTMUIE	-	-	-	-	-	-	-	-	-	CRCIE	U2EIE	U1EIE	-	0000
IEC5	082A	PWM2IE	PWM11E	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
IEC6	082C	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	PWM31E	0000
IEC8	0830	JTAGIE	ICDIE	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
IEC9	0832	-	-	-	-	-	-	-	-	-	PTG3IE	PTG2IE	PTG1IE	PTGOIE	PTGWDTIE	PTGSTEPIE	-	0000
IPC0	0840	-	T11P<2:0>			-	OC11P<2:0>			-	IC11P<2:0>			-	INTOIP <2:0>			4444
IPC1	0842	-	T21P<2:0>			-	OC2IP<2:0>			-	IC2IP<2:0>			-	DMAOIP<2:0>			4444
IPC2	0844	-	U1RXIP<2:0>			-	SP111P<2:0>			-	SPI1EIP<2:0>			-	T31P<2:0>			4444
IPC3	0846	-	-	-	-	-	DMA11P<2:0>			-	AD11P<2:0>			-	U1TXIP<2:0>			0444
IPC4	0848	-	CNIP<2:0>			-	CMIP<2:0>			-	M12C1IP <2:0>			-	SI2C11P<2:0>			4444
IPC5	084A	-	-	-	-	-	-	-	-	-	-	-	-	-		INT1\|P<2:0>		0004
IPC6	084C	-	T41P<2:0>			-	OC4IP<2:0>			-	OC3IP<2:0>			-	DMA21P<2:0>			4444
IPC7	084E	-	U2TXIP<2:0>			-	U2RXIP<2:0>			-	INT21P<2:0>			-	T5IP<2:0>			4444
IPC8	0850	-	-	-	-	-	C1RXIP<2:0>			-	SPI21P<2:0>			-	SPI2EIP<2:0>			0444
IPC9	0852	-	-	-	-	-	IC4IP<2:0>			-	IC31P<2:0>			-	DMA31P<2:0>			0444
IPC12	0858	-	-	-	-	-	M12C2IP<2:0>			-	SI2C2IP<2:0>			-	-	-	-	0440
IPC14	085C	-	-	-	-	-	QE111P<2:0>			-	PSEMIP<2:0>			-	-	-	-	0440
IPC16	0860	-	CRCIP<2:0>			-	U2EIP<2:0>			-	U1EIP<2:0>			-	-	-	-	4440
IPC19	0866	-	-	-	-	-	-	-	-	-	CTMUIP<2:0>			-	-	-	-	0040
IPC23	086E	-	PWM2IP<2:0>			-	PWM1IP<2:0>			-	-	-	-	-	-	-	-	4400
IPC24	0870	-	-	-	-	-	-	-	-	-	-	-	-	-	PWM31P<2:0>			0004
IPC35	0886	-	JTAGID<2:0>			-	ICDIP<2:0>			-	-	-	-	-	-	-	-	4400

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	$\begin{gathered} \text { All } \\ \text { Resets } \end{gathered}$
IFS0	0800	-	DMA1IF	AD1IF	U1TXIF	U1RXIF	SPI11F	SPI1EIF	T3IF	T2IF	OC2IF	IC2IF	DMAOIF	T11F	OC1IF	IC1IF	INTOIF	0000
IFS1	0802	U2TXIF	U2RXIF	INT2IF	T5IF	T4IF	OC4IF	OC3IF	DMA2IF	-	-	-	INT1IF	CNIF	CMIF	MI2C1IF	SI2C1IF	0000
IFS2	0804	-	-	-	-	-	-	-	-	-	IC4IF	IC3IF	DMA31F	C1IF	C1RXIF	SPI21F	SPI2EIF	0000
IFS3	0806	-	-	-	-	-	QE11/F	PSEMIF	-	-	-	-	-	-	MI2C2IF	SI2C2IF	-	0000
IFS4	0808	-	-	CTMUIF	-	-	-	-	-	-	C1TXIF	-	-	CRCIF	U2EIF	U1EIF	-	0000
IFS5	080A	PWM21F	PWM1IF	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
IFS6	080C	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	PWM31F	0000
IFS8	0810	JTAGIF	ICDIF	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
IFS9	0812	-	-	-	-	-	-	-	-	-	PTG31F	PTG21F	PTG1IF	PTGOIF	PTGWDTIF	PTGSTEPIF	-	0000
IECO	0820	-	DMA1IE	AD1IE	U1TXIE	U1RXIE	SPI1IE	SPI1EIE	T3IE	T21E	OC2IE	IC2IE	DMAOIE	T1IE	OC1IE	IC1IE	Intoie	0000
IEC1	0822	U2TXIE	U2RXIE	INT2IE	T5IE	T4IE	OC4IE	OC3IE	DMA2IE	-	-	-	INT1IE	CNIE	CMIE	MI2C1IE	SI2C1IE	0000
IEC2	0824	-	-	-	-	-	-	-	-	-	IC4IE	IC3IE	DMA3IE	C1IE	C1RXIE	SPI2IE	SPI2EIE	0000
IEC3	0826	-	-	-	-	-	QEI1IE	PSEMIE	-	-	-	-	-	-	MI2C2IE	SI2C2IE	-	0000
IEC4	0828	-	-	CTMUIE	-	-	-	-	-	-	C1TXIE	-	-	CRCIE	U2EIE	U1EIE	-	0000
IEC5	082A	PWM2IE	PWM1IE	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
IEC6	082C	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	PWM3IE	0000
IEC7	082E	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
IEC8	0830	JTAGIE	ICDIE	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
IEC9	0832	-	-	-	-	-	-	-	-	-	PTG3IE	PTG21E	PTG1IE	PTGOIE	PTGWDTIE	PTGSTEPIE	-	0000
IPC0	0840	-	T11P<2:0>			-	OC11P<2:0>			-	IC1IP<2:0>			-	INTOIP <2:0>			4444
IPC1	0842	-	T21P<2:0>			-	OC21P<2:0>			-	IC21P<2:0>			-	DMAOIP<2:0>			4444
IPC2	0844	-	U1RXIP<2:0>			-	SP11P<2:0>			-	SPI1EIP<2:0>			-	T31P<2:0>			4444
IPC3	0846	-	-	-	-	-	DMA11P<2:0>			-	AD11P<2:0>			-	U1TXIP<2:0>			0444
IPC4	0848	-	CNIP<2:0>			-	CMIP<2:0>			-	M12C1IP $<2: 0>$			-	S12C11P<2:0>			4444
IPC5	084A	-	-	-	-	-	-	-	-	-	-	-	-	-		INT1 1P <2:0>		0004
IPC6	084C	-	T41P<2:0>			-	OC4IP<2:0>			-	OC3IP<2:0>			-	DMA21P<2:0>			4444
IPC7	084E	-	U2TXIP<2:0>			-	U2RXIP<2:0>			-	INT21P<2:0>			-	T51P<2:0>			4444
IPC8	0850	-	C11P<2:0>			-	C1RXIP<2:0>			-	SPI21P<2:0>			-	SPI2EIP<2:0>			4444
IPC9	0852	-	-	-	-	-	IC4IP<2:0>			-	IC31P<2:0>			-	DMA3IP<2:0>			0444
IPC12	0858	-	-	-	-	-	M12C2IP<2:0>			-	SI2C2IP<2:0>			-	-	-	-	0440
IPC14	085C	-	-	-	-	-	QEI11P<2:0>			-	PSEMIP<2:0>			-	-	-	-	0440
IPC16	0860	-	CRCIP<2:0>			-	U2EIP<2:0>			-	U1EIP<2:0>			-	-	-	-	4440
IPC17	0862	-	-	-	-	-	C1TXIP<2:0>			-	-	-	-	-	-	-	-	0400
IPC19	0866	-	-	-	-	-	-	-	-	-	CTMUIP<2:0>			-	-	-	-	0040
IPC23	086E	-	PWM2IP<2:0>			-	PWM11P<2:0>			-	-	-	-	-	-	-	-	4400

TABLE 4-7:

TIMER1 THROUGH TIMER5 REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TMR1	0100	Timer1 Register																xxxx
PR1	0102	Period Register 1																FFFF
T1CON	0104	TON	-	TSIDL	-	-	-	-	-	-	TGATE	TCKP	1:0>	-	TSYNC	TCS	-	0000
TMR2	0106	Timer2 Register																xxxx
TMR3HLD	0108	Timer3 Holding Register (for 32-bit timer operations only)																$x \times x x$
TMR3	010A	Timer3 Register																xxxx
PR2	010C	Period Register 2																FFFF
PR3	010E	Period Register 3																FFFF
T2CON	0110	TON	-	TSIDL	-	-	-	-	-	-	TGATE	TCKP	10>	T32	-	TCS	-	0000
T3CON	0112	TON	-	TSIDL	-	-	-	-	-	-	TGATE	TCKP	1:0>	-	-	TCS	-	0000
TMR4	0114	Timer4 Register																xxxx
TMR5HLD	0116	Timer5 Holding Register (for 32-bit operations only)																$x \times x x$
TMR5	0118	Timer5 Register																xxxx
PR4	011A	Period Register 4																FFFF
PR5	011C	Period Register 5																FFFF
T4CON	011E	TON	-	TSIDL	-	-	-	-	-	-	TGATE	TCKP	1:0>	T32	-	TCS	-	0000
T5CON	0120	TON	-	TSIDL	-	-	-	-	-	-	TGATE	TCKP	1:0>	-	-	TCS	-	0000

TABLE 4-9:

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	$\begin{gathered} \text { All } \\ \text { Resets } \end{gathered}$
IC1CON1	0140	-	-	ICSIDL	ICTSEL<2:0>			-	-	-	ICI<1:0>		ICOV	ICBNE		ICM<2:0>		0000
IC1CON2	0142	-	-	-	-	-	-	-	IC32	ICTRIG	TRIGSTAT	-	SYNCSEL<4:0>					000D
IC1BUF	0144	Input Capture 1 Buffer Register																xxxx
IC1TMR	0146	Input Capture 1 Timer																0000
IC2CON1	0148	-	-	ICSIDL	ICTSEL<2:0>			-	-	-	ICI<1:0>		ICOV	ICBNE	ICM<2:0>			0000
IC2CON2	014A	-	-	-	-	-	-	-	IC32	ICTRIG	TRIGSTAT	-	SYNCSEL<4:0>					000D
IC2BUF	014C	Input Capture 2 Buffer Register																xxxx
IC2TMR	014E	Input Capture 2 Timer																0000
IC3CON1	0150	-	-	ICSIDL	ICTSEL<2:0>			-	-	-	ICI<1:0>		ICOV	ICBNE		ICM<2:0		0000
IC3CON2	0152	-	-	-	-	-	-	-	IC32	ICTRIG	TRIGSTAT	-	SYNCSEL<4:0>					000D
IC3BUF	0154	Input Capture 3 Buffer Register																xxxx
IC3TMR	0156	Input Capture 3 Timer																0000
IC4CON1	0158	-	-	ICSIDL	ICTSEL<2:0>			-	-	-	IC1<1:0>		ICOV	ICBNE		ICM<2:0		0000
IC4CON2	015A	-	-	-	-	-	-	-	IC32	ICTRIG	TRIGSTAT	-	SYNCSEL<4:0>					000D
IC4BUF	015C	Input Capture 4 Buffer Register																xxxx
IC4TMR	015E	Input Capture 4 Timer																0000

Legend: $\quad x=$ unknown value on Reset, $-=$ unimplemented, read as ' 0 '. Reset values are shown in hexadecimal
TABLE 4-10: OUTPUT COMPARE 1 THROUGH OUTPUT COMPARE 4 REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
OC1CON1	0900	-	-	OCSIDL	OCTSEL<2:0>			-	ENFLTB	ENFLTA	-	OCFLTB	OCFLTA	TRIGMODE	OCM<2:0>			0000
OC1CON2	0902	FLTMD	FLTOUT	FLTTRIEN	OCINV	-	DCB<1:0>		OC32	OCTRIG	TRIGSTAT	OCTRIS	SYNCSEL<4:0>					000C
OC1RS	0904	Output Compare 1 Secondary Register																xxxx
OC1R	0906	Output Compare 1 Register																xxxx
OC1TMR	0908	Timer Value 1 Register																xxxx
OC2CON1	090A	-	-	OCSIDL	OCTSEL<2:0>			-	ENFLTB	ENFLTA	-	OCFLTB	OCFLTA	TRIGMODE	OCM<2:0>			0000
OC2CON2	090C	FLTMD	FLTOUT	FLTTRIEN	OCINV	-	DCB<1:0>		OC32	OCTRIG	TRIGSTAT	OCTRIS	SYNCSEL<4:0>					000C
OC2RS	090E	Output Compare 2 Secondary Register																xxxx
OC2R	0910	Output Compare 2 Register																xxxx
OC2TMR	0912	Timer Value 2 Register																xxxx
OC3CON1	0914	-	-	OCSIDL	OCTSEL<2:0>			-	ENFLTB	ENFLTA	-	OCFLTB	OCFLTA	TRIGMODE		OCM<2:0>		0000
OC3CON2	0916	FLTMD	FLTOUT	FLTTRIEN	OCINV	-	DCB<1:0>		OC32	OCTRIG	TRIGSTAT	OCTRIS	SYNCSEL<4:0>					000C
OC3RS	0918	Output Compare 3 Secondary Register																xxxx
OC3R	091A	Output Compare 3 Register																xxxx
OC3TMR	091C	Timer Value 3 Register																xxxx
OC4CON1	091E	-	-	OCSIDL	OCTSEL<2:0>			ENFLTC	ENFLTB	ENFLTA	OCFLTC	OCFLTB	OCFLTA	TRIGMODE	OCM<2:0>			0000
OC4CON2	0920	FLTMD	FLTOUT	FLTRRIEN	OCINV	-	DCB<1:0>		OC32	OCTRIG	TRIGSTAT	OCTRIS	SYNCSEL<4:0>					000C
OC4RS	0922	Output Compare 4 Secondary Register																xxxx
OC4R	0924	Output Compare 4 Register																$x \times x x$
OC4TMR	0926																	xxxx

TABLE 4-11: PTG REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	$\begin{gathered} \text { All } \\ \text { Resets } \end{gathered}$
PTGCST	OACO	PTGEN	-	PTGSIDL	PTGTOGL	-	PTGSWT	-	PTGIVIS	PTGSTRT	PTGWTO	-	-	-	-	PTGI	<1:0>	0000
PTGCON	OAC2	PTGCLK<2:0>			PTGDIV<4:0>					PTGPWD<3:0>				-	PTGWDT<2:0>			0000
PTGBTE	OAC4	PTGBTE<15:0>																0000
PTGHOLD	0AC6	PTGHOLD<15:0>																0000
PTGTOLIM	0AC8	PTGTOLIM<15:0>																0000
PTGT1LIM	OACA	PTGT1LIM<15:0>																0000
PTGSDLIM	OACC	PTGSDLIM<15:0>																0000
PTGCOLIM	OACE	PTGCOLIM<15:0>																0000
PTGC1LIM	OADO	PTGC1LIM<15:0>																0000
PTGADJ	OAD2	PTGADJ<15:0>																0000
PTGLO	OAD4	PTGL0<15:0>																0000
PTGQPTR	0AD6	-	-	-	-	-	-	-	-	-	-	-	PTGQPTR<4:0>					0000
PTGQUE0	OAD8	STEP1<7:0>								STEP0<7:0>								0000
PTGQUE1	OADA	STEP3<7:0>								STEP2<7:0>								0000
PTGQUE2	OADC	STEP5<7:0>								STEP4<7:0>								0000
PTGQUE3	OADE	STEP7<7:0>								STEP6<7:0>								0000
PTGQUE4	OAEO	STEP9<7:0>								STEP8<7:0>								0000
PTGQUE5	OAE2	STEP11<7:0>								STEP10<7:0>								0000
PTGQUE6	OAE4	STEP 13<7:0>								STEP12<7:0>								0000
PTGQUE7	OAE6	STEP15<7:0>								STEP14<7:0>								0000

TABLE 4-12

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PTCON	0C00	PTEN	-	PTSIDL	SESTAT	SEIEN	EIPU	SYNCPOL	SYNCOEN	SYNCEN	SYNCSRC<2:0>			SEVTPS<3:0>				0000
PTCON2	0C02	-	-	-	-	-	-	-	-	-	-	-	-	-		CLKDIV<		0000
PTPER	OC04	PTPER<15:0>																00F8
SEVTCMP	0C06	SEVTCMP<15:0>																0000
MDC	0C0A	MDC<15:0>																0000
CHOP	0 C 1 A	CHPCLKEN	-	-	-	-	-	CHOPCLK<9:0>										0000
PWMKEY	0C1E	PWMKEY<15:0>																0000

TABLE 4-16: QEI1 REGISTER MAP FOR dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	$\begin{gathered} \text { All } \\ \text { Resets } \end{gathered}$
QEIICON	01C0	QEIEN	-	QEISIDL	PIMOD<2:0>			IMV <1:0>		-	INTDIV<2:0>			CNTPOL	GATEN	CCM	1:0>	0000
QEIIIOC	01C2	QCAPEN	FLTREN	QFDIV<2:0>			OUTFNC<1:0>		SWPAB	HOMPOL	IDXPOL	QEBPOL	QEAPOL	Home	INDEX	QEB	QEA	000x
QEI1STAT	01C4	-	-	PCHEQIRQ	PCHEQIEN	PCLEQIRQ	PCLEQIEN	POSOVIRQ	Q POSOVIEN	PCIIRQ	PCIIEN	VELOVIRQ	VELOVIEN	HOMIRQ	Homien	IDXIRQ	IDXIEN	0000
POS1CNTL	01C6	POSCNT<15:0>																0000
POS1CNTH	01C8	POSCNT<31:16>																0000
POS1HLD	01CA	POSHLD<15:0>																0000
VEL1CNT	01CC	VELCNT<15:0>																0000
INT1TMRL	01CE	INTTMR<15:0>																0000
INT1TMRH	01D0	INTTMR<31:16>																0000
INT1HLDL	01D2	INTHLD<15:0>																0000
INT1HLDH	01D4	INTHLD<31:16>																0000
INDX1CNTL	01D6	INDXCNT<15:0>																0000
INDX1CNTH	01D8	INDXCNT<31:16>																0000
INDX1HLD	01DA	INDXHLD<15:0>																0000
QEI1GECL	01DC	QEIGEC<15:0>																0000
QEIIICL	01DC	QEIIC<15:0>																0000
QEI1GECH	01DE	QEIGEC<31:16>																0000
QEIIICH	01DE	QEIIC<31:16>																0000
QEI1LECL	01E0	QEILEC<15:0>																0000
QEI1LECH	01E2	QEILEC<31:16>																0000

TABLE 4-17: I2C1 and I2C2 REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	$\begin{gathered} \text { All } \\ \text { Resets } \end{gathered}$
12C1RCV	0200	-	-	-	-	-	-	-	-	Receive Register								0000
I2C1TRN	0202	-	-	-	-	-	-	-	-	Transmit Register								00FF
12C1BRG	0204	-	-	-	-	-	-	-	Baud Rate Generator									0000
12C1CON	0206	I2CEN	-	I2CSIDL	SCLREL	IPMIEN	A10M	DISSLW	SMEN	GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	1000
I2C1STAT	0208	ACKSTAT	TRSTAT	-	-	-	BCL	GCSTAT	ADD10	IWCOL	12COV	D_A	P	S	R_W	RBF	TBF	0000
I2C1ADD	020A	-	-	-	-	-	-	Address Register										0000
12C1MSK	020C	-	-	-	-	-	-	Address Mask										0000
12C2RCV	0210	-	-	-	-	-	-	-	-	Receive Register								0000
I2C2TRN	0212	-	-	-	-	-	-	-	-	Transmit Register								00FF
12C2BRG	0214	-	-	-	-	-	-	-	Baud Rate Generator									0000
12 C 2 CON	0216	I2CEN	-	I2CSIDL	SCLREL	IPMIEN	A10M	DISSLW	SMEN	GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	1000
I2C2STAT	0218	ACKSTAT	TRSTAT	-	-	-	BCL	GCSTAT	ADD10	IWCOL	12COV	D_A	P	S	R_W	RBF	TBF	0000
12C2ADD	021A	-	-	-	-	-	-	Address Register										0000
12C2MSK	021C	-	-	-	-	-	-	Address Mask										0000

TABLE 4-19: SPI1 and SPI2 REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	$\begin{gathered} \text { All } \\ \text { Resets } \end{gathered}$
SPI1STAT	0240	SPIEN	-	SPISIDL	-	-	SPIBEC<2:0>			SRMPT	SPIROV	SRXMPT	SISEL<2:0>			SPITBF	SPIRBF	0000
SPI1CON1	0242	-	-	-	DISSCK	DISSDO	MODE16	SMP	CKE	SSEN	CKP	MSTEN	SPRE<2:0>			PPRE<1:0>		0000
SPI1CON2	0244	FRMEN	SPIFSD	FRMPOL	-	-	-	-	-	-	-	-	-	-	-	FRMDLY	SPIBEN	0000
SPI1BUF	0248	SPI1 Transmit and Receive Buffer Register																0000
SPI2STAT	0260	SPIEN	-	SPISIDL	-	-	SPIBEC<2:0>			SRMPT	SPIROV	SRXMPT	SISEL<2:0>			SPITBF	SPIRBF	0000
SPI2CON1	0262	-	-	-	DISSCK	DISSDO	MODE16	SMP	CKE	SSEN	CKP	MSTEN	SPRE<2:0>			PPRE<1:0>		0000
SPI2CON2	0264	FRMEN	SPIFSD	FRMPOL	-	-	-	-	-	-	-	-	-	-	-	FRMDLY	SPIBEN	0000
SPI2BUF	0268	SPI2 Transmit and Receive Buffer Register																0000

TABLE 4-20: ADC1 REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	$\begin{array}{\|c\|} \text { All } \\ \text { Resets } \end{array}$
ADC1BUF0	0300	ADC1 Data Buffer 0																xxxx
ADC1BUF1	0302	ADC1 Data Buffer 1																$x \times x x$
ADC1BUF2	0304	ADC1 Data Buffer 2																xxxx
ADC1BUF3	0306	ADC1 Data Buffer 3																xxxx
ADC1BUF4	0308	ADC1 Data Buffer 4																$x \times x x$
ADC1BUF5	030A	ADC1 Data Buffer 5																$x x x x$
ADC1BUF6	030C	ADC1 Data Buffer 6																xxxx
ADC1BUF7	030E	ADC1 Data Buffer 7																xxxx
ADC1BUF8	0310	ADC1 Data Buffer 8																$x \times x x$
ADC1BUF9	0312	ADC1 Data Buffer 9																$x \times x x$
ADC1BUFA	0314	ADC1 Data Buffer 10																$x \times x x$
ADC1BUFB	0316	ADC1 Data Buffer 11																$x \times x x$
ADC1BUFC	0318	ADC1 Data Buffer 12																xxxx
ADC1BUFD	031A	ADC1 Data Buffer 13																xxxx
ADC1BUFE	031C	ADC1 Data Buffer 14																$x \times x x$
ADC1BUFF	031E	ADC1 Data Buffer 15																xxxx
AD1CON1	0320	ADON	-	ADSIDL	ADDMABM	-	AD12B	FORM<1:0>		SSRC<2:0>			SSRCG	SIMSAM	ASAM	SAMP	DONE	0000
AD1CON2	0322	VCFG<2:0>			-	-	CSCNA		<1:0>	BUFS	SMPI<4:0>					BUFM	ALTS	0000
AD1CON3	0324	ADRC	-	-	SAMC<4:0>					ADCS<7:0>								0000
AD1CHS123	0326	-	-	-	-	-	CH123NB<1:0> ${ }^{\text {CH123SB }}$			-	-	-	-	-	CH123N	<1:0>	CH123SA	0000
AD1CHS0	0328	CHONB	-	-	CHOSB<4:0>					CHONA	-	-	CHOSA<4:0>					0000
AD1CSSH	032E	CSS31	CSS30	-	-	-	CSS26	CSS25	CSS24	-	-	-	-	-	-	-	-	0000
AD1CSSL	0330	CSS15	CSS14	CSS13	CSS12	CSS11	CSS10	CSS9	CSS8	CSS7	CSS6	CSS5	CSS4	CSS3	CSS2	CSS1	CSSO	0000
AD1CON4	0332	-	-	-	-	-	-	-	ADDMAEN	-	-	-	-	-	DMABL<2:0>			0000

TABLE 4-21:

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
C1CTRL1	0400	-	-	CSIDL	ABAT	CANCKS	REQOP<2:0>			OPMODE<2:0>			-	CANCAP	-	-	WIN	0480
C1CTRL2	0402	-	-	-	-	-	-	-	-	-	-	-	DNCNT<4:0>					0000
C1VEC	0404	-	-	-	FILHIT<4:0>					-	ICODE<6:0>							0040
C1FCTRL	0406	DMABS<2:0>			-	-	-	-	-	-	-	-			FSA<4:0>			0000
C1FIFO	0408	-	-	FBP<5:0>						-	-	FNRB<5:0>						0000
C1INTF	040A	-	-	TXBO	TXBP	RXBP	TXWAR	RXWAR	EWARN	IVRIF	WAKIF	ERRIF	-	FIFOIF	RBOVIF	RBIF	TBIF	0000
C1INTE	040C	-	-	-	-	-	-	-	-	IVRIE	WAKIE	ERRIE	-	FIFOIE	RBOVIE	RBIE	TBIE	0000
C1EC	040E	TERRCNT<7:0>								RERRCNT<7:0>								0000
C1CFG1	0410	-	-	-	-	-	-	-	-	SJW<1:0>		BRP<5:0>						0000
C1CFG2	0412	-	WAKFIL	-	-	-	SEG2PH<2:0>			SEG2PHTS	SAM	SEG1PH<2:0>			PRSEG<2:0>			0000
C1FEN1	0414	FLTEN15	FLTEN14	FLTEN13	FLTEN12	FLTEN11	FLTEN10	FLTEN9	FLTEN8	FLTEN7	FLTEN6	FLTEN5	FLTEN4	FLTEN3	FLTEN2	FLTEN1	FLTEN0	FFFF
C1FMSKSEL1	0418	F7MSK<1:0>		F6MSK<1:0>		F5MSK<1:0>		F4MSK<1:0>		F3MSK<1:0>		F2MSK<1:0>		F1MSK<1:0>		FOMSK<1:0>		0000
C1FMSKSEL2	041A	F15MSK<1:0>		F14MSK<1:0>		F13MSK<1:0>		F12MSK<1:0>		F11MSK<1:0>		F10MSK<1:0>		F9MSK<1:0>		F8MSK<1:0>		0000

TABLE 4-22: ECAN1 REGISTER MAP WHEN WIN (C1CTRL<0>) = 0 FOR dsPIC33EPXXXMC/GP50X DEVICES ONLY

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
	$\begin{array}{\|l\|} \hline \text { 0400- } \\ \text { 041E } \end{array}$	See definition when WIN $=x$																
C1RXFUL1	0420	RXFUL15	RXFUL14	RXFUL13	RXFUL12	RXFUL11	RXFUL10	RXFUL9	RXFUL8	RXFUL7	RXFUL6	RXFUL5	RXFUL4	RXFUL3	RXFUL2	RXFUL1	RXFUL0	0000
C1RXFUL2	0422	RXFUL31	RXFUL30	RXFUL29	RXFUL28	RXFUL27	RXFUL26	RXFUL25	RXFUL24	RXFUL23	RXFUL22	RXFUL21	RXFUL20	RXFUL19	RXFUL18	RXFUL17	RXFUL16	0000
C1RXOVF1	0428	RXOVF15	RXOVF14	RXOVF13	RXOVF12	RXOVF11	RXOVF10	RXOVF9	RXOVF8	RXOVF7	RXOVF6	RXOVF5	RXOVF4	RXOVF3	RXOVF2	RXOVF1	RXOVF0	0000
C1RXOVF2	042A	RXOVF31	RXOVF30	RXOVF29	RXOVF28	RXOVF27	RXOVF26	RXOVF25	RXOVF24	RXOVF23	RXOVF22	RXOVF21	RXOVF20	RXOVF19	RXOVF18	RXOVF17	RXOVF16	0000
C1TR01CON	0430	TXEN1	TXABT1	TXLARB1	TXERR1	TXREQ1	RTREN1	TX1PR	RI<1:0>	TXEN0	TXABATO	TXLARB0	TXERR0	TXREQ0	RTREN0	TXOPRI<1:0>		0000
C1TR23CON	0432	TXEN3	TXABT3	TXLARB3	TXERR3	TXREQ3	RTREN3	TX3PR	I<1:0>	TXEN2	TXABAT2	TXLARB2	TXERR2	TXREQ2	RTREN2	TX2PRI<1:0>		0000
C1TR45CON	0434	TXEN5	TXABT5	TXLARB5	TXERR5	TXREQ5	RTREN5	TX5PR	I<1:0>	TXEN4	TXABAT4	TXLARB4	TXERR4	TXREQ4	RTREN4	TX4PRI<1:0>		0000
C1TR67CON	0436	TXEN7	TXABT7	TXLARB7	TXERR7	TXREQ7	RTREN7	TX7PR	I<1:0>	TXEN6	TXABAT6	TXLARB6	TXERR6	TXREQ6	RTREN6	TX6PRI<1:0>		xxxx
C1RXD	0440	Received Data Word																$x x x x$
C1TXD	0442	Transmit Data Word																XXXX

Legend: $\quad x=$ unknown value on Reset, $-=$ unimplemented, read as ' 0 '. Reset values are shown in hexadecimal.
TABLE 4-23:

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	$\begin{gathered} \text { All } \\ \text { Resets } \end{gathered}$
	$\begin{aligned} & \hline \hline 0400- \\ & 041 \mathrm{E} \end{aligned}$	See definition when WIN $=x$																
C1BUFPNT1	0420	F3BP<3:0>				F2BP<3:0>				F1BP<3:0>				FOBP $<3: 0>$				0000
C1BUFPNT2	0422	F7BP<3:0>				F6BP<3:0>				F5BP<3:0>				F4BP<3:0>				0000
C1BUFPNT3	0424	F11BP<3:0>				F10BP<3:0>				F9BP<3:0>				F8BP<3:0>				0000
C1BUFPNT4	0426	F15BP<3:0>				F14BP<3:0>				F13BP<3:0>				F12BP<3:0>				0000
C1RXMOSID	0430	SID<10:3>								SID<2:0>			-	MIDE	-	EID<17:16>		xxxx
C1RXMOEID	0432	EID<15:8>								EID<7:0>								$x \times x x$
C1RXM1SID	0434	SID<10:3>								SID<2:0>			-	MIDE	-	EID<	:16>	$x \times x \times$
C1RXM1EID	0436	EID<15:8>								EID<7:0>								$x \times x x$
C1RXM2SID	0438	SID<10:3>								SID<2:0>			-	MIDE	-	EID<	:16>	$x \times x x$
C1RXM2EID	043A	EID<15:8>								EID<7:0>								$x \times x \times$
C1RXFOSID	0440	SID<10:3>								SID<2:0>			-	EXIDE	-	EID<	:16>	$x \times x x$
C1RXFOEID	0442	EID<15:8>								EID<7:0>								$x \times x \times$
C1RXF1SID	0444	SID<10:3>								SID<2:0>			-	EXIDE	-	EID<	:16>	$x \times x \times$
C1RXF1EID	0446	EID<15:8>								EID<7:0>								$x \times x x$
C1RXF2SID	0448	SID<10:3>								SID<2:0>			-	EXIDE	-	EID<	:16>	xxxx
C1RXF2EID	044A	EID<15:8>								EID<7:0>								xxxx
C1RXF3SID	044C	SID<10:3>								SID<2:0>			-	EXIDE	-	EID<	:16>	xxxx
C1RXF3EID	044E	EID<15:8>								EID<7:0>								$x \times x \times$
C1RXF4SID	0450	SID<10:3>								SID<2:0>			-	EXIDE	-	EID<	:16>	$x \times x x$
C1RXF4EID	0452	EID<15:8>								EID<7:0>								xxxx
C1RXF5SID	0454	SID<10:3>									SID<2:0>		-	EXIDE	-	EID<	:16>	$x \times x x$
C1RXF5EID	0456	EID<15:8>								EID<7:0>								$x \times x \times$
C1RXF6SID	0458	SID<10:3>									SID<2:0>		-	EXIDE	-	EID	:16>	xxxx
C1RXF6EID	045A	EID<15:8>								EID<7:0>								xxxx
C1RXF7SID	045C	SID<10:3>									SID<2:0>		-	EXIDE	-	EID<	:16>	$x \times x x$
C1RXF7EID	045E	EID<15:8>								EID<7:0>								$x \times x x$
C1RXF8SID	0460	SID<10:3>									SID<2:0>		-	EXIDE	-	EID<	7:16>	$x \times x x$
C1RXF8EID	0462	EID<15:8>								EID<7:0>								xxxx
C1RXF9SID	0464	SID<10:3>									SID<2:0>		-	EXIDE	-	EID<	:16>	$x \times x \times$
C1RXF9EID	0466	EID<15:8>								EID<7:0>								$x \times x x$
C1RXF10SID	0468	SID<10:3>									SID<2:0>		-	EXIDE	-	EID<	7:16>	xxxx
C1RXF10EID	046A	EID<15:8>								EID<7:0>								$x \times x \times$
C1RXF11SID	046C	SID<10:3>									SID<2:0>		-	EXIDE	-	EID<	:16>	$x \times x x$
C1RXF11EID	046E	EID<15:8>								EID<7:0>								$x \times x \times$
C1RXF12SID	0470	SID<10:3>								SID<2:0>			-	EXIDE	-	EID	:16>	xxxx
C1RXF12EID	0472	EID<15:8>								EID<7:0>								xxxx

ECAN1 REGISTER MAP WHEN WIN (C1CTRL<0>) = 1 FOR dsPIC33EPXXXMC/GP50X DEVICES ONLY (CONTINUED)																		
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	$\begin{gathered} \text { All } \\ \text { Resets } \end{gathered}$
C1RXF13SID	0474	SID<10:3>								SID<2:0>			-	EXIDE	-	EID<17:16>		xxxx
C1RXF13EID	0476	EID<15:8>								EID<7:0>								$x \times x x$
C1RXF14SID	0478	SID<10:3>								SID<2:0>			-	EXIDE	-	EID<17:16>		xxxx
C1RXF14EID	047A	EID<15:8>								EID<7:0>								Xxxx
C1RXF15SID	047C	SID<10:3>								SID<2:0>			-	EXIDE	-	EID	:16>	xxxx
C1RXF15EID	047E	EID<15:8>								EID<7:0>								xxxx
Legend:	unkn	value	Reset,	unimp	nted,	as '0'	set va	are	he									

TABLE 4-24: CRC REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CRCCON1	0640	CRCEN	-	CSIDL	VWORD<4:0>					CRCFUL	CRCMPT	CRCISEL	CRCGO	LENDIAN	-	-	-	0000
CRCCON2	0642	-	-	-	DWIDTH<4:0>					-	-	-	PLEN<4:0>					0000
CRCXORL	0644	X <15:1>															-	0000
CRCXORH	0646	X<23:16>																0000
CRCDATL	0648	CRC Data Input Low Word																0000
CRCDATH	064A	CRC Data Input High Word																0000
CRCWDATL	064C	CRC Result Low Word																0000
CRCWDATH	064E	CRC Result High Word																0000
Legend:	- = unimplemented, read as '0'. Shaded bits are not used in the operation of the programmable CRC module.																	

TABLE 4-26: PERIPHERAL PIN SELECT OUTPUT REGISTER MAP FOR dsPIC33EPXXXGP/MC203/503 AND PIC24EPXXXGP/MC203

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	$\begin{gathered} \text { All } \\ \text { Resets } \end{gathered}$
RPOR0	0680	-	-	RP35R<5:0>						-	-	RP20R<5:0>						0000
RPOR1	0682	-	-	RP37R<5:0>						-	-	RP36R<5:0>						0000
RPOR2	0684	-	-	RP39R<5:0>						-	-	RP38R<5:0>						0000
RPOR3	0686	-	-	RP41R<5:0>						-	-	RP40R<5:0>						0000
RPOR4	0688	-	-	RP43R<5:0>						-	-	RP42R<5:0>						0000
RPOR5	068A	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
RPOR6	068C	-	-	-	-	-	-	-	-	-	-	RP56R<5:0>						0000

TABLE 4-29: PERIPHERAL PIN SELECT INPUT REGISTER MAP FOR PIC24EPXXXMC20X DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RPINRO	06A0	-	INT1R<6:0>							-	-	-	-	-	-	-	-	0000
RPINR1	06A2	-	-	-	-	-	-	-	-	-	INT2R<6:0>							0000
RPINR3	06A6	-	-	-	-	-	-	-	-	-	T2CKR<6:0>							0000
RPINR7	06AE	-	IC2R<6:0>							-	IC1R<6:0>							0000
RPINR8	06B0	-	IC4R<6:0>							-	IC3R<6:0>							0000
RPINR11	06B6	-	-	-	-	-	-	-	-	-	OCFAR<6:0>							0000
RPINR12	06B8	-	FLT2R<6:0>							-	FLT1R<6:0>							0000
RPINR14	06BC	-	QEB1R<6:0>							-	QEA1R<6:0>							0000
RPINR15	06BE	-	HOME1R<6:0>							-	INDX1R<6:0>							0000
RPINR18	06C4	-	-	-	-	-	-	-	-	-	U1RXR<6:0>							0000
RPINR19	06C6	-	-	-	-	-	-	-	-	-	U2RXR<6:0>							0000
RPINR22	06CC	-	SCK2INR<6:0>							-	SDI2R<6:0>							0000
RPINR23	06CE	-	-	-	-	-	-	-	-	-	SS2R<6:0>							0000
RPINR26	06D4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
RPINR37	06EA	-	SYNCI1R<6:0>							-	-	-	-	-	-	-	-	0000
RPINR38	06EC	-	DTCMP1R<6:0>							-	-	-	-	-	-	-	-	0000
RPINR39	06EE	-	DTCMP3R<6:0>							-	DTCMP2R<6:0>							0000

TABLE 4-30: PERIPHERAL PIN SELECT INPUT REGISTER MAP FOR PIC24EPXXXGP20X DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	$\begin{gathered} \text { All } \\ \text { Resets } \end{gathered}$
RPINR0	06A0	-	INT1R<6:0>							-	-	-	-	-	-	-	-	0000
RPINR1	06A2	-	-	-	-	-	-	-	-	-	INT2R<6:0>							0000
RPINR3	06A6	-	-	-	-	-	-	-	-	-	T2CKR<6:0>							0000
RPINR7	06AE	-	IC2R<6:0>							-	IC1R<6:0>							0000
RPINR8	06B0	-	IC4R<6:0>							-	IC3R<6:0>							0000
RPINR11	06B6	-	-	-	-	-	-	-	-	-	OCFAR<6:0>							0000
RPINR18	06C4	-	-	-	-	-	-	-	-	-	U1RXR<6:0>							0000
RPINR19	06C6	-	-	-	-	-	-	-	-	-	U2RXR<6:0>							0000
RPINR22	06CC	-	SCK2INR<6:0>							-	SDI2R<6:0>							0000
RPINR23	06CE	-	-	-	-	-	-	-	-	-	SS2R<6:0>							0000

TABLE 4-32: PERIPHERAL PIN SELECT INPUT REGISTER MAP FOR dsPIC33EPXXXMC50X DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RPINR0	06A0	-	INT1R<6:0>							-	-	-	-	-	-	-	-	0000
RPINR1	06A2	-	-	-	-	-	-	-	-	-	INT2R<6:0>							0000
RPINR3	06A6	-	-	-	-	-	-	-	-	-	T2CKR<6:0>							0000
RPINR7	06AE	-	IC2R<6:0>							-	IC1R<6:0>							0000
RPINR8	06B0	-	IC4R<6:0>							-	IC3R<6:0>							0000
RPINR11	06B6	-	-	-	-	-	-	-	-	-	OCFAR<6:0>							0000
RPINR12	06B8	-	FLT2R<6:0>							-	FLT1R<6:0>							0000
RPINR14	06BC	-	QEB1R<6:0>							-	QEA1R<6:0>							0000
RPINR15	06BE	-	HOME1R<6:0>							-	INDX1R<6:0>							0000
RPINR18	06C4	-	-	-	-	-	-	-	-	-	U1RXR<6:0>							0000
RPINR19	06C6	-	-	-	-	-	-	-	-	-	U2RXR<6:0>							0000
RPINR22	06CC	-	SCK2INR<6:0>							-	SDI2R<6:0>							0000
RPINR23	06CE	-	-	-	-	-	-	-	-	-	SS2R<6:0>							0000
RPINR26	06D4	-	-	-	-	-	-	-	-	-	C1RXR<6:0>							0000
RPINR37	06EA	-	SYNCI1R<6:0>							-	-	-	-	-	-	-	-	0000
RPINR38	06EC	-	DTCMP1R<6:0>							-	-	-	-	-	-	-	-	0000
RPINR39	06EE	-	DTCMP3R<6:0>							-	DTCMP2R<6:0>							0000

TABLE 4-33: PERIPHERAL PIN SELECT INPUT REGISTER MAP FOR dsPIC33EPXXXMC20X DEVICES ONLY

TABLE 4-34: NVM REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
NVMCON	0728	WR	WREN	WRERR	NVMSIDL	-	-	-	-	-	-	-	-	NVMOP<3:0>				0000
NVMADR	072A	NVMADR<15:0>																0000
NVMADRU	072C	-	-	-	-	-	-	-	-	NVMADR<23:16>								0000
NVMKEY	072E	-	-	-	-	-	-	-	-	NVMKEY<7:0>								0000

TABLE 4-35: SYSTEM CONTROL REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RCON	0740	TRAPR	IOPUWR	-	-	VREGSF	-	CM	VREGS	EXTR	SWR	SWDTEN	WDTO	SLEEP	IDLE	BOR	POR	Note 1
OSCCON	0742	-	COSC<2:0>			-	NOSC<2:0>			CLKLOCK	IOLOCK	LOCK	-	CF	-	-	OSWEN	Note 2
CLKDIV	0744	ROI	DOZE<2:0>			DOZEN	FRCDIV<2:0>			PLLPOST<1:0>		-	PLLPRE<4:0>					0030
PLLFBD	0746	-	-	-	-	-	-	-	PLLDIV<8:0>									0030
OSCTUN	0748	-	-	-	-	-	-	-	-	-	-			TUN	<5:0>			0000
Legend: Note 1:	$x=$ unknown value on Reset, $-=$ unimplemented, read as ' 0 '. Reset values are shown in hexadecimal. RCON register reset values dependent on type of reset. OSCCON register reset values dependent on configuration fuses, and by type of reset.																	

[^0]\mp@subsup{}{}{(2)
111 = Fast RC Oscillator (FRC) with Divide-by-n
110 = Fast RC Oscillator (FRC) with Divide-by-16
101 = Low-Power RC Oscillator (LPRC)
100 = Reserved
011 = Primary Oscillator (XT, HS, EC) with PLL
010 = Primary Oscillator (XT, HS, EC)
001 = Fast RC Oscillator (FRC) with divide-by-N and PLL (FRCPLL)
000 = Fast RC Oscillator (FRC)

```
bit 7 CLKLOCK: Clock Lock Enable bit
\(1=\) If (FCKSM0 \(=1\) ), then clock and PLL configurations are locked If (FCKSM0 = 0), then clock and PLL configurations may be modified
\(0=\) Clock and PLL selections are not locked, configurations may be modified
bit 6 IOLOCK: I/O Lock Enable bit
\(1=1 / \mathrm{O}\) Lock is active
\(0=1 / O\) Lock is not active
bit 5 LOCK: PLL Lock Status bit (read-only)
1 = Indicates that PLL is in lock, or PLL start-up timer is satisfied
\(0=\) Indicates that PLL is out of lock, start-up timer is in progress or PLL is disabled
bit \(4 \quad\) Unimplemented: Read as ' 0 '

Note 1: Writes to this register require an unlock sequence. Refer to Section 7. "Oscillator" (DS70580) in the "dsPIC33E/PIC24E Family Reference Manual" (available from the Microchip web site) for details.
2: Direct clock switches between any primary oscillator mode with PLL and FRCPLL mode are not permitted. This applies to clock switches in either direction. In these instances, the application must switch to FRC mode as a transition clock source between the two PLL modes.
3: This register resets only on a Power-on Reset (POR).

\section*{REGISTER 9-1: OSCCON: OSCILLATOR CONTROL REGISTER \({ }^{(1,3)}\) (CONTINUED)}
bit 3 CF: Clock Fail Detect bit (read/clear by application)
\(1=\) FSCM has detected clock failure
\(0=\) FSCM has not detected clock failure
bit 2-1 Unimplemented: Read as ' 0 '
bit \(0 \quad\) OSWEN: Oscillator Switch Enable bit
1 = Request oscillator switch to selection specified by NOSC<2:0> bits \(0=\) Oscillator switch is complete

Note 1: Writes to this register require an unlock sequence. Refer to Section 7. "Oscillator" (DS70580) in the "dsPIC33E/PIC24E Family Reference Manual" (available from the Microchip web site) for details.
2: Direct clock switches between any primary oscillator mode with PLL and FRCPLL mode are not permitted. This applies to clock switches in either direction. In these instances, the application must switch to FRC mode as a transition clock source between the two PLL modes.
3: This register resets only on a Power-on Reset (POR).

REGISTER 9-2: CLKDIV: CLOCK DIVISOR REGISTER \({ }^{(2)}\)

\begin{tabular}{|lll|}
\hline Legend: & \(y=\) Value set from Configuration bits on POR \\
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1\) ' = Bit is set & \(' 0\) ' = Bit is cleared \\
\hline
\end{tabular}
bit 15 ROI: Recover on Interrupt bit
1 = Interrupts will clear the DOZEN bit and the processor clock and peripheral clock ratio is set to \(1: 1\)
\(0=\) Interrupts have no effect on the DOZEN bit
bit 14-12 DOZE<2:0>: Processor Clock Reduction Select bits \({ }^{(3)}\)
111 = FCY divided by 128
\(110=\) FCY divided by 64
101 = FCY divided by 32
100 = FCY divided by 16
011 = FCY divided by 8 (default)
\(010=\) FCY divided by 4
001 = FCY divided by 2
\(000=\) FCY divided by 1
bit 11 DOZEN: Doze Mode Enable bit \({ }^{(1,4)}\)
\(1=\) DOZE \(<2: 0>\) field specifies the ratio between the peripheral clocks and the processor clocks
\(0=\) Processor clock and peripheral clock ratio forced to 1:1
bit 10-8 FRCDIV<2:0>: Internal Fast RC Oscillator Postscaler bits
\(111=\) FRC divided by 256
\(110=\) FRC divided by 64
101 = FRC divided by 32
\(100=\) FRC divided by 16
\(011=\) FRC divided by 8
\(010=\) FRC divided by 4
\(001=\) FRC divided by 2
\(000=\) FRC divided by 1 (default)
bit 7-6 PLLPOST<1:0>: PLL VCO Output Divider Select bits (also denoted as 'N2', PLL postscaler)
11 = Output divided by 8
10 = Reserved
01 = Output divided by 4 (default)
\(00=\) Output divided by 2
bit \(5 \quad\) Unimplemented: Read as ' 0 '

Note 1: This bit is cleared when the ROI bit is set and an interrupt occurs.
2: This register resets only on a Power-on Reset (POR).
3: DOZE<2:0> bits can only be written to when the DOZEN bit is clear. If DOZEN \(=1\), any writes to DOZE<2:0> are ignored.
4: The DOZEN bit cannot be set if \(\operatorname{DOZE}<2: 0>=000\). If \(D O Z E<2: 0>=000\), any attempt by user software to set the DOZEN bit is ignored.

\section*{REGISTER 9-2: CLKDIV: CLOCK DIVISOR REGISTER \({ }^{(2)}\) (CONTINUED)}
bit 4-0 PLLPRE<4:0>: PLL Phase Detector Input Divider Select bits (also denoted as 'N1', PLL prescaler) 11111 = Input divided by 33
.
.
00001 = Input divided by 3 00000 = Input divided by 2 (default)

Note 1: This bit is cleared when the ROI bit is set and an interrupt occurs.
2: This register resets only on a Power-on Reset (POR).
3: DOZE<2:0> bits can only be written to when the DOZEN bit is clear. If DOZEN \(=1\), any writes to DOZE<2:0> are ignored.
4: The DOZEN bit cannot be set if DOZE<2:0> = 000. If DOZE<2:0> \(=000\), any attempt by user software to set the DOZEN bit is ignored.

REGISTER 9-3: PLLFBD: PLL FEEDBACK DIVISOR REGISTER \({ }^{(1)}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline U-0 & R/W-0 \\
\hline- & - & - & - & - & - & - & PLLDIV<8> \\
\hline bit 15
\end{tabular}
\begin{tabular}{|llllllll|}
\hline R/W-0 & R/W-0 & R/W-1 & R/W-1 & R/W-0 & R/W-0 & R/W-0 & R/W-0 \\
\hline & & PLLDIV \(<7: 0>\) & & & \\
\hline bit 7 & & & & & & bit 0 \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{|lll|}
\(\mathrm{R}=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) Unimplemented bit, read as ' 0 ' \\
\(-\mathrm{n}=\) Value at POR & \(' 1\) ' \(=\) Bit is set & ' 0 ' \(=\) Bit is cleared
\end{tabular}\(\quad \mathrm{x}=\) Bit is unknown C
bit 15-9 Unimplemented: Read as ' 0 ’
bit 8-0 PLLDIV<8:0>: PLL Feedback Divisor bits (also denoted as 'M', PLL multiplier) \(111111111=513\)
-
-
-
\(000110000=50\) (default)
-
-
-
\(000000010=4\)
\(000000001=3\)
\(000000000=2\)

Note 1: This register is reset only on a Power-on Reset (POR).

\section*{REGISTER 9-4: OSCTUN: FRC OSCILLATOR TUNING REGISTER \({ }^{(1)}\)}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline U-0 & U-0 \\
\hline- & - & - & - & - & - & - & - \\
\hline bit 15 & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|cccccc|}
\hline U-0 & U-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 \\
\hline- & - & & TUN \(<5: 0>\) & & \\
\hline bit 7 & & & & & bit 0 \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{|c|c|c|c|}
\hline \(\mathrm{R}=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) Unimplement & as ' 0 ' \\
\hline -n = Value at POR & ' 1 ' = Bit is set & ' 0 ' = Bit is cleared & \(x=\) Bit is unknown \\
\hline
\end{tabular}
```

bit 15-6 Unimplemented: Read as ' 0'
bit 5-0 TUN<5:0>: FRC Oscillator Tuning bits
111111 = Center frequency -0.375% (7.345 MHz)
•
-
•
100001 = Center frequency -11.625% (6.52 MHz)
100000 = Center frequency -12% (6.49 MHz)
011111 = Center frequency + 11.625% (8.23 MHz)
011110 = Center frequency + 11.25% (8.20 MHz)
•
•
-
000001 = Center frequency + 0.375% (7.40 MHz)
000000 = Center frequency (7.37 MHz nominal)

```

Note 1: This register resets only on a Power-on Reset (POR).

REGISTER 9-5: REFOCON: REFERENCE OSCILLATOR CONTROL REGISTER

\begin{tabular}{|c|c|}
\hline \multirow[t]{2}{*}{bit 15} & ROON: Reference Oscillator Output Enable bit \\
\hline & \begin{tabular}{l}
1 = Reference oscillator output enabled on REFCLK \({ }^{(2)}\) pin \\
0 = Reference oscillator output disabled
\end{tabular} \\
\hline bit 14 & Unimplemented: Read as '0' \\
\hline \multirow[t]{2}{*}{bit 13} & ROSSLP: Reference Oscillator Run in Sleep bit \\
\hline & \begin{tabular}{l}
1 = Reference oscillator output continues to run in Sleep \\
0 = Reference oscillator output is disabled in Sleep
\end{tabular} \\
\hline \multirow[t]{3}{*}{bit 12} & ROSEL: Reference Oscillator Source Select bit \\
\hline & 1 = Oscillator crystal used as the reference clock \\
\hline & 0 = System clock used as the reference clock \\
\hline \multirow[t]{17}{*}{bit 11-8} & RODIV<3:0>: Reference Oscillator Divider bits \({ }^{(1)}\) \\
\hline & 1111 = Reference clock divided by 32,768 \\
\hline & 1110 = Reference clock divided by 16,384 \\
\hline & 1101 = Reference clock divided by 8,192 \\
\hline & 1100 = Reference clock divided by 4,096 \\
\hline & 1011 = Reference clock divided by 2,048 \\
\hline & 1010 = Reference clock divided by 1,024 \\
\hline & 1001 = Reference clock divided by 512 \\
\hline & 1000 = Reference clock divided by 256 \\
\hline & 0111 = Reference clock divided by 128 \\
\hline & 0110 = Reference clock divided by 64 \\
\hline & 0101 = Reference clock divided by 32 \\
\hline & 0100 = Reference clock divided by 16 \\
\hline & 0011 = Reference clock divided by 8 \\
\hline & 0010 = Reference clock divided by 4 \\
\hline & 0001 = Reference clock divided by 2 \\
\hline & 0000 = Reference clock \\
\hline bit 7-0 & Unimplemented: Read as '0' \\
\hline
\end{tabular}

Note 1: The reference oscillator output must be disabled ( \(\mathrm{ROON}=0\) ) before writing to these bits.
2: This pin is remappable. See Section 11.4 "Peripheral Pin Select" for more information.

\subsection*{10.0 POWER-SAVING FEATURES}

Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X, and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 9. "Watchdog Timer and Power-Saving Modes" (DS70615) of the "dsPIC33E/PIC24E Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X, and PIC24EPXXXGP/MC20X devices provide the ability to manage power consumption by selectively managing clocking to the CPU and the peripherals. In general, a lower clock frequency and a reduction in the number of peripherals being clocked constitutes lower consumed power.
dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X, and PIC24EPXXXGP/MC20X devices can manage power consumption in four ways:
- Clock frequency
- Instruction-based Sleep and Idle modes
- Software-controlled Doze mode
- Selective peripheral control in software

Combinations of these methods can be used to selectively tailor an application's power consumption while still maintaining critical application features, such as timing-sensitive communications.

\subsection*{10.1 Clock Frequency and Clock Switching}

The dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X, and PIC24EPXXXGP/MC20X devices allow a wide range of clock frequencies to be selected under application control. If the system clock configuration is not locked, users can choose low-power or highprecision oscillators by simply changing the NOSC bits ( \(\mathrm{OSCCON}<10: 8>\) ). The process of changing a system clock during operation, as well as limitations to the process, are discussed in more detail in Section 9.0 "Oscillator Configuration".

\subsection*{10.2 Instruction-Based Power-Saving Modes}

The dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X, and PIC24EPXXXGP/MC20X devices have two special power-saving modes that are entered through the execution of a special PWRSAV instruction. Sleep mode stops clock operation and halts all code execution. Idle mode halts the CPU and code execution, but allows peripheral modules to continue operation. The assembler syntax of the PWRSAV instruction is shown in Example 10-1.

\section*{Note: SLEEP_MODE and IDLE_MODE are constants defined in the assembler include file for the selected device.}

Sleep and Idle modes can be exited as a result of an enabled interrupt, WDT time-out or a device Reset. When the device exits these modes, it is said to "wake up".

\section*{EXAMPLE 10-1: PWRSAV INSTRUCTION SYNTAX}
```

PWRSAV \#SLEEP_MODE ; Put the device into Sleep mode
PWRSAV \#IDLE_MODE ; Put the device into Idle mode

```

\subsection*{10.2.1 SLEEP MODE}

The following occur in Sleep mode:
- The system clock source is shut down. If an on-chip oscillator is used, it is turned off.
- The device current consumption is reduced to a minimum, provided that no I/O pin is sourcing current
- The Fail-Safe Clock Monitor does not operate, since the system clock source is disabled
- The LPRC clock continues to run in Sleep mode if the WDT is enabled
- The WDT, if enabled, is automatically cleared prior to entering Sleep mode
- Some device features or peripherals can continue to operate. This includes items such as the input change notification on the I/O ports, or peripherals that use an external clock input.
- Any peripheral that requires the system clock source for its operation is disabled
The device wakes up from Sleep mode on any of the these events:
- Any interrupt source that is individually enabled
- Any form of device Reset
- A WDT time-out

On wake-up from Sleep mode, the processor restarts with the same clock source that was active when Sleep mode was entered.
For optimal power savings, the internal regulator and the Flash regulator can be configured to go into Standby when Sleep mode is entered by clearing the VREGS (RCON<8>) and VREGSF (RCON<11>) bits (default configuration).
If the application requires a faster wake-up time, and can accept higher current requirements, the VREGS ( \(\mathrm{RCON}<8>\) ) and VREGSF ( \(\mathrm{RCON}<11>\) ) bits can be set to keep the internal regulator and the Flash regulator active during Sleep mode.

\subsection*{10.2.2 IDLE MODE}

The following occur in Idle mode:
- The CPU stops executing instructions
- The WDT is automatically cleared
- The system clock source remains active. By default, all peripheral modules continue to operate normally from the system clock source, but can also be selectively disabled (see Section 10.4 "Peripheral Module Disable").
- If the WDT or FSCM is enabled, the LPRC also remains active.
The device wakes from Idle mode on any of these events:
- Any interrupt that is individually enabled
- Any device Reset
- A WDT time-out

On wake-up from Idle mode, the clock is reapplied to the CPU and instruction execution will begin (2-4 clock cycles later), starting with the instruction following the PWRSAV instruction, or the first instruction in the ISR.
All peripherals also have the option to discontinue operation when Idle mode is entered to allow for increased power savings. This option is selectable in the control register of each peripheral. For example, the TSIDL bit in the Timer1 Control register ( \(\mathrm{T} 1 \mathrm{CON}<13>\) ).

\subsection*{10.2.3 INTERRUPTS COINCIDENT WITH POWER SAVE INSTRUCTIONS}

Any interrupt that coincides with the execution of a PWRSAV instruction is held off until entry into Sleep or Idle mode has completed. The device then wakes up from Sleep or Idle mode.

\subsection*{10.3 Doze Mode}

The preferred strategies for reducing power consumption are changing clock speed and invoking one of the power-saving modes. In some circumstances, this cannot be practical. For example, it may be necessary for an application to maintain uninterrupted synchronous communication, even while it is doing nothing else. Reducing system clock speed can introduce communication errors, while using a power-saving mode can stop communications completely.
Doze mode is a simple and effective alternative method to reduce power consumption while the device is still executing code. In this mode, the system clock continues to operate from the same source and at the same speed. Peripheral modules continue to be clocked at the same speed, while the CPU clock speed is reduced. Synchronization between the two clock domains is maintained, allowing the peripherals to access the SFRs while the CPU executes code at a slower rate.

Doze mode is enabled by setting the DOZEN bit (CLKDIV<11>). The ratio between peripheral and core clock speed is determined by the DOZE<2:0> bits (CLKDIV<14:12>). There are eight possible configurations, from 1:1 to \(1: 128\), with \(1: 1\) being the default setting.
Programs can use Doze mode to selectively reduce power consumption in event-driven applications. This allows clock-sensitive functions, such as synchronous communications, to continue without interruption while the CPU idles, waiting for something to invoke an interrupt routine. An automatic return to full-speed CPU operation on interrupts can be enabled by setting the ROI bit (CLKDIV<15>). By default, interrupt events have no effect on Doze mode operation.
For example, suppose the device is operating at 20 MIPS and the ECAN module has been configured for 500 kbps based on this device operating speed. If the device is placed in Doze mode with a clock frequency ratio of \(1: 4\), the ECAN module continues to communicate at the required bit rate of 500 kbps , but the CPU now starts executing instructions at a frequency of 5 MIPS.

\subsection*{10.4 Peripheral Module Disable}

The Peripheral Module Disable (PMD) registers provide a method to disable a peripheral module by stopping all clock sources supplied to that module. When a peripheral is disabled using the appropriate PMD control bit, the peripheral is in a minimum power consumption state. The control and status registers associated with the peripheral are also disabled, so writes to those registers do not have effect and read values are invalid.
A peripheral module is enabled only if both the associated bit in the PMD register is cleared and the peripheral is supported by the specific dsPIC \({ }^{\circledR}\) DSC variant. If the peripheral is present in the device, it is enabled in the PMD register by default.

\section*{Note: If a PMD bit is set, the corresponding} module is disabled after a delay of one instruction cycle. Similarly, if a PMD bit is cleared, the corresponding module is enabled after a delay of one instruction cycle (assuming the module control registers are already configured to enable module operation).

REGISTER 10-1: PMD1: PERIPHERAL MODULE DISABLE CONTROL REGISTER 1

\begin{tabular}{|lll|}
\hline Legend: & & \\
\(R=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) Unimplemented bit, read as ' 0 ' \\
\(-\mathrm{n}=\) Value at POR & \(' 1\) ' = Bit is set & \(' 0\) ' = Bit is cleared \(\quad x=\) Bit is unknown \\
\hline
\end{tabular}
bit 15 T5MD: Timer5 Module Disable bit 1 = Timer5 module is disabled 0 = Timer5 module is enabled
bit 14 T4MD: Timer4 Module Disable bit 1 = Timer4 module is disabled \(0=\) Timer4 module is enabled
bit 13 T3MD: Timer3 Module Disable bit \(1=\) Timer3 module is disabled \(0=\) Timer3 module is enabled
bit 12 T2MD: Timer2 Module Disable bit 1 = Timer2 module is disabled \(0=\) Timer2 module is enabled
bit 11 T1MD: Timer1 Module Disable bit 1 = Timer1 module is disabled \(0=\) Timer1 module is enabled
bit 10 QEI1MD: QEI1 Module Disable bit \({ }^{(1)}\)
1 = QEI1 module is disabled
\(0=\) QEI1 module is enabled
bit \(9 \quad\) PWMMD: PWM Module Disable bit \({ }^{(1)}\)
\(1=\) PWM module is disabled
\(0=\) PWM module is enabled
bit \(8 \quad\) Unimplemented: Read as ' 0 '
bit \(7 \quad\) I2C1MD: I2C1 Module Disable bit 1 = I2C1 module is disabled \(0=\) I2C1 module is enabled
bit \(6 \quad\) U2MD: UART2 Module Disable bit 1 = UART2 module is disabled \(0=\) UART2 module is enabled
bit 5 U1MD: UART1 Module Disable bit 1 = UART1 module is disabled \(0=\) UART1 module is enabled
bit 4
SPI2MD: SPI2 Module Disable bit
\(1=\) SPI2 module is disabled
\(0=\) SPI 2 module is enabled

Note 1: This bit is available on dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices only.
2: This bit is available on dsPIC33EPXXXGP50X and dsPIC33EPXXXMC50X devices only.

REGISTER 10-1: PMD1: PERIPHERAL MODULE DISABLE CONTROL REGISTER 1 (CONTINUED)
bit 3 SPI1MD: SPI1 Module Disable bit
1 = SPI1 module is disabled
\(0=\) SPI1 module is enabled
bit \(2 \quad\) Unimplemented: Read as ' 0 '
bit \(1 \quad\) C1MD: ECAN1 Module Disable bit \({ }^{(2)}\)
1 = ECAN1 module is disabled
\(0=\) ECAN1 module is enabled
bit 0
AD1MD: ADC1 Module Disable bit
\(1=\) ADC1 module is disabled
\(0=\) ADC1 module is enabled

Note 1: This bit is available on dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices only.
2: This bit is available on dsPIC33EPXXXGP50X and dsPIC33EPXXXMC50X devices only.

REGISTER 10-2: PMD2: PERIPHERAL MODULE DISABLE CONTROL REGISTER 2
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline U-0 & U-0 & U-0 & U-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 \\
\hline- & - & - & - & IC4MD & IC3MD & IC2MD & IC1MD \\
\hline bit 15
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{10}{|c|}{ U-0 } & U-0 & U-0 & U-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 \\
\hline- & - & - & - & OC4MD & OC3MD & OC2MD & OC1MD \\
\hline bit 7 & & & & & bit 0 \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(\mathrm{R}=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) Unimplemented bit, read as ' 0 ' \\
\(-\mathrm{n}=\) Value at POR & ' 1 ' = Bit is set & ' 0 ' = Bit is cleared
\end{tabular}\(\quad \mathrm{x}=\) Bit is unknown \(\quad\).
\begin{tabular}{|c|c|}
\hline bit 15-12 & Unimplemented: Read as ' 0 ' \\
\hline \multirow[t]{2}{*}{bit 11} & IC4MD: Input Capture 4 Module Disable bit \\
\hline & 1 = Input Capture 4 module is disabled 0 = Input Capture 4 module is enabled \\
\hline \multirow[t]{3}{*}{bit 10} & IC3MD: Input Capture 3 Module Disable bit \\
\hline & 1 = Input Capture 3 module is disabled \\
\hline & 0 = Input Capture 3 module is enabled \\
\hline \multirow[t]{3}{*}{bit 9} & IC2MD: Input Capture 2 Module Disable bit \\
\hline & 1 = Input Capture 2 module is disabled \\
\hline & \(0=\) Input Capture 2 module is enabled \\
\hline \multirow[t]{3}{*}{bit 8} & IC1MD: Input Capture 1 Module Disable bit \\
\hline & 1 = Input Capture 1 module is disabled \\
\hline & \(0=\) Input Capture 1 module is enabled \\
\hline bit 7-4 & Unimplemented: Read as ' 0 ' \\
\hline \multirow[t]{2}{*}{bit 3} & OC4MD: Output Compare 4 Module Disable bit \\
\hline & \begin{tabular}{l}
1 = Output Compare 4 module is disabled \\
\(0=\) Output Compare 4 module is enabled
\end{tabular} \\
\hline \multirow[t]{3}{*}{bit 2} & OC3MD: Output Compare 3 Module Disable bit \\
\hline & 1 = Output Compare 3 module is disabled \\
\hline & 0 = Output Compare 3 module is enabled \\
\hline \multirow[t]{2}{*}{bit 1} & OC2MD: Output Compare 2 Module Disable bit \\
\hline & 1 = Output Compare 2 module is disabled \(0=\) Output Compare 2 module is enabled \\
\hline \multirow[t]{2}{*}{bit 0} & OC1MD: Output Compare 1 Module Disable bit \\
\hline & \begin{tabular}{l}
1 = Output Compare 1 module is disabled \\
0 = Output Compare 1 module is enabled
\end{tabular} \\
\hline
\end{tabular}

REGISTER 10-3: PMD3: PERIPHERAL MODULE DISABLE CONTROL REGISTER 3
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline U-0 & U-0 & U-0 & U-0 & U-0 & R/W-0 & U-0 & U-0 \\
\hline- & - & - & - & - & CMPMD & - & - \\
\hline bit 15 & bit 8 \\
\hline R/W-0 & U-0 & U-0 & U-0 & U-0 & U-0 & R/W-0 & U-0 \\
\hline CRCMD & - & - & - & - & - & I2C2MD & - \\
\hline bit 7
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1\) ' \(=\) Bit is set & \(' 0\) ' \(=\) Bit is cleared
\end{tabular}
\begin{tabular}{|c|c|}
\hline bit 15-11 & Unimplemented: Read as ' 0 ' \\
\hline bit 10 & \begin{tabular}{l}
CMPMD: Comparator Module Disable bit 1 = Comparator module is disabled \\
\(0=\) Comparator module is enabled
\end{tabular} \\
\hline bit 9-8 & Unimplemented: Read as '0' \\
\hline bit 7 & \begin{tabular}{l}
CRCMD: CRC Module Disable bit \\
\(1=\) CRC module is disabled \\
\(0=\) CRC module is enabled
\end{tabular} \\
\hline bit 6-2 & Unimplemented: Read as '0' \\
\hline bit 1 & \begin{tabular}{l}
I2C2MD: I2C2 Module Disable bit \\
\(1=12 \mathrm{C} 2\) module is disabled \\
\(0=12 \mathrm{C} 2\) module is enabled
\end{tabular} \\
\hline bit 0 & Unimplemented: Read as '0' \\
\hline
\end{tabular}

REGISTER 10-4: PMD4: PERIPHERAL MODULE DISABLE CONTROL REGISTER 4
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline U-0 & U-0 \\
\hline- & - & - & - & - & - & - & - \\
\hline bit 15
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline U-0 & U-0 & U-0 & U-0 & R/W-0 & R/W-0 & U-0 & U-0 \\
\hline- & - & - & - & REFOMD & CTMUMD & - & - \\
\hline bit 7
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend: & & \\
\(R=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) Unimplemented bit, read as ' 0 ' \\
\(-\mathrm{n}=\) Value at POR & \(' 1\) ' = Bit is set & \(' 0\) ' = Bit is cleared \\
\hline
\end{tabular}
bit 15-4 Unimplemented: Read as ' 0 '
bit 3 REFOMD: Reference Clock Module Disable bit
1 = Reference Clock module is disabled
0 = Reference Clock module is enabled
bit 2 CTMUMD: CTMU Module Disable bit
1 = CTMU module is disabled
\(0=\) CTMU module is enabled
bit 1-0
Unimplemented: Read as ' 0 '

REGISTER 10-5: PMD6: PERIPHERAL MODULE DISABLE CONTROL REGISTER 6
\begin{tabular}{|l|c|c|c|c|c|c|r|r|}
\hline U-0 & U-0 & U-0 & U-0 & U-0 & R/W-0 & R/W-0 & R/W-0 \\
\hline- & - & - & - & - & PWM3MD \(^{(\mathbf{1})}\) & PWM2MD \(^{(\mathbf{1})}\) & PWM1MD \(^{(\mathbf{1})}\) \\
\hline bit 15 &
\end{tabular}
\begin{tabular}{|l|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|c|}{ U-0 } \\
\hline- & U-0 & U-0 & U-0 & U-0 & U-0 & U-0 \\
\hline- & - & - & - & - & - & - \\
\hline bit 7
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend: & & \\
\(R=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) Unimplemented bit, read as ' 0 ' \\
\(-\mathrm{n}=\) Value at POR & \(' 1\) ' = Bit is set & 0 ' = Bit is cleared \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline bit 15-11 & Unimplemented: Read as '0' \\
\hline \multirow[t]{2}{*}{bit 10} & PWM3MD: PWM3 Module Disable bit \({ }^{(1)}\) \\
\hline & \begin{tabular}{l}
\(1=\) PWM3 module is disabled \\
\(0=\) PWM3 module is enabled
\end{tabular} \\
\hline bit 9 & PWM2MD: PWM2 Module Disable bit \({ }^{(1)}\) \\
\hline & \begin{tabular}{l}
\(1=\mathrm{PWM} 2\) module is disabled \\
\(0=\) PWM2 module is enabled
\end{tabular} \\
\hline \multirow[t]{2}{*}{bit 8} & PWM1MD: PWM1 Module Disable bit \({ }^{(1)}\) \\
\hline & \begin{tabular}{l}
\(1=\) PWM1 module is disabled \\
\(0=\) PWM1 module is enabled
\end{tabular} \\
\hline bit 7-0 & Unimplemented: Read as ' 0 ' \\
\hline
\end{tabular}

Note 1: This bit is available in dsPIC33EP64MC50X/20X and PIC24EP64MC20X devices only.

REGISTER 10-6: PMD7: PERIPHERAL MODULE DISABLE CONTROL REGISTER 7
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline U-0 & U-0 \\
\hline- & - & - & - & - & - & - & - \\
\hline bit 15
\end{tabular}


Legend:
\begin{tabular}{|c|c|c|c|}
\hline \(\mathrm{R}=\) Readable bit & W = Writable bit & \(\mathrm{U}=\) Unimplemen & as ' 0 ' \\
\hline -n = Value at POR & ' 1 ' = Bit is set & ' 0 ' = Bit is cleared & \(\mathrm{x}=\mathrm{Bit}\) is unknown \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline bit 15-5 & Unimplemented: Read as '0' \\
\hline \multirow[t]{12}{*}{bit 4} & DMAOMD: DMA0 Module Disable bit \({ }^{(1)}\) \\
\hline & 1 = DMA0 module is disabled \\
\hline & 0 = DMA0 module is enabled \\
\hline & DMA1MD: DMA1 Module Disable bit \({ }^{(1)}\) \\
\hline & 1 = DMA1 module is disabled \\
\hline & 0 = DMA1 module is enabled \\
\hline & DMA2MD: DMA2 Module Disable bit \({ }^{(1)}\) \\
\hline & 1 = DMA2 module is disabled \\
\hline & 0 = DMA2 module is enabled \\
\hline & DMA3MD: DMA3 Module Disable bit \({ }^{(1)}\) \\
\hline & 1 = DMA3 module is disabled \\
\hline & 0 = DMA3 module is enabled \\
\hline \multirow[t]{3}{*}{bit 3} & PTGMD: PTG Module Disable bit \\
\hline & 1 = PTG module is disabled \\
\hline & \(0=\) PTG module is enabled \\
\hline bit 2-0 & Unimplemented: Read as '0' \\
\hline
\end{tabular}

Note 1: This single bit enables and disables all four DMA channels.

NOTES:

\subsection*{11.0 I/O PORTS}

Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X, and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 10. "I/O Ports" (DS70598) of the "dsPIC33E/PIC24E Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

Many of the device pins are shared among the peripherals and the parallel I/O ports. All I/O input ports feature Schmitt Trigger inputs for improved noise immunity.

\subsection*{11.1 Parallel I/O (PIO) Ports}

Generally, a parallel I/O port that shares a pin with a peripheral is subservient to the peripheral. The peripheral's output buffer data and control signals are provided to a pair of multiplexers. The multiplexers select whether the peripheral or the associated port
has ownership of the output data and control signals of the I/O pin. The logic also prevents "loop through," in which a port's digital output can drive the input of a peripheral that shares the same pin. Figure 11-1 illustrates how ports are shared with other peripherals and the associated I/O pin to which they are connected.

When a peripheral is enabled and the peripheral is actively driving an associated pin, the use of the pin as a general purpose output pin is disabled. The I/O pin can be read, but the output driver for the parallel port bit is disabled. If a peripheral is enabled, but the peripheral is not actively driving a pin, that pin can be driven by a port.
All port pins have eight registers directly associated with their operation as digital I/O. The data direction register (TRISx) determines whether the pin is an input or an output. If the data direction bit is a ' 1 ', then the pin is an input. All port pins are defined as inputs after a Reset. Reads from the latch (LATx) read the latch. Writes to the latch write the latch. Reads from the port (PORTx) read the port pins, while writes to the port pins write the latch.
Any bit and its associated data and control registers that are not valid for a particular device is disabled. This means the corresponding LATx and TRISx registers and the port pin are read as zeros.
When a pin is shared with another peripheral or function that is defined as an input only, it is nevertheless regarded as a dedicated port because there is no other competing source of outputs.

FIGURE 11-1: BLOCK DIAGRAM OF A TYPICAL SHARED PORT STRUCTURE


\subsection*{11.1.1 OPEN-DRAIN CONFIGURATION}

In addition to the PORT, LAT and TRIS registers for data control, port pins can also be individually configured for either digital or open-drain output. This is controlled by the Open-Drain Control register, ODCx, associated with each port. Setting any of the bits configures the corresponding pin to act as an open-drain output.
The open-drain feature allows the generation of outputs other than VDD by using external pull-up resistors. The maximum open-drain voltage allowed on any pin is the same as the maximum VIH specification for that particular pin.
See the "Pin Diagrams" section for the available 5 V -tolerant pins and Table 30-10 for the maximum VIH specification for each pin.

\subsection*{11.2 Configuring Analog and Digital Port Pins}

The ANSELx register controls the operation of the analog port pins. The port pins that are to function as analog inputs must have their corresponding ANSEL and TRIS bits set. In order to use port pins for I/O functionality with digital modules, such as Timers, UARTs, etc., the corresponding ANSELx bit must be cleared.
The ANSELx register has a default value of 0xFFFF; therefore, all pins that share analog functions are analog (not digital) by default.
If the TRIS bit is cleared (output) while the ANSELx bit is set, the digital output level (VOH or Vol) is converted by an analog peripheral, such as the ADC module or Comparator module.
When the PORT register is read, all pins configured as analog input channels are read as cleared (a low level).
Pins configured as digital inputs do not convert an analog input. Analog levels on any pin defined as a digital input (including the ANx pins) can cause the input buffer to consume current that exceeds the device specifications.

\subsection*{11.2.1 I/O PORT WRITE/READ TIMING}

One instruction cycle is required between a port direction change or port write operation and a read operation of the same port. Typically this instruction would be an NOP, as shown in Example 11-1.

\subsection*{11.3 Input Change Notification}

The input change notification function of the I/O ports allows the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X, and PIC24EPXXXGP/ MC20X devices to generate interrupt requests to the processor in response to a change-of-state on selected input pins. This feature can detect input change-ofstates even in Sleep mode, when the clocks are disabled. Every I/O port pin can be selected (enabled) for generating an interrupt request on a change-ofstate.
Three control registers are associated with the CN functionality of each I/O port. The CNENx registers contain the CN interrupt enable control bits for each of the input pins. Setting any of these bits enables a CN interrupt for the corresponding pins.
Each I/O pin also has a weak pull-up and a weak pull-down connected to it. The pull-ups and pulldowns act as a current source or sink source connected to the pin, and eliminate the need for external resistors when push-button or keypad devices are connected. The pull-ups and pull-downs are enabled separately using the CNPUx and the CNPDx registers, which contain the control bits for each of the pins. Setting any of the control bits enables the weak pull-ups and/or pull-downs for the corresponding pins.
\begin{tabular}{|c|c|c|}
\hline Note: & \multicolumn{2}{|l|}{Pull-ups and pull-downs on change notification pins should always be disabled when the port pin is configured as a digital output.} \\
\hline EXAMPL & LE 11-1: & PORT WRITE/READ EXAMPLE \\
\hline MOV 0 & 0xFF00, W0 & \begin{tabular}{l}
; Configure PORTB<15:8> \\
; as inputs
\end{tabular} \\
\hline MOV & W0, TRISB & \begin{tabular}{l}
and PORTB<7:0> \\
as outputs
\end{tabular} \\
\hline NOP & & ; Delay 1 cycle \\
\hline BTSS P & PORTB, \#13 & ; Next Instruction \\
\hline
\end{tabular}

\subsection*{11.4 Peripheral Pin Select}

A major challenge in general purpose devices is providing the largest possible set of peripheral features while minimizing the conflict of features on I/O pins. The challenge is even greater on low pin-count devices. In an application where more than one peripheral needs to be assigned to a single pin, inconvenient workarounds in application code or a complete redesign may be the only option.
Peripheral pin select configuration provides an alternative to these choices by enabling peripheral set selection and their placement on a wide range of I/O pins. By increasing the pinout options available on a particular device, users can better tailor the device to their entire application, rather than trimming the application to fit the device.
The peripheral pin select configuration feature operates over a fixed subset of digital I/O pins. Users may independently map the input and/or output of most digital peripherals to any one of these I/O pins. Hardware safeguards are included that prevent accidental or spurious changes to the peripheral mapping once it has been established.

\subsection*{11.4.1 AVAILABLE PINS}

The number of available pins is dependent on the particular device and its pin count. Pins that support the Peripheral Pin Select feature include the designation, "RPn" or "RPIn", in their full pin designation, where " \(n\) " is the remappable pin number. "RP" is used to designate pins that support both remappable input and output functions, while "RPI" indicates pins that support remappable input functions only.

\subsection*{11.4.2 AVAILABLE PERIPHERALS}

The peripherals managed by the peripheral pin select are all digital-only peripherals. These include general serial communications (UART and SPI), general purpose timer clock inputs, timer-related peripherals (input capture and output compare) and interrupt-on-change inputs.
In comparison, some digital-only peripheral modules are never included in the peripheral pin select feature. This is because the peripheral's function requires special I/O circuitry on a specific port and cannot be easily connected to multiple pins. These modules include \(\mathrm{I}^{2} \mathrm{C}\) and the PWM. A similar requirement excludes all modules with analog inputs, such as the A/D converter.

A key difference between remappable and non-remappable peripherals is that remappable peripherals are not associated with a default I/O pin. The peripheral must always be assigned to a specific I/O pin before it can be used. In contrast, non-remappable peripherals are always available on a default pin, assuming that the peripheral is active and not conflicting with another peripheral.

When a remappable peripheral is active on a given I/O pin, it takes priority over all other digital I/O and digital communication peripherals associated with the pin. Priority is given regardless of the type of peripheral that is mapped. Remappable peripherals never take priority over any analog functions associated with the pin.

\subsection*{11.4.3 CONTROLLING PERIPHERAL PIN SELECT}

Peripheral pin select features are controlled through two sets of SFRs: one to map peripheral inputs, and one to map outputs. Because they are separately controlled, a particular peripheral's input and output (if the peripheral has both) can be placed on any selectable function pin without constraint.
The association of a peripheral to a peripheral-selectable pin is handled in two different ways, depending on whether an input or output is being mapped.

\subsection*{11.4.3.1 INPUT MAPPING}

The inputs of the peripheral pin select options are mapped on the basis of the peripheral. That is, a control register associated with a peripheral dictates the pin it will be mapped to. The RPINRx registers are used to configure peripheral input mapping (see Register 11-1 through Register 11-17). Each register contains sets of 7-bit fields, with each set associated with one of the remappable peripherals. Programming a given peripheral's bit field with an appropriate 7-bit value maps the RPn pin with the corresponding value to that peripheral. For any given device, the valid range of values for any bit field corresponds to the maximum number of peripheral pin selections supported by the device.
For example, Figure 11-2 illustrates remappable pin selection for the U1RX input.

FIGURE 11-2: REMAPPABLE INPUT FOR U1RX


Note: For input only, peripheral pin select functionality does not have priority over TRISx settings. Therefore, when configuring RPn pin for input, the corresponding bit in the TRISx register must also be configured for input (set to '1').

\author{
dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X, AND PIC24EPXXXGP/MC20X
}

\subsection*{11.4.3.2 Virtual Connections}
dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X, and PIC24EPXXXGP/MC20X devices support virtual (internal) connections to the output of the Op amp/ Comparator module (see Figure 25-1 in Section 25.0
"Op amp/Comparator Module") and the PTG module (see Section 24.0 "Peripheral Trigger Generator (PTG) Module").
In addition, dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices support virtual connections to the filtered QEI module inputs FINDX1, FHOME1, FINDX2 and FHOME2 (see Figure 17-1 in Section 17.0 "Quadrature Encoder Interface (QEI) Module (dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X Devices Only)".

Virtual connections provide a simple way of interperipheral connection without utilizing a physical pin. For example, by setting the FLT1R<6:0> bits of the RPINR12 register to the value of 'b0000001, the output of the Analog Comparator C1OUT will be connected to the PWM Fault 1 input, which allows the Analog Comparator to trigger PWM faults without the use of an actual physical pin on the device.
Virtual connection to the QEI module allows peripherals to be connected to the QEI digital filter input. To utilize this filter, the QEI module must be enabled, and its inputs must be connected to a physical RPn pin. Example 11-1 illustrates how the input capture module can be connected to the QEI digital filter.

\section*{EXAMPLE 11-1: CONNECTING IC1 TO THE HOME1 QEI1 DIGITAL FILTER INPUT ON PIN 43 OF THE dsPIC33EPXXXMC206 DEVICE}
```

RPINR15 = 0x2500; /* Connect the QEI1 HOME1 input to RP37 (pin 43) */
RPINR7 = 0x009; /* Connect the IC1 input to the digital filter on the FHOME1 input */
QEI1IOC = 0x4000; /* Enable the QEI digital filter */
QEI1CON = 0x8000; /* Enable the QEI module */

```

TABLE 11-1: SELECTABLE INPUT SOURCES (MAPS INPUT TO FUNCTION)
\begin{tabular}{|c|c|c|c|}
\hline Input Name \({ }^{(1)}\) & Function Name & Register & Configuration Bits \\
\hline External Interrupt 1 & INT1 & RPINR0 & INT1R<6:0> \\
\hline External Interrupt 2 & INT2 & RPINR1 & INT2R<6:0> \\
\hline Timer2 External Clock & T2CK & RPINR3 & T2CKR<6:0> \\
\hline Input Capture 1 & IC1 & RPINR7 & IC1R<6:0> \\
\hline Input Capture 2 & IC2 & RPINR7 & IC2R<6:0> \\
\hline Input Capture 3 & IC3 & RPINR8 & IC3R<6:0> \\
\hline Input Capture 4 & IC4 & RPINR8 & IC4R<6:0> \\
\hline Output Compare Fault A & OCFA & RPINR11 & OCFAR<6:0> \\
\hline PWM Fault \(1^{(3)}\) & FLT1 & RPINR12 & FLT1R<6:0> \\
\hline PWM Fault \(2^{(3)}\) & FLT2 & RPINR12 & FLT2R<6:0> \\
\hline QEI1 Phase \(\mathrm{A}^{(3)}\) & QEA1 & RPINR14 & QEA1R<6:0> \\
\hline QEI1 Phase \(B^{(3)}\) & QEB1 & RPINR14 & QEB1R<6:0> \\
\hline QEI1 Index \({ }^{(3)}\) & INDX1 & RPINR15 & INDX1R<6:0> \\
\hline QEI1 Home \({ }^{(3)}\) & HOME1 & RPINR15 & HOM1R<6:0> \\
\hline UART1 Receive & U1RX & RPINR18 & U1RXR<6:0> \\
\hline UART2 Receive & U2RX & RPINR19 & U2RXR<6:0> \\
\hline SPI2 Data Input & SDI2 & RPINR22 & SDI2R<6:0> \\
\hline SPI2 Clock Input & SCK2 & RPINR22 & SCK2R<6:0> \\
\hline SPI2 Slave Select & \(\overline{\mathrm{SS} 2}\) & RPINR23 & SS2R<6:0> \\
\hline CAN1 Receive \({ }^{(2)}\) & C1RX & RPINR26 & C1RXR<6:0> \\
\hline PWM Synch Input \(1^{(3)}\) & SYNCI1 & RPINR37 & SYNCI1R<6:0> \\
\hline PWM Dead Time Compensation \(1^{(3)}\) & DTCMP1 & RPINR38 & DTCMP1R<6:0> \\
\hline PWM Dead Time Compensation \(2^{(3)}\) & DTCMP2 & RPINR39 & DTCMP2R<6:0> \\
\hline PWM Dead Time Compensation \(3^{(3)}\) & DTCMP3 & RPINR39 & DTCMP3R<6:0> \\
\hline
\end{tabular}

Note 1: Unless otherwise noted, all inputs use the Schmitt input buffers.
2: This input source is available on dsPIC33EPXXXGP/MC50X devices only.
3: This input source is available on dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices only.

TABLE 11-2: INPUT PIN SELECTION FOR SELECTABLE INPUT SOURCES
\begin{tabular}{|c|c|c|c|c|c|}
\hline Peripheral Pin Select Input Register Value & Input/ Output & Pin Assignment & Peripheral Pin Select Input Register Value & Input/ Output & Pin Assignment \\
\hline 0000000 & I & Vss & 0101101 & I & RPI45 \\
\hline 0000001 & I & C1OUT \({ }^{(1)}\) & 0101110 & I & RPI46 \\
\hline 0000010 & I & C2OUT \({ }^{(1)}\) & 0101111 & 1 & RPI47 \\
\hline 0000011 & 1 & C3OUT \({ }^{(1)}\) & 0110000 & - & - \\
\hline 0000100 & I & C4OUT \({ }^{(1)}\) & 0110001 & - & - \\
\hline 0000101 & - & - & 0110010 & - & - \\
\hline 0000110 & 1 & PTGO30 \({ }^{(1)}\) & 0110011 & 1 & RPI51 \\
\hline 0000111 & 1 & PTGO31 \({ }^{(1)}\) & 0110100 & 1 & RPI52 \\
\hline 0001000 & 1 & FINDX1 \({ }^{(1,2)}\) & 0110101 & 1 & RPI53 \\
\hline 0001001 & 1 & FHOME1 \({ }^{(1,2)}\) & 0110110 & I/O & RP54 \\
\hline 0001010 & - & - & 0110111 & I/O & RP55 \\
\hline 0001011 & - & - & 0111000 & I/O & RP56 \\
\hline 0001100 & - & - & 0111001 & I/O & RP57 \\
\hline 0001101 & - & - & 0111010 & 1 & RPI58 \\
\hline 0001110 & - & - & 0111011 & - & - \\
\hline 0001111 & - & - & 0111100 & - & - \\
\hline 0010000 & - & - & 0111101 & - & - \\
\hline 0010001 & - & - & 0111110 & - & - \\
\hline 0010010 & - & - & 0111111 & - & - \\
\hline 0010011 & - & - & 1000000 & - & - \\
\hline 0010100 & I/O & RP20 & 1000001 & - & - \\
\hline 0010101 & - & - & 1000010 & - & - \\
\hline 0010110 & - & - & 1000011 & - & - \\
\hline 0010111 & - & - & 1000100 & - & - \\
\hline 0011000 & I & RPI24 & 1000101 & - & - \\
\hline 0011001 & I & RPI25 & 1000110 & - & - \\
\hline 0011010 & - & - & 1000111 & - & - \\
\hline 0011011 & I & RPI27 & 1001000 & - & - \\
\hline 0011100 & I & RPI28 & 1001001 & - & - \\
\hline 0011101 & - & - & 1001010 & - & - \\
\hline 0011110 & - & - & 1001011 & - & - \\
\hline 0011111 & - & - & 1001100 & - & - \\
\hline 0100000 & 1 & RPI32 & 1001101 & - & - \\
\hline 0100001 & I & RPI33 & 1001110 & - & - \\
\hline 0100010 & I & RPI34 & 1001111 & - & - \\
\hline 0100011 & I/O & RP35 & 1010000 & - & - \\
\hline 0100100 & I/O & RP36 & 1010001 & - & - \\
\hline 0100101 & I/O & RP37 & 1010010 & - & - \\
\hline 0100110 & I/O & RP38 & 1010011 & - & - \\
\hline 0100111 & I/O & RP39 & 1010100 & - & - \\
\hline 0101000 & I/O & RP40 & 1010101 & - & - \\
\hline 0101001 & I/O & RP41 & 1010110 & - & - \\
\hline 0101010 & I/O & RP42 & 1010111 & - & - \\
\hline 0101011 & I/O & RP43 & 1011000 & - & - \\
\hline 0101100 & I & RPI44 & 1011001 & - & - \\
\hline
\end{tabular}

Note 1: See Section 11.4.3.2 "Virtual Connections" for more information on selecting this pin assignment.
2: These inputs are available on dsPIC33EPXXXGP/MC50X devices only.

TABLE 11-2: INPUT PIN SELECTION FOR SELECTABLE INPUT SOURCES (CONTINUED)
\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{c} 
Peripheral Pin \\
Select Input \\
Register Value
\end{tabular} & \begin{tabular}{c} 
Input/ \\
Output
\end{tabular} & Pin Assignment \\
\hline \hline 1011010 & - & - \\
\hline 1011011 & - & - \\
\hline 1011100 & - & - \\
\hline 1011101 & - & - \\
\hline 1011110 & I & RPI94 \\
\hline 1011111 & I & RPI95 \\
\hline 1100000 & I & RPI96 \\
\hline 1100001 & \(\mathrm{I} / \mathrm{O}\) & RP97 \\
\hline 1100010 & - & - \\
\hline 1100011 & - & - \\
\hline 1100100 & - & - \\
\hline 1100101 & - & - \\
\hline 1100110 & - & - \\
\hline 1100111 & - & - \\
\hline 1101000 & - & - \\
\hline 1101001 & - & - \\
\hline 1101010 & - & - \\
\hline 1101011 & - & - \\
\hline 1101100 & - & - \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{c} 
Peripheral Pin \\
Select Input \\
Register Value
\end{tabular} & \begin{tabular}{c} 
Input/ \\
Output
\end{tabular} & Pin Assignment \\
\hline \hline 1101101 & - & - \\
\hline 1101110 & - & - \\
\hline 1101111 & - & - \\
\hline 1110000 & - & - \\
\hline 1110001 & - & - \\
\hline 1110010 & - & - \\
\hline 1110011 & - & - \\
\hline 1110100 & - & - \\
\hline 1110101 & - & - \\
\hline 1110110 & \(\mathrm{I} / \mathrm{O}\) & RP 118 \\
\hline 1110111 & I & \(\mathrm{RPI119}\) \\
\hline 1111000 & \(\mathrm{I} / \mathrm{O}\) & RP 120 \\
\hline 1111001 & I & RPI121 \\
\hline 1111010 & - & - \\
\hline 1111011 & - & - \\
\hline 1111100 & - & - \\
\hline 1111101 & - & - \\
\hline 1111110 & - & - \\
\hline 1111111 & - & - \\
\hline
\end{tabular}

Note 1: See Section 11.4.3.2 "Virtual Connections" for more information on selecting this pin assignment.
2: These inputs are available on dsPIC33EPXXXGP/MC50X devices only.

\subsection*{11.4.3.3 Output Mapping}

In contrast to inputs, the outputs of the peripheral pin select options are mapped on the basis of the pin. In this case, a control register associated with a particular pin dictates the peripheral output to be mapped. The RPORx registers are used to control output mapping. Like the RPINRx registers, each register contains sets of 6 bit fields, with each set associated with one RPn pin (see Register 11-18 through Register 11-25). The value of the bit field corresponds to one of the peripherals, and that peripheral's output is mapped to the pin (see Table 11-3 and Figure 11-3).
A null output is associated with the output register reset value of ' 0 '. This is done to ensure that remappable outputs remain disconnected from all output pins by default.

FIGURE 11-3: MULTIPLEXING REMAPPABLE OUTPUT FOR RPn


\subsection*{11.4.3.4 Mapping Limitations}

The control schema of the peripheral select pins is not limited to a small range of fixed peripheral configurations. There are no mutual or hardware-enforced lockouts between any of the peripheral mapping SFRs. Literally any combination of peripheral mappings across any or all of the RPn pins is possible. This includes both many-to-one and one-to-many mappings of peripheral inputs and outputs to pins. While such mappings may be technically possible from a configuration point of view, they may not be supportable from an electrical point of view.

TABLE 11-3: OUTPUT SELECTION FOR REMAPPABLE PINS (RPn)
\begin{tabular}{|l|c|l|}
\hline \multicolumn{1}{|c|}{ Function } & RPnR<5:0> & \\
\hline \hline DEFAULT PORT & 000000 & RPn tied to default pin \\
\hline U1TX & 000001 & RPn tied to UART1 transmit \\
\hline U2TX & 000011 & RPn tied to UART2 transmit \\
\hline SDO2 & 001000 & RPn tied to SPI2 data output \\
\hline SCK2 & 001001 & RPn tied to SPI2 clock output \\
\hline SS2 & 001010 & RPn tied to SPI2 slave select \\
\hline C1TX & \\
\hline OC1 & 001110 & RPn tied to CAN1 transmit \\
\hline OC2 & 010000 & RPn tied to Output Compare 1 output \\
\hline OC3 & 010001 & RPn tied to Output Compare 2 output \\
\hline OC4 & 010010 & RPn tied to Output Compare 3 output \\
\hline C1OUT & 010011 & RPn tied to Output Compare 4 output \\
\hline C2OUT & 011000 & RPn tied to Comparator Output 1 \\
\hline C3OUT & 011001 & RPn tied to Comparator Output 2 \\
\hline SYNCO1 \({ }^{(\mathbf{1})}\) & 011010 & RPn tied to Comparator Output 3 \\
\hline QEI1CCMP \({ }^{(\mathbf{1})}\) & 101101 & RPn tied to PWM primary time base sync output \\
\hline REFCLKO & 101111 & RPn tied to QEl 1 counter comparator output \\
\hline C4OUT & 110001 & RPn tied to Reference Clock output \\
\hline
\end{tabular}

Note 1: This function is available in dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices only.
2: This function is available in dsPIC33EPXXXGP/MC50X devices only.

\subsection*{11.5 Peripheral Pin Select Registers}

\section*{REGISTER 11-1: RPINR0: PERIPHERAL PIN SELECT INPUT REGISTER 0}
\begin{tabular}{|c|ccccccc|}
\hline U-0 & R/W-0 \\
\hline- & & & INT1R<6:0> & & & \\
\hline bit 15 & & & & & & bit 8 \\
\hline
\end{tabular}
\begin{tabular}{|l|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|c|}{\(\mathrm{U}-0\)} \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend: & & \\
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1\) ' = Bit is set & \(' 0\) ' = Bit is cleared \(\quad x=\) Bit is unknown \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline bit 15 & Unimplemented: Read as ' 0 ' \\
\hline bit 14-8 & INT1R<6:0>: Assign External Interrupt 1 (INT1) to the Corresponding RPn Pin bits (see Table 11-2 for input pin selection numbers) \\
\hline & 1111001 = Input tied to RPI121 \\
\hline & - \\
\hline & - \\
\hline & - 000001 inputied to CMP1 \\
\hline & 0000001 = Input tied to CMP1 \\
\hline & 0000000 = Input tied to Vss \\
\hline bit 7-0 & Unimplemented: Read as '0' \\
\hline
\end{tabular}

REGISTER 11-2: RPINR1: PERIPHERAL PIN SELECT INPUT REGISTER 1
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline U-0 & U-0 \\
\hline - & - & - & - & - & - & - & - \\
\hline \multicolumn{8}{|l|}{bit 15 bit 8} \\
\hline U-0 & R/W-0 \\
\hline - & \multicolumn{7}{|c|}{INT2R<6:0>} \\
\hline \multicolumn{8}{|l|}{bit 7 bit 0} \\
\hline
\end{tabular}

Legend:
\begin{tabular}{lll}
\(\mathrm{R}=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) Unimplemented bit, read as ' 0 ' \\
\(-\mathrm{n}=\) Value at POR & \(' 1\) ' \(=\) Bit is set & ' 0 ' = Bit is cleared \\
\hline
\end{tabular}
\begin{tabular}{ll} 
bit 15-7 & Unimplemented: Read as ‘0’ \\
bit 6-0 & INT2R<6:0>: Assign External Interrupt 2 (INT2) to the Corresponding RPn Pin bits \\
& (see Table 11-2 for input pin selection numbers) \\
& \(1111001=\) Input tied to RPI121 \\
&. \\
&. \\
& \(0000001=\) Input tied to CMP1 \\
& \(0000000=\) Input tied to Vss
\end{tabular}

\section*{REGISTER 11-3: RPINR3: PERIPHERAL PIN SELECT INPUT REGISTER 3}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline U-0 & U-0 \\
\hline- & - & - & - & - & - & - & - \\
\hline bit 15 & & \\
\hline
\end{tabular}
\begin{tabular}{|c|ccccccc|}
\hline U-0 & R/W-0 \\
\hline- & & & T2CKR<6:0> & & & \\
\hline bit 7 & & & & & & \\
\hline
\end{tabular}

\section*{Legend:}
\(R=\) Readable bit
\(-n=\) Value at POR
W = Writable bit
\(\mathrm{U}=\) Unimplemented bit, read as ' 0 '
' 1 ' = Bit is set
' 0 ' = Bit is cleared
\(x=\) Bit is unknown
\(\begin{array}{ll}\text { bit 15-7 } & \text { Unimplemented: Read as ‘0' } \\ \text { bit 6-0 } & \text { T2CKR<6:0>: Assign Timer2 External Clock (T2CK) to the Corresponding RPn pin bits } \\ & \text { (see Table 11-2 for input pin selection numbers) } \\ & 1111001 \text { = Input tied to RPI121 } \\ & . \\ & . \\ & 0000001 \text { = Input tied to CMP1 } \\ & 0000000 \text { = Input tied to Vss }\end{array}\)

REGISTER 11-4: RPINR7: PERIPHERAL PIN SELECT INPUT REGISTER 7

\begin{tabular}{|lll|}
\hline Legend: & & \\
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1 '=\) Bit is set & \(' 0\) ' \(=\) Bit is cleared \(\quad x=\) Bit is unknown \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline bit 15 & Unimplemented: Read as ' 0 ' \\
\hline \multirow[t]{6}{*}{bit 14-8} & IC2R<6:0>: Assign Input Capture 2 (IC2) to the Corresponding RPn Pin bits (see Table 11-2 for input pin selection numbers) \\
\hline & 1111001 = Input tied to RPI121 \\
\hline & - \\
\hline &  \\
\hline & 0000001 = Input tied to CMP1 \\
\hline & 0000000 = Input tied to Vss \\
\hline bit 7 & Unimplemented: Read as '0' \\
\hline \multirow[t]{6}{*}{bit 6-0} & IC1R<6:0>: Assign Input Capture 1 (IC1) to the Corresponding RPn Pin bits (see Table 11-2 for input pin selection numbers) \\
\hline & 1111001 = Input tied to RPI121 \\
\hline & \\
\hline & . \\
\hline & 0000001 = Input tied to CMP1 \\
\hline & 0000000 = Input tied to Vss \\
\hline
\end{tabular}

\section*{REGISTER 11-5: RPINR8: PERIPHERAL PIN SELECT INPUT REGISTER 8}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline U-0 & R/W-0 \\
\hline - & \multicolumn{7}{|c|}{IC4R<6:0>} \\
\hline \multicolumn{7}{|l|}{bit 15} & bit 8 \\
\hline U-0 & R/W-0 \\
\hline - & \multicolumn{7}{|c|}{IC3R<6:0>} \\
\hline \multicolumn{7}{|l|}{bit 7} & bit 0 \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1 '=\) Bit is set & \(' 0 '=\) Bit is cleared
\end{tabular}\(\quad x=\) Bit is unknown
```

bit 15 Unimplemented: Read as '0'
bit 14-8 IC4R<6:0>: Assign Input Capture 4 (IC4) to the Corresponding RPn Pin bits
(see Table 11-2 for input pin selection numbers)
1111001 = Input tied to RPI121
.
.
0000001 = Input tied to CMP1
0000000 = Input tied to Vss
bit 7 Unimplemented: Read as ' }0\mathrm{ '
bit 6-0 IC3R<6:0>: Assign Input Capture 3 (IC3) to the Corresponding RPn Pin bits
(see Table 11-2 for input pin selection numbers)
1111001 = Input tied to RPI121
.
.
0000001 = Input tied to CMP1
0000000 = Input tied to Vss

```

REGISTER 11-6: RPINR11: PERIPHERAL PIN SELECT INPUT REGISTER 11
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline U-0 & U-0 \\
\hline - & - & - & - & - & - & - & - \\
\hline \multicolumn{8}{|l|}{bit 15 bit 8} \\
\hline U-0 & R/W-0 \\
\hline - & \multicolumn{7}{|c|}{OCFAR<6:0>} \\
\hline bit 7 & & & & & & & bit 0 \\
\hline
\end{tabular}

Legend:
\begin{tabular}{lll}
\(\mathrm{R}=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) Unimplemented bit, read as ' 0 ' \\
\(-\mathrm{n}=\) Value at POR & \(' 1\) ' \(=\) Bit is set & ' 0 ' = Bit is cleared \\
\hline
\end{tabular}
bit 15-7 Unimplemented: Read as '0'
bit 6-0 OCFAR<6:0>: Assign Output Compare Fault A (OCFA) to the Corresponding RPn Pin bits (see Table 11-2 for input pin selection numbers)
1111001 = Input tied to RPI121
.
\(\cdot\)
0000001 = Input tied to CMP1
\(0000000=\) Input tied to Vss

REGISTER 11-7: RPINR12: PERIPHERAL PIN SELECT INPUT REGISTER 12 (dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X DEVICES ONLY)
\begin{tabular}{|c|ccccccc|}
\hline U-0 & R/W-0 \\
\hline- & & & FLT2R<6:0> & & & \\
\hline bit 15 & & & & & & bit 8 \\
\hline
\end{tabular}
\begin{tabular}{|c|ccccccc|}
\hline U-0 & R/W-0 \\
\hline- & & & FLT1R<6:0> & & & \\
\hline bit 7 & & & & & & & \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(\mathrm{R}=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) Unimplemented bit, read as ' 0 ' \\
\(-\mathrm{n}=\) Value at POR & \(' 1\) ' = Bit is set & \(' 0\) = Bit is cleared
\end{tabular}
\begin{tabular}{|c|c|}
\hline bit 15 & Unimplemented: Read as ' 0 ' \\
\hline \multirow[t]{7}{*}{bit 14-8} & FLT2R<6:0>: Assign PWM Fault 2 ( \(\overline{\mathrm{FLT} 2}\) ) to the Corresponding RPn Pin bits (see Table 11-2 for input pin selection numbers) \\
\hline & 1111001 = Input tied to RPI121 \\
\hline & - \\
\hline & - \\
\hline & \\
\hline & 0000001 = Input tied to CMP1 \\
\hline & 0000000 = Input tied to Vss \\
\hline bit 7 & Unimplemented: Read as '0' \\
\hline \multirow[t]{6}{*}{bit 6-0} & FLT1R<6:0>: Assign PWM Fault 1 ( \(\overline{\mathrm{FLT1}}\) ) to the Corresponding RPn Pin bits (see Table 11-2 for input pin selection numbers) \\
\hline & 1111001 = Input tied to RPI121 \\
\hline & \\
\hline & - \\
\hline & -0000001 = Input tied to CMP1 \\
\hline & 0000000 = Input tied to Vss \\
\hline
\end{tabular}

REGISTER 11-8: RPINR14: PERIPHERAL PIN SELECT INPUT REGISTER 14 (dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X DEVICES ONLY)
\begin{tabular}{|c|ccccccc|}
\hline U-0 & R/W-0 \\
\hline- & & & QEB1R<6:0> & & & \\
\hline bit 15 & & & & & & & bit 8 \\
\hline
\end{tabular}
\begin{tabular}{|c|ccccccc|}
\hline U-0 & R/W-0 \\
\hline- & & & & QEA1R<6:0> & & & \\
\hline bit 7 & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|lll}
\hline Legend: & & \\
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1\) ' = Bit is set & \(' 0\) ' = Bit is cleared
\end{tabular}
\begin{tabular}{|c|c|}
\hline bit 15 & Unimplemented: Read as ' 0 ' \\
\hline \multirow[t]{6}{*}{bit 14-8} & QEB1R<6:0>: Assign B (QEB) to the Corresponding RPn Pin bits (see Table 11-2 for input pin selection numbers) \\
\hline & 1111001 = Input tied to RPI121 \\
\hline & . \\
\hline & - \\
\hline & 0000001 = Input tied to CMP1 \\
\hline & 0000000 = Input tied to Vss \\
\hline bit 7 & Unimplemented: Read as ' 0 ' \\
\hline \multirow[t]{6}{*}{bit 6-0} & QEA1R<6:0>: Assign A (QEA) to the Corresponding RPn Pin bits (see Table 11-2 for input pin selection numbers) \\
\hline & 1111001 = Input tied to RPI121 \\
\hline & - \\
\hline & - \\
\hline & 0000001 = Input tied to CMP1 \\
\hline & 0000000 = Input tied to Vss \\
\hline
\end{tabular}

REGISTER 11-9: RPINR15: PERIPHERAL PIN SELECT INPUT REGISTER 15 (dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X DEVICES ONLY)
\begin{tabular}{|c|ccccccc|}
\hline U-0 & R/W-0 \\
\hline- & & & HOME1R<6:0> & & & \\
\hline bit 15 & & & & & & bit 8 \\
\hline
\end{tabular}
\begin{tabular}{|c|ccccccc|}
\hline U-0 & R/W-0 \\
\hline- & & & & INDX1R<6:0> & & & \\
\hline bit 7 & & & & & & & bit 0 \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1\) ' = Bit is set & \(' 0\) ' \(=\) Bit is cleared
\end{tabular}
\begin{tabular}{|c|c|}
\hline bit 15 & Unimplemented: Read as ' 0 ' \\
\hline \multirow[t]{7}{*}{bit 14-8} & HOME1R<6:0>: Assign QEI1 HOME1 (HOME1) to the Corresponding RPn Pin bits (see Table 11-2 for input pin selection numbers) \\
\hline & 1111001 = Input tied to RPI121 \\
\hline & . \\
\hline & - \\
\hline & - \\
\hline & 0000001 = Input tied to CMP1 \\
\hline & 0000000 = Input tied to Vss \\
\hline bit 7 & Unimplemented: Read as '0' \\
\hline \multirow[t]{7}{*}{bit 6-0} & IND1XR<6:0>: Assign QEI1 INDEX1 (INDX1) to the Corresponding RPn Pin bits (see Table 11-2 for input pin selection numbers) \\
\hline & 1111001 = Input tied to RPI121 \\
\hline & . \\
\hline & \(\cdot\) \\
\hline & 000001 Inputied \\
\hline & 0000001 = Input tied to CMP1 \\
\hline & 0000000 = Input tied to Vss \\
\hline
\end{tabular}

REGISTER 11-10: RPINR18: PERIPHERAL PIN SELECT INPUT REGISTER 18
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline U-0 & U-0 \\
\hline - & - & - & - & - & - & - & - \\
\hline \multicolumn{8}{|l|}{bit 15 bit 8} \\
\hline U-0 & R/W-0 \\
\hline - & \multicolumn{7}{|c|}{U1RXR<6:0>} \\
\hline bit 7 & & & & & & & bit 0 \\
\hline
\end{tabular}

Legend:
\begin{tabular}{lll}
\(\mathrm{R}=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) Unimplemented bit, read as ' 0 ' \\
\(-\mathrm{n}=\) Value at POR & \(' 1\) ' \(=\) Bit is set & ' 0 ' = Bit is cleared \\
\hline
\end{tabular}
```

bit 15-7 Unimplemented: Read as '0'
bit 6-0 U1RXR<6:0>: Assign UART1 Receive (U1RX) to the Corresponding RPn Pin bits
(see Table 11-2 for input pin selection numbers)
1111001 = Input tied to RPI121
.
0000001 = Input tied to CMP1
0000000 = Input tied to Vss

```

REGISTER 11-11: RPINR19: PERIPHERAL PIN SELECT INPUT REGISTER 19
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline U-0 & U-0 \\
\hline- & - & - & - & - & - & - & - \\
\hline bit 15 & \\
\hline
\end{tabular}
\begin{tabular}{|c|ccccccc|}
\hline U-0 & R/W-0 \\
\hline- & & & U2RXR<6:0> & & & \\
\hline bit 7 & & & & & & bit 0 \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(\mathrm{R}=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) Unimplemented bit, read as ' 0 ' \\
\(-\mathrm{n}=\) Value at POR & \(' 1\) ' \(=\) Bit is set & ' 0 ' = Bit is cleared
\end{tabular}
```

bit 15-7 Unimplemented: Read as '0'
bit 6-0 U2RXR<6:0>: Assign UART2 Receive (U2RX) to the Corresponding RPn Pin bits
(see Table 11-2 for input pin selection numbers)
1111001 = Input tied to RPI121
.
0000001 = Input tied to CMP1
0000000 = Input tied to Vss

```

REGISTER 11-12: RPINR22: PERIPHERAL PIN SELECT INPUT REGISTER 22
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline U-0 & R/W-0 \\
\hline - & \multicolumn{7}{|c|}{SCK2<6:0>} \\
\hline \multicolumn{7}{|l|}{bit 15} & bit 8 \\
\hline U-0 & R/W-0 \\
\hline - & \multicolumn{7}{|c|}{SDI2<6:0>} \\
\hline \multicolumn{7}{|l|}{bit 7} & bit 0 \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend: & & \\
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1\) ' = Bit is set & \(' 0\) ' \(=\) Bit is cleared \(\quad x=\) Bit is unknown \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline bit 15 & Unimplemented: Read as ' 0 ' \\
\hline \multirow[t]{6}{*}{bit 14-8} & SCK2<6:0>: Assign SPI2 Clock Input (SCK2) to the Corresponding RPn Pin bits (see Table 11-2 for input pin selection numbers) \\
\hline & 1111001 = Input tied to RPI121 \\
\hline & . \\
\hline & - \\
\hline & 0000001 = Input tied to CMP1 \\
\hline & 0000000 = Input tied to Vss \\
\hline bit 7 & Unimplemented: Read as '0' \\
\hline \multirow[t]{6}{*}{bit 6-0} & SDI2<6:0>: Assign SPI2 Data Input (SDI2) to the Corresponding RPn Pin bits (see Table 11-2 for input pin selection numbers) \\
\hline & 1111001 = Input tied to RPI121 \\
\hline & - \\
\hline & . \\
\hline & 0000001 = Input tied to CMP1 \\
\hline & 0000000 = Input tied to Vss \\
\hline
\end{tabular}

REGISTER 11-13: RPINR23: PERIPHERAL PIN SELECT INPUT REGISTER 23
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline U-0 & U-0 \\
\hline- & - & - & - & - & - & - & - \\
\hline bit 15 \\
\begin{tabular}{|lllllll|}
\hline U-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0
\end{tabular} R/W-0 \\
\hline - &
\end{tabular}

\section*{Legend:}
\begin{tabular}{|c|c|c|c|}
\hline \(\mathrm{R}=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) Unimplemente & as ' 0 ' \\
\hline -n = Value at POR & ' 1 ' = Bit is set & ' 0 ' = Bit is cleared & \(x=\) Bit is unknown \\
\hline
\end{tabular}
```

bit 15 Unimplemented: Read as '0'
bit 6-0 SS2<6:0>: Assign SPI2 Slave Select (\overline{SS2)}\mathrm{) to the Corresponding RPn Pin bits}
(see Table 11-2 for input pin selection numbers)
1111001 = Input tied to RPI121
.
.
0000001 = Input tied to CMP1
0000000 = Input tied to Vss

```

REGISTER 11-14: RPINR26: PERIPHERAL PIN SELECT INPUT REGISTER 26 (dsPIC33EPXXXGPIMC50X DEVICES ONLY)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline U-0 & U-0 \\
\hline- & - & - & - & - & - & - & - \\
\hline bit 15 & & & bit 8 \\
\hline
\end{tabular}
\begin{tabular}{|c|ccccccc|}
\hline U-0 & R/W-0 \\
\hline- & & & & & C1RXR<6:0> & & \\
\hline bit 7 & & & & & & & \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1 '=\) Bit is set & \(' 0\) ' \(=\) Bit is cleared
\end{tabular}
```

bit 15-7 Unimplemented: Read as '0'
bit 6-0 C1RXR<6:0>: Assign CAN1 RX Input (CRX1) to the Corresponding RPn Pin bits
(see Table 11-2 for input pin selection numbers)
1111001 = Input tied to RPI121
.
.
0000001 = Input tied to CMP1
0000000 = Input tied to Vss

```

REGISTER 11-15: RPINR37: PERIPHERAL PIN SELECT INPUT REGISTER 37
(dsPIC33EPXXXMC20X/50X AND PIC24EPXXXMC20X DEVICES ONLY)
\begin{tabular}{|c|ccccccc|}
\hline U-0 & R/W-0 \\
\hline- & & & SYNCI1R<6:0> & & & \\
\hline bit 15 & & & & & & bit 8 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline U-0 & U-0 \\
\hline - & - & - & - & - & - & - & - \\
\hline \multicolumn{8}{|l|}{bit \(7 \times\) bit 0} \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{|c|c|c|c|}
\hline \(R=\) Readable bit & W = Writable bit & \(\mathrm{U}=\) Unimplement & s '0' \\
\hline -n = Value at POR & ' 1 ' = Bit is set & ' 0 ' = Bit is cleared & \(\mathrm{x}=\) Bit is unknown \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline bit 15 & Unimplemented: Read as ' 0 ' \\
\hline \multirow[t]{6}{*}{bit 14-8} & SYNCI1R<6:0>: Assign PWM Synchronization Input 1 to the Corresponding RPn Pin bits (see Table 11-2 for input pin selection numbers) \\
\hline & 1111001 = Input tied to RPI121 \\
\hline & - \\
\hline & - \\
\hline & 0000001 = Input tied to CMP1 \\
\hline & 0000000 = Input tied to Vss \\
\hline bit 7-0 & Unimplemented: Read as '0' \\
\hline
\end{tabular}

REGISTER 11-16: RPINR38: PERIPHERAL PIN SELECT INPUT REGISTER 38 (dsPIC33EPXXXMC02X AND PIC24EPXXXMC20X DEVICES ONLY)
\begin{tabular}{|c|ccccccc|}
\hline U-0 & R/W-0 \\
\hline- & & & DTCMP1R<6:0> & & & \\
\hline bit 15 & & & & & & bit 8 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline U-0 & U-0 & U-0 & U-0 & U-0 & U-0 & U-0 \\
\hline- & - & - & - & - & - & - & - \\
\hline bit 7 & & \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1\) ' = Bit is set & \(' 0\) ' = Bit is cleared
\end{tabular}
\begin{tabular}{ll} 
bit 15 & Unimplemented: Read as ' 0 ' \\
bit 14-8 & DTCMP1R<6:0>: Assign PWM Dead Time Compensation Input 1 to the Corresponding RPn Pin bits \\
& (see Table 11-2 for input pin selection numbers) \\
& 1111001 = Input tied to RPI121 \\
& - \\
& - 0000001 = Input tied to CMP1 \\
& 0000000 = Input tied to Vss \\
bit 7-0 & Unimplemented: Read as ' 0 '
\end{tabular}

REGISTER 11-17: RPINR39: PERIPHERAL PIN SELECT INPUT REGISTER 39 (dsPIC33EPXXXMC20XI50X AND PIC24EPXXXMC20X DEVICES ONLY)
\begin{tabular}{|c|ccccccc|}
\hline U-0 & R/W-0 \\
\hline- & & & DTCMP3R<6:0> & & & \\
\hline bit 15 & & & & & & bit 8 \\
\hline
\end{tabular}
\begin{tabular}{|c|ccccccc|}
\hline \multicolumn{8}{|c|}{\(\mathrm{U}-0\)} \\
\hline & R/W-0 \\
\hline bit 7 & & & DTCMP2R<6:0> & & & \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1\) ' = Bit is set & \(' 0\) ' \(=\) Bit is cleared
\end{tabular}
\begin{tabular}{|c|c|}
\hline bit 15 & Unimplemented: Read as ' 0 ' \\
\hline \multirow[t]{6}{*}{bit 14-8} & DTCMP3R<6:0>: Assign PWM Dead Time Compensation Input 3 to the Corresponding RPn Pin bits (see Table 11-2 for input pin selection numbers) \\
\hline & 1111001 = Input tied to RPI121 \\
\hline & . \\
\hline & . \\
\hline & 0000001 = Input tied to CMP1 \\
\hline & 0000000 = Input tied to Vss \\
\hline bit 7 & Unimplemented: Read as '0' \\
\hline \multirow[t]{6}{*}{bit 6-0} & DTCMP2R<6:0>: Assign PWM Dead Time Compensation Input 2 to the Corresponding RPn Pin bits (see Table 11-2 for input pin selection numbers) \\
\hline & 1111001 = Input tied to RPI121 \\
\hline & - \\
\hline &  \\
\hline & 0000001 = Input tied to CMP1 \\
\hline & 0000000 = Input tied to Vss \\
\hline
\end{tabular}

REGISTER 11-18: RPOR0: PERIPHERAL PIN SELECT OUTPUT REGISTER 0
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline U-0 & U-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 \\
\hline - & - & \multicolumn{6}{|c|}{RP35R<5:0>} \\
\hline \multicolumn{7}{|l|}{bit 15} & bit 8 \\
\hline U-0 & U-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 \\
\hline - & - & \multicolumn{6}{|c|}{RP20R<5:0>} \\
\hline \multicolumn{7}{|l|}{bit 7} & bit 0 \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1\) ' \(=\) Bit is set & \(' 0\) ' \(=\) Bit is cleared
\end{tabular}\(\quad x=\) Bit is unknown
bit 15-14 Unimplemented: Read as ' 0 '
bit 13-8 RP35R<5:0>: Peripheral Output Function is Assigned to RP35 Output Pin bits (see Table 11-3 for peripheral function numbers)
bit 7-6 Unimplemented: Read as ' 0 '
bit 5-0 RP20R<5:0>: Peripheral Output Function is Assigned to RP20 Output Pin bits (see Table 11-3 for peripheral function numbers)

REGISTER 11-19: RPOR1: PERIPHERAL PIN SELECT OUTPUT REGISTER 1
\begin{tabular}{|c|c|cccccc|}
\hline U-0 & U-0 & R/W-0 & R/W-0 & \(R / W-0\) & \(R / W-0\) & \(R / W-0\) & \(R / W-0\) \\
\hline- & - & & \(R P 37 R<5: 0>\) & & \\
\hline bit 15 & & & & & bit 8 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|llllll|}
\hline \(\mathrm{U}-0\) & \(\mathrm{U}-0\) & \(\mathrm{R} / \mathrm{W}-0\) \\
\hline- & - & & \(R P 36 R<5: 0>\) & & \\
\hline bit 7 & & & & bit 0 \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{|lll|}
\(\mathrm{R}=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) Unimplemented bit, read as ' 0 ' \\
\(-\mathrm{n}=\) Value at POR & \(' 1\) ' \(=\) Bit is set & ' 0 ' \(=\) Bit is cleared \\
\hline
\end{tabular}
bit 15-14 Unimplemented: Read as ' 0 '
bit 13-8 RP37R<5:0>: Peripheral Output Function is Assigned to RP37 Output Pin bits (see Table 11-3 for peripheral function numbers)
bit 7-6 Unimplemented: Read as ' 0 '
bit 5-0 RP36R<5:0>: Peripheral Output Function is Assigned to RP36 Output Pin bits (see Table 11-3 for peripheral function numbers)

REGISTER 11-20: RPOR2: PERIPHERAL PIN SELECT OUTPUT REGISTER 2
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline U-0 & U-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 \\
\hline - & - & \multicolumn{6}{|c|}{RP39R<5:0>} \\
\hline \multicolumn{7}{|l|}{bit 15} & bit 8 \\
\hline U-0 & U-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 \\
\hline - & - & \multicolumn{6}{|c|}{RP38R<5:0>} \\
\hline \multicolumn{7}{|l|}{bit 7} & bit 0 \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{|c|c|c|c|}
\hline \(\mathrm{R}=\) Readable bit & W = Writable bit & \(\mathrm{U}=\) Unimplemen & as ' 0 ' \\
\hline -n = Value at POR & ' 1 ' = Bit is set & ' 0 ' = Bit is cleared & \\
\hline
\end{tabular}
bit 15-14 Unimplemented: Read as ' 0 '
bit 13-8 RP39R<5:0>: Peripheral Output Function is Assigned to RP39 Output Pin bits (see Table 11-3 for peripheral function numbers)
bit 7-6 Unimplemented: Read as ' 0 '
bit 5-0 RP38R<5:0>: Peripheral Output Function is Assigned to RP38 Output Pin bits (see Table 11-3 for peripheral function numbers)

REGISTER 11-21: RPOR3: PERIPHERAL PIN SELECT OUTPUT REGISTER 3
\begin{tabular}{|c|c|cccccc|}
\hline U-0 & U-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 \\
\hline- & - & & \(R P 41 R<5: 0>\) & & \\
\hline bit 15 & & & & bit 8 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline U-0 & U-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 \\
\hline - & - & \multicolumn{6}{|c|}{RP40R<5:0>} \\
\hline bit 7 & & & & & & & bit 0 \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1 '=\) Bit is set & \(' 0 '=\) Bit is cleared
\end{tabular}
bit 15-14 Unimplemented: Read as ' 0 '
bit 13-8 RP41R<5:0>: Peripheral Output Function is Assigned to RP41 Output Pin bits (see Table 11-3 for peripheral function numbers)
bit 7-6 Unimplemented: Read as ' 0 '
bit 5-0 RP40R<5:0>: Peripheral Output Function is Assigned to RP40 Output Pin bits (see Table 11-3 for peripheral function numbers)

REGISTER 11-22: RPOR4: PERIPHERAL PIN SELECT OUTPUT REGISTER 4
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline U-0 & U-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 \\
\hline - & - & \multicolumn{6}{|c|}{RP43R<5:0>} \\
\hline \multicolumn{7}{|l|}{bit 15} & bit 8 \\
\hline U-0 & U-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 \\
\hline - & - & \multicolumn{6}{|c|}{RP42R<5:0>} \\
\hline \multicolumn{7}{|l|}{bit 7} & bit 0 \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1\) ' \(=\) Bit is set & \(' 0\) ' \(=\) Bit is cleared
\end{tabular}\(\quad x=\) Bit is unknown
bit 15-14 Unimplemented: Read as ' 0 '
bit 13-8 RP43R<5:0>: Peripheral Output Function is Assigned to RP43 Output Pin bits (see Table 11-3 for peripheral function numbers)
bit 7-6 Unimplemented: Read as ' 0 '
bit 5-0 RP42R<5:0>: Peripheral Output Function is Assigned to RP42 Output Pin bits (see Table 11-3 for peripheral function numbers)

REGISTER 11-23: RPOR5: PERIPHERAL PIN SELECT OUTPUT REGISTER 5
\begin{tabular}{|c|c|ccccc|}
\hline U-0 & U-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0
\end{tabular} R/W-0 \begin{tabular}{lllll|}
\hline- & - & & \(R P 55 R<5: 0>\) & \\
\hline bit 15 & & & & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|llllll|}
\hline \(\mathrm{U}-0\) & \(\mathrm{U}-0\) & \(\mathrm{R} / \mathrm{W}-0\) \\
\hline- & - & & \(R P 54 R<5: 0>\) & & \\
\hline bit 7 & & & & bit 0 \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{|lll|}
\(\mathrm{R}=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) Unimplemented bit, read as ' 0 ' \\
\(-\mathrm{n}=\) Value at POR & \(' 1\) ' = Bit is set & \(' 0\) ' \(=\) Bit is cleared \(\quad x=\) Bit is unknown \\
\hline
\end{tabular}
bit 15-14 Unimplemented: Read as ' 0 '
bit 13-8 RP55R<5:0>: Peripheral Output Function is Assigned to RP55 Output Pin bits (see Table 11-3 for peripheral function numbers)
bit 7-6 Unimplemented: Read as '0'
bit 5-0 RP54R<5:0>: Peripheral Output Function is Assigned to RP54 Output Pin bits (see Table 11-3 for peripheral function numbers)

REGISTER 11-24: RPOR6: PERIPHERAL PIN SELECT OUTPUT REGISTER 6
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline U-0 & U-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 \\
\hline - & - & \multicolumn{6}{|c|}{RP57R<5:0>} \\
\hline \multicolumn{7}{|l|}{bit 15} & bit 8 \\
\hline U-0 & U-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 \\
\hline - & - & \multicolumn{6}{|c|}{RP56R<5:0>} \\
\hline \multicolumn{7}{|l|}{bit 7} & bit 0 \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{|c|c|c|c|}
\hline \(\mathrm{R}=\) Readable bit & W = Writable bit & \(\mathrm{U}=\) Unimplemen & as ' 0 ' \\
\hline -n = Value at POR & ' 1 ' = Bit is set & ' 0 ' = Bit is cleared & \\
\hline
\end{tabular}
bit 15-14 Unimplemented: Read as ' 0 '
bit 13-8 RP57R<5:0>: Peripheral Output Function is Assigned to RP57 Output Pin bits (see Table 11-3 for peripheral function numbers)
bit 7-6 Unimplemented: Read as ' 0 '
bit 5-0 RP56R<5:0>: Peripheral Output Function is Assigned to RP56 Output Pin bits (see Table 11-3 for peripheral function numbers)

REGISTER 11-25: RPOR7: PERIPHERAL PIN SELECT OUTPUT REGISTER 7
\begin{tabular}{|c|c|cccccc|}
\hline U-0 & U-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 \\
\hline- & - & & \(R P 97 R<5: 0>\) & & \\
\hline bit 15 & & & & bit 8 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|c|}{\(\mathrm{U}-\mathrm{O}\)} & \(\mathrm{U}-\mathrm{O}\) \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1 '=\) Bit is set & \(' 0 '=\) Bit is cleared
\end{tabular}
bit 15-14 Unimplemented: Read as ' 0 '
bit 13-8 RP97R<5:0>: Peripheral Output Function is Assigned to RP97 Output Pin bits (see Table 11-3 for peripheral function numbers)
bit 7-0 Unimplemented: Read as ' 0 '

REGISTER 11-26: RPOR8: PERIPHERAL PIN SELECT OUTPUT REGISTER 8
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline U-0 & U-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 \\
\hline - & - & \multicolumn{6}{|c|}{RP118R<5:0>} \\
\hline \multicolumn{7}{|l|}{bit 15} & bit 8 \\
\hline U-0 & U-0 \\
\hline - & - & - & - & - & - & - & - \\
\hline bit 7 & & & & & & & bit 0 \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend: & & \\
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1\) ' = Bit is set & \(' 0\) ' \(=\) Bit is cleared \(\quad x=\) Bit is unknown \\
\hline
\end{tabular}
\begin{tabular}{ll} 
bit 15-14 & Unimplemented: Read as ' 0 ' \\
bit 13-8 & \begin{tabular}{l} 
RP118R<5:0>: Peripheral Output Function is Assigned to RP118 Output Pin bits (see Table 11-3 for \\
peripheral function numbers)
\end{tabular} \\
& Unimplemented: Read as ' 0 '
\end{tabular}

REGISTER 11-27: RPOR9: PERIPHERAL PIN SELECT OUTPUT REGISTER 9
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline U-0 & U-0 \\
\hline- & - & - & - & - & - & - & - \\
\hline bit 15
\end{tabular}
\begin{tabular}{|c|c|cccccc|}
\hline U-0 & \(\mathrm{U}-0\) & \(\mathrm{R} / \mathrm{W}-0\) \\
\hline- & - & & \(R P 120 \mathrm{R}<5: 0>\) & & \\
\hline bit 7 & & & & & bit 0 \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend: & \\
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1\) ' = Bit is set & \(' 0\) ' = Bit is cleared \\
\hline
\end{tabular}
\begin{tabular}{ll} 
bit 15-6 & Unimplemented: Read as ‘ 0 ' \\
bit 5-0 & RP120R<5:0>: Peripheral Output Function is Assigned to RP120 Output Pin bits (see Table 11-3 for \\
peripheral function numbers)
\end{tabular}

NOTES:

\subsection*{12.0 TIMER1}

Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X, and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 11. "Timers" (DS70362) of the "dsPIC33E/PIC24E Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Timer1 module is a 16 -bit timer that can operate as a free-running interval timer/counter.
The Timer1 module has the following unique features over other timers:
- Can be operated in Asynchronous Counter mode from an external clock source
- The external clock input (T1CK) can optionally be synchronized to the internal device clock and the clock synchronization is performed after the prescaler
A block diagram of Timer1 is shown in Figure 12-1.

The Timer1 module can operate in one of the following modes:
- Timer mode
- Gated Timer mode
- Synchronous Counter mode
- Asynchronous Counter mode

In Timer and Gated Timer modes, the input clock is derived from the internal instruction cycle clock (FCY). In Synchronous and Asynchronous Counter modes, the input clock is derived from the external clock input at the T1CK pin.
The Timer modes are determined by the following bits:
- Timer Clock Source Control bit (TCS): T1CON<1>
- Timer Synchronization Control bit (TSYNC): T1CON<2>
- Timer Gate Control bit (TGATE): T1CON<6>

Timer control bit setting for different operating modes are given in the Table 12-1.

TABLE 12-1: TIMER MODE SETTINGS
\begin{tabular}{|l|c|c|c|}
\hline \multicolumn{1}{|c|}{ Mode } & TCS & TGATE & TSYNC \\
\hline \hline Timer & 0 & 0 & x \\
\hline Gated timer & 0 & 1 & x \\
\hline \begin{tabular}{l} 
Synchronous \\
counter
\end{tabular} & 1 & x & 1 \\
\hline \begin{tabular}{l} 
Asynchronous \\
counter
\end{tabular} & 1 & x & 0 \\
\hline
\end{tabular}

FIGURE 12-1: 16-BIT TIMER1 MODULE BLOCK DIAGRAM


Note 1: FP is the peripheral clock.

REGISTER 12-1: T1CON: TIMER1 CONTROL REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline R/W-0 & U-0 & R/W-0 & U-0 & U-0 & U-0 & U-0 & U-0 \\
\hline TON \({ }^{(1)}\) & - & TSIDL & - & - & - & - & - \\
\hline \multicolumn{8}{|l|}{bit 15} \\
\hline \multicolumn{2}{|l|}{U-0 R/W-0} & R/W-0 & R/W-0 & U-0 & R/W-0 & R/W-0 & U-0 \\
\hline - & TGATE & \multicolumn{2}{|c|}{TCKPS<1:0>} & - & TSYNC \({ }^{(1)}\) & TCS \({ }^{(1)}\) & - \\
\hline \multicolumn{2}{|l|}{bit 7} & & & & & & bit 0 \\
\hline \multicolumn{8}{|l|}{Legend:} \\
\hline \multicolumn{2}{|l|}{\(\mathrm{R}=\) Readable bit} & \multicolumn{2}{|l|}{W = Writable bit} & \multicolumn{4}{|l|}{\(\mathrm{U}=\) Unimplemented bit, read as ' 0 '} \\
\hline -n = Value & & \multicolumn{2}{|l|}{' 1 ' = Bit is set} & \multicolumn{2}{|l|}{' 0 ' = Bit is cleared} & \multicolumn{2}{|l|}{\(x=\) Bit is unknown} \\
\hline
\end{tabular}
bit 15 TON: Timer1 On bit
1 = Starts 16-bit Timer1
0 = Stops 16-bit Timer1
bit 14 Unimplemented: Read as ' 0 '
bit 13 TSIDL: Stop in Idle Mode bit
1 = Discontinue module operation when device enters Idle mode
0 = Continue module operation in Idle mode
bit 12-7 Unimplemented: Read as ' 0 '
bit 6 TGATE: Timer1 Gated Time Accumulation Enable bit
When TCS = 1:
This bit is ignored.
When TCS = 0:
1 = Gated time accumulation enabled
\(0=\) Gated time accumulation disabled
bit 5-4 TCKPS<1:0>: Timer1 Input Clock Prescale Select bits
\(11=1: 256\)
\(10=1: 64\)
\(01=1: 8\)
\(00=1: 1\)
bit 3 Unimplemented: Read as ' 0 '
bit 2 TSYNC: Timer1 External Clock Input Synchronization Select bit
When TCS = 1:
1 = Synchronize external clock input
0 = Do not synchronize external clock input
When TCS = 0 :
This bit is ignored.
bit 1 TCS: Timer1 Clock Source Select bit
1 = External clock from pin T1CK (on the rising edge)
0 = Internal clock (Fp)
bit \(0 \quad\) Unimplemented: Read as ' 0 '

Note 1: When Timer1 is enabled in external synchronous counter mode (TCS = 1, TSYNC = 1, TON = 1), any attempts by user software to write to the TMR1 register is ignored.

\subsection*{13.0 TIMER2/3 AND TIMER4/5}

Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X, and PIC24EPXXXGP/MC20X family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 11. "Timers" (DS70362) of the "dsPIC33E/PIC24E Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Timer2/3 and Timer4/5 modules are 32-bit timers, which can also be configured as four independent 16-bit timers with selectable operating modes.

As a 32 -bit timer, Timer2/3 and Timer4/5 operate in three modes:
- Two Independent 16-bit Timers (e.g., Timer2 and Timer3) with all 16-bit operating modes (except Asynchronous Counter mode)
- Single 32-bit Timer
- Single 32-bit Synchronous Counter

They also support these features:
- Timer Gate Operation
- Selectable Prescaler Settings
- Timer Operation during Idle and Sleep modes
- Interrupt on a 32-bit Period Register Match
- Time Base for Input Capture and Output Compare Modules (Timer2 and Timer3 only)
- ADC1 Event Trigger (Timer2/3 only)

Individually, all four of the 16-bit timers can function as synchronous timers or counters. They also offer the features listed above, except for the event trigger; this is implemented only with Timer2/3. The operating modes and enabled features are determined by setting the appropriate bit(s) in the T2CON, T3CON, and T4CON, T5CON registers. T2CON and T4CON are shown in generic form in Register 13-1. T3CON and T5CON are shown in Register 13-2.
For 32-bit timer/counter operation, Timer2 and Timer4 are the least significant word (Isw); Timer3 and Timer5 are the most significant word (msw) of the 32-bit timers.
Note: For 32-bit operation, T3CON and T5CON control bits are ignored. Only T2CON and T4CON control bits are used for setup and control. Timer2 and Timer4 clock and gate inputs are utilized for the 32-bit timer modules, but an interrupt is generated with the Timer3 and Timer5 interrupt flags.

A block diagram for a 32-bit timer pair (Timer4/5) example is shown in Figure 13-1 and a timer (Timer4) operating in 16-bit mode example is shown in Figure 13-2.
Note: Only Timer2, 3, 4 and 5 can trigger a DMA data transfer.

FIGURE 13-1: TYPE B TIMER BLOCK DIAGRAM ( \(x=2\) AND 4)


Note 1: FP is the peripheral clock.

FIGURE 13-2: TYPE C TIMER BLOCK DIAGRAM (x = 3 AND 5)


Note 1: FP is the peripheral clock.
2: The ADC trigger is available on TMR3 and TMR5 only.

FIGURE 13-3: TYPE B/TYPE C TIMER PAIR BLOCK DIAGRAM (32-BIT TIMER)


Note 1: The ADC trigger is available only on the TMR3:TMR2 andTMR5:TMR4 32-bit timer pairs.
2: Timerx is a Type \(B\) timer ( \(x=2\) and 4 ).
3: Timery is a Type \(C\) timer ( \(x=3\) and 5 ).

\section*{REGISTER 13-1: TxCON (T2CON AND T4CON) CONTROL REGISTER}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline R/W-0 & U-0 & R/W-0 & U-0 & U-0 & U-0 & U-0 & U-0 \\
\hline TON & - & TSIDL & - & - & - & - & - \\
\hline bit 15 & & & & & & & bit 8 \\
\hline U-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & U-0 & R/W-0 & U-0 \\
\hline - & TGATE & TCK & & T32 & - & TCS \({ }^{(1)}\) & - \\
\hline \multicolumn{2}{|l|}{bit 7} & & & & & & bit 0 \\
\hline \multicolumn{8}{|l|}{Legend:} \\
\hline \multicolumn{2}{|l|}{\(\mathrm{R}=\) Readable bit} & \multicolumn{2}{|l|}{\(\mathrm{W}=\) Writable bit} & \multicolumn{4}{|l|}{\(\mathrm{U}=\) Unimplemented bit, read as ' 0 '} \\
\hline -n = Value & & \multicolumn{2}{|l|}{' 1 ' = Bit is set} & \multicolumn{2}{|l|}{' 0 ' = Bit is cleared} & \multicolumn{2}{|l|}{\(x=\) Bit is unknown} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multirow[t]{7}{*}{bit 15} & TON: Timerx On bit \\
\hline & When T32 = 1: \\
\hline & 1 = Starts 32-bit Timerx/y \\
\hline & 0 = Stops 32-bit Timerx/y \\
\hline & When T32 = 0: \\
\hline & 1 = Starts 16-bit Timerx \\
\hline & 0 = Stops 16-bit Timerx \\
\hline bit 14 & Unimplemented: Read as ' 0 ' \\
\hline \multirow[t]{2}{*}{bit 13} & TSIDL: Stop in Idle Mode bit \\
\hline & \begin{tabular}{l}
1 = Discontinue module operation when device enters Idle mode \\
\(0=\) Continue module operation in Idle mode
\end{tabular} \\
\hline bit 12-7 & Unimplemented: Read as '0' \\
\hline \multirow[t]{6}{*}{bit 6} & TGATE: Timerx Gated Time Accumulation Enable bit \\
\hline & When TCS = 1: \\
\hline & This bit is ignored. \\
\hline & When TCS = 0: \\
\hline & 1 = Gated time accumulation enabled \\
\hline & \(0=\) Gated time accumulation disabled \\
\hline \multirow[t]{5}{*}{bit 5-4} & TCKPS<1:0>: Timerx Input Clock Prescale Select bits \\
\hline & \(11=1: 256\) \\
\hline & \(10=1: 64\) \\
\hline & \(01=1: 8\) \\
\hline & \(00=1: 1\) \\
\hline \multirow[t]{3}{*}{bit 3} & T32: 32-bit Timer Mode Select bit \\
\hline & 1 = Timerx and Timery form a single 32-bit timer \\
\hline & \(0=\) Timerx and Timery act as two 16-bit timers \\
\hline bit 2 & Unimplemented: Read as '0' \\
\hline \multirow[t]{2}{*}{bit 1} & TCS: Timerx Clock Source Select bit \({ }^{(1)}\) \\
\hline & 1 = External clock from pin TxCK (on the rising edge) \(0=\) Internal clock (FP) \\
\hline bit 0 & Unimplemented: Read as '0’ \\
\hline
\end{tabular}

Note 1: The TxCK pin is not available on all timers. Refer to the "Pin Diagrams" section for the available pins.

REGISTER 13-2: TyCON (T3CON AND T5CON) CONTROL REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline R/W-0 & U-0 & R/W-0 & U-0 & U-0 & U-0 & U-0 & U-0 \\
\hline TON \({ }^{(1)}\) & - & TSIDL \({ }^{(2)}\) & - & - & - & - & - \\
\hline \multicolumn{8}{|l|}{bit 15 bit 8} \\
\hline U-0 & R/W-0 & R/W-0 & R/W-0 & U-0 & U-0 & R/W-0 & U-0 \\
\hline - & TGATE \({ }^{(1)}\) & TCKP & 0 \({ }^{(1)}\) & - & - & TCS \({ }^{(1,3)}\) & - \\
\hline \multicolumn{8}{|l|}{bit \(7 \times\) bit 0} \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1 '=\) Bit is set & \(' 0 '=\) Bit is cleared
\end{tabular}
bit 15 TON: Timery On bit \({ }^{(1)}\)
1 = Starts 16-bit Timery
0 = Stops 16-bit Timery
bit 14 Unimplemented: Read as ' 0 '
bit 13 TSIDL: Stop in Idle Mode bit \({ }^{(2)}\)
1 = Discontinue module operation when device enters Idle mode
\(0=\) Continue module operation in Idle mode
bit 12-7 Unimplemented: Read as ' 0 '
bit 6 TGATE: Timery Gated Time Accumulation Enable bit \({ }^{(1)}\)
When TCS = 1:
This bit is ignored.
When TCS = 0:
1 = Gated time accumulation enabled
\(0=\) Gated time accumulation disabled
bit 5-4 TCKPS<1:0>: Timery Input Clock Prescale Select bits \({ }^{(\mathbf{1})}\)
\(11=1: 256\)
\(10=1: 64\)
\(01=1: 8\)
\(00=1: 1\)
bit 3-2 Unimplemented: Read as ' 0 '
bit 1 TCS: Timery Clock Source Select bit \({ }^{(1,3)}\)
1 = External clock from pin TyCK (on the rising edge)
0 = Internal clock (Fp)
bit \(0 \quad\) Unimplemented: Read as ' 0 '

Note 1: When 32-bit operation is enabled ( \(\mathrm{T} 2 \mathrm{CON}<3>=1\) ), these bits have no effect on Timery operation; all timer functions are set through TxCON.
2: When 32-bit timer operation is enabled (T32 = 1) in the Timer Control register ( \(\mathrm{TxCON}<3>\) ), the TSIDL bit must be cleared to operate the 32-bit timer in Idle mode.
3: The TyCK pin is not available on all timers. See "Pin Diagrams" section for the available pins.

NOTES:

\subsection*{14.0 INPUT CAPTURE}

Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X, and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 12. "Input Capture" (DS70352) of the "dsPIC33E/ PIC24E Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Input Capture module is useful in applications requiring frequency (period) and pulse measurement. The dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X, and PIC24EPXXXGP/MC20X devices support up to 4 input capture channels.
Key features of the Input Capture module include:
- Hardware-configurable for 32-bit operation in all modes by cascading two adjacent modules
- Synchronous and Trigger modes of output compare operation, with up to 31 user-selectable trigger/sync sources available
- A 4-level FIFO buffer for capturing and holding timer values for several events
- Configurable interrupt generation
- Up to six clock sources available for each module, driving a separate internal 16-bit counter

FIGURE 14-1: INPUT CAPTURE MODULE BLOCK DIAGRAM


Note 1: The Trigger/Sync source is enabled by default and is set to Timer3 as a source. This timer must be enabled for proper ICx module operation or the Trigger/Sync source must be changed to another source option.

\subsection*{14.1 Input Capture Registers}

REGISTER 14-1: ICxCON1: INPUT CAPTURE x CONTROL REGISTER 1
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline U-0 & U-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & U-0 & U-0 \\
\hline - & - & ICSIDL & \multicolumn{3}{|c|}{ICTSEL<2:0>} & - & - \\
\hline \multicolumn{7}{|l|}{bit 15} & bit 8 \\
\hline U-0 & R/W-0 & R/W-0 & R/HC/HS-0 & R/HC/HS-0 & R/W-0 & R/W-0 & R/W-0 \\
\hline - & \multicolumn{2}{|c|}{\(\mathrm{ICl}<1: 0>\)} & ICOV & ICBNE & \multicolumn{3}{|c|}{ICM<2:0>} \\
\hline \multicolumn{3}{|l|}{bit 7} & & & \multicolumn{3}{|r|}{bit 0} \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend: & & \\
\(R=\) Readable bit & \(H C=\) Cleared by Hardware & \(H S=\) Set by Hardware \(\quad\) ' 0 ' \(=\) Bit is cleared \\
\(-n=\) Value at POR & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline bit 15-14 & Unimplemented: Read as '0' \\
\hline \multirow[t]{3}{*}{bit 13} & ICSIDL: Input Capture Stop in Idle Control bit \\
\hline & 1 = Input capture will Halt in CPU Idle mode \\
\hline & \(0=\) Input capture will continue to operate in CPU Idle mode \\
\hline \multirow[t]{9}{*}{bit 12-10} & ICTSEL<12:10>: Input Capture Timer Select bits \\
\hline & 111 = Peripheral clock (FP) is the clock source of the ICx \\
\hline & 110 = Reserved \\
\hline & 101 = Reserved \\
\hline & 100 = Clock source of Timer1 is the clock source of the ICx (only the synchronous clock is supported) \\
\hline & 011 = Clock source of Timer5 is the clock source of the ICx \\
\hline & 010 = Clock source of Timer4 is the clock source of the ICx \\
\hline & 001 = Clock source of Timer2 is the clock source of the ICx \\
\hline & 000 = Clock source of Timer3 is the clock source of the ICx \\
\hline bit 9-7 & Unimplemented: Read as ' 0 ' \\
\hline \multirow[t]{5}{*}{bit 6-5} & ICI<1:0>: Number of Captures per Interrupt Select bits (this field is not used if ICM<2:0> = 001 or 111) \\
\hline & 11 = Interrupt on every fourth capture event \\
\hline & 10 = Interrupt on every third capture event \\
\hline & 01 = Interrupt on every second capture event \\
\hline & 00 = Interrupt on every capture event \\
\hline \multirow[t]{3}{*}{bit 4} & ICOV: Input Capture Overflow Status Flag bit (read-only) \\
\hline & 1 = Input capture buffer overflow occurred \\
\hline & \(0=\) No input capture buffer overflow occurred \\
\hline \multirow[t]{2}{*}{bit 3} & ICBNE: Input Capture Buffer Not Empty Status bit (read-only) \\
\hline & \begin{tabular}{l}
1 = Input capture buffer is not empty, at least one more capture value can be read \\
\(0=\) Input capture buffer is empty
\end{tabular} \\
\hline \multirow[t]{9}{*}{bit 2-0} & ICM<2:0>: Input Capture Mode Select bits \\
\hline & 111 = Input capture functions as interrupt pin only in CPU Sleep and Idle mode (rising edge detect only, all other control bits are not applicable) \\
\hline & \(110=\) Unused (module disabled) \\
\hline & \(101=\) Capture mode, every 16th rising edge (Prescaler Capture mode) \\
\hline & 100 = Capture mode, every 4th rising edge (Prescaler Capture mode) \\
\hline & 011 = Capture mode, every rising edge (Simple Capture mode) \\
\hline & 010 = Capture mode, every falling edge (Simple Capture mode) \\
\hline & 001 = Capture mode, every edge, rising and falling (Edge Detect mode ( \(\mathrm{ICL}<1: 0>\) ) is not used in this mode) \\
\hline & \(000=\) Input Capture module is turned off \\
\hline
\end{tabular}

REGISTER 14-2: ICxCON2: INPUT CAPTURE x CONTROL REGISTER 2
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline U-0 & R/W-0 \\
\hline- & - & - & - & - & - & - & IC32 \\
\hline bit 15 & & & & bit 8 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|ccccc|}
\hline R/W-0 & R/W/HS-0 & U-0 & R/W-0 & R/W-1 & R/W-1 & R/W-0 & R/W-1 \\
\hline ICTRIG \({ }^{(2)}\) & TRIGSTAT \(^{(3)}\) & - & & & SYNCSEL<4:0> & & \\
\hline bit 7 & & & & bit 0 \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(\mathrm{R}=\) Readable bit & \(\mathrm{HS}=\) Set by Hardware & \(\prime 0\) ' \(=\) Bit is cleared \\
\(-\mathrm{n}=\) Value at POR & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) Unimplemented bit, read as ' 0 '
\end{tabular}
bit 15-9 Unimplemented: Read as ' 0 '
bit \(8 \quad\) IC32: 32-bit Timer Mode Select bit (Cascade mode)
1 = ODD IC and EVEN IC form a single 32-bit Input Capture module \({ }^{(1)}\)
0 = Cascade module operation disabled
bit \(7 \quad\) ICTRIG: Trigger Operation Select bit \({ }^{(2)}\)
1 = Input source used to trigger the input capture timer (Trigger mode)
\(0=\) Input source used to synchronize input capture timer to timer of another module (Synchronization mode)
bit \(6 \quad\) TRIGSTAT: Timer Trigger Status bit \({ }^{(3)}\)
\(1=1 C x T M R\) has been triggered and is running
\(0=\) ICxTMR has not been triggered and is being held clear
bit 5 Unimplemented: Read as ' 0 '
Note 1: The IC32 bit in both the ODD and EVEN IC must be set to enable Cascade mode.
2: The input source is selected by the SYNCSEL<4:0> bits of the ICxCON2 register.
3: This bit is set by the selected input source (selected by SYNCSEL<4:0> bits). It can be read, set, and cleared in software.
4: Do not use the ICx module as its own sync or trigger source.
5: This option should only be selected as trigger source and not as a synchronization source.
6: Each Input Capture module (ICx) has one PTG input source. See Section 24.0 "Peripheral Trigger Generator (PTG) Module" for more information.
PTGO8 = IC1
PTGO9 = IC2
PTGO10 \(=\) IC3
PTGO11 = IC4

\section*{REGISTER 14-2: ICxCON2: INPUT CAPTURE x CONTROL REGISTER 2 (CONTINUED)}
bit 4-0 SYNCSEL<4:0>: Input Source Select for Synchronization and Trigger Operation bits \({ }^{(4)}\)
11111 = No sync or trigger source for ICx
11110 = Reserved
11101 = Reserved
11100 = CTMU module synchronizes or triggers ICx
\(11011=\) ADC1 module synchronizes or triggers ICx \({ }^{(5)}\)
\(11010=\) CMP3 module synchronizes or triggers ICx \({ }^{(5)}\)
\(11001=\) CMP2 module synchronizes or triggers ICx \({ }^{(5)}\)
\(11000=\) CMP1 module synchronizes or triggers ICx \({ }^{(5)}\)
10111 = Reserved
10110 = Reserved
10101 = Reserved
10100 = Reserved
10011 = IC4 module synchronizes or triggers ICx
10010 = IC3 module synchronizes or triggers ICx
\(10001=\) IC2 module synchronizes or triggers ICx
10000 = IC1 module synchronizes or triggers ICx
01111 = Timer5 synchronizes or triggers ICx
01110 = Timer4 synchronizes or triggers ICx
01101 = Timer3 synchronizes or triggers ICx (default)
01100 = Timer2 synchronizes or triggers ICx
01011 = Timer1 synchronizes or triggers ICx
\(01010=\) PTGOx module synchronizes or triggers ICx \({ }^{(6)}\)
01001 = Reserved
01000 = Reserved
00111 = Reserved
00110 = Reserved
00101 = Reserved
00100 = OC4 module synchronizes or triggers ICx
00011 = OC3 module synchronizes or triggers ICx
00010 = OC2 module synchronizes or triggers ICx
00001 = OC1 module synchronizes or triggers ICx
\(00000=\) No sync or trigger source for ICx

Note 1: The IC32 bit in both the ODD and EVEN IC must be set to enable Cascade mode.
2: The input source is selected by the SYNCSEL<4:0> bits of the ICxCON2 register.
3: This bit is set by the selected input source (selected by SYNCSEL<4:0> bits). It can be read, set, and cleared in software.
4: Do not use the ICx module as its own sync or trigger source.
5: This option should only be selected as trigger source and not as a synchronization source.
6: Each Input Capture module (ICx) has one PTG input source. See Section 24.0 "Peripheral Trigger Generator (PTG) Module" for more information.
PTGO8 = IC1
PTGO9 = IC2
PTGO10 \(=1 \mathrm{C} 3\)
PTGO11 = IC4

\subsection*{15.0 OUTPUT COMPARE}

Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X, and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 13. "Output Compare" (DS70358) of the "dsPIC33E/PIC24E Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Output Compare module can select one of eight available clock sources for its time base. The module compares the value of the timer with the value of one or two compare registers depending on the operating mode selected. The state of the output pin changes when the timer value matches the compare register value. The output compare module generates either a single output pulse or a sequence of output pulses, by changing the state of the output pin on the compare match events. The output compare module can also generate interrupts on compare match events and trigger DMA data transfers.

\section*{Note: See Section 13. "Output Compare"} (DS70358) in the "dsPIC33E/PIC24E Family Reference Manual" for OCxR and OCxRS register restrictions.

FIGURE 15-1: OUTPUT COMPARE MODULE BLOCK DIAGRAM


Note 1: The Trigger/Sync source is enabled by default and is set to Timer2 as a source. This timer must be enabled for proper OCx module operation or the Trigger/Sync source must be changed to another source option.

\section*{REGISTER 15-1: OCxCON1: OUTPUT COMPAREx CONTROL REGISTER 1}
\begin{tabular}{|c|c|c|ccc|c|c|}
\hline \multicolumn{8}{|c|}{\(\mathrm{U}-0\)} \\
\hline- & - & U-0 & R/W-0 & R/W-0 & R/W-0 & U-0 & R/W-0 \\
\hline bit 15 & & OCSIDL & & - & ENFLTB \\
\hline
\end{tabular}
\begin{tabular}{|l|c|c|c|c|c|ccc|}
\hline \multicolumn{1}{|c|}{ R/W-0 } & U-0 & R/W-0 HCS & R/W-0 HCS & R/W-0 & R/W-0 & R/W-0 & R/W-0 \\
\hline ENFLTA & - & OCFLTB & OCFLTA & TRIGMODE & & OCM<2:0> & \\
\hline bit 7 & & & & & bit 0 \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend: & HCS = Hardware Clearable/Settable bit \\
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1 '=\) Bit is set & \(' 0\) ' \(=\) Bit is cleared \(\quad x=\) Bit is unknown \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline bit 15-14 & Unimplemented: Read as '0' \\
\hline \multirow[t]{3}{*}{bit 13} & OCSIDL: Stop Output Compare x in Idle Mode Control bit \\
\hline & 1 = Output Compare \(x\) halts in CPU Idle mode \\
\hline & 0 = Output Compare \(x\) continues to operate in CPU Idle mode \\
\hline \multirow[t]{9}{*}{bit 12-10} & OCTSEL<2:0>: Output Compare \(\times\) Clock Select bits \\
\hline & 111 = Peripheral clock (FP) \\
\hline & 110 = Reserved \\
\hline & \(101=\) PTGOx clock \({ }^{(2)}\) \\
\hline & 100 = Timer1 clock (only the synchronous clock is supported) \\
\hline & 011 = Timer5 clock \\
\hline & 010 = Timer4 clock \\
\hline & 001 = Timer3 clock \\
\hline & 000 = Timer2 clock \\
\hline bit 9 & Unimplemented: Read as '0' \\
\hline \multirow[t]{3}{*}{bit 8} & ENFLTB: Fault B Input Enable bit \\
\hline & \(1=\) Output Compare Fault B input (OCFB) is enabled \\
\hline & \(0=\) Output Compare Fault B input (OCFB) is disabled \\
\hline \multirow[t]{3}{*}{bit 7} & ENFLTA: Fault A Input Enable bit \\
\hline & 1 = Output Compare Fault A input (OCFA) is enabled \\
\hline & \(0=\) Output Compare Fault A input (OCFA) is disabled \\
\hline bit 6 & Unimplemented: Read as '0' \\
\hline \multirow[t]{3}{*}{bit 5} & OCFLTB: PWM Fault B Condition Status bit \\
\hline & \(1=\) PWM Fault B condition on OCFB pin has occurred \\
\hline & \(0=\) No PWM Fault B condition on OCFB pin has occurred \\
\hline \multirow[t]{3}{*}{bit 4} & OCFLTA: PWM Fault A Condition Status bit \\
\hline & 1 = PWM Fault A condition on OCFA pin has occurred \\
\hline & 0 = No PWM Fault A condition on OCFA pin has occurred \\
\hline \multirow[t]{2}{*}{bit 3} & TRIGMODE: Trigger Status Mode Select bit \\
\hline & \(1=\) TRIGSTAT (OCxCON2<6>) is cleared when OCxRS \(=\) OCxTMR or in software \(0=\) TRIGSTAT is cleared only by software \\
\hline
\end{tabular}

Note 1: OCxR and OCxRS are double-buffered in PWM mode only.
2: Each Output Compare module (OCx) has one PTG clock source. See Section 24.0 "Peripheral Trigger Generator (PTG) Module" for more information.
PTGO4 = OC1
PTGO5 \(=\mathrm{OC} 2\)
PTGO6 = OC3
PTGO7 = OC4

\section*{REGISTER 15-1: OCxCON1: OUTPUT COMPAREx CONTROL REGISTER 1 (CONTINUED)}
bit 2-0 OCM<2:0>: Output Compare Mode Select bits
111 = Center-Aligned PWM mode: Output set high when OCxTMR \(=\) OCxR and set low when OCxTMR \(=\) OCxRS \({ }^{(1)}\)
\(110=\) Edge-Aligned PWM mode: Output set high when OCxTMR \(=0\) and set low when OCxTMR \(=O C x R^{(1)}\)
101 = Double Compare Continuous Pulse mode: Initialize OCx pin low, toggle OCx state continuously on alternate matches of OCxR and OCxRS
100 = Double Compare Single-Shot mode: Initialize OCx pin low, toggle OCx state on matches of OCxR and OCxRS for one cycle
011 = Single Compare mode: Compare events with OCxR, continuously toggle OCx pin
010 = Single Compare Single-Shot mode: Initialize OCx pin high, compare event with OCxR, forces OCx pin low
001 = Single Compare Single-Shot mode: Initialize OCx pin low, compare event with OCxR, forces OCx pin high
\(000=\) Output compare channel is disabled
Note 1: OCxR and OCxRS are double-buffered in PWM mode only.
2: Each Output Compare module (OCx) has one PTG clock source. See Section 24.0 "Peripheral Trigger Generator (PTG) Module" for more information.
PTGO4 = OC1
PTGO5 \(=0\) C2
PTGO6 = OC3
PTGO7 = OC4

REGISTER 15-2: OCxCON2: OUTPUT COMPARE x CONTROL REGISTER 2

\begin{tabular}{|c|c|}
\hline \multirow[t]{3}{*}{bit 15} & FLTMD: Fault Mode Select bit \\
\hline & 1 = Fault mode is maintained until the Fault source is removed; the corresponding OCFLTx bit is cleared in software and a new PWM period starts \\
\hline & 0 = Fault mode is maintained until the Fault source is removed and a new PWM period starts \\
\hline \multirow[t]{2}{*}{bit 14} & FLTOUT: Fault Out bit \\
\hline & \begin{tabular}{l}
\(1=\) PWM output is driven high on a Fault \\
\(0=\) PWM output is driven low on a Fault
\end{tabular} \\
\hline \multirow[t]{3}{*}{bit 13} & FLTTRIEN: Fault Output State Select bit \\
\hline & 1 = OCx pin is tri-stated on Fault condition \\
\hline & \(0=\) OCx pin I/O state defined by FLTOUT bit on Fault condition \\
\hline \multirow[t]{3}{*}{bit 12} & OCINV: OCMP Invert bit \\
\hline & \(1=\mathrm{OCx}\) output is inverted \\
\hline & \(0=\) OCx output is not inverted \\
\hline bit 11 & Unimplemented: Read as '0' \\
\hline \multirow[t]{6}{*}{bit 10-9} & DCB<1:0>: PWM Duty Cycle Least Significant bits \\
\hline & These bits can be considered as the Least Significant bits of the duty cycle in the Pulse Generation modes. They are also used to delay the falling edge of the OCx output in all other modes; rising edge when output conversion is active (OCINV (OCxCON2<12> = 1). \\
\hline & 11 = OCx output falling edge transitions on rising edge of system clock plus 3/4 Tcy \\
\hline & \(10=0 C x\) output falling edge transitions on rising edge of system clock plus \(1 / 2 \mathrm{TcY}\) \\
\hline & 01 = OCx output falling edge transitions on rising edge of system clock plus 1/4 Tcy \\
\hline & \(00=\) OCx output falling edge transitions on rising edge of system clock \\
\hline \multirow[t]{3}{*}{bit 8} & OC32: Cascade Two OCx Modules Enable bit (32-bit operation) \\
\hline & 1 = Cascade module operation enabled \\
\hline & 0 = Cascade module operation disabled \\
\hline \multirow[t]{3}{*}{bit 7} & OCTRIG: OCx Trigger/Sync Select bit \\
\hline & 1 = Trigger OCx from source designated by SYNCSELx bits \\
\hline & 0 = Synchronize OCx with source designated by SYNCSELx bits \\
\hline
\end{tabular}

Note 1: Do not use the OCx module as its own synchronization or trigger source.
2: When the OCy module is turned OFF, it sends a trigger out signal. If the OCx module use the OCy module as a trigger source, the OCy module must be unselected as a trigger source prior to disabling it.
3: Each Output Compare module (OCx) has one PTG Trigger/Synchronization source. See Section 24.0
"Peripheral Trigger Generator (PTG) Module" for more information.
PTGO0 = OC1
PTGO1 = OC2
PTGO2 = OC3
PTGO3 = OC4

\section*{REGISTER 15-2: OCxCON2: OUTPUT COMPARE x CONTROL REGISTER 2 (CONTINUED)}
\begin{tabular}{|c|c|}
\hline \multirow[t]{3}{*}{bit 6} & TRIGSTAT: Timer Trigger Status bit \\
\hline & 1 = Timer source has been triggered and is running \\
\hline & \(0=\) Timer source has not been triggered and is being held clear \\
\hline \multirow[t]{3}{*}{bit 5} & OCTRIS: OCx Output Pin Direction Select bit \\
\hline & \(1=0 C x\) is tri-stated \\
\hline & 0 = Output compare module drives the OCx pin \\
\hline \multirow[t]{33}{*}{bit 4-0} & SYNCSEL<4:0>: Trigger/Synchronization Source Selection bits \\
\hline & 11111 = No sync or trigger source for OCx \\
\hline & 11110 = INT2 pin synchronizes or triggers OCx \\
\hline & \(11101=\) INT1 pin synchronizes or triggers OCx \\
\hline & 11100 = CTMU module synchronizes or triggers OCx \\
\hline & 11011 = ADC1 module synchronizes or triggers OCx \\
\hline & 11010 = CMP3 module synchronizes or triggers OCx \\
\hline & 11001 = CMP2 module synchronizes or triggers OCx \\
\hline & 11000 = CMP1 module synchronizes or triggers OCx \\
\hline & 10111 = Reserved \\
\hline & 10110 = Reserved \\
\hline & 10101 = Reserved \\
\hline & 10100 = Reserved \\
\hline & 10011 = IC4 module synchronizes or triggers OCx \\
\hline & 10010 = IC3 module synchronizes or triggers OCx \\
\hline & 10001 = IC2 module synchronizes or triggers OCx \\
\hline & 10000 = IC1 module synchronizes or triggers OCx \\
\hline & 01111 = Timer5 synchronizes or triggers OCx \\
\hline & 01110 = Timer4 synchronizes or triggers OCx \\
\hline & 01101 = Timer3 synchronizes or triggers OCx \\
\hline & 01100 = Timer2 synchronizes or triggers OCx (default) \\
\hline & 01011 = Timer1 synchronizes or triggers OCx \\
\hline & 01010 = PTGOx synchronizes or trigger OCx \({ }^{(3)}\) \\
\hline & 01001 = Reserved \\
\hline & 01000 = Reserved \\
\hline & 00111 = Reserved \\
\hline & 00110 = Reserved \\
\hline & 00101 = Reserved \\
\hline & 00100 = OC4 module synchronizes or triggers OCx \({ }^{(1,2)}\) \\
\hline & \(00011=\) OC3 module synchronizes or triggers OCx \({ }^{(1,2)}\) \\
\hline & \(00010=O C 2\) module synchronizes or triggers OCx \({ }^{(1,2)}\) \\
\hline & \(00001=\) OC1 module synchronizes or triggers OCx \({ }^{(1,2)}\) \\
\hline & 00000 = No sync or trigger source for OCx \\
\hline
\end{tabular}

Note 1: Do not use the OCx module as its own synchronization or trigger source.
2: When the OCy module is turned OFF, it sends a trigger out signal. If the OCx module use the OCy module as a trigger source, the OCy module must be unselected as a trigger source prior to disabling it.
3: Each Output Compare module (OCx) has one PTG Trigger/Synchronization source. See Section 24.0 "Peripheral Trigger Generator (PTG) Module" for more information.
PTGO0 = OC1
PTGO1 = OC2
PTGO2 = OC3
PTGO3 \(=\mathrm{OC} 4\)

NOTES:

\subsection*{16.0 HIGH-SPEED PWM MODULE (dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X DEVICES ONLY)}

Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X, and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 14. "High-Speed PWM" (DS70645) of the "dsPIC33E/ PIC24E Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices support a dedicated Pulse-Width Modulation (PWM) module with up to 6 outputs.
The High-Speed PWM module consists of the following major features:
- Three PWM generators
- Two PWM outputs per PWM generator
- Individual period and duty cycle for each PWM pair
- Duty cycle, dead time, phase shift and frequency resolution of 8.32 ns
- Independent Fault and current-limit inputs for six PWM outputs
- Redundant output
- Center-Aligned PWM mode
- Output override control
- Chop mode (also known as Gated mode)
- Special Event Trigger
- Prescaler for input clock
- PWMxL and PWMxH output pin swapping
- Independent PWM frequency, duty cycle and phase shift changes for each PWM generator
- Dead-time compensation
- Enhanced Leading-Edge Blanking (LEB) functionality
- Frequency resolution enhancement
- PWM capture functionality

Note: Duty cycle, dead-time, phase shift and frequency resolution is 8.32 ns in CenterAligned PWM mode.

The High-Speed PWM module contains up to three PWM generators. Each PWM generator provides two PWM outputs: PWMxH and PWMxL. The master time base generator provides a synchronous signal as a common time base to synchronize the various PWM outputs. The individual PWM outputs are available on the output pins of the device. The input Fault signals and current-limit signals, when enabled, can monitor and protect the system by placing the PWM outputs into a known "safe" state.
Each PWM can generate a trigger to the ADC module to sample the analog signal at a specific instance during the PWM period. In addition, the High-Speed PWM module also generates a Special Event Trigger to the ADC module based on either of the two master time bases.

The High-Speed PWM module can synchronize itself with an external signal or can act as a synchronizing source to any external device. The SYNCI1 input pin that utilizes PPS, can synchronize the High-Speed PWM module with an external signal. The SYNCO1 pin is an output pin that provides a synchronous signal to an external device.
Figure 16-1 illustrates an architectural overview of the High-Speed PWM module and its interconnection with the CPU and other peripherals.

\subsection*{16.1 PWM Faults}

The PWM module incorporates multiple external Fault inputs to include \(\overline{\mathrm{FLT}}\) and \(\overline{\mathrm{FLT}}\), which are remappable using the PPS feature, \(\overline{\text { FLT3 }}\) and \(\overline{\text { FLT4 }}\), which are available only on the larger 44-pin and 64-pin packages, and FLT32, which has been implemented with Class B safety features, and is available on a fixed pin on all dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices.

These faults provide a safe and reliable way to safely shut down the PWM outputs when the Fault input is asserted.

\subsection*{16.1.1 PWM FAULTS AT RESET}

During any reset event, the PWM module maintains ownership of the Class B fault FLT32. At reset, this fault is enabled in latched mode to guarantee the fail-safe power-up of the application. The application software must clear the PWM fault before enabling the HighSpeed Motor Control PWM module. To clear the fault condition, the FLT32 pin must first be pulled high externally or the internal pull up resistor in the CNPUx register can be enabled.

\footnotetext{
Note: The Fault mode may be changed using the FLTMOD<1:0> bits (FCLCON<1:0>) regardless of the state of \(\overline{\text { FLT32 }}\).
}

\subsection*{16.1.2 WRITE-PROTECTED REGISTERS}

On dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices, write protection is implemented for the IOCONx and FCLCONx registers. The write protection feature prevents any inadvertent writes to these registers. This protection feature can be controlled by the PWMLOCK Configuration bit (FOSCSEL<6>). The default state of the write protection feature is enabled (PWMLOCK = 1). The write protection feature can be disabled by configuring PWMLOCK \(=0\).

To gain write access to these locked registers, the user application must write two consecutive values of ( \(0 x A B C D\) and \(0 \times 4321\) ) to the PWMKEY register to perform the unlock operation. The write access to the IOCONx or FCLCONx registers must be the next SFR access following the unlock process. There can be no other SFR accesses during the unlock process and subsequent write access. To write to both the IOCONx and FCLCONx registers requires two unlock operations.
The correct unlocking sequence is described in Example 16-1.

\section*{EXAMPLE 16-1: PWM WRITE-PROTECTED REGISTER UNLOCK SEQUENCE}
```

; FLT32 pin must be pulled high externally in order to clear and disable the fault
; Writing to FCLCON1 register requires unlock sequence
mov \#0xabcd,w10 ; Load first unlock key to w10 register
mov \#0x4321,w11 ; Load second unlock key to w11 register
mov \#0x0000,w0 ; Load desired value of FCLCON1 register in w0
mov w10, PWMKEY ; Write first unlock key to PWMKEY register
mov w11, PWMKEY ; Write second unlock key to PWMKEY register
mov w0,FCLCON1 ; Write desired value to FCLCON1 register
; Set PWM ownership and polarity using the IOCON1 register
; Writing to IOCON1 register requires unlock sequence
mov \#0xabcd,w10 ; Load first unlock key to w10 register
mov \#0x4321,w11 ; Load second unlock key to w11 register
mov \#0xF000,w0 ; Load desired value of IOCON1 register in w0
mov w10, PWMKEY ; Write first unlock key to PWMKEY register
mov w11, PWMKEY ; Write second unlock key to PWMKEY register
mov w0,IOCON1 ; Write desired value to IOCON1 register

```

FIGURE 16-1: HIGH-SPEED PWM MODULE ARCHITECTURAL OVERVIEW


FIGURE 16-2: HIGH-SPEED PWM MODULE REGISTER INTERCONNECTION DIAGRAM


REGISTER 16-1: PTCON: PWM TIME BASE CONTROL REGISTER
\begin{tabular}{|l|c|c|c|c|c|c|c|c|}
\hline R/W-0 & U-0 & R/W-0 & HS/HC-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 \\
\hline PTEN & - & PTSIDL & SESTAT & SEIEN & EIPU \(^{(1)}\) & SYNCPOL \(^{(1)}\) & SYNCOEN \(^{(1)}\) \\
\hline bit 15 & & & bit 8 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline R/W-0 & R/W-0 \\
\hline SYNCEN \({ }^{(1)}\) & \multicolumn{3}{|c|}{SYNCSRC<2:0> \({ }^{(1)}\)} & \multicolumn{4}{|c|}{SEVTPS<3:0> \({ }^{(1)}\)} \\
\hline \multicolumn{7}{|l|}{bit 7} & bit 0 \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend: & \(H C=\) Cleared in Hardware & \(H S=\) Set in Hardware \\
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1 '=\) Bit is set & \(' 0\) ' = Bit is cleared \(\quad x=\) Bit is unknown \\
\hline
\end{tabular}
bit 15 PTEN: PWM Module Enable bit
\(1=\) PWM module is enabled
\(0=\) PWM module is disabled
bit 14 Unimplemented: Read as ' 0 '
bit 13 PTSIDL: PWM Time Base Stop in Idle Mode bit
1 = PWM time base halts in CPU Idle mode
\(0=\) PWM time base runs in CPU Idle mode
bit 12 SESTAT: Special Event Interrupt Status bit
1 = Special Event Interrupt is pending
\(0=\) Special Event Interrupt is not pending
bit 11 SEIEN: Special Event Interrupt Enable bit
1 = Special Event Interrupt is enabled
\(0=\) Special Event Interrupt is disabled
bit \(10 \quad\) EIPU: Enable Immediate Period Updates bit \({ }^{(1)}\)
1 = Active Period register is updated immediately
\(0=\) Active Period register updates occur on PWM cycle boundaries
bit 9 SYNCPOL: Synchronize Input and Output Polarity bit \({ }^{(1)}\)
1 = SYNCI1/SYNCO1 polarity is inverted (active-low)
\(0=\) SYNCI1/SYNCO1 is active-high
bit 8 SYNCOEN: Primary Time Base Sync Enable bit \({ }^{(1)}\)
1 = SYNCO1 output is enabled
\(0=\) SYNCO1 output is disabled
bit 7 SYNCEN: External Time Base Synchronization Enable bit \({ }^{(\mathbf{1})}\)
1 = External synchronization of primary time base is enabled
\(0=\) External synchronization of primary time base is disabled
bit 6-4 SYNCSRC<2:0>: Synchronous Source Selection bits \({ }^{(\mathbf{1})}\)
111 = Reserved
-
\(\cdot\)
\(100=\) Reserved
\(011=\) PTGO17 \(^{(2)}\)
\(010=\) PTGO16 \({ }^{(2)}\)
001 = Reserved
\(000=\) SYNCI 1 input from PPS
Note 1: These bits should be changed only when PTEN \(=0\). In addition, when using the SYNCI1 feature, the user application must program the period register with a value that is slightly larger than the expected period of the external synchronization input signal.
2: See Section 24.0 "Peripheral Trigger Generator (PTG) Module" for information on this selection.

\section*{REGISTER 16-1: PTCON: PWM TIME BASE CONTROL REGISTER (CONTINUED)}
bit 3-0 SEVTPS<3:0>: PWM Special Event Trigger Output Postscaler Select bits \({ }^{(1)}\)
\(1111=1: 16\) Postscaler generates Special Event Trigger on every sixteenth compare match event
-
.
\(0001=1: 2\) Postscaler generates Special Event Trigger on every second compare match event \(0000=1: 1\) Postscaler generates Special Event Trigger on every compare match event

Note 1: These bits should be changed only when PTEN \(=0\). In addition, when using the SYNCI1 feature, the user application must program the period register with a value that is slightly larger than the expected period of the external synchronization input signal.
2: See Section 24.0 "Peripheral Trigger Generator (PTG) Module" for information on this selection.

REGISTER 16-2: PTCON2: PWM PRIMARY MASTER CLOCK DIVIDER SELECT REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline U-0 & U-0 \\
\hline- & - & - & - & - & - & - & - \\
\hline bit 15 \\
\begin{tabular}{|l|c|c|c|c|ccc|}
\hline U-0 & U-0 & U-0 & U-0 & U-0 & R/W-0 & R/W-0 & R/W-0 \\
\hline - & - & - & - & - & & PCLKDIV<2:0>(1) & \\
\hline bit 7 &
\end{tabular}
\end{tabular}\(.\)\begin{tabular}{l} 
bit 0 \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1 '=\) Bit is set & \(' 0 '=\) Bit is cleared
\end{tabular}
bit 15-3 Unimplemented: Read as ' 0 '
bit 2-0 PCLKDIV<2:0>: PWM Input Clock Prescaler (Divider) Select bits \({ }^{(1)}\)
111 = Reserved
110 = Divide by 64, maximum PWM timing resolution
101 = Divide by 32, maximum PWM timing resolution
\(100=\) Divide by 16 , maximum PWM timing resolution
011 = Divide by 8, maximum PWM timing resolution
010 = Divide by 4, maximum PWM timing resolution
001 = Divide by 2, maximum PWM timing resolution
000 = Divide by 1, maximum PWM timing resolution (power-on default)

Note 1: These bits should be changed only when PTEN \(=0\). Changing the clock selection during operation will yield unpredictable results.

REGISTER 16-3: PTPER: PRIMARY MASTER TIME BASE PERIOD REGISTER
\begin{tabular}{|llllllll|}
\hline R/W-1 & R/W-1 \\
\hline & & PTPER<15:8> & & & \\
\hline bit 15 & & & & & & bit 8 \\
\hline
\end{tabular}
\begin{tabular}{|llllllll|}
\hline R/W-1 & R/W-1 & R/W-1 & R/W-1 & R/W-1 & R/W-0 & R/W-0 & R/W-0 \\
\hline & & PTPER<7:0> & & & \\
\hline bit 7 & & & & & & bit 0 \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{|c|c|c|c|}
\hline \(\mathrm{R}=\) Readable bit & W = Writable bit & \(\mathrm{U}=\) Unimplemen & as '0' \\
\hline -n = Value at POR & ' 1 ' = Bit is set & ' 0 ' = Bit is cleared & \(x=\) Bit is unknown \\
\hline
\end{tabular}
bit 15-0 PTPER<15:0>: Primary Master Time Base (PMTMR) Period Value bits

REGISTER 16-4: SEVTCMP: PWM PRIMARY SPECIAL EVENT COMPARE REGISTER
\begin{tabular}{|llllllll|}
\hline R/W-0 & R/W-0 \\
\hline & & & SEVTCMP<15:8> & & & \\
\hline bit 15 & & & & & & bit 8 \\
\hline
\end{tabular}
\begin{tabular}{|lllllll|}
\hline R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0
\end{tabular} R/W-0 9
\begin{tabular}{|lll|}
\hline Legend: & & \\
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1 '=\) Bit is set & \(' 0\) ' \(=\) Bit is cleared \(\quad x=\) Bit is unknown \\
\hline
\end{tabular}
bit 15-0 SEVTCMP<15:0>: Special Event Compare Count Value bits

\section*{REGISTER 16-5: CHOP: PWM CHOP CLOCK GENERATOR REGISTER}
\begin{tabular}{|l|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|c|}{ R/W-0 U-0 } \\
\hline \multicolumn{8}{c|}{ U-0 } \\
\hline CHPCLKEN & - & - & - & U-0 & U-0 & R/W-0 & R/W-0 \\
\hline bit 15 & & CHOP<9:8> \\
\hline
\end{tabular}
\begin{tabular}{|llllllll|}
\hline R/W-0 & R/W-0 \\
\hline & & \(C H O P<7: 0>\) & & & \\
\hline bit 7 & & & & & & bit 0 \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(\mathrm{R}=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) Unimplemented bit, read as ' 0 ' \\
\(-\mathrm{n}=\) Value at POR & \(' 1\) ' = Bit is set & \(' 0 '=\) Bit is cleared
\end{tabular}\(\quad \mathrm{x}=\) Bit is unknown
bit 15 CHPCLKEN: Enable Chop Clock Generator bit
1 = Chop clock generator is enabled
\(0=\) Chop clock generator is disabled
bit 14-10 Unimplemented: Read as ' 0 '
bit 9-0 CHOP<9:0>: Chop Clock Divider bits
The frequency of the chop clock signal is given by the following expression:
Chop Frequency \(=(\) FP/PLKDIV<2:0 \() /(\mathrm{CHOP}<9: 0>+1)\)

REGISTER 16-6: MDC: PWM MASTER DUTY CYCLE REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline R/W-0 & R/W-0 \\
\hline \multicolumn{8}{|c|}{MDC<15:8>} \\
\hline bit 15 & & & & & & & bit 8 \\
\hline R/W-0 & R/W-0 \\
\hline \multicolumn{8}{|c|}{\(\mathrm{MDC}<7: 0>\)} \\
\hline bit 7 & & & & & & & bit 0 \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend: & & \\
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1 '=\) Bit is set & \(' 0\) ' \(=\) Bit is cleared \\
\hline
\end{tabular}
bit 15-0 MDC<15:0>: Master PWM Duty Cycle Value bits

\section*{REGISTER 16-7: PWMCONx: PWM CONTROL REGISTER}

\begin{tabular}{|lll|}
\hline Legend: & \(\mathrm{HC}=\) Cleared in Hardware & \(\mathrm{HS}=\) Set in Hardware \\
\(\mathrm{R}=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) Unimplemented bit, read as ' 0 ' \\
\(-\mathrm{n}=\) Value at POR & \(' 1\) ' = Bit is set & \(' 0\) ' = Bit is cleared \(\quad \mathrm{x}=\) Bit is unknown \\
\hline
\end{tabular}
bit 15
FLTSTAT: Fault Interrupt Status bit \({ }^{(1)}\)
1 = Fault interrupt is pending
\(0=\) No Fault interrupt is pending
This bit is cleared by setting FLTIEN \(=0\).
bit 14 CLSTAT: Current-Limit Interrupt Status bit \({ }^{(\mathbf{1})}\)
1 = Current-limit interrupt is pending
\(0=\) No current-limit interrupt is pending
This bit is cleared by setting CLIEN \(=0\).
bit 13 TRGSTAT: Trigger Interrupt Status bit
1 = Trigger interrupt is pending
\(0=\) No trigger interrupt is pending
This bit is cleared by setting TRGIEN \(=0\).
bit 12
FLTIEN: Fault Interrupt Enable bit
1 = Fault interrupt is enabled
\(0=\) Fault interrupt is disabled and FLTSTAT bit is cleared
bit 11 CLIEN: Current-Limit Interrupt Enable bit
1 = Current-limit interrupt enabled
\(0=\) Current-limit interrupt disabled and CLSTAT bit is cleared
bit 10 TRGIEN: Trigger Interrupt Enable bit
\(1=A\) trigger event generates an interrupt request
\(0=\) Trigger event interrupts are disabled and TRGSTAT bit is cleared
bit 9
ITB: Independent Time Base Mode bit \({ }^{(2)}\)
1 = PHASEx register provides time base period for this PWM generator
0 = PTPER register provides timing for this PWM generator
bit \(8 \quad\) MDCS: Master Duty Cycle Register Select bit \({ }^{(\mathbf{2})}\)
1 = MDC register provides duty cycle information for this PWM generator
0 = PDCx register provides duty cycle information for this PWM generator

Note 1: Software must clear the interrupt status here and in the corresponding IFS bit in the interrupt controller.
2: These bits should not be changed after the PWM is enabled (PTEN = 1).
3: \(D T C<1: 0>=11\) for DTCP to be effective; otherwise, DTCP is ignored.
4: The Independent Time Base (ITB =1) mode must be enabled to use Center-Aligned mode. If ITB = 0, the CAM bit is ignored.
5: To operate in External Period Reset mode, the ITB bit must be ' 1 ' and the CLMOD bit in the FCLCONx register must be ' 0 '.

\section*{REGISTER 16-7: PWMCONx: PWM CONTROL REGISTER (CONTINUED)}
```

bit 7-6 DTC<1:0>: Dead-Time Control bits
1 1 ~ = ~ D e a d - T i m e ~ C o m p e n s a t i o n ~ m o d e
10 = Dead-time function is disabled
01 = Negative dead time actively applied for Complementary Output mode
00 = Positive dead time actively applied for all output modes
bit 5 DTCP: Dead-Time Compensation Polarity bit (3)
When set to '1':
If DTCMPx = 0, PWMLx is shortened and PWMHx is lengthened.
If DTCMPx = 1, PWMHx is shortened and PWMLx is lengthened.
When set to '0':
If DTCMPx = 0, PWMHx is shortened and PWMLx is lengthened.
If DTCMPx = 1, PWMLx is shortened and PWMHx is lengthened.
bit 4 Unimplemented: Read as ' }0\mathrm{ '
bit 3 MTBS: Master Time Base Select bit
1 = PWM generator uses the secondary master time base for synchronization and as the clock source
for the PWM generation logic (if secondary time base is available)
0 = PWM generator uses the primary master time base for synchronization and as the clock source
for the PWM generation logic
bit 2 CAM: Center-Aligned Mode Enable bit (2,4)
1 = Center-Aligned mode is enabled
0 = Edge-Aligned mode is enabled
XPRES: External PWM Reset Control bit ${ }^{(5)}$
1 = Current-limit source resets the time base for this PWM generator if it is in Independent Time Base mode
$0=$ External pins do not affect PWM time base
bit $0 \quad$ IUE: Immediate Update Enable bit
1 = Updates to the active MDC/PDCx/DTx/ALTDTRx/PHASEx registers are immediate
$0=$ Updates to the active MDC/PDCx/DTx/ALTDTRx/PHASEx registers are synchronized to the PWM time base

```

Note 1: Software must clear the interrupt status here and in the corresponding IFS bit in the interrupt controller.
2: These bits should not be changed after the PWM is enabled (PTEN = 1).
3: \(\mathrm{DTC}<1: 0>=11\) for DTCP to be effective; otherwise, DTCP is ignored.
4: The Independent Time Base (ITB = 1) mode must be enabled to use Center-Aligned mode. If ITB = 0, the CAM bit is ignored.
5: To operate in External Period Reset mode, the ITB bit must be ' 1 ' and the CLMOD bit in the FCLCONx register must be ' 0 '.

REGISTER 16-8: PDCx: PWM GENERATOR DUTY CYCLE REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline R/W-0 & R/W-0 \\
\hline \multicolumn{8}{|c|}{PDCx<15:8>} \\
\hline bit 15 & & & & & & & bit 8 \\
\hline R/W-0 & R/W-0 \\
\hline \multicolumn{8}{|c|}{PDCx<7:0>} \\
\hline bit 7 & & & & & & & bit 0 \\
\hline
\end{tabular}

\section*{Legend:}
\(R=\) Readable bit
\(-n=\) Value at POR
\(W=\) Writable bit
' 1 ' \(=\) Bit is set
\(\mathrm{U}=\) Unimplemented bit, read as ' 0 '
' 0 ' = Bit is cleared
\(x=\) Bit is unknown
bit 15-0 PDCx<15:0>: PWM Generator \# Duty Cycle Value bits

REGISTER 16-9: PHASEx: PWM PRIMARY PHASE SHIFT REGISTER
\begin{tabular}{|llllllll|}
\hline R/W-0 & R/W-0 \\
\hline & & PHASEx<15:8> & & & \\
\hline bit 15 & & & & & & bit 8 \\
\hline
\end{tabular}
\begin{tabular}{|llllllll|}
\hline R/W-0 & R/W-0 \\
\hline & & PHASEx<7:0> & & & \\
\hline bit 7 & & & & & & bit 0 \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend: & & \\
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1 '=\) Bit is set & \(' 0\) ' \(=\) Bit is cleared \\
\hline
\end{tabular}
bit 15-0 PHASEx<15:0>: PWM Phase Shift Value or Independent Time Base Period bits for the PWM Generator

Note 1: If ITB (PWMCONx<9>) \(=0\), the following applies based on the mode of operation: Complementary, Redundant and Push-Pull Output mode (PMOD<1:0> (IOCON<11:10>) = 00, 01 or 10), PHASEx<15:0> = Phase shift value for PWMxH and PWMxL outputs
2: If ITB (PWMCON \(x<9>\) ) = 1, the following applies based on the mode of operation: Complementary, Redundant and Push-Pull Output mode (PMOD<1:0> (IOCONx<11:10>) \(=00\), 01 or 10), PHASEx<15:0> = Independent time base period value for PWMxH and PWMxL

REGISTER 16-10: DTRx: PWM DEAD-TIME REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline U-0 & U-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 \\
\hline - & - & \multicolumn{6}{|c|}{DTRx<13:8>} \\
\hline \multicolumn{7}{|l|}{bit 15} & bit 8 \\
\hline R/W-0 & R/W-0 \\
\hline \multicolumn{8}{|c|}{DTRx<7:0>} \\
\hline bit 7 & & & & & & & bit 0 \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend: & & \\
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1\) ' = Bit is set & \(' 0 '=\) Bit is cleared \(\quad x=\) Bit is unknown \\
\hline
\end{tabular}
bit 15-14 Unimplemented: Read as ' 0 '
bit 13-0 DTRx<13:0>: Unsigned 14-bit Dead-Time Value bits for PWMx Dead-Time Unit

REGISTER 16-11: ALTDTRx: PWM ALTERNATE DEAD-TIME REGISTER
\begin{tabular}{|c|c|ccccc|}
\hline U-0 & U-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0
\end{tabular} R/W-0 \begin{tabular}{llll} 
\\
\hline- & - & & ALTDTRx<13:8> \\
\hline bit 15 & & & \\
\hline
\end{tabular}
\begin{tabular}{|llllllll|}
\hline\(R / W-0\) & \(R / W-0\) \\
\hline & & ALTDTR \(x<7: 0>\) & & & \\
\hline bit 7 & & & & & & bit 0 \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend: & \\
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1\) ' = Bit is set & \(' 0\) ' = Bit is cleared \(\quad x=\) Bit is unknown \\
\hline
\end{tabular}
\begin{tabular}{ll} 
bit 15-14 & Unimplemented: Read as ' 0 ' \\
bit 13-0 & ALTDTRx<13:0>: Unsigned 14-bit Dead-Time Value bits for PWMx Dead-Time Unit
\end{tabular}

REGISTER 16-12: IOCONx: PWM I/O CONTROL REGISTER \({ }^{(2)}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline R/W-0 & R/W-0 \\
\hline PENH & PENL & POLH & POLL & PMOD<1:0>(1) & OVRENH & OVRENL \\
\hline bit 15 & & & bit 8 \\
\hline
\end{tabular}


\section*{Legend:}
\begin{tabular}{lll}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1 '=\) Bit is set & \(' 0 '=\) Bit is cleared
\end{tabular}
bit 15 PENH: PWMxH Output Pin Ownership bit
\(1=\) PWM module controls PWMxH pin
0 = GPIO module controls PWMxH pin
bit 14 PENL: PWMxL Output Pin Ownership bit
1 = PWM module controls PWMxL pin
\(0=\) GPIO module controls PWMxL pin
bit 13 POLH: PWMxH Output Pin Polarity bit
\(1=\mathrm{PWMxH}\) pin is active-low
\(0=P W M x H\) pin is active-high
bit 12 POLL: PWMxL Output Pin Polarity bit
\(1=P W M x L\) pin is active-low
\(0=P W M x L\) pin is active-high
bit 11-10 PMOD<1:0>: PWM \# I/O Pin Mode bits \({ }^{(1)}\)
11 = Reserved; do not use
\(10=\) PWM I/O pin pair is in the Push-Pull Output mode
01 = PWM I/O pin pair is in the Redundant Output mode
\(00=\) PWM I/O pin pair is in the Complementary Output mode
bit 9 OVRENH: Override Enable for PWMxH Pin bit
1 = OVRDAT<1> controls output on PWMxH pin
0 = PWM generator controls PWMxH pin
bit 8 OVRENL: Override Enable for PWMxL Pin bit
\(1=\) OVRDAT \(<0>\) controls output on PWMxL pin
\(0=\) PWM generator controls PWMxL pin
bit 7-6 OVRDAT<1:0>: Data for PWMxH, PWMxL Pins if Override is Enabled bits If OVERENH \(=1, \mathrm{PWMxH}\) is driven to the state specified by OVRDAT<1>. If OVERENL \(=1, \mathrm{PWMxL}\) is driven to the state specified by OVRDAT<0>.
bit 5-4 FLTDAT<1:0>: Data for PWMxH and PWMxL Pins if FLTMOD is Enabled bits IFLTMOD (FCLCONx<15>) = 0: Normal Fault mode:
If Fault is active, PWMxH is driven to the state specified by FLTDAT<1>. If Fault is active, PWMxL is driven to the state specified by FLTDAT<0>.
IFLTMOD (FCLCONx<15>) = 1: Independent Fault mode:
If current-limit is active, PWMxH is driven to the state specified by FLTDAT<1>.
If Fault is active, PWMxL is driven to the state specified by FLTDAT<0>.

Note 1: These bits should not be changed after the PWM module is enabled (PTEN = 1).
2: If the PWMLOCK Configuration bit (FOSCEL<6>) is a ' 1 ', the IOCONx register can only be written after the unlock sequence has been executed.

\section*{REGISTER 16-12: IOCONx: PWM I/O CONTROL REGISTER \({ }^{(2)}\) (CONTINUED)}
bit 3-2 CLDAT<1:0>: Data for PWMxH and PWMxL Pins if CLMOD is Enabled bits IFLTMOD (FCLCONx<15>) = 0: Normal Fault mode:
If current-limit is active, PWMxH is driven to the state specified by CLDAT<1>. If current-limit is active, PWMxL is driven to the state specified by CLDAT<0>.
IFLTMOD (FCLCONx<15>) = 1: Independent Fault mode:
The CLDAT<1:0> bits are ignored.
bit 1
SWAP: SWAP PWMxH and PWMxL Pins bit
\(1=\mathrm{PWMxH}\) output signal is connected to PWMxL pins; PWMxL output signal is connected to PWMxH pins
\(0=\) PWMxH and PWMxL pins are mapped to their respective pins
bit \(0 \quad\) OSYNC: Output Override Synchronization bit
1 = Output overrides via the OVRDAT<1:0> bits are synchronized to the PWM time base
\(0=\) Output overrides via the OVDDAT<1:0> bits occur on the next CPU clock boundary

Note 1: These bits should not be changed after the PWM module is enabled (PTEN = 1).
2: If the PWMLOCK Configuration bit (FOSCEL<6>) is a ' 1 ', the IOCONx register can only be written after the unlock sequence has been executed.

REGISTER 16-13: FCLCONx: PWM FAULT CURRENT-LIMIT CONTROL REGISTER \({ }^{(4)}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline R/W-0 & R/W-0 \\
\hline IFLTMOD & \multicolumn{5}{|c|}{CLSRC<4:0> \({ }^{(2,3)}\)} & CLPOL \({ }^{(1)}\) & CLMOD \\
\hline \multicolumn{6}{|l|}{bit 15} & \multicolumn{2}{|r|}{bit 8} \\
\hline R/W-1 & R/W-1 & R/W-1 & R/W-1 & R/W-1 & R/W-0 & R/W-0 & R/W-0 \\
\hline \multicolumn{5}{|c|}{FLTSRC<4:0> \({ }^{(2,3)}\)} & FLTPOL \({ }^{(1)}\) & \multicolumn{2}{|l|}{FLTMOD<1:0>} \\
\hline \multicolumn{5}{|l|}{bit 7} & & \multicolumn{2}{|r|}{bit 0} \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend: & & \\
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1\) ' = Bit is set & \(' 0\) ' \(=\) Bit is cleared \(\quad x=\) Bit is unknown \\
\hline
\end{tabular}

IFLTMOD: Independent Fault Mode Enable bit
1 = Independent Fault mode: Current-limit input maps FLTDAT<1> to PWMxH output and Fault input maps FLTDAT<0> to PWMxL output. The CLDAT<1:0> bits are not used for override functions.
\(0=\) Normal Fault mode: Current-Limit mode maps CLDAT<1:0> bits to the PWMxH and PWMxL outputs. The PWM Fault mode maps FLTDAT<1:0> to the PWMxH and PWMxL outputs.
bit 14-10
CLSRC<4:0>: Current-Limit Control Signal Source Select bits for PWM Generator \# \({ }^{(2,3)}\)
These bits also specify the source for the dead-time compensation input signal, DTCMPx.
11111 = Fault 32
11110 = Reserved
-
-
01100 = Reserved
01011 = Comparator 4
\(01010=\) Op amp/Comparator 3
01001 = Op amp/Comparator 2
01000 = Op amp/Comparator 1
00111 = Reserved
00110 = Reserved
00101 = Reserved
\(00100=\) Reserved
00011 = Fault 4
00010 = Fault 3
00001 = Fault 2
00000 = Fault 1 (default)
bit 9 CLPOL: Current-Limit Polarity bit for PWM Generator \#(1)
\(1=\) The selected current-limit source is active-low
\(0=\) The selected current-limit source is active-high

Note 1: These bits should be changed only when PTEN \(=0\). Changing the clock selection during operation will yield unpredictable results.
2: When Independent Fault mode is enabled (IFLTMOD = 1), and Fault 1 is used for Fault mode (FLTSRC<4:0> = 01000), the Current-Limit Control Source Select bits (CLSRC<4:0>) should be set to an unused current-limit source to prevent the current-limit source from disabling both the PWMxH and PWMxL outputs.
3: When Independent Fault mode is enabled (IFLTMOD = 1), and Fault 1 is used for Current-Limit mode (CLSRC<4:0> = 01000), the Fault Control Source Select bits (FLTSRC<4:0>) should be set to an unused Fault source to prevent Fault 1 from disabling both the PWMxL and PWMxH outputs.
4: If the PWMLOCK Configuration bit (FOSCEL \(<6>\) ) is a ' 1 ', the IOCONx register can only be written after the unlock sequence has been executed.

\section*{REGISTER 16-13: FCLCONx: PWM FAULT CURRENT-LIMIT CONTROL REGISTER \({ }^{(4)}\) (CONTINUED)}
```

bit 8 CLMOD: Current-Limit Mode Enable bit for PWM Generator \#
1 = Current-Limit mode is enabled
0 = Current-Limit mode is disabled
bit 7-3
FLTSRC<4:0>: Fault Control Signal Source Select bits for PWM Generator \#(2,3)
11111 = Fault 32 (default)
11110 = Reserved
•
.
01100 = Reserved
01011 = Comparator 4
01010 = Op amp/Comparator 3
01001 = Op amp/Comparator 2
01000 = Op amp/Comparator 1
00111 = Reserved
00110 = Reserved
00101 = Reserved
00100 = Reserved
00011 = Fault 4
00010 = Fault 3
00001 = Fault 2
00000 = Fault 1
bit 2 FLTPOL: Fault Polarity bit for PWM Generator \#(1)
1 = The selected Fault source is active-low
0 = The selected Fault source is active-high
bit 1-0 FLTMOD<1:0>: Fault Mode bits for PWM Generator \#
11 = Fault input is disabled
10 = Reserved
01 = The selected Fault source forces PWMxH, PWMxL pins to FLTDAT values (cycle)
00 = The selected Fault source forces PWMxH, PWMxL pins to FLTDAT values (latched condition)

```

Note 1: These bits should be changed only when PTEN \(=0\). Changing the clock selection during operation will yield unpredictable results.
2: When Independent Fault mode is enabled (IFLTMOD = 1), and Fault 1 is used for Fault mode (FLTSRC<4:0> = 01000), the Current-Limit Control Source Select bits (CLSRC<4:0>) should be set to an unused current-limit source to prevent the current-limit source from disabling both the PWMxH and PWMxL outputs.
3: When Independent Fault mode is enabled (IFLTMOD = 1), and Fault 1 is used for Current-Limit mode (CLSRC<4:0> = 01000), the Fault Control Source Select bits (FLTSRC<4:0>) should be set to an unused Fault source to prevent Fault 1 from disabling both the PWMxL and PWMxH outputs.
4: If the PWMLOCK Configuration bit (FOSCEL<6>) is a ' 1 ', the IOCONx register can only be written after the unlock sequence has been executed.

REGISTER 16-14: LEBCONx: LEADING-EDGE BLANKING CONTROL REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & U-0 & U-0 \\
\hline PHR & PHF & PLR & PLF & FLTLEBEN & CLLEBEN & - & - \\
\hline \multicolumn{2}{|l|}{bit 15} & & & & & & bit 8 \\
\hline U-0 & U-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 \\
\hline - & - & BCH & BCL & BPHH & BPHL & BPLH & BPLL \\
\hline \multicolumn{2}{|l|}{bit 7} & & & & & & bit 0 \\
\hline \multicolumn{8}{|l|}{Legend:} \\
\hline \multicolumn{2}{|l|}{\(\mathrm{R}=\) Readable bit} & \multicolumn{2}{|l|}{W = Writable bit} & \multicolumn{4}{|l|}{\(\mathrm{U}=\) Unimplemented bit, read as ' 0 '} \\
\hline \multicolumn{2}{|l|}{-n = Value at POR} & \multicolumn{2}{|l|}{' 1 ' = Bit is set} & \multicolumn{2}{|l|}{' 0 ' = Bit is cleared} & \multicolumn{2}{|l|}{\(x=\) Bit is unknown} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline bit 15 & \begin{tabular}{l}
PHR: PWMxH Rising Edge Trigger Enable bit \\
1 = Rising edge of PWMxH will trigger Leading-Edge Blanking counter \\
0 = Leading-Edge Blanking ignores rising edge of PWMxH
\end{tabular} \\
\hline bit 14 & \begin{tabular}{l}
PHF: PWMxH Falling Edge Trigger Enable bit \\
1 = Falling edge of PWMxH will trigger Leading-Edge Blanking counter \\
0 = Leading-Edge Blanking ignores falling edge of PWMxH
\end{tabular} \\
\hline bit 13 & \begin{tabular}{l}
PLR: PWMxL Rising Edge Trigger Enable bit \\
\(1=\) Rising edge of PWMxL will trigger Leading-Edge Blanking counter \\
0 = Leading-Edge Blanking ignores rising edge of PWMxL
\end{tabular} \\
\hline bit 12 & \begin{tabular}{l}
PLF: PWMxL Falling Edge Trigger Enable bit \\
1 = Falling edge of PWMxL will trigger Leading-Edge Blanking counter \\
0 = Leading-Edge Blanking ignores falling edge of PWMxL
\end{tabular} \\
\hline bit 11 & FLTLEBEN: Fault Input Leading-Edge Blanking Enable bit 1 = Leading-Edge Blanking is applied to selected Fault input 0 = Leading-Edge Blanking is not applied to selected Fault input \\
\hline bit 10 & \begin{tabular}{l}
CLLEBEN: Current-Limit Leading-Edge Blanking Enable bit \\
1 = Leading-Edge Blanking is applied to selected current-limit input \\
\(0=\) Leading-Edge Blanking is not applied to selected current-limit input
\end{tabular} \\
\hline bit 9-6 & Unimplemented: Read as ' 0 ' \\
\hline bit 5 & \begin{tabular}{l}
BCH: Blanking in Selected Blanking Signal High Enable bit \({ }^{(\mathbf{1})}\) \\
1 = State blanking (of current-limit and/or Fault input signals) when selected blanking signal is high \\
\(0=\) No blanking when selected blanking signal is high
\end{tabular} \\
\hline bit 4 & \begin{tabular}{l}
BCL: Blanking in Selected Blanking Signal Low Enable bit \({ }^{(1)}\) \\
1 = State blanking (of current-limit and/or Fault input signals) when selected blanking signal is low \\
\(0=\) No blanking when selected blanking signal is low
\end{tabular} \\
\hline bit 3 & \begin{tabular}{l}
BPHH: Blanking in PWMxH High Enable bit \\
1 = State blanking (of current-limit and/or Fault input signals) when PWMxH output is high \\
\(0=\) No blanking when PWMxH output is high
\end{tabular} \\
\hline bit 2 & \begin{tabular}{l}
BPHL: Blanking in PWMxH Low Enable bit \\
1 = State blanking (of current-limit and/or Fault input signals) when PWMxH output is low \\
\(0=\) No blanking when PWMxH output is low
\end{tabular} \\
\hline bit 1 & \begin{tabular}{l}
BPLH: Blanking in PWMxL High Enable bit \\
1 = State blanking (of current-limit and/or Fault input signals) when PWMxL output is high \\
\(0=\) No blanking when PWMxL output is high
\end{tabular} \\
\hline bit 0 & \begin{tabular}{l}
BPLL: Blanking in PWMxL Low Enable bit \\
1 = State blanking (of current-limit and/or Fault input signals) when PWMxL output is low \\
\(0=\) No blanking when PWMxL output is low
\end{tabular} \\
\hline
\end{tabular}

Note 1: The blanking signal is selected via the BLANKSEL bits in the AUXCONx register.

REGISTER 16-15: LEBDLYx: LEADING-EDGE BLANKING DELAY REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline U-0 & U-0 & U-0 & U-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 \\
\hline - & - & - & - & \multicolumn{4}{|c|}{LEB<11:8>} \\
\hline \multicolumn{7}{|l|}{bit 15} & bit 8 \\
\hline R/W-0 & R/W-0 \\
\hline \multicolumn{8}{|c|}{LEB<7:0>} \\
\hline bit 7 & & & & & & & bit 0 \\
\hline
\end{tabular}

Legend:
\begin{tabular}{|c|c|c|c|}
\hline \(\mathrm{R}=\) Readable bit & W = Writable bit & \(\mathrm{U}=\) Unimplemen & as ' 0 ' \\
\hline -n = Value at POR & ' 1 ' = Bit is set & ' 0 ' = Bit is cleared & \(x=\) Bit is unknown \\
\hline
\end{tabular}
\begin{tabular}{ll} 
bit 15-12 & Unimplemented: Read as ' 0 ' \\
bit 11-0 & LEB<11:0>: Leading-Edge Blanking Delay bits for Current-Limit and Fault Inputs
\end{tabular}

REGISTER 16-16: AUXCONx: PWM AUXILIARY CONTROL REGISTER
\begin{tabular}{|c|c|c|c|cccc|}
\hline \multicolumn{9}{|c|}{ U-0 } & U-0 & U-0 & U-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 \\
\hline- & - & - & - & & BLANKSEL<3:0> & \\
\hline bit 15 & & & & bit 8 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|cccc|c|c|}
\hline U-0 & U-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 \\
\hline- & - & CHOPSEL<3:0> & & CHOPHEN & CHOPLEN \\
\hline bit 7 & & & & & bit 0 \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1\) ' \(=\) Bit is set & \(' 0\) ' \(=\) Bit is cleared
\end{tabular}\(\quad x=\) Bit is unknown
\begin{tabular}{|c|c|}
\hline bit 15-12 & Unimplemented: Read as '0' \\
\hline \multirow[t]{10}{*}{bit 11-8} & BLANKSEL<3:0>: PWM State Blank Source Select bits \\
\hline & \begin{tabular}{l}
The selected state blank signal will block the current-limit and/or Fault input signals (if enabled via the BCH and BCL bits in the LEBCONx register). \\
1001 = Reserved
\end{tabular} \\
\hline & - \\
\hline & - \\
\hline & - \\
\hline & 0100 = Reserved \\
\hline & 0011 = PWM3H selected as state blank source \\
\hline & \(0010=\) PWM2H selected as state blank source \\
\hline & 0001 = PWM1H selected as state blank source \\
\hline & 0000 = No state blanking \\
\hline bit 7-6 & Unimplemented: Read as '0' \\
\hline \multirow[t]{10}{*}{bit 5-2} & CHOPSEL<3:0>: PWM Chop Clock Source Select bits \\
\hline & The selected signal will enable and disable (CHOP) the selected PWM outputs. 1001 = Reserved \\
\hline &  \\
\hline & - \\
\hline & - \\
\hline & 0100 = Reserved \\
\hline & 0011 = PWM3H selected as CHOP clock source \\
\hline & 0010 = PWM2H selected as CHOP clock source \\
\hline & 0001 = PWM1H selected as CHOP clock source \\
\hline & 0000 = Chop clock generator selected as CHOP clock source \\
\hline \multirow[t]{3}{*}{bit 1} & CHOPHEN: PWMxH Output Chopping Enable bit \\
\hline & 1 = PWMxH chopping function is enabled \\
\hline & \(0=\) PWMxH chopping function is disabled \\
\hline \multirow[t]{2}{*}{bit 0} & CHOPLEN: PWMxL Output Chopping Enable bit \\
\hline & \(1=P W M x L\) chopping function is enabled \(0=\) PWMxL chopping function is disabled \\
\hline
\end{tabular}

\subsection*{17.0 QUADRATURE ENCODER INTERFACE (QEI) MODULE (dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X DEVICES ONLY)}

Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X, and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 15. "Quadrature Encoder Interface (QEI)" (DS70601) of the "dsPIC33E/PIC24E Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

This chapter describes the Quadrature Encoder Interface (QEI) module and associated operational modes. The QEI module provides the interface to incremental encoders for obtaining mechanical position data.
The operational features of the QEI module include:
- 32-bit position counter
- 32-bit Index pulse counter
- 32-bit Interval timer
- 16-bit velocity counter
- 32-bit Position Initialization/Capture/Compare High register
- 32-bit Position Compare Low register
- 4X Quadrature Count mode
- External Up/Down Count mode
- External Gated Count mode
- External Gated Timer mode
- Internal Timer mode

Figure 17-1 illustrates the QEI block diagram.


\section*{REGISTER 17-1: QEIICON: QEI CONTROL REGISTER}
\begin{tabular}{|l|c|c|ccc|c|}
\hline R/W-0 & U-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 \\
\hline QEIEN & - & QEISIDL & & PIMOD<2:0>(1) & & \(I M V<1: 0>\mathbf{( 2 )}^{(2)}\) \\
\hline bit 15
\end{tabular}
\begin{tabular}{|c|ccc|c|c|c|c|}
\hline U-0 & R/W-0 \\
\hline- & INTDIV<2:0> & (3) & CNTPOL & GATEN & CCM<1:0> \\
\hline bit 7 & & & & bit 0 \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(\mathrm{R}=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) Unimplemented bit, read as ' 0 ' \\
\(-\mathrm{n}=\) Value at POR & \(' 1\) ' = Bit is set & \(' 0\) ' \(=\) Bit is cleared
\end{tabular}\(\quad \mathrm{x}=\) Bit is unknown
bit 15 QEIEN: Quadrature Encoder Interface Module Counter Enable bit
1 = Module counters are enabled
\(0=\) Module counters are disabled, but SFRs can be read or written to
bit 14
Unimplemented: Read as ' 0 '
bit 13 QEISIDL: Stop in Idle Mode bit
1 = Discontinue module operation when device enters Idle mode
\(0=\) Continue module operation in Idle mode
bit 12-10 PIMOD<2:0>: Position Counter Initialization Mode Select bits \({ }^{(1)}\)
111 = Reserved
110 = Modulo count mode for position counter
101 = Resets the position counter when the position counter equals QEI1GEC register
\(100=\) Second index event after home event initializes position counter with contents of QEIIIC register
011 = First index event after home event initializes position counter with contents of QEI1IC register
\(010=\) Next index input event initializes the position counter with contents of QEI1IC register
001 = Every Index input event resets the position counter
000 = Index input event does not affect position counter
bit 9-8 IMV<1:0>: Index Match Value bits \({ }^{(2)}\)
11 = Index match occurs when QEB = 1 and QEA = 1
\(10=\) Index match occurs when QEB \(=1\) and QEA \(=0\)
01 = Index match occurs when QEB = 0 and QEA = 1
\(00=\) Index input event does not affect position counter
bit \(7 \quad\) Unimplemented: Read as ' 0 '
bit 6-4 INTDIV<2:0>: Timer Input Clock Prescale Select bits (interval timer, main timer (position counter), velocity counter and index counter internal clock divider select) \({ }^{(3)}\)
\(111=1: 256\) prescale value
\(110=1: 64\) prescale value
\(101=1: 32\) prescale value
\(100=1: 16\) prescale value
\(011=1: 8\) prescale value
\(010=1: 4\) prescale value
001 = 1:2 prescale value
\(000=1: 1\) prescale value

Note 1: When \(C C M=10\) or \(C C M=11\), all of the QEI counters operate as timers and the PIMOD<2:0> bits are ignored.
2: When CCM = 00 and QEA and QEB values match Index Match Value (IMV), the POSCNTH and POSCNTL registers are reset.
3: The selected clock rate should be at least twice the expected maximum quadrature count rate.

\section*{REGISTER 17-1: QEIICON: QEI CONTROL REGISTER (CONTINUED)}
bit 3 CNTPOL: Position and Index Counter/Timer Direction Select bit
1 = Counter direction is negative unless modified by external Up/Down signal \(0=\) Counter direction is positive unless modified by external Up/Down signal
bit 2
GATEN: External Count Gate Enable bit
1 = External gate signal controls position counter operation
\(0=\) External gate signal does not affect position counter/timer operation
bit 1-0 CCM<1:0>: Counter Control Mode Selection bits
11 = Internal timer mode with optional external count is selected
\(10=\) External clock count with optional external count is selected
01 = External clock count with external up/down direction is selected
\(00=\) Quadrature Encoder Interface ( \(x 4\) mode) count mode is selected

Note 1: When \(C C M=10\) or \(C C M=11\), all of the QEl counters operate as timers and the \(\operatorname{PIMOD<2:0>}\) bits are ignored.
2: When CCM = 00 and QEA and QEB values match Index Match Value (IMV), the POSCNTH and POSCNTL registers are reset.
3: The selected clock rate should be at least twice the expected maximum quadrature count rate.

\section*{REGISTER 17-2: QEI1IOC: QEI I/O CONTROL REGISTER}
\begin{tabular}{|c|c|ccc|cc|c|}
\hline R/W-0 & R/W-0 \\
\hline QCAPEN & FLTREN & & QFDIV<2:0> & & OUTFNC<1:0> & SWPAB \\
\hline bit 15 & & & bit 8 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline R/W-0 & R/W-0 & R/W-0 & R/W-0 & R-x & R-x & R-x & R-x \\
\hline HOMPOL & IDXPOL & QEBPOL & QEAPOL & HOME & INDEX & QEB & QEA \\
\hline bit 7 & & & & bit 0 \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(\mathrm{R}=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) Unimplemented bit, read as ' 0 ' \\
\(-\mathrm{n}=\) Value at POR & \(' 1\) ' \(=\) Bit is set & \(' 0\) ' \(=\) Bit is cleared
\end{tabular}
bit 15 QCAPEN: Position Counter Input Capture Enable bit
1 = Positive edge detect of Home input triggers position capture function
\(0=\) HOMEx input event (positive edge) does not trigger a capture event
bit 14
FLTREN: QEAx/QEBx/INDXx/HOMEx Digital Filter Enable bit
1 = Input Pin Digital filter is enabled
\(0=\) Input Pin Digital filter is disabled (bypassed)
bit 13-11 QFDIV<2:0>: QEAx/QEBx/INDXx/HOMEx Digital Input Filter Clock Divide Select bits
\(111=1: 256\) clock divide
\(110=1: 64\) clock divide
\(101=1: 32\) clock divide
\(100=1: 16\) clock divide
011 = 1:8 clock divide
\(010=1: 4\) clock divide
\(001=1: 2\) clock divide
\(000=1: 1\) clock divide
bit 10-9 OUTFNC<1:0>: QEI Module Output Function Mode Select bits
11 = The CTNCMPx pin goes high when QEI1LEC \(\geq\) POSxCNT \(\geq\) QEI1GEC
\(10=\) The CTNCMPx pin goes high when POSxCNT \(\leq\) QEI1LEC
\(01=\) The CTNCMPx pin goes high when POSxCNT \(\geq\) QEI1GEC
\(00=\) Output is disabled
bit 8 SWPAB: Swap QEA and QEB Inputs bit
1 = QEAx and QEBx are swapped prior to quadrature decoder logic
\(0=\) QEAx and QEBx are not swapped
bit 7 HOMPOL: HOMEx Input Polarity Select bit
1 = Input is inverted
\(0=\) Input is not inverted
bit 6 IDXPOL: HOMEx Input Polarity Select bit
1 = Input is inverted
\(0=\) Input is not inverted
bit \(5 \quad\) QEBPOL: QEBx Input Polarity Select bit
1 = Input is inverted
\(0=\) Input is not inverted
bit 4 QEAPOL: QEAx Input Polarity Select bit
1 = Input is inverted
\(0=\) Input is not inverted
bit 3 HOME: Status of HOMEx Input Pin After Polarity Control
\(1=\operatorname{Pin}\) is at logic ' 1 '
\(0=\) Pin is at logic ' 0 '

\section*{REGISTER 17-2: QEI1IOC: QEI I/O CONTROL REGISTER (CONTINUED)}
bit 2 INDEX: Status of INDXX Input Pin After Polarity Control
\(1=\operatorname{Pin}\) is at logic ' 1 '
\(0=\) Pin is at logic ' 0 ’
bit 1
QEB: Status of QEBx Input Pin After Polarity Control And SWPAB Pin Swapping
\(1=\) Pin is at logic ' 1 '
\(0=\) Pin is at logic ' 0 ’
bit \(0 \quad\) QEA: Status of QEAx Input Pin After Polarity Control And SWPAB Pin Swapping
\(1=\) Pin is at logic ' 1 '
\(0=\) Pin is at logic ' 0 ’

REGISTER 17-3: QEI1STAT: QEI STATUS REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline U-0 & U-0 & HS, RC-0 & R/W-0 & HS, RC-0 & R/W-0 & HS, RC-0 & R/W-0 \\
\hline - & - & PCHEQIRQ & PCHEQIEN & PCLEQIRQ & PCLEQIEN & POSOVIRQ & POSOVIEN \\
\hline \multicolumn{7}{|l|}{bit 15} & bit 8 \\
\hline HS, RC-0 & R/W-0 & HS, RC-0 & R/W-0 & HS, RC-0 & R/W-0 & HS, RC-0 & R/W-0 \\
\hline PCIIRQ \({ }^{(1)}\) & PCIIEN & VELOVIRQ & VELOVIEN & HOMIRQ & HOMIEN & IDXIRQ & IDXIEN \\
\hline bit 7 & & & & & & & bit 0 \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend: & HS = Set by Hardware & \(C=\) Cleared by Software \\
\(R=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) Unimplemented bit, read as ' 0 ' \\
\(-\mathrm{n}=\) Value at POR & \(' 1\) ' = Bit is set & \(' 0\) ' = Bit is cleared \(\quad \mathrm{x}=\) Bit is unknown \\
\hline
\end{tabular}
bit 15-14 Unimplemented: Read as ' 0 '
bit 13 PCHEQIRQ: Position Counter Greater Than or Equal Compare Status bit
1 = POSxCNT \(\geq\) QEI1GEC
0 = POSxCNT < QEI1GEC
bit 12 PCHEQIEN: Position Counter Greater Than or Equal Compare Interrupt Enable bit
1 = Interrupt is enabled
\(0=\) Interrupt is disabled
bit 11 PCLEQIRQ: Position Counter Less Than or Equal Compare Status bit
1 = POSxCNT \(\leq\) QEI1LEC
0 = POSxCNT > QEI1LEC
bit 10 PCLEQIEN: Position Counter Less Than or Equal Compare Interrupt Enable bit
1 = Interrupt is enabled
\(0=\) Interrupt is disabled
bit 9 POSOVIRQ: Position Counter Overflow Status bit
1 = Overflow has occurred
\(0=\) No overflow has occurred
bit 8 POSOVIEN: Position Counter Overflow Interrupt Enable bit
1 = Interrupt is enabled
\(0=\) Interrupt is disabled
bit \(7 \quad\) PCIIRQ: Position Counter (Homing) Initialization Process Complete Status bit \({ }^{(1)}\)
1 = POSxCNT was reinitialized
0 = POSxCNT was not reinitialized
bit 6 PCIIEN: Position Counter (Homing) Initialization Process Complete interrupt Enable bit
1 = Interrupt is enabled
\(0=\) Interrupt is disabled
bit 5 VELOVIRQ: Velocity Counter Overflow Status bit
1 = Overflow has occurred
\(0=\) No overflow has not occurred
bit 4 VELOVIEN: Velocity Counter Overflow Interrupt Enable bit
1 = Interrupt is enabled
\(0=\) Interrupt is disabled
bit 3 HOMIRQ: Status Flag for Home Event Status bit
1 = Home event has occurred
\(0=\) No Home event has occurred
bit 2 HOMIEN: Home Input Event Interrupt Enable bit
1 = Interrupt is enabled
\(0=\) Interrupt is disabled

Note 1: This status bit is only applicable to PIMOD<2:0> modes ' 011 ' and ' 100 '.

REGISTER 17-3: QEI1STAT: QEI STATUS REGISTER (CONTINUED)
bit 1 IDXIRQ: Status Flag for Index Event Status bit
1 = Index event has occurred
0 = No Index event has occurred
bit \(0 \quad\) IDXIEN: Index Input Event Interrupt Enable bit
1 = Interrupt is enabled
0 = Interrupt is disabled

Note 1: This status bit is only applicable to PIMOD<2:0> modes ' 011 ' and ' 100 '.

\section*{REGISTER 17-4: POSxCNTH: POSITION COUNTER HIGH WORD REGISTER}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline R/W-0 & R/W-0 \\
\hline \multicolumn{8}{|c|}{POSCNT<31:24>} \\
\hline bit 15 & & & & & & & bit 8 \\
\hline R/W-0 & R/W-0 \\
\hline \multicolumn{8}{|c|}{POSCNT<23:16>} \\
\hline bit 7 & & & & & & & bit 0 \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1\) ' \(=\) Bit is set & \(' 0\) ' \(=\) Bit is cleared
\end{tabular}\(\quad x=\) Bit is unknown
bit 15-0 POSCNT<31:16>: High word used to form 32-bit Position Counter Register (POSxCNT) bits

\section*{REGISTER 17-5: POSxCNTL: POSITION COUNTER LOW WORD REGISTER}
\begin{tabular}{|llllllll|}
\hline R/W-0 & R/W-0 \\
\hline & & & POSCNT<15:8> & & & \\
\hline bit 15 & & & & & & & bit 8 \\
\hline
\end{tabular}
\begin{tabular}{|llllllll|}
\hline\(R / W-0\) & \(R / W-0\) \\
\hline & & \(P O S C N T<7: 0>\) & & & \\
\hline bit 7 & & & & & bit 0 \\
\hline
\end{tabular}

Legend:
\begin{tabular}{lll}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1 '=\) Bit is set & \(' 0\) ' \(=\) Bit is cleared \\
\hline
\end{tabular}
bit 15-0 Position Counter<15:0>: Low word used to form 32-bit Position Counter Register (POSxCNT) bits

REGISTER 17-6: POSxHLD: POSITION COUNTER HOLD REGISTER
\begin{tabular}{|llllllll|}
\hline R/W-0 & R/W-0 \\
\hline & & & POSHLD<15:8> & & & \\
\hline bit 15 & & & & & & bit 8 \\
\hline
\end{tabular}
\begin{tabular}{|llllllll|}
\hline R/W-0 & R/W-0 \\
\hline & & & POSHLD<7:0> & & & \\
\hline bit 7 & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend: & \\
\(R=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) Unimplemented bit, read as ' 0 ' \\
\(-\mathrm{n}=\) Value at POR & \(' 1\) ' = Bit is set & ' 0 ' = Bit is cleared \\
\hline
\end{tabular}
bit 15-0 POSHLD<15:0>: Hold register bits for reading and writing POSxCNTH

\section*{REGISTER 17-7: VELxCNT: VELOCITY COUNTER REGISTER}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline R/W-0 & R/W-0 \\
\hline \multicolumn{8}{|c|}{VELCNT<15:8>} \\
\hline bit 15 & & & & & & & bit 8 \\
\hline R/W-0 & R/W-0 \\
\hline \multicolumn{8}{|c|}{VELCNT<7:0>} \\
\hline bit 7 & & & & & & & bit 0 \\
\hline
\end{tabular}

\section*{Legend:}
\(R=\) Readable bit
\(-n=\) Value at POR
\(W=\) Writable bit
\(' 1\) ' \(=\) Bit is set
\(\mathrm{U}=\) Unimplemented bit, read as ' 0 '
' 0 ' = Bit is cleared
\(x=\) Bit is unknown
bit 15-0 VELCNT<15:0>: Velocity Counter bits

\section*{REGISTER 17-8: INDXxCNTH: INDEX COUNTER HIGH WORD REGISTER}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline R/W-0 & R/W-0 \\
\hline \multicolumn{8}{|c|}{INDXCNT<31:24>} \\
\hline bit 15 & & & & & & & bit 8 \\
\hline R/W-0 & R/W-0 \\
\hline \multicolumn{8}{|c|}{INDXCNT<23:16>} \\
\hline bit 7 & & & & & & & bit 0 \\
\hline \multicolumn{8}{|l|}{Legend:} \\
\hline \(\mathrm{R}=\) Readable bit & & W = Writable bit & & \(\mathrm{U}=\) Unimp & ed bit, r & as '0' & \\
\hline \(-\mathrm{n}=\) Value at POR & & ' 1 ' = Bit is set & & ' 0 ' = Bit is & & \(\mathrm{x}=\mathrm{Bit}\) is & \\
\hline
\end{tabular}
bit 15-0 INDXCNT<31:16>: High word used to form 32-bit Index Counter Register (INDXxCNT) bits

REGISTER 17-9: INDXxCNTL: INDEX COUNTER LOW WORD REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline R/W-0 & R/W-0 \\
\hline \multicolumn{8}{|c|}{INDXCNT<15:8>} \\
\hline bit 15 & & & & & & & bit 8 \\
\hline R/W-0 & R/W-0 \\
\hline \multicolumn{8}{|c|}{INDXCNT<7:0>} \\
\hline bit 7 & & & & & & & bit 0 \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{|c|c|c|c|}
\hline \(\mathrm{R}=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) Unimplemente & as ' 0 ' \\
\hline -n = Value at POR & ' 1 ' = Bit is set & ' 0 ' = Bit is cleared & \(x=\) Bit is unknown \\
\hline
\end{tabular}
bit 15-0 INDXCNT<15:0>: Low word used to form 32-bit Index Counter Register (INDXxCNT) bits

REGISTER 17-10: INDXxHLD: INDEX COUNTER HOLD REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline R/W-0 & R/W-0 \\
\hline \multicolumn{8}{|c|}{INDXHLD<15:8>} \\
\hline bit 15 & & & & & & & bit 8 \\
\hline R/W-0 & R/W-0 \\
\hline \multicolumn{8}{|c|}{INDXHLD<7:0>} \\
\hline bit 7 & & & & & & & bit 0 \\
\hline
\end{tabular}

Legend:
\begin{tabular}{lll}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1 '=\) Bit is set & \(' 0\) ' = Bit is cleared
\end{tabular}\(\quad x=\) Bit is unknown
bit 15-0 INDXHLD<15:0>: Hold register for reading and writing INDXxCNTH bits

\section*{REGISTER 17-11: QEIIICH: INITIALIZATION/CAPTURE HIGH WORD REGISTER}
\begin{tabular}{|llllllll|}
\hline R/W-0 & R/W-0 \\
\hline & & QEIIC \(<31: 24>\) & & & & \\
\hline bit 15 & & & & & & & bit 8 \\
\hline
\end{tabular}
\begin{tabular}{|llllllll|}
\hline R/W-0 & R/W-0 \\
\hline \multicolumn{7}{l|}{} & QEIIC<23:16> \\
\hline bit 7 & & & & & \\
\hline
\end{tabular}
Legend:
\begin{tabular}{lll}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1 '=\) Bit is set & \(' 0\) ' \(=\) Bit is cleared
\end{tabular}
bit 15-0 QEIIC<31:16>: High word used to form 32-bit Initialization/Capture Register (QEI1IC) bits

REGISTER 17-12: QEI1ICL: INITIALIZATION/CAPTURE LOW WORD REGISTER
\begin{tabular}{|llllllll|}
\hline\(R / W-0\) & \(R / W-0\) \\
\hline & & QEIIC<15:8> & & & \\
\hline bit 15 & & & & & & bit 8 \\
\hline
\end{tabular}
\begin{tabular}{|llllllll|}
\hline\(R / W-0\) & \(R / W-0\) \\
\hline & & QEIIC<7:0> & & & \\
\hline bit 7 & & & & & & bit 0 \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend: & & \\
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1\) ' = Bit is set & \(' 0\) ' = Bit is cleared \\
\hline
\end{tabular}
bit 15-0 QEIIC<15:0>: Low word used to form 32-bit Initialization/Capture Register (QEI1IC) bits

REGISTER 17-13: QEIILECH: LESS THAN OR EQUAL COMPARE HIGH WORD REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline R/W-0 & R/W-0 \\
\hline \multicolumn{8}{|c|}{QEILEC<31:24>} \\
\hline bit 15 & & & & & & & bit 8 \\
\hline R/W-0 & R/W-0 \\
\hline \multicolumn{8}{|c|}{QEILEC<23:16>} \\
\hline bit 7 & & & & & & & bit 0 \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(\mathrm{R}=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) Unimplemented bit, read as ' 0 ' \\
\(-\mathrm{n}=\) Value at POR & \(' 1\) ' = Bit is set & \(' 0\) = Bit is cleared
\end{tabular}
bit 15-0 QEILEC<31:16>: High word used to form 32-bit Less Than or Equal Compare Register (QEI1LEC) bits

REGISTER 17-14: QEI1LECL: LESS THAN OR EQUAL COMPARE LOW WORD REGISTER
\begin{tabular}{|llllllll|}
\hline R/W-0 & R/W-0 \\
\hline & & QEILEC<15:8> & & & \\
\hline bit 15 & & & & & & & bit 8 \\
\hline
\end{tabular}
\begin{tabular}{|llllllll|}
\hline\(R / W-0\) & \(R / W-0\) & R/W-0 \\
\hline & & QEILEC \(<7: 0>\) & & & \\
\hline bit 7 & & & & & \\
\hline
\end{tabular}

bit 15-0 QEILEC<15:0>: Low word used to form 32-bit Less Than or Equal Compare Register (QEI1LEC) bits

REGISTER 17-15: QEIIGECH: GREATER THAN OR EQUAL COMPARE HIGH WORD REGISTER
\begin{tabular}{|llllllll|}
\hline R/W-0 & R/W-0 \\
\hline & & QEIGEC \(<31: 24>\) & & & \\
\hline bit 15 & & & & & & bit 8 \\
\hline
\end{tabular}
\begin{tabular}{|llllllll|}
\hline R/W-0 & R/W-0 \\
\hline & & QEIGEC<23:16> & & & \\
\hline bit 7 & & & & bit 0 \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{|c|c|c|c|}
\hline \(\mathrm{R}=\) Readable bit & W = Writable bit & \(\mathrm{U}=\) Unimplemen & as ' 0 ' \\
\hline -n = Value at POR & ' 1 ' = Bit is set & ' 0 ' = Bit is cleared & \(\mathrm{x}=\mathrm{Bit}\) is unknown \\
\hline
\end{tabular}
bit 15-0 QEIGEC<31:16>: High word used to form 32-bit Greater Than or Equal Compare Register (QEI1GEC) bits

REGISTER 17-16: QEI1GECL: GREATER THAN OR EQUAL COMPARE LOW WORD REGISTER
\begin{tabular}{|llllllll|}
\hline R/W-0 & R/W-0 \\
\hline & & QEIGEC \(<15: 8>\) & & & \\
\hline bit 15 & & & & & & & bit 8 \\
\hline
\end{tabular}
\begin{tabular}{|llllllll|}
\hline R/W-0 & R/W-0 \\
\hline & & QEIGEC \(<7: 0>\) & & & \\
\hline bit 7 & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|lll}
\hline Legend: & & \\
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1\) ' = Bit is set & \(' 0\) ' = Bit is cleared \\
\hline
\end{tabular}
bit 15-0 QEIGEC<15:0>: Low word used to form 32-bit Greater Than or Equal Compare Register (QEI1GEC) bits

REGISTER 17-17: INTxTMRH: INTERVAL TIMER HIGH WORD REGISTER
\begin{tabular}{|llllllll|}
\hline R/W-0 & R/W-0 \\
\hline & & INTTMR<31:24> & & & \\
\hline bit 15 & & & & & & & bit 8 \\
\hline
\end{tabular}
\begin{tabular}{|llllllll|}
\hline R/W-0 & R/W-0 \\
\hline & & & INTTMR<23:16> & & & \\
\hline bit 7 & & & & & & & bit 0 \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend: & & \\
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1\) ' = Bit is set & \(' 0\) ' \(=\) Bit is cleared \\
\hline
\end{tabular}
bit 15-0 INTTMR<31:16>: High word used to form 32-bit Interval Timer Register (INTxTMR) bits

REGISTER 17-18: INTxTMRL: INTERVAL TIMER LOW WORD REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline R/W-0 & R/W-0 \\
\hline \multicolumn{8}{|c|}{INTTMR<15:8>} \\
\hline bit 15 & & & & & & & bit 8 \\
\hline R/W-0 & R/W-0 \\
\hline \multicolumn{8}{|c|}{INTTMR<7:0>} \\
\hline bit 7 & & & & & & & bit 0 \\
\hline
\end{tabular}

\section*{Legend:}
\(R=\) Readable bit
\(-n=\) Value at POR
\(W=\) Writable bit
' 1 ' \(=\) Bit is set
\(\mathrm{U}=\) Unimplemented bit, read as ' 0 '
' 0 ' = Bit is cleared
\(x=\) Bit is unknown
bit 15-0 INTTMR<15:0>: Low word used to form 32-bit Interval Timer Register (INTxTMR) bits

\section*{REGISTER 17-19: INTxHLDH: INTERVAL TIMER HOLD HIGH WORD REGISTER}

bit 15-0 INTHLD<31:16>: Hold register for reading and writing INTxTMRH bits

REGISTER 17-20: INTxHLDL: INTERVAL TIMER HOLD LOW WORD REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline R/W-0 & R/W-0 \\
\hline \multicolumn{8}{|c|}{INTHLD<15:8>} \\
\hline bit 15 & & & & & & & bit 8 \\
\hline R/W-0 & R/W-0 \\
\hline \multicolumn{8}{|c|}{INTHLD<7:0>} \\
\hline bit 7 & & & & & & & bit 0 \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(\mathrm{R}=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) Unimplemented bit, read as ' 0 ' \\
\(-\mathrm{n}=\) Value at POR & ' 1 ' = Bit is set & \(' 0\) ' = Bit is cleared
\end{tabular}
bit 15-0 INTHLD<15:0>: Hold register for reading and writing INTxTMRL bits

\subsection*{18.0 SERIAL PERIPHERAL INTERFACE (SPI)}

Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X, and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 18. "Serial Peripheral Interface (SPI)" (DS70569) of the "dsPIC33E/PIC24E Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The SPI module is a synchronous serial interface useful for communicating with other peripheral or microcontroller devices. These peripheral devices can be serial EEPROMs, shift registers, display drivers, A/D converters, etc. The SPI module is compatible with Motorola's SPI and SIOP interfaces.
The dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X, and PIC24EPXXXGP/MC20X device family offers two SPI modules on a single device. These modules, which are designated as SPI1 and SPI2, are functionally identical. Each SPI module includes an eight-word FIFO buffer and allows DMA bus connections. When using the SPI module with DMA, FIFO operation can be disabled.

Note: In this section, the SPI modules are referred to together as SPIx, or separately as SPI1 and SPI2. Special Function Registers follow a similar notation. For example, SPIxCON refers to the control register for the SPI1 and SPI2 module.

The SPI1 module uses dedicated pins which allow for a higher speed when using SPI1. The SPI2 module takes advantage of the Peripheral Pin Select (PPS) feature to allow for greater flexibility in pin configuration of the SPI2 module, but results in a lower maximum speed for SPI2. See Section 30.0 "Electrical Characteristics" for more information.
The SPIx serial interface consists of four pins, as follows:
- SDIx: Serial Data Input
- SDOx: Serial Data Output
- SCKx: Shift Clock Input or Output
- \(\overline{\text { SSx }} / F S Y N C x\) : Active-Low Slave Select or Frame Synchronization I/O Pulse
The SPIx module can be configured to operate with two, three or four pins. In 3-pin mode, \(\overline{\mathrm{SSx}}\) is not used. In 2-pin mode, neither SDOx nor SSx is used.
Figure 18-1 illustrates the block diagram of the SPI module in Standard and Enhanced modes.

FIGURE 18-1: SPIx MODULE BLOCK DIAGRAM


Note 1: In Standard mode, the FIFO is only one level deep.

\section*{REGISTER 18-1: SPIxSTAT: SPIx STATUS AND CONTROL REGISTER}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline R/W-0 & U-0 & R/W-0 & U-0 & U-0 & R/W-0 & R/W-0 & R/W-0 \\
\hline SPIEN & - & SPISIDL & - & - & \multicolumn{3}{|c|}{SPIBEC<2:0>} \\
\hline \multicolumn{8}{|l|}{bit 15 bit 8} \\
\hline R/W-0 & R/C-0, HS & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R-0, HS, HC & R-0, HS, HC \\
\hline SRMPT & SPIROV & SRXMPT & & L<2:0> & & SPITBF & SPIRBF \\
\hline \multicolumn{8}{|l|}{bit 7 bit 0} \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend: & \(C=\) Clearable bit & \\
\(R=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) Unimplemented bit, read as ' 0 ' \\
\(-\mathrm{n}=\) Value at POR & \(' 1\) ' = Bit is set & ' 0 ' = Bit is cleared \(\quad x=\) Bit is unknown \\
\(H S=\) Set in Hardware bit & \(H C=\) Cleared in Hardware bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\hline
\end{tabular}
\begin{tabular}{ll} 
bit 15 & SPIEN: SPIx Enable bit \\
& \begin{tabular}{l}
\(1=\) Enables the module and configures SCKx, SDOx, SDIx and \(\overline{\text { SSx }}\) as serial port pins \\
\\
\\
bit 14
\end{tabular}\(\quad\)\begin{tabular}{l} 
Unimplemented: Read as ' 0 ' \\
bit 13
\end{tabular}\(\quad\)\begin{tabular}{l} 
SPISIDL: Stop in Idle Mode bit
\end{tabular}
\end{tabular}
bit 12-11 Unimplemented: Read as ' 0 '
bit 10-8 SPIBEC<2:0>: SPIx Buffer Element Count bits (valid in Enhanced Buffer mode)
Master mode:
Number of SPIx transfers are pending.
Slave mode:
Number of SPIx transfers are unread.
bit 7 SRMPT: Shift Register (SPIxSR) Empty bit (valid in Enhanced Buffer mode)
1 = SPIx Shift register is empty and ready to send or receive the data
0 = SPIx Shift register is not empty
bit 6 SPIROV: Receive Overflow Flag bit
1 = A new byte/word is completely received and discarded. The user application has not read the previous data in the SPIxBUF register
\(0=\) No overflow has occurred
bit 5 SRXMPT: Receive FIFO Empty bit (valid in Enhanced Buffer mode)
1 = RX FIFO is empty
\(0=\) RX FIFO is not empty
bit 4-2 SISEL<2:0>: SPIx Buffer Interrupt Mode bits (valid in Enhanced Buffer mode)
111 = Interrupt when the SPIx transmit buffer is full (SPIxTBF bit is set)
110 = Interrupt when last bit is shifted into SPIxSR, and as a result, the TX FIFO is empty
\(101=\) Interrupt when the last bit is shifted out of SPIxSR, and the transmit is complete
\(100=\) Interrupt when one data is shifted into the SPIxSR, and as a result, the TX FIFO has one open memory location
011 = Interrupt when the SPIx receive buffer is full (SPIxRBF bit set)
\(010=\) Interrupt when the SPIx receive buffer is \(3 / 4\) or more full
\(001=\) Interrupt when data is available in the receive buffer (SRMPT bit is set)
\(000=\) Interrupt when the last data in the receive buffer is read, as a result, the buffer is empty
(SRXMPT bit set)

\section*{REGISTER 18-1: SPIxSTAT: SPIx STATUS AND CONTROL REGISTER (CONTINUED)}
bit \(1 \quad\) SPITBF: SPIx Transmit Buffer Full Status bit
1 = Transmit not yet started, SPIxTXB is full
\(0=\) Transmit started, SPIxTXB is empty
Standard Buffer Mode:
Automatically set in hardware when core writes to the SPIxBUF location, loading SPIxTXB.
Automatically cleared in hardware when SPIx module transfers data from SPIxTXB to SPIxSR.
Enhanced Buffer Mode:
Automatically set in hardware when CPU writes to the SPIxBUF location, loading the last available buffer location. Automatically cleared in hardware when a buffer location is available for a CPU write operation.
bit \(0 \quad\) SPIRBF: SPIx Receive Buffer Full Status bit
1 = Receive complete, SPIxRXB is full
\(0=\) Receive is incomplete, SPIxRXB is empty
Standard Buffer Mode:
Automatically set in hardware when SPIx transfers data from SPIxSR to SPIxRXB. Automatically cleared in hardware when core reads the SPIxBUF location, reading SPIxRXB.
Enhanced Buffer Mode:
Automatically set in hardware when SPIx transfers data from SPIxSR to the buffer, filling the last unread buffer location. Automatically cleared in hardware when a buffer location is available for a transfer from SPIxSR.

REGISTER 18-2: SPIxCON1: SPIx CONTROL REGISTER 1
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline U-0 & U-0 & U-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 \\
\hline- & - & - & DISSCK & DISSDO & MODE16 & SMP & CKE \(^{(\boldsymbol{1})}\) \\
\hline bit 15 & bit 8 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline R/W-0 & R/W-0 \\
\hline SSEN \({ }^{(2)}\) & CKP & MSTEN & & SPRE<2:0> & & & \\
\hline \multicolumn{8}{|l|}{bit \(7 \times\) bit 0} \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(\mathrm{R}=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) Unimplemented bit, read as ' 0 ' \\
\(-\mathrm{n}=\) Value at POR & \(' 1\) ' = Bit is set & \(' 0\) ' = Bit is cleared
\end{tabular}
bit 15-13 Unimplemented: Read as ' 0 '
bit 12 DISSCK: Disable SCKx Pin bit (SPI Master modes only)
1 = Internal SPI clock is disabled, pin functions as I/O
0 = Internal SPI clock is enabled
bit 11 DISSDO: Disable SDOx Pin bit
1 = SDOx pin is not used by the module; pin functions as I/O
\(0=\) SDOx pin is controlled by the module
bit 10 MODE16: Word/Byte Communication Select bit
1 = Communication is word-wide (16 bits)
0 = Communication is byte-wide ( 8 bits)
bit \(9 \quad\) SMP: SPIx Data Input Sample Phase bit
Master mode:
1 = Input data is sampled at end of data output time
\(0=\) Input data is sampled at middle of data output time
Slave mode:
SMP must be cleared when SPIx is used in Slave mode.
bit 8 CKE: SPIx Clock Edge Select bit \({ }^{(1)}\)
1 = Serial output data changes on transition from active clock state to idle clock state (refer to bit 6)
0 = Serial output data changes on transition from idle clock state to active clock state (refer to bit 6)
bit \(7 \quad\) SSEN: Slave Select Enable bit (Slave mode) \({ }^{(\mathbf{2 )}}\)
\(1=\overline{S S x}\) pin is used for Slave mode
\(0=\overline{\text { SSx }}\) pin is not used by module. Pin is controlled by port function
bit \(6 \quad\) CKP: Clock Polarity Select bit
1 = Idle state for clock is a high level; active state is a low level
\(0=\) Idle state for clock is a low level; active state is a high level
bit 5 MSTEN: Master Mode Enable bit
1 = Master mode
0 = Slave mode
bit 4-2 SPRE<2:0>: Secondary Prescale bits (Master mode)
111 = Reserved
\(110=\) Secondary prescale 2:1
-
-
-
\(000=\) Secondary prescale \(8: 1\)

Note 1: The CKE bit is not used in the Framed SPI modes. Program this bit to ' 0 ' for Framed SPI modes (FRMEN = 1).
2: \(\quad\) This bit must be cleared when \(\mathrm{FRMEN}=1\).

\section*{REGISTER 18-2: SPIxCON1: SPIx CONTROL REGISTER 1 (CONTINUED)}
bit 1-0 PPRE<1:0>: Primary Prescale bits (Master mode)
11 = Reserved
10 = Primary prescale 4:1
01 = Primary prescale 16:1
00 = Primary prescale 64:1

Note 1: The CKE bit is not used in the Framed SPI modes. Program this bit to '0' for Framed SPI modes (FRMEN = 1).
2: \(\quad\) This bit must be cleared when \(\operatorname{FRMEN}=1\).

REGISTER 18-3: SPIxCON2: SPIx CONTROL REGISTER 2
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline R/W-0 & R/W-0 & R/W-0 & U-0 & U-0 & U-0 & U-0 & U-0 \\
\hline FRMEN & SPIFSD & FRMPOL & - & - & - & - & - \\
\hline bit 15 \\
\begin{tabular}{|l|c|c|c|c|c|c|}
\hline U-0 & U-0 & U-0 & U-0 & U-0 & U-0 & R/W-0 \\
\hline - & - & - & - & - & - & RRMDLY
\end{tabular} SPIBEN \\
\hline bit 7 7
\end{tabular}

Legend:
\begin{tabular}{lll}
\(\mathrm{R}=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) Unimplemented bit, read as ' 0 ' \\
\(-\mathrm{n}=\) Value at POR & \(' 1\) ' = Bit is set & \(' 0\) ' = Bit is cleared \(\quad \mathrm{x}=\) Bit is unknown \\
\hline
\end{tabular}
bit 15 FRMEN: Framed SPIx Support bit
1 = Framed SPIx support is enabled ( \(\overline{\mathrm{SSx}}\) pin used as frame sync pulse input/output)
0 = Framed SPIx support is disabled
bit 14 SPIFSD: Frame Sync Pulse Direction Control bit
1 = Frame sync pulse input (slave)
0 = Frame sync pulse output (master)
bit \(13 \quad\) FRMPOL: Frame Sync Pulse Polarity bit
1 = Frame sync pulse is active-high
0 = Frame sync pulse is active-low
bit 12-2 Unimplemented: Read as ' 0 '
bit \(1 \quad\) FRMDLY: Frame Sync Pulse Edge Select bit
1 = Frame sync pulse coincides with first bit clock
0 = Frame sync pulse precedes first bit clock
bit \(0 \quad\) SPIBEN: Enhanced Buffer Enable bit
1 = Enhanced Buffer is enabled
\(0=\) Enhanced Buffer is disabled (Standard mode)

NOTES:

\subsection*{19.0 INTER-INTEGRATED CIRCUIT \({ }^{\text {TM }}\left(\mathbf{I}^{2} \mathbf{C}^{\text {M }}\right.\) )}

Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X, and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 19. "Inter-Integrated Circuit \({ }^{\text {TM }}\left(\mathbf{I}^{2} \mathbf{C}^{\text {TM }}\right.\) )" (DS70330) of the "dsPIC33E/PIC24E Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X, and PIC24EPXXXGP/MC20X family of devices contain two Inter-Integrated Circuit ( \({ }^{2} \mathrm{C}\) ) modules: I2C1 and I 2 C 2 .

The \(\mathrm{I}^{2} \mathrm{C}\) module provides complete hardware support for both Slave and Multi-Master modes of the \(I^{2} \mathrm{C}\) serial communication standard, with a 16-bit interface.
The \(I^{2} \mathrm{C}\) module has a 2-pin interface:
- The SCLx pin is clock.
- The SDAx pin is data.

The \(\mathrm{I}^{2} \mathrm{C}\) module offers the following key features:
- \(\mathrm{I}^{2} \mathrm{C}\) interface supporting both Master and Slave modes of operation.
- \(I^{2} C\) Slave mode supports 7 and 10 -bit address.
- \(I^{2} C\) Master mode supports 7 and 10 -bit address.
- \(I^{2} \mathrm{C}\) port allows bidirectional transfers between master and slaves.
- Serial clock synchronization for \(I^{2} \mathrm{C}\) port can be used as a handshake mechanism to suspend and resume serial transfer (SCLREL control).
- \(\mathrm{I}^{2} \mathrm{C}\) supports multi-master operation, detects bus collision and arbitrates accordingly.
- IPMI support
- SMBus support

FIGURE 19-1: \(\quad I^{2} C^{\text {TM }}\) BLOCK DIAGRAM ( \(x=1\) OR 2)


\section*{REGISTER 19-1: I2CxCON: I2Cx CONTROL REGISTER}
\begin{tabular}{|l|c|c|c|c|c|c|c|c|}
\hline R/W-0 & U-0 & R/W-0 & R/W-1 HC & R/W-0 & R/W-0 & R/W-0 & R/W-0 \\
\hline I2CEN & - & I2CSIDL & SCLREL & IPMIEN \({ }^{(1)}\) & A10M & DISSLW & SMEN \\
\hline bit 15 \\
\begin{tabular}{|l|c|c|c|c|c|c|c|}
\hline
\end{tabular} \\
\hline R/W-0 & R/W-0 & R/W-0 & R/W-0 HC \\
\hline GCEN & STREN & ACKDT & ACKEN & RCEN & PEN & RSEN & SEN \\
\hline bit 7 &
\end{tabular}
\begin{tabular}{|llll|}
\hline Legend: & \(\mathrm{U}=\) Unimplemented bit, read as ' 0 ' & \\
\(\mathrm{R}=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{HS}=\) Set in hardware & \(\mathrm{HC}=\) Cleared in hardware \\
\(-\mathrm{n}=\) Value at POR & \(' 1\) ' = Bit is set & \(' 0\) ' \(=\) Bit is cleared & \(\mathrm{x}=\) Bit is unknown \\
\hline
\end{tabular}
bit 15 I2CEN: I2Cx Enable bit
1 = Enables the I2Cx module and configures the SDAx and SCLx pins as serial port pins
\(0=\) Disables the I2Cx module. All \(I^{2} C^{T M}\) pins are controlled by port functions
bit 14 Unimplemented: Read as ' 0 '
bit 13 I2CSIDL: Stop in Idle Mode bit
1 = Discontinue module operation when device enters an Idle mode
\(0=\) Continue module operation in Idle mode
bit 12
SCLREL: SCLx Release Control bit (when operating as \(\mathrm{I}^{2} \mathrm{C}\) slave)
1 = Release SCLx clock
0 = Hold SCLx clock low (clock stretch)
If STREN = 1:
Bit is R/W (i.e., software can write ' 0 ' to initiate stretch and write ' 1 ' to release clock). Hardware clear at beginning of every slave data byte transmission. Hardware clear at end of every slave address byte reception. Hardware clear at end of every slave data byte reception.
If STREN = 0:
Bit is R/S (i.e., software can only write ' 1 ' to release clock). Hardware clear at beginning of every slave data byte transmission. Hardware clear at tend of every slave address byte reception.
bit 11 IPMIEN: Intelligent Peripheral Management Interface (IPMI) Enable bit \({ }^{(1)}\)
1 = IPMI mode is enabled; all addresses Acknowledged
\(0=\) IPMI mode disabled
bit 10 A10M: 10-bit Slave Address bit
\(1=\mathrm{I} 2 \mathrm{CxADD}\) is a 10 -bit slave address
\(0=12 C x A D D\) is a 7 -bit slave address
bit \(9 \quad\) DISSLW: Disable Slew Rate Control bit
1 = Slew rate control disabled
0 = Slew rate control enabled
bit 8 SMEN: SMBus Input Levels bit
1 = Enable I/O pin thresholds compliant with SMBus specification
0 = Disable SMBus input thresholds
bit 7 GCEN: General Call Enable bit (when operating as \(I^{2} \mathrm{C}\) slave)
1 = Enable interrupt when a general call address is received in the I2CxRSR (module is enabled for reception)
\(0=\) General call address disabled

Note 1: When performing Master operations, ensure that the IPMIEN bit is ' 0 '.

\section*{REGISTER 19-1: I2CxCON: I2Cx CONTROL REGISTER (CONTINUED)}
bit 6 STREN: SCLx Clock Stretch Enable bit (when operating as \(I^{2} \mathrm{C}\) slave) Used in conjunction with SCLREL bit. 1 = Enable software or receive clock stretching 0 = Disable software or receive clock stretching
bit 5 ACKDT: Acknowledge Data bit (when operating as \(I^{2} \mathrm{C}\) master, applicable during master receive) Value that is transmitted when the software initiates an Acknowledge sequence. 1 = Send NACK during Acknowledge 0 = Send ACK during Acknowledge
bit 4 ACKEN: Acknowledge Sequence Enable bit (when operating as \(I^{2} \mathrm{C}\) master, applicable during master receive) 1 = Initiate Acknowledge sequence on SDAx and SCLx pins and transmit ACKDT data bit. Hardware clear at end of master Acknowledge sequence. \(0=\) Acknowledge sequence not in progress
bit 3 RCEN: Receive Enable bit (when operating as \(I^{2} \mathrm{C}\) master) 1 = Enables Receive mode for \(I^{2} C\). Hardware clear at end of eighth bit of master receive data byte. \(0=\) Receive sequence not in progress
bit 2 PEN: Stop Condition Enable bit (when operating as \(I^{2} \mathrm{C}\) master) 1 = Initiate Stop condition on SDAx and SCLx pins. Hardware clear at end of master Stop sequence. 0 = Stop condition not in progress
bit 1 RSEN: Repeated Start Condition Enable bit (when operating as \(I^{2} \mathrm{C}\) master) 1 = Initiate Repeated Start condition on SDAx and SCLx pins. Hardware clear at end of master Repeated Start sequence.
0 = Repeated Start condition not in progress
bit \(0 \quad\) SEN: Start Condition Enable bit (when operating as \(I^{2} \mathrm{C}\) master)
1 = Initiate Start condition on SDAx and SCLx pins. Hardware clear at end of master Start sequence. \(0=\) Start condition not in progress

Note 1: When performing Master operations, ensure that the IPMIEN bit is ' 0 '.

\section*{REGISTER 19-2: I2CxSTAT: I2Cx STATUS REGISTER}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline R-0 HSC & R-0 HSC & U-0 & U-0 & U-0 & R/C-0 HS & R-0 HSC & R-0 HSC \\
\hline ACKSTAT & TRSTAT & - & - & - & BCL & GCSTAT & ADD10 \\
\hline bit 15 & & & & bit 8 \\
\hline
\end{tabular}
\begin{tabular}{|l|c|c|c|c|c|c|c|}
\hline R/C-0 HS & R/C-0 HS & R-0 HSC & \multicolumn{1}{c}{ R/C-0 HSC } & R/C-0 HSC & R-0 HSC & R-0 HSC & R-0 HSC \\
\hline IWCOL & I2COV & D_A & P & S & R_W & RBF & TBF \\
\hline bit 7 & & & & bit 0 \\
\hline
\end{tabular}
\begin{tabular}{|llll|}
\hline Legend: & \(U=\) Unimplemented bit, read as ' 0 ' & \\
\(R=\) Readable bit & \(W=\) Writable bit & \(H S=\) Set in hardware & HSC = Hardware set/cleared \\
\(-n=\) Value at POR & \(' 1\) ' = Bit is set & \(' 0\) ' \(=\) Bit is cleared & \(x=\) Bit is unknown \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline bit 15 & ACKSTAT: Acknowledge Status bit (when operating as \(\mathrm{I}^{2} \mathrm{C}^{\top \mathrm{M}}\) master, applicable to master transmit operation) \\
\hline & \begin{tabular}{l}
1 = NACK received from slave \\
0 = ACK received from slave \\
Hardware set or clear at end of slave Acknowledge.
\end{tabular} \\
\hline bit 14 & \begin{tabular}{l}
TRSTAT: Transmit Status bit (when operating as \(I^{2} \mathrm{C}\) master, applicable to master transmit operation) \\
1 = Master transmit is in progress (8 bits + ACK) \\
\(0=\) Master transmit is not in progress \\
Hardware set at beginning of master transmission. Hardware clear at end of slave Acknowledge.
\end{tabular} \\
\hline bit 13-11 & Unimplemented: Read as '0' \\
\hline bit 10 & \begin{tabular}{l}
BCL: Master Bus Collision Detect bit \\
1 = A bus collision has been detected during a master operation \(0=\) No collision \\
Hardware set at detection of bus collision.
\end{tabular} \\
\hline bit 9 & \begin{tabular}{l}
GCSTAT: General Call Status bit \\
1 = General call address was received \\
\(0=\) General call address was not received \\
Hardware set when address matches general call address. Hardware clear at Stop detection.
\end{tabular} \\
\hline bit 8 & \begin{tabular}{l}
ADD10: 10-bit Address Status bit \\
1 = 10-bit address was matched \\
\(0=10\)-bit address was not matched \\
Hardware set at match of 2nd byte of matched 10-bit address. Hardware clear at Stop detection.
\end{tabular} \\
\hline bit 7 & \begin{tabular}{l}
IWCOL: Write Collision Detect bit \\
\(1=\) An attempt to write the I2CxTRN register failed because the \(I^{2} \mathrm{C}\) module is busy \\
\(0=\) No collision \\
Hardware set at occurrence of write to I2CxTRN while busy (cleared by software).
\end{tabular} \\
\hline bit 6 & \begin{tabular}{l}
I2COV: Receive Overflow Flag bit \\
1 = A byte was received while the I2CxRCV register is still holding the previous byte \\
0 = No overflow \\
Hardware set at attempt to transfer I2CxRSR to I2CxRCV (cleared by software).
\end{tabular} \\
\hline bit 5 & \begin{tabular}{l}
D_A: Data/Address bit (when operating as \(I^{2} \mathrm{C}\) slave) \\
1 = Indicates that the last byte received was data \\
\(0=\) Indicates that the last byte received was device address \\
Hardware clear at device address match. Hardware set by reception of slave byte.
\end{tabular} \\
\hline bit 4 & \begin{tabular}{l}
P: Stop bit \\
1 = Indicates that a Stop bit has been detected last \\
0 = Stop bit was not detected last \\
Hardware set or clear when Start, Repeated Start or Stop detected.
\end{tabular} \\
\hline
\end{tabular}

\section*{REGISTER 19-2: I2CxSTAT: I2Cx STATUS REGISTER (CONTINUED)}
bit \(3 \quad\) S: Start bit
1 = Indicates that a Start (or Repeated Start) bit has been detected last
0 = Start bit was not detected last
Hardware set or clear when Start, Repeated Start or Stop detected.
bit \(2 \quad\) R_W: Read/Write Information bit (when operating as \(I^{2} \mathrm{C}\) slave)
1 = Read - indicates data transfer is output from slave
\(0=\) Write - indicates data transfer is input to slave
Hardware set or clear after reception of \(I^{2} \mathrm{C}\) device address byte.
bit 1 RBF: Receive Buffer Full Status bit
1 = Receive complete, I2CxRCV is full
\(0=\) Receive not complete, I2CxRCV is empty
Hardware set when I2CxRCV is written with received byte. Hardware clear when software reads I2CxRCV.
bit \(0 \quad\) TBF: Transmit Buffer Full Status bit
1 = Transmit in progress, I2CxTRN is full
\(0=\) Transmit complete, I2CxTRN is empty
Hardware set when software writes I2CxTRN. Hardware clear at completion of data transmission.

REGISTER 19-3: I2CxMSK: I2Cx SLAVE MODE ADDRESS MASK REGISTER


\section*{Legend:}
\begin{tabular}{lll}
\(\mathrm{R}=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) Unimplemented bit, read as ' 0 ' \\
\(-\mathrm{n}=\) Value at POR & \(' 1\) ' \(=\) Bit is set & ' 0 ' \(=\) Bit is cleared
\end{tabular}\(\quad \mathrm{x}=\) Bit is unknown
\begin{tabular}{ll} 
bit 15-10 & Unimplemented: Read as '0' \\
bit 9-0 & AMSKx: Mask for Address bit x Select bit \\
& For 10-bit Address:
\end{tabular}

1 = Enable masking for bit Ax of incoming message address; bit match is not required in this position
\(0=\) Disable masking for bit Ax; bit match is required in this position
For 7-bit Address (I2CxMSK<6:0> only):
\(1=\) Enable masking for bit \(A x+1\) of incoming message address; bit match is not required in this position
\(0=\) Disable masking for bit \(\mathrm{Ax}+1\); bit match is required in this position

NOTES:

\subsection*{20.0 UNIVERSAL ASYNCHRONOUS RECEIVER TRANSMITTER (UART)}

Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X, and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 17. "UART" (DS70582) of the "dsPIC33E/PIC24E Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X, and PIC24EPXXXGP/MC20X family of devices contain two UART modules.
The Universal Asynchronous Receiver Transmitter (UART) module is one of the serial I/O modules available in the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X, and PIC24EPXXXGP/ MC20X device family. The UART is a full-duplex asynchronous system that can communicate with peripheral devices, such as personal computers, LIN, RS-232 and RS-485 interfaces. The module also supports a hardware flow control option with the UxCTS and UxRTS pins and also includes an IrDA \({ }^{\circledR}\) encoder and decoder.

Note: Hardware flow control using \(\overline{\mathrm{UxRTS}}\) and \(\overline{\text { UxCTS }}\) is not available on all pin count devices. See the "Pin Diagrams" section for availability.

The primary features of the UART module are:
- Full-Duplex, 8- or 9-bit Data Transmission through the UxTX and UxRX pins
- Even, Odd or No Parity Options (for 8-bit data)
- One or two stop bits
- Hardware flow control option with \(\overline{U x C T S}\) and UxRTS pins
- Fully integrated Baud Rate Generator with 16-bit prescaler
- Baud rates ranging from 3.75 Mbps to 57 bps at 16 x mode at 60 MIPS
- Baud rates ranging from 15 Mbps to 228 bps at 4 x mode at 60 MIPS
- 4-deep First-In First-Out (FIFO) Transmit Data buffer
- 4-deep FIFO Receive Data buffer
- Parity, framing and buffer overrun error detection
- Support for 9-bit mode with Address Detect (9th bit = 1)
- Transmit and Receive interrupts
- A separate interrupt for all UART error conditions
- Loopback mode for diagnostic support
- Support for Sync and Break characters
- Support for automatic baud rate detection
- IrDA \({ }^{\circledR}\) encoder and decoder logic
- 16x baud clock output for IrDA \({ }^{\circledR}\) support

A simplified block diagram of the UART module is shown in Figure 20-1. The UART module consists of these key hardware elements:
- Baud Rate Generator
- Asynchronous Transmitter
- Asynchronous Receiver

FIGURE 20-1: UART SIMPLIFIED BLOCK DIAGRAM


REGISTER 20-1: UxMODE: UARTx MODE REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{1}{|c|}{ R/W-0 } & U-0 & R/W-0 & R/W-0 & R/W-0 & U-0 & R/W-0 & R/W-0 \\
\hline UARTEN \(^{(\mathbf{1})}\) & - & USIDL & IREN \(^{(2)}\) & RTSMD & - & UEN<1:0> \\
\hline bit 15
\end{tabular}
\begin{tabular}{l}
\begin{tabular}{|l|c|c|c|c|c|c|}
\hline \multicolumn{1}{|c|}{ R/W-0 HC } & R/W-0 & R/W-0 HC & R/W-0 & R/W-0 & R/W-0 & R/W-0
\end{tabular} R/W-0 \\
\hline \multicolumn{1}{|c|}{ WAKE } \\
\hline bit 7 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multirow[t]{2}{*}{bit 15} & UARTEN: UARTx Enable bit \\
\hline & \begin{tabular}{l}
1 = UARTx is enabled; all UARTx pins are controlled by UARTx as defined by UEN<1:0> \\
\(0=\) UARTx is disabled; all UARTx pins are controlled by PORT latches; UARTx power consumption minimal
\end{tabular} \\
\hline bit 14 & Unimplemented: Read as '0' \\
\hline \multirow[t]{2}{*}{bit 13} & USIDL: Stop in Idle Mode bit \\
\hline & \begin{tabular}{l}
1 = Discontinue module operation when device enters Idle mode \\
\(0=\) Continue module operation in Idle mode
\end{tabular} \\
\hline \multirow[t]{3}{*}{bit 12} & IREN: IrDA \({ }^{\circledR}\) Encoder and Decoder Enable bit \({ }^{(2)}\) \\
\hline & \(1=1 r D A\) encoder and decoder enabled \\
\hline & 0 = IrDA encoder and decoder disabled \\
\hline \multirow[t]{3}{*}{bit 11} & RTSMD: Mode Selection for \(\overline{U x R T S}\) Pin bit \\
\hline & \(1=\overline{\text { UxRTS }}\) pin in Simplex mode \\
\hline & \(0=\overline{\text { UxRTS }}\) pin in Flow Control mode \\
\hline bit 10 & Unimplemented: Read as ' 0 ' \\
\hline \multirow[t]{4}{*}{bit 9-8} & UEN<1:0>: UARTx Pin Enable bits \\
\hline & \(11=U x T X, U x R X\) and BCLKx pins are enabled and used; \(\overline{U x C T S}\) pin controlled by PORT latches \({ }^{(3)}\) \(10=U x T X, U x R X, \overline{U x C T S}\) and \(\overline{U R R T S}\) pins are enabled and used \({ }^{(4)}\) \\
\hline & \(01=U x T X, U x R X\) and \(\overline{U x R T S}\) pins are enabled and used; \(\overline{\text { UxCTS }}\) pin controlled by PORT latches \({ }^{(4)}\) \\
\hline & \(00=U x T X\) and UxRX pins are enabled and used; \(\overline{U x C T S}\) and \(\overline{U x R T S} / B C L K x\) pins controlled by PORT latches \\
\hline \multirow[t]{2}{*}{bit 7} & WAKE: Wake-up on Start bit Detect During Sleep Mode Enable bit \\
\hline & ```
1 = UARTx continues to sample the UxRX pin; interrupt generated on falling edge; bit cleared
    in hardware on following rising edge
0 = No wake-up enabled
``` \\
\hline \multirow[t]{3}{*}{bit 6} & LPBACK: UARTx Loopback Mode Select bit \\
\hline & 1 = Enable Loopback mode \\
\hline & 0 = Loopback mode is disabled \\
\hline \multirow[t]{2}{*}{bit 5} & ABAUD: Auto-Baud Enable bit \\
\hline & ```
1 = Enable baud rate measurement on the next character - requires reception of a Sync field (55h)
 before other data; cleared in hardware upon completion
0 = Baud rate measurement disabled or completed
``` \\
\hline
\end{tabular}

Note 1: Refer to Section 17. "UART" (DS70582) in the "dsPIC33E/PIC24E Family Reference Manual" for information on enabling the UART module for receive or transmit operation.
2: This feature is only available for the \(16 x\) BRG mode ( \(B R G H=0\) ).
3: This feature is only available on 44-pin and 64-pin devices.
4: This feature is only available on 64-pin devices.

\section*{REGISTER 20-1: UxMODE: UARTx MODE REGISTER (CONTINUED)}
bit \(4 \quad\) URXINV: Receive Polarity Inversion bit
1 = UxRX Idle state is ' 0 '
\(0=\mathrm{UxRX}\) Idle state is ' 1 '
bit 3 BRGH: High Baud Rate Enable bit
\(1=\) BRG generates 4 clocks per bit period ( \(4 x\) baud clock, High-Speed mode)
\(0=\) BRG generates 16 clocks per bit period (16x baud clock, Standard mode)
bit 2-1 PDSEL<1:0>: Parity and Data Selection bits
11 = 9-bit data, no parity
\(10=8\)-bit data, odd parity
\(01=8\)-bit data, even parity
00 = 8-bit data, no parity
bit \(0 \quad\) STSEL: Stop Bit Selection bit
1 = Two Stop bits
\(0=\) One Stop bit

Note 1: Refer to Section 17. "UART" (DS70582) in the "dsPIC33E/PIC24E Family Reference Manual" for information on enabling the UART module for receive or transmit operation.
2: This feature is only available for the \(16 x\) BRG mode ( \(B R G H=0\) ).
3: This feature is only available on 44-pin and 64-pin devices.
4: This feature is only available on 64-pin devices.

REGISTER 20-2: UxSTA: UARTx STATUS AND CONTROL REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline R/W-0 & R/W-0 & R/W-0 & U-0 & R/W-0 HC & R/W-0 & R-0 & R-1 \\
\hline UTXISEL1 & UTXINV & UTXISEL0 & - & UTXBRK & UTXEN \(^{\mathbf{1})}\) & UTXBF & TRMT \\
\hline bit 15
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline R/W-0 & R/W-0 & R/W-0 & R-1 & R-0 & R-0 & R/C-0 & R-0 \\
\hline URXISEL<1:0> & ADDEN & RIDLE & PERR & FERR & OERR & URXDA \\
\hline bit 7 &
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend: & \(H C=\) Hardware cleared & \\
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1\) ' = Bit is set & \(' 0\) ' = Bit is cleared \\
\hline
\end{tabular}
bit 15,13 UTXISEL<1:0>: Transmission Interrupt Mode Selection bits
11 = Reserved; do not use
\(10=\) Interrupt when a character is transferred to the Transmit Shift Register, and as a result, the transmit buffer becomes empty
01 = Interrupt when the last character is shifted out of the Transmit Shift Register; all transmit operations are completed
\(00=\) Interrupt when a character is transferred to the Transmit Shift Register (this implies there is at least one character open in the transmit buffer)
bit 14 UTXINV: Transmit Polarity Inversion bit
If IREN \(=0\) :
1 = UxTX Idle state is ' 0 '
\(0=U \times T X\) Idle state is ' 1 '
If IREN = 1:
\(1=\operatorname{IrDA}\) encoded UxTX Idle state is ' 1 '
\(0=\) IrDA encoded UxTX Idle state is ' 0 '
bit 12 Unimplemented: Read as ' 0 '
bit 11 UTXBRK: Transmit Break bit
1 = Send Sync Break on next transmission - Start bit, followed by twelve ' 0 ’ bits, followed by Stop bit; cleared by hardware upon completion
\(0=\) Sync Break transmission disabled or completed
bit 10 UTXEN: Transmit Enable bit \({ }^{(\mathbf{1})}\)
1 = Transmit enabled, UxTX pin controlled by UARTx
\(0=\) Transmit disabled, any pending transmission is aborted and buffer is reset. UxTX pin controlled by port.
bit 9 UTXBF: Transmit Buffer Full Status bit (read-only)
1 = Transmit buffer is full
\(0=\) Transmit buffer is not full, at least one more character can be written
bit 8 TRMT: Transmit Shift Register Empty bit (read-only)
1 = Transmit Shift Register is empty and transmit buffer is empty (the last transmission has completed)
\(0=\) Transmit Shift Register is not empty, a transmission is in progress or queued
bit 7-6 URXISEL<1:0>: Receive Interrupt Mode Selection bits
11 = Interrupt is set on UxRSR transfer making the receive buffer full (i.e., has 4 data characters)
\(10=\) Interrupt is set on UxRSR transfer making the receive buffer \(3 / 4\) full (i.e., has 3 data characters)
\(0 x=\) Interrupt is set when any character is received and transferred from the UxRSR to the receive buffer. Receive buffer has one or more characters.

Note 1: Refer to Section 17. "UART" (DS70582) in the "dsPIC33E/PIC24E Family Reference Manual" for information on enabling the UART module for transmit operation.

\section*{REGISTER 20-2: UxSTA: UARTx STATUS AND CONTROL REGISTER (CONTINUED)}
\begin{tabular}{|c|c|}
\hline \multirow[t]{2}{*}{bit 5} & ADDEN: Address Character Detect bit (bit 8 of received data \(=1\) ) \\
\hline & \begin{tabular}{l}
1 = Address Detect mode enabled. If 9-bit mode is not selected, this does not take effect. \\
0 = Address Detect mode disabled
\end{tabular} \\
\hline \multirow[t]{2}{*}{bit 4} & RIDLE: Receiver Idle bit (read-only) \\
\hline & \begin{tabular}{l}
1 = Receiver is Idle \\
\(0=\) Receiver is active
\end{tabular} \\
\hline \multirow[t]{2}{*}{bit 3} & PERR: Parity Error Status bit (read-only) \\
\hline & \begin{tabular}{l}
1 = Parity error has been detected for the current character (character at the top of the receive FIFO) \\
\(0=\) Parity error has not been detected
\end{tabular} \\
\hline \multirow[t]{2}{*}{bit 2} & FERR: Framing Error Status bit (read-only) \\
\hline & \begin{tabular}{l}
\(1=\) Framing error has been detected for the current character (character at the top of the receive FIFO) \\
\(0=\) Framing error has not been detected
\end{tabular} \\
\hline \multirow[t]{3}{*}{bit 1} & OERR: Receive Buffer Overrun Error Status bit (read/clear only) \\
\hline & 1 = Receive buffer has overflowed \\
\hline & \(0=\) Receive buffer has not overflowed. Clearing a previously set OERR bit ( \(1 \rightarrow 0\) transition) resets the receiver buffer and the UxRSR to the empty state. \\
\hline \multirow[t]{2}{*}{bit 0} & URXDA: Receive Buffer Data Available bit (read-only) \\
\hline & \begin{tabular}{l}
\(1=\) Receive buffer has data, at least one more character can be read \\
\(0=\) Receive buffer is empty
\end{tabular} \\
\hline
\end{tabular}

Note 1: Refer to Section 17. "UART" (DS70582) in the "dsPIC33E/PIC24E Family Reference Manual" for information on enabling the UART module for transmit operation.

NOTES:

\subsection*{21.0 ENHANCED CAN (ECAN \({ }^{\text {M }}\) ) MODULE (dsPIC33EPXXXGPI MC50X DEVICES ONLY)}

Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X, and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 21. "Enhanced Controller Area Network (ECAN \({ }^{\text {™ }}\) )" (DS70353) of the "dsPIC33E/PIC24E Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

\subsection*{21.1 Overview}

The Enhanced Controller Area Network (ECAN) module is a serial interface, useful for communicating with other CAN modules or microcontroller devices. This interface/protocol was designed to allow communications within noisy environments. The dsPIC33EPXXXGP/MC50X devices contain one ECAN module.
The ECAN module is a communication controller implementing the CAN 2.0 A/B protocol, as defined in the BOSCH CAN specification. The module supports CAN 1.2, CAN 2.0A, CAN 2.0B Passive and CAN 2.0B Active versions of the protocol. The module implementation is a full CAN system. The CAN specification is not covered within this data sheet. The reader can refer to the BOSCH CAN specification for further details.

The ECAN module features are as follows:
- Implementation of the CAN protocol, CAN 1.2, CAN 2.0A and CAN 2.0B
- Standard and extended data frames
- 0-8 bytes data length
- Programmable bit rate up to \(1 \mathrm{Mbit} / \mathrm{sec}\)
- Automatic response to remote transmission requests
- Up to eight transmit buffers with application specified prioritization and abort capability (each buffer can contain up to 8 bytes of data)
- Up to 32 receive buffers (each buffer can contain up to 8 bytes of data)
- Up to 16 full (standard/extended identifier) acceptance filters
- Three full acceptance filter masks
- DeviceNet \({ }^{\text {TM }}\) addressing support
- Programmable wake-up functionality with integrated low-pass filter
- Programmable Loopback mode supports self-test operation
- Signaling via interrupt capabilities for all CAN receiver and transmitter error states
- Programmable clock source
- Programmable link to Input Capture module (IC2) for time-stamping and network synchronization
- Low-power Sleep and Idle mode

The CAN bus module consists of a protocol engine and message buffering/control. The CAN protocol engine handles all functions for receiving and transmitting messages on the CAN bus. Messages are transmitted by first loading the appropriate data registers. Status and errors can be checked by reading the appropriate registers. Any message detected on the CAN bus is checked for errors and then matched against filters to see if it should be received and stored in one of the receive registers.

FIGURE 21-1: ECAN \({ }^{\text {M }}\) MODULE BLOCK DIAGRAM


\subsection*{21.2 Modes of Operation}

The ECAN module can operate in one of several operation modes selected by the user. These modes include:
- Initialization mode
- Disable mode
- Normal Operation mode
- Listen Only mode
- Listen All Messages mode
- Loopback mode

Modes are requested by setting the REQOP<2:0> bits (CiCTRL1<10:8>). Entry into a mode is Acknowledged by monitoring the OPMODE<2:0> bits (CiCTRL1<7:5>). The module does not change the mode and the OPMODE bits until a change in mode is acceptable, generally during bus Idle time, which is defined as at least 11 consecutive recessive bits.
Refer to Section 21. "Enhanced Controller Area Network (ECAN \({ }^{\text {TM }}\) )" (DS70353) of the "dsPIC33E/ PIC24E Family Reference Manual" for more details on ECAN.

REGISTER 21-1: CiCTRL1: ECAN \({ }^{\text {TM }}\) CONTROL REGISTER 1
\begin{tabular}{|c|c|c|c|c|cccc|}
\hline U-0 & U-0 & R/W-0 & R/W-0 & R/W-0 & R/W-1 & R/W-0 & R/W-0 \\
\hline- & - & CSIDL & ABAT & CANCKS & & REQOP<2:0> & \\
\hline bit 15 & & & & & bit 8 8 \\
\hline
\end{tabular}
\begin{tabular}{|ccc|c|c|c|c|c|}
\hline R-1 & R-0 & R-0 & U-0 & R/W-0 & U-0 & U-0 & R/W-0 \\
\hline & OPMODE<2:0> & - & CANCAP & - & - & WIN \\
\hline bit 7 & & & & bit 0 \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend: & \(C=\) Writable bit, but only ' 0 ' can be written to clear the bit \(r=\) Bit is Reserved \\
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1\) ' \(=\) Bit is set & \(' 0\) ' \(=\) Bit is cleared \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline bit 15-14 & Unimplemented: Read as '0' \\
\hline \multirow[t]{2}{*}{bit 13} & CSIDL: Stop in Idle Mode bit \\
\hline & \begin{tabular}{l}
1 = Discontinue module operation when device enters Idle mode \\
\(0=\) Continue module operation in Idle mode
\end{tabular} \\
\hline \multirow[t]{2}{*}{bit 12} & ABAT: Abort All Pending Transmissions bit \\
\hline & \begin{tabular}{l}
1 = Signal all transmit buffers to abort transmission \\
\(0=\) Module will clear this bit when all transmissions are aborted
\end{tabular} \\
\hline \multirow[t]{3}{*}{bit 11} & CANCKS: ECAN Module Clock (FCAN) Source Select bit \\
\hline & 1 = FCAN is equal to twice Fp \\
\hline & \(0=\) FCAN is equal to FP \\
\hline \multirow[t]{9}{*}{bit 10-8} & REQOP<2:0>: Request Operation Mode bits \\
\hline & 111 = Set Listen All Messages mode \\
\hline & \(110=\) Reserved \\
\hline & 101 = Reserved \\
\hline & 100 = Set Configuration mode \\
\hline & 011 = Set Listen Only Mode \\
\hline & 010 = Set Loopback mode \\
\hline & 001 = Set Disable mode \\
\hline & \(000=\) Set Normal Operation mode \\
\hline \multirow[t]{10}{*}{bit 7-5} & OPMODE<2:0>: Operation Mode bits \\
\hline & 111 = Module is in Listen All Messages mode \\
\hline & 110 = Reserved \\
\hline & 101 = Reserved \\
\hline & \(100=\) Module is in Configuration mode \\
\hline & 011 = Module is in Listen Only mode \\
\hline & 011 = Module is in Listen Only mode \\
\hline & 010 = Module is in Loopback mode \\
\hline & 001 = Module is in Disable mode \\
\hline & \(000=\) Module is in Normal Operation mode \\
\hline bit 4 & Unimplemented: Read as '0' \\
\hline \multirow[t]{2}{*}{bit 3} & CANCAP: CAN Message Receive Timer Capture Event Enable bit \\
\hline & \begin{tabular}{l}
1 = Enable input capture based on CAN message receive \\
0 = Disable CAN capture
\end{tabular} \\
\hline bit 2-1 & Unimplemented: Read as '0' \\
\hline \multirow[t]{3}{*}{bit 0} & WIN: SFR Map Window Select bit \\
\hline & 1 = Use filter window \\
\hline & 0 = Use buffer window \\
\hline
\end{tabular}

REGISTER 21-2: CiCTRL2: ECAN \({ }^{\text {TM }}\) CONTROL REGISTER 2
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline U-0 & U-0 \\
\hline- & - & - & - & - & - & - & - \\
\hline bit 15 &
\end{tabular}
\begin{tabular}{|l|c|c|ccccc|}
\hline \multicolumn{8}{|c|}{\(\mathrm{U}-0\)} \\
\hline & \(\mathrm{U}-0\) & \(\mathrm{U}-0\) & \(\mathrm{R}-0\) & \(\mathrm{R}-0\) & \(\mathrm{R}-0\) & \(\mathrm{R}-0\) & \(\mathrm{R}-0\) \\
\hline - & - & - & & DNCNT<4:0> & & \\
\hline bit 7 & & & & & bit 0 \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend: & \(C=\) Writable bit, but only ' 0 ' can be written to clear the bit \\
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1\) ' \(=\) Bit is set & \(' 0\) ' \(=\) Bit is cleared \(\quad x=\) Bit is unknown \\
\hline
\end{tabular}
\begin{tabular}{ll} 
bit 15-5 & Unimplemented: Read as ' 0 ' \\
bit 4-0 & DNCNT<4:0>: DeviceNet \({ }^{\text {TM }}\) Filter Bit Number bits \\
& \(10010-11111=\) Invalid selection \\
& \(10001=\) Compare up to data byte 3, bit 6 with EID<17> \\
& - \\
& - \\
& 00001 = Compare up to data byte 1, bit 7 with EID<0> \\
& \(00000=\) Do not compare data bytes
\end{tabular}

REGISTER 21-3: CiVEC: ECAN \({ }^{\text {M }}\) INTERRUPT CODE REGISTER
\begin{tabular}{|c|c|c|ccccc|}
\hline U-0 & U-0 & U-0 & R-0 & R-0 & R-0 & R-0 & R-0 \\
\hline- & - & - & & FILHIT<4:0> & & \\
\hline bit 15 & & & & bit 8 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline U-0 & R-1 & R-0 & R-0 & R-0 & R-0 & R-0 & R-0 \\
\hline - & \multicolumn{7}{|c|}{ICODE<6:0>} \\
\hline bit 7 & & & & & & & bit 0 \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend: & \(C=\) Writable bit, but only ' 0 ' can be written to clear the bit \\
\(R=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) Unimplemented bit, read as ' 0 ' \\
\(-\mathrm{n}=\) Value at POR & \(' 1\) ' \(=\) Bit is set & ' 0 ' = Bit is cleared \(\quad \mathrm{x}=\) Bit is unknown \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline bit 15-13 & Unimplemented: Read as '0' \\
\hline \multirow[t]{7}{*}{bit 12-8} & FILHIT<4:0>: Filter Hit Number bits \\
\hline & \[
\begin{aligned}
& 10000-11111=\text { Reserved } \\
& 01111=\text { Filter } 15
\end{aligned}
\] \\
\hline & - \\
\hline & - \\
\hline & - \\
\hline & 00001 = Filter 1 \\
\hline & 00000 = Filter 0 \\
\hline bit 7 & Unimplemented: Read as ' 0 ' \\
\hline \multirow[t]{25}{*}{bit 6-0} & ICODE<6:0>: Interrupt Flag Code bits \\
\hline & 1000101-1111111 = Reserved \\
\hline & 1000100 = FIFO almost full interrupt \\
\hline & 1000011 = Receiver overflow interrupt \\
\hline & \(1000010=\) Wake-up interrupt \\
\hline & 1000001 = Error interrupt \\
\hline & \(1000000=\) No interrupt \\
\hline & - \\
\hline & - \\
\hline & - \\
\hline & 0010000-0111111 = Reserved \\
\hline & 0001111 = RB15 buffer Interrupt \\
\hline & - \({ }^{\text {a }}\) \\
\hline & - \\
\hline & - \\
\hline & 0001001 = RB9 buffer interrupt \\
\hline & 0001000 = RB8 buffer interrupt \\
\hline & 0000111 = TRB7 buffer interrupt \\
\hline & \(0000110=\) TRB6 buffer interrupt \\
\hline & \(0000101=\) TRB5 buffer interrupt \\
\hline & \(0000100=\) TRB4 buffer interrupt \\
\hline & \(0000011=\) TRB3 buffer interrupt \\
\hline & \(0000010=\) TRB2 buffer interrupt \\
\hline & \(0000001=\) TRB1 buffer interrupt \\
\hline & 0000000 = TRB0 Buffer interrupt \\
\hline
\end{tabular}

REGISTER 21-4: CIFCTRL: ECAN \({ }^{\text {TM }}\) FIFO CONTROL REGISTER

```

bit 15-13 DMABS<2:0>: DMA Buffer Size bits
111 = Reserved
110 = 32 buffers in RAM
101 = 24 buffers in RAM
100 = 16 buffers in RAM
011 = 12 buffers in RAM
010 = 8 buffers in RAM
001 = 6 buffers in RAM
000 = 4 buffers in RAM
bit 12-5 Unimplemented: Read as ' }0\mathrm{ '
bit 4-0 FSA<4:0>: FIFO Area Starts with Buffer bits
11111 = Read buffer RB31
11110 = Read buffer RB30
•
•
-
00001 = Tx/Rx buffer TRB1
00000 = Tx/Rx buffer TRB0

```

REGISTER 21-5: CiFIFO: ECAN \({ }^{\text {TM }}\) FIFO STATUS REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline U-0 & U-0 & R-0 & R-0 & R-0 & R-0 & R-0 & R-0 \\
\hline - & - & \multicolumn{6}{|c|}{FBP<5:0>} \\
\hline bit 15 & & & & & & & bit 8 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline U-0 & U-0 & R-0 & R-0 & R-0 & R-0 & R-0 & R-0 \\
\hline - & - & \multicolumn{6}{|c|}{FNRB<5:0>} \\
\hline bit 7 & & & & & & & bit 0 \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend: & \(\mathrm{C}=\) Writable bit, but only ' 0 ' can be written to clear the bit \\
\(\mathrm{R}=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) Unimplemented bit, read as ' 0 ' \\
\(-\mathrm{n}=\) Value at POR & ' 1 ' = Bit is set & ' 0 ' = Bit is cleared \(\quad \mathrm{x}=\mathrm{Bit}\) is unknown \\
\hline
\end{tabular}
```

bit 15-14 Unimplemented: Read as ' 0'
bit 13-8 FBP<5:0>: FIFO Buffer Pointer bits
011111 = RB31 buffer
011110 = RB30 buffer
•
-
•
000001 = TRB1 buffer
000000 = TRBO buffer
bit 7-6 Unimplemented: Read as '0'
bit 5-0 FNRB<5:0>: FIFO Next Read Buffer Pointer bits
011111 = RB31 buffer
011110 = RB30 buffer
•
-
-
000001 = TRB1 buffer
000000 = TRB0 buffer

```

REGISTER 21-6: CiINTF: ECAN \({ }^{\text {TM }}\) INTERRUPT FLAG REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline U-0 & U-0 & R-0 & R-0 & R-0 & R-0 & R-0 & R-0 \\
\hline- & - & TXBO & TXBP & RXBP & TXWAR & RXWAR & EWARN \\
\hline bit 15 & & & & bit 8 \\
\hline
\end{tabular}
\begin{tabular}{|l|c|c|c|c|c|c|c|}
\hline R/C-0 & R/C-0 & R/C-0 & U-0 & R/C-0 & R/C-0 & R/C-0 & R/C-0 \\
\hline IVRIF & WAKIF & ERRIF & - & FIFOIF & RBOVIF & RBIF & TBIF \\
\hline bit 7
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend: & \(C=\) Writable bit, but only ' 0 ' can be written to clear the bit \\
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1\) ' \(=\) Bit is set & \(\prime 0\) ' \(\quad\) Bit is cleared \(\quad x=\) Bit is unknown \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline bit 15-14 & Unimplemented: Read as '0' \\
\hline bit 13 & \begin{tabular}{l}
TXBO: Transmitter in Error State Bus Off bit 1 = Transmitter is in Bus Off state \\
0 = Transmitter is not in Bus Off state
\end{tabular} \\
\hline bit 12 & TXBP: Transmitter in Error State Bus Passive bit 1 = Transmitter is in Bus Passive state \(0=\) Transmitter is not in Bus Passive state \\
\hline bit 11 & \begin{tabular}{l}
RXBP: Receiver in Error State Bus Passive bit \\
1 = Receiver is in Bus Passive state \\
0 = Receiver is not in Bus Passive state
\end{tabular} \\
\hline bit 10 & TXWAR: Transmitter in Error State Warning bit 1 = Transmitter is in Error Warning state 0 = Transmitter is not in Error Warning state \\
\hline bit 9 & \begin{tabular}{l}
RXWAR: Receiver in Error State Warning bit \\
1 = Receiver is in Error Warning state \\
\(0=\) Receiver is not in Error Warning state
\end{tabular} \\
\hline
\end{tabular}
bit 8 EWARN: Transmitter or Receiver in Error State Warning bit
1 = Transmitter or Receiver is in Error State Warning state
\(0=\) Transmitter or Receiver is not in Error State Warning state
bit \(7 \quad\) IVRIF: Invalid Message Interrupt Flag bit
1 = Interrupt Request has occurred
\(0=\) Interrupt Request has not occurred
bit 6 WAKIF: Bus Wake-up Activity Interrupt Flag bit
1 = Interrupt Request has occurred
\(0=\) Interrupt Request has not occurred
bit 5 ERRIF: Error Interrupt Flag bit (multiple sources in CilNTF<13:8> register)
1 = Interrupt Request has occurred
\(0=\) Interrupt Request has not occurred
bit \(4 \quad\) Unimplemented: Read as ' 0 '
bit \(3 \quad\) FIFOIF: FIFO Almost Full Interrupt Flag bit
1 = Interrupt Request has occurred
\(0=\) Interrupt Request has not occurred
bit 2 RBOVIF: RX Buffer Overflow Interrupt Flag bit
1 = Interrupt Request has occurred
\(0=\) Interrupt Request has not occurred
bit \(1 \quad\) RBIF: RX Buffer Interrupt Flag bit
1 = Interrupt Request has occurred
\(0=\) Interrupt Request has not occurred
bit \(0 \quad\) TBIF: TX Buffer Interrupt Flag bit
1 = Interrupt Request has occurred
\(0=\) Interrupt Request has not occurred

\section*{REGISTER 21-7: CiINTE: ECAN \({ }^{\text {TM }}\) INTERRUPT ENABLE REGISTER}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline U-0 & U-0 \\
\hline- & - & - & - & - & - & - & - \\
\hline bit 15 & & & & bit 8 \\
\hline
\end{tabular}
\begin{tabular}{|l|c|c|c|c|c|c|c|}
\hline R/W-0 & R/W-0 \\
\hline IVRIE & WAKIE & ERRIE & - & FIFOIE & RBOVIE & RBIE & TBIE \\
\hline bit 7 & & & & bit 0 \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend: & \(C=\) Writable bit, but only ' 0 ' can be written to clear the bit \\
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1\) ' \(=\) Bit is set & \(' 0\) ' \(=\) Bit is cleared \(\quad x=\) Bit is unknown \\
\hline
\end{tabular}
bit 15-8 Unimplemented: Read as ' 0 '
bit \(7 \quad\) IVRIE: Invalid Message Interrupt Enable bit
1 = Interrupt Request Enabled
\(0=\) Interrupt Request not enabled
bit \(6 \quad\) WAKIE: Bus Wake-up Activity Interrupt Flag bit
1 = Interrupt Request Enabled
0 = Interrupt Request not enabled
bit 5 ERRIE: Error Interrupt Enable bit
1 = Interrupt Request Enabled
\(0=\) Interrupt Request not enabled
bit \(4 \quad\) Unimplemented: Read as ' 0 '
bit \(3 \quad\) FIFOIE: FIFO Almost Full Interrupt Enable bit
1 = Interrupt Request Enabled
0 = Interrupt Request not enabled
bit 2 RBOVIE: RX Buffer Overflow Interrupt Enable bit
1 = Interrupt Request Enabled
\(0=\) Interrupt Request not enabled
bit 1 RBIE: RX Buffer Interrupt Enable bit
1 = Interrupt Request Enabled
0 = Interrupt Request not enabled
bit \(0 \quad\) TBIE: TX Buffer Interrupt Enable bit
1 = Interrupt Request Enabled
\(0=\) Interrupt Request not enabled

REGISTER 21-8: CiEC: ECAN \({ }^{\text {TM }}\) TRANSMIT/RECEIVE ERROR COUNT REGISTER

bit 15-8 TERRCNT<7:0>: Transmit Error Count bits
bit 7-0 RERRCNT<7:0>: Receive Error Count bits

REGISTER 21-9: CiCFG1: ECAN \({ }^{\text {™ }}\) BAUD RATE CONFIGURATION REGISTER 1
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline U-0 & U-0 \\
\hline- & - & - & - & - & - & - & - \\
\hline bit 15 & & & & bit 8 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline R/W-0 & R/W-0 \\
\hline \multicolumn{2}{|c|}{SJW<1:0>} & \multicolumn{6}{|c|}{BRP<5:0>} \\
\hline \multicolumn{7}{|l|}{bit 7} & bit 0 \\
\hline
\end{tabular}

Legend:
\begin{tabular}{|c|c|c|c|}
\hline \(\mathrm{R}=\) Readable bit & W = Writable bit & \(\mathrm{U}=\) Unimplemen & as ' 0 ' \\
\hline -n = Value at POR & ' 1 ' = Bit is set & ' 0 ' = Bit is cleared & \(x=\) Bit is unknown \\
\hline
\end{tabular}
bit 15-8 Unimplemented: Read as ' 0 '
bit 7-6 SJW<1:0>: Synchronization Jump Width bits
\(11=\) Length is \(4 \times\) TQ
\(10=\) Length is \(3 \times \mathrm{TQ}\)
\(01=\) Length is \(2 \times \mathrm{TQ}\)
\(00=\) Length is \(1 \times \mathrm{TQ}\)
bit 5-0 BRP<5:0>: Baud Rate Prescaler bits
\(111111=\mathrm{TQ}=2 \times 64 \times 1 /\) FCAN
-
-
-
\(000010=T Q=2 \times 3 \times 1 /\) FCAN
\(000001=T Q=2 \times 2 \times 1 /\) FCAN
\(000000=T Q=2 \times 1 \times 1 /\) FCAN

REGISTER 21-10: CiCFG2: ECAN \({ }^{\text {™ }}\) BAUD RATE CONFIGURATION REGISTER 2
\begin{tabular}{|c|c|c|c|c|cccc|}
\hline U-0 & R/W-x & U-0 & U-0 & U-0 & R/W-x & R/W-x & R/W-x \\
\hline- & WAKFIL & - & - & - & & SEG2PH<2:0> & \\
\hline bit 15
\end{tabular}
\begin{tabular}{|l|c|ccc|ccc|}
\hline \multicolumn{1}{|c}{\(R / W-x\)} & \(R / W-x\) \\
\hline SEG2PHTS & SAM & & SEG1PH \(<2: 0>\) & & & PRSEG<2:0> & \\
\hline bit 7 & & & & & bit 0 \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1\) ' \(=\) Bit is set & \(' 0\) ' \(=\) Bit is cleared \(\quad x=\) Bit is unknown \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline bit 15 & Unimplemented: Read as '0' \\
\hline \multirow[t]{3}{*}{bit 14} & WAKFIL: Select CAN bus Line Filter for Wake-up bit \\
\hline & 1 = Use CAN bus line filter for wake-up \\
\hline & \(0=\) CAN bus line filter is not used for wake-up \\
\hline bit 13-11 & Unimplemented: Read as '0' \\
\hline \multirow[t]{6}{*}{bit 10-8} & SEG2PH<2:0>: Phase Segment 2 bits \\
\hline & 111 = Length is \(8 \times\) TQ \\
\hline & - \\
\hline & - \\
\hline & - \\
\hline & \(000=\) Length is \(1 \times\) TQ \\
\hline \multirow[t]{3}{*}{bit 7} & SEG2PHTS: Phase Segment 2 Time Select bit \\
\hline & 1 = Freely programmable \\
\hline & 0 = Maximum of SEG1PH bits or Information Processing Time (IPT), whichever is greater \\
\hline \multirow[t]{3}{*}{bit 6} & SAM: Sample of the CAN bus Line bit \\
\hline & 1 = Bus line is sampled three times at the sample point \\
\hline & \(0=\) Bus line is sampled once at the sample point \\
\hline \multirow[t]{6}{*}{bit 5-3} & SEG1PH<2:0>: Phase Segment 1 bits \\
\hline & \(111=\) Length is \(8 \times \mathrm{TQ}\) \\
\hline & - \\
\hline & - \\
\hline & - \\
\hline & \(000=\) Length is \(1 \times\) TQ \\
\hline \multirow[t]{6}{*}{bit 2-0} & PRSEG<2:0>: Propagation Time Segment bits \\
\hline & 111 = Length is \(8 \times\) TQ \\
\hline & - \\
\hline & - \\
\hline & - \\
\hline & \(000=\) Length is \(1 \times\) TQ \\
\hline
\end{tabular}

REGISTER 21-11: CiFEN1: ECAN \({ }^{\text {TM }}\) ACCEPTANCE FILTER ENABLE REGISTER 1
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline R/W-1 & R/W-1 \\
\hline FLTEN15 & FLTEN14 & FLTEN13 & FLTEN12 & FLTEN11 & FLTEN10 & FLTEN9 & FLTEN8 \\
\hline \multicolumn{2}{|l|}{bit 15} & & & & & & bit 8 \\
\hline R/W-1 & R/W-1 \\
\hline FLTEN7 & FLTEN6 & FLTEN5 & FLTEN4 & FLTEN3 & FLTEN2 & FLTEN1 & FLTEN0 \\
\hline \multicolumn{2}{|l|}{bit 7} & & & & & & bit 0 \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
Legend: \\
\(R=\) Readable bit \\
\(-n=\) Value at POR
\end{tabular}} & \multicolumn{2}{|l|}{\[
\begin{aligned}
& \text { W }=\text { Writable bit } \\
& \text { ' } 1 \text { ' }=\text { Bit is set }
\end{aligned}
\]} & can be writt
\(\mathrm{U}=\) Unimpl
' 0 ' = Bit is & clear the
nted bit, re
ed & ' 0 '
\(=\) Bit is un & \\
\hline
\end{tabular}
bit 15-0 FLTENn: Enable Filter n to Accept Messages bits
1 = Enable Filter \(n\)
0 = Disable Filter n

REGISTER 21-12: CiBUFPNT1: ECAN \({ }^{\text {TM }}\) FILTER 0-3 BUFFER POINTER REGISTER 1

bit 15-12 \(\quad\) F3BP<3:0>: RX Buffer mask for Filter 3 bits
1111 = Filter hits received in RX FIFO buffer
\(1110=\) Filter hits received in RX Buffer 14
-
-
-
0001 = Filter hits received in RX Buffer 1
0000 = Filter hits received in RX Buffer 0
bit 11-8 F2BP<3:0>: RX Buffer mask for Filter 2 bits (same values as bit 15-12)
bit 7-4 F1BP<3:0>: RX Buffer mask for Filter 1 bits (same values as bit 15-12)
bit 3-0 FOBP<3:0>: RX Buffer mask for Filter 0 bits (same values as bit 15-12)

REGISTER 21-13: CiBUFPNT2: ECAN \({ }^{\text {TM }}\) FILTER 4-7 BUFFER POINTER REGISTER 2
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline R/W-0 & R/W-0 \\
\hline \multicolumn{4}{|c|}{F7BP<3:0>} & \multicolumn{4}{|c|}{F6BP<3:0>} \\
\hline bit 15 & & & & & & & bit 8 \\
\hline
\end{tabular}
\begin{tabular}{|lccccccc|}
\hline\(R / W-0\) & \(R / W-0\) \\
\hline & F5BP<3:0> & & \(F 4 B P<3: 0>\) & \\
\hline bit 7 & & & & bit 0 \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend: & \(\mathrm{C}=\) Writable bit, but only ' 0 ' can be written to clear the bit \\
\(\mathrm{R}=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) Unimplemented bit, read as ' 0 ' \\
\(-\mathrm{n}=\) Value at POR & \(' 1\) ' \(=\) Bit is set & \(' 0\) ' = Bit is cleared \(\quad \mathrm{x}=\mathrm{Bit}\) is unknown \\
\hline
\end{tabular}
\begin{tabular}{ll} 
bit 15-12 & F7BP<3:0>: RX Buffer mask for Filter 7 bits \\
& \(1111=\) Filter hits received in RX FIFO buffer \\
& \(1110=\) Filter hits received in RX Buffer 14 \\
& - \\
& - \\
& \(0001=\) Filter hits received in RX Buffer 1 \\
& \(0000=\) Filter hits received in RX Buffer 0 \\
bit 11-8 & F6BP<3:0>: RX Buffer mask for Filter 6 bits (same values as bit 15-12) \\
bit 7-4 & F5BP<3:0>: RX Buffer mask for Filter 5 bits (same values as bit 15-12) \\
bit 3-0 & F4BP<3:0>: RX Buffer mask for Filter 4 bits (same values as bit 15-12)
\end{tabular}

REGISTER 21-14: CiBUFPNT3: ECAN \({ }^{\text {™ }}\) FILTER 8-11 BUFFER POINTER REGISTER 3
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline R/W-0 & R/W-0 \\
\hline \multicolumn{4}{|c|}{F11BP<3:0>} & \multicolumn{4}{|c|}{F10BP<3:0>} \\
\hline \multicolumn{7}{|l|}{bit 15} & bit 8 \\
\hline R/W-0 & R/W-0 \\
\hline \multicolumn{4}{|c|}{F9BP<3:0>} & \multicolumn{4}{|c|}{F8BP<3:0>} \\
\hline \multicolumn{7}{|l|}{bit 7} & bit 0 \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend: & \(C=\) Writable bit, but only ' 0 ' can be written to clear the bit \\
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1\) ' \(=\) Bit is set & \(' 0\) ' = Bit is cleared \(\quad x=\) Bit is unknown \\
\hline
\end{tabular}
bit 15-12 F11BP<3:0>: RX Buffer mask for Filter 11 bits
1111 = Filter hits received in RX FIFO buffer
1110 = Filter hits received in RX Buffer 14
-
-
-
0001 = Filter hits received in RX Buffer 1
0000 = Filter hits received in RX Buffer 0
bit 11-8 F10BP<3:0>: RX Buffer mask for Filter 10 bits (same values as bit 15-12)
bit 7-4 F9BP<3:0>: RX Buffer mask for Filter 9 bits (same values as bit 15-12)
bit 3-0 \(\quad\) F8BP<3:0>: RX Buffer mask for Filter 8 bits (same values as bit 15-12)

REGISTER 21-15: CiBUFPNT4: ECAN \({ }^{\text {TM }}\) FILTER 12-15 BUFFER POINTER REGISTER 4

bit 15-12 F15BP<3:0>: RX Buffer mask for Filter 15 bits
1111 = Filter hits received in RX FIFO buffer
\(1110=\) Filter hits received in RX Buffer 14
-
-
-
0001 = Filter hits received in RX Buffer 1
0000 = Filter hits received in RX Buffer 0
bit 11-8 F14BP<3:0>: RX Buffer mask for Filter 14 bits (same values as bit 15-12)
bit 7-4 F13BP<3:0>: RX Buffer mask for Filter 13 bits (same values as bit 15-12)
bit 3-0 F12BP<3:0>: RX Buffer mask for Filter 12 bits (same values as bit 15-12)

REGISTER 21-16: CiRXFnSID: ECAN \({ }^{\text {TM }}\) ACCEPTANCE FILTER STANDARD IDENTIFIER REGISTER \(\mathrm{n}(\mathrm{n}=0-15)\)
\begin{tabular}{|l|c|c|c|c|c|c|c|}
\hline R/W-x & R/W-x \\
\hline SID10 & SID9 & SID8 & SID7 & SID6 & SID5 & SID4 & SID3 \\
\hline bit 15 & \\
\hline
\end{tabular}
\begin{tabular}{|l|c|c|c|c|c|c|c|}
\hline R/W-x & R/W-x & R/W-x & U-0 & R/W-x & U-0 & R/W-x & R/W-x \\
\hline SID2 & SID1 & SID0 & - & EXIDE & - & EID17 & EID16 \\
\hline bit 7 & & & & bit 0 \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend: & \(C=\) Writable bit, but only ' 0 ' can be written to clear the bit \\
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1 '=\) Bit is set & \(' 0\) ' \(=\) Bit is cleared \(\quad x=\) Bit is unknown \\
\hline
\end{tabular}
bit 15-5 SID<10:0>: Standard Identifier bits
1 = Message address bit SIDx must be ' 1 ' to match filter \(0=\) Message address bit SIDx must be ' 0 ' to match filter
bit 4 Unimplemented: Read as ' 0 '
bit 3 EXIDE: Extended Identifier Enable bit
If MIDE = 1:
1 = Match only messages with extended identifier addresses
\(0=\) Match only messages with standard identifier addresses
If MIDE \(=0\) :
Ignore EXIDE bit.
bit \(2 \quad\) Unimplemented: Read as ' 0 '
bit 1-0 EID<17:16>: Extended Identifier bits
1 = Message address bit EIDx must be ' 1 ' to match filter
\(0=\) Message address bit EIDx must be ' 0 ' to match filter

REGISTER 21-17: CiRXFnEID: ECAN \({ }^{\text {™ }}\) ACCEPTANCE FILTER EXTENDED IDENTIFIER REGISTER \(\mathrm{n}(\mathrm{n}=0-15)\)
\begin{tabular}{|l|c|c|c|c|c|c|c|}
\hline R/W-x & R/W-x \\
\hline EID15 & EID14 & EID13 & EID12 & EID11 & EID10 & EID9 & EID8 \\
\hline bit 15 & & & bit 8 \\
\hline
\end{tabular}
\begin{tabular}{|l|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|c|}{ R/W-x } & R/W-x \\
\hline EID7 & EID6 & R/W-x & R/W-x & R/W-x & R/W-x & R/W-x \\
\hline bit 7
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend: & \(C=\) Writable bit, but only ' 0 ' can be written to clear the bit \\
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1\) ' = Bit is set & ' 0 ' \(=\) Bit is cleared \(\quad x=\) Bit is unknown \\
\hline
\end{tabular}
bit 15-0 EID<15:0>: Extended Identifier bits
1 = Message address bit EIDx must be ' 1 ' to match filter
\(0=\) Message address bit EIDx must be ' 0 ' to match filter

REGISTER 21-18: CiFMSKSEL1: ECAN \({ }^{\text {™ }}\) FILTER 7-0 MASK SELECTION REGISTER
\begin{tabular}{|c|c|c|c|c|}
\hline R/W-0 R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 \\
\hline F7MSK<1:0> & F6MSK<1:0> & F5MSK<1:0> & F4MSK<1:0> \\
\hline bit 15 & & bit 88 \\
\hline
\end{tabular}

\begin{tabular}{|lll|}
\hline Legend: & \(C=\) Writable bit, but only ' 0 ' can be written to clear the bit \\
\(R=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) Unimplemented bit, read as ' 0 ' \\
\(-\mathrm{n}=\) Value at POR & \(' 1\) ' \(=\) Bit is set & \(' 0\) ' = Bit is cleared \(\quad \mathrm{x}=\mathrm{Bit}\) is unknown \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline bit 15-14 & \begin{tabular}{l}
F7MSK<1:0>: Mask Source for Filter 7 bit \\
11 = Reserved \\
10 = Acceptance Mask 2 registers contain mask \\
01 = Acceptance Mask 1 registers contain mask \\
00 = Acceptance Mask 0 registers contain mask
\end{tabular} \\
\hline bit 13-12 & F6MSK<1:0>: Mask Source for Filter 6 bit (same values as bit 15-14) \\
\hline bit 11-10 & F5MSK<1:0>: Mask Source for Filter 5 bit (same values as bit 15-14) \\
\hline bit 9-8 & F4MSK<1:0>: Mask Source for Filter 4 bit (same values as bit 15-14) \\
\hline bit 7-6 & F3MSK<1:0>: Mask Source for Filter 3 bit (same values as bit 15-14) \\
\hline bit 5-4 & F2MSK<1:0>: Mask Source for Filter 2 bit (same values as bit 15-14) \\
\hline bit 3-2 & F1MSK<1:0>: Mask Source for Filter 1 bit (same values as bit 15-14) \\
\hline bit 1-0 & FOMSK<1:0>: Mask Source for Filter 0 bit (same values as bit 15-14) \\
\hline
\end{tabular}

\section*{REGISTER 21-19: CiFMSKSEL2: ECAN \({ }^{\text {™ }}\) FILTER 15-8 MASK SELECTION REGISTER}
\begin{tabular}{|c|c|c|c|c|c|}
\hline R/W-0 R/W-0 & R/W-0 \(\quad\) R/W-0 & R/W-0 \(\quad\) R/W-0 & R/W-0 & R/W-0 \\
\hline F15MSK<1:0> & F14MSK<1:0> & F13MSK<1:0> & F12MSK<1:0> \\
\hline bit 15
\end{tabular}
\begin{tabular}{|cc|c|c|c|c|}
\hline R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 \\
\hline F11MSK<1:0> & F10MSK<1:0> & F9MSK<1:0> & F8MSK<1:0> \\
\hline bit 7 & & & bit 0 \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend: & \(C=\) Writable bit, but only ' 0 ' can be written to clear the bit \\
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1\) ' \(=\) Bit is set & \(' 0\) ' \(\quad\) Bit is cleared \(\quad x=\) Bit is unknown \\
\hline
\end{tabular}
bit 15-14 F15MSK<1:0>: Mask Source for Filter 15 bit
11 = Reserved
10 = Acceptance Mask 2 registers contain mask
01 = Acceptance Mask 1 registers contain mask
00 = Acceptance Mask 0 registers contain mask
bit 13-12 F14MSK<1:0>: Mask Source for Filter 14 bit (same values as bit 15-14)
bit 11-10 F13MSK<1:0>: Mask Source for Filter 13 bit (same values as bit 15-14)
bit 9-8 F12MSK<1:0>: Mask Source for Filter 12 bit (same values as bit 15-14)
bit 7-6 F11MSK<1:0>: Mask Source for Filter 11 bit (same values as bit 15-14)
bit 5-4 F10MSK<1:0>: Mask Source for Filter 10 bit (same values as bit 15-14)
bit 3-2 F9MSK<1:0>: Mask Source for Filter 9 bit (same values as bit 15-14)
bit 1-0 F8MSK<1:0>: Mask Source for Filter 8 bit (same values as bit 15-14)

REGISTER 21-20: CiRXMnSID: ECAN \({ }^{\text {™ }}\) ACCEPTANCE FILTER MASK STANDARD IDENTIFIER REGISTER \(\mathbf{n}(\mathbf{n}=\mathbf{0 - 2})\)
\begin{tabular}{|l|c|c|c|c|c|c|c|c|}
\hline R/W-x & R/W-x \\
\hline SID10 & SID9 & SID8 & SID7 & SID6 & SID5 & SID4 & SID3 \\
\hline bit 15
\end{tabular}
\begin{tabular}{|l|c|c|c|c|c|c|c|}
\hline R/W-x & R/W-x & R/W-x & U-0 & R/W-x & U-0 & R/W-x & R/W-x \\
\hline SID2 & SID1 & SID0 & - & MIDE & - & EID17 & EID16 \\
\hline bit 7 &
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend: & \(C=\) Writable bit, but only ' 0 ' can be written to clear the bit \\
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as 0 ' \\
\(-n=\) Value at POR & \(' 1\) ' \(=\) Bit is set & ' 0 ' \(=\) Bit is cleared \(\quad x=\) Bit is unknown \\
\hline
\end{tabular}
bit 15-5 SID<10:0>: Standard Identifier bits
1 = Include bit SIDx in filter comparison
\(0=\) Bit SIDx is don't care in filter comparison
bit \(4 \quad\) Unimplemented: Read as ' 0 '
bit 3 MIDE: Identifier Receive Mode bit
1 = Match only message types (standard or extended address) that correspond to EXIDE bit in filter \(0=\) Match either standard or extended address message if filters match
(i.e., if \((\) Filter SID \()=(\) Message SID \()\) or if (Filter SID/EID) \(=(\) Message SID/EID \()\) )
bit \(2 \quad\) Unimplemented: Read as ' 0 '
bit 1-0 EID<17:16>: Extended Identifier bits
1 = Include bit EIDx in filter comparison
\(0=\) Bit EIDx is don't care in filter comparison

REGISTER 21-21: CiRXMnEID: ECAN \({ }^{\text {TM }}\) ACCEPTANCE FILTER MASK EXTENDED IDENTIFIER REGISTER \(\mathrm{n}(\mathrm{n}=0-2)\)
\begin{tabular}{|l|c|c|c|c|c|c|c|}
\hline R/W-x & R/W-x \\
\hline EID15 & EID14 & EID13 & EID12 & EID11 & EID10 & EID9 & EID8 \\
\hline bit 15
\end{tabular}
\begin{tabular}{|l|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|c|}{ R/W-x } & R/W-x \\
\hline EID7 & EID6 & EID5 & R/W-x & R/W-x & R/W-x & R/W-x & R/W-x \\
\hline bit 7 & EID3 & EID2 & EID1 & EID0 \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend: & \(C=\) Writable bit, but only ' 0 ' can be written to clear the bit \\
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1\) ' = Bit is set & \(' 0\) ' = Bit is cleared \(\quad x=\) Bit is unknown \\
\hline
\end{tabular}
bit 15-0 EID<15:0>: Extended Identifier bits
1 = Include bit EIDx in filter comparison
\(0=\) Bit EIDx is don't care in filter comparison

\section*{REGISTER 21-22: CiRXFUL1: ECAN \({ }^{\text {™ }}\) RECEIVE BUFFER FULL REGISTER 1}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline R/C-0 & R/C-0 \\
\hline RXFUL15 & RXFUL14 & RXFUL13 & RXFUL12 & RXFUL11 & RXFUL10 & RXFUL9 & RXFUL8 \\
\hline bit 15
\end{tabular}
\begin{tabular}{|l|c|c|c|c|c|c|c|}
\hline \multicolumn{1}{|c}{ R/C-0 } & R/C-0 \\
\hline RXFUL7 & RXFUL6 & RXFUL5 & RXFUL4 & RXFUL3 & RXFUL2 & RXFUL1 & RXFUL0 \\
\hline bit 7 & & & & bit 0 \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend: & \(C=\) Writable bit, but only ' 0 ' can be written to clear the bit \\
\(R=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) Unimplemented bit, read as ' 0 ' \\
\(-\mathrm{n}=\) Value at POR & \(' 1\) ' \(=\) Bit is set & \(' 0\) ' \(=\) Bit is cleared \\
\hline
\end{tabular}
bit 15-0 RXFUL<15:0>: Receive Buffer n Full bits
1 = Buffer is full (set by module)
0 = Buffer is empty (cleared by user software)

REGISTER 21-23: CiRXFUL2: ECAN \({ }^{\text {M }}\) RECEIVE BUFFER FULL REGISTER 2
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline R/C-0 & R/C-0 \\
\hline RXFUL31 & RXFUL30 & RXFUL29 & RXFUL28 & RXFUL27 & RXFUL26 & RXFUL25 & RXFUL24 \\
\hline bit 15
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline R/C-0 & R/C-0 \\
\hline RXFUL23 & RXFUL22 & RXFUL21 & RXFUL20 & RXFUL19 & RXFUL18 & RXFUL17 & RXFUL16 \\
\hline bit 7 & & & & bit 0 \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend: & \(C=\) Writable bit, but only ' 0 ' can be written to clear the bit \\
\(R=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) Unimplemented bit, read as ' 0 ' \\
\(-\mathrm{n}=\) Value at POR & \(' 1\) ' \(=\) Bit is set & \(' 0\) ' \(=\) Bit is cleared \\
\hline
\end{tabular}
bit 15-0 RXFUL<31:16>: Receive Buffer \(n\) Full bits
1 = Buffer is full (set by module)
\(0=\) Buffer is empty (cleared by user software)

\section*{REGISTER 21-24: CiRXOVF1: ECAN \({ }^{\text {™ }}\) RECEIVE BUFFER OVERFLOW REGISTER 1}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline R/C-0 & R/C-0 \\
\hline RXOVF15 & RXOVF14 & RXOVF13 & RXOVF12 & RXOVF11 & RXOVF10 & RXOVF9 & RXOVF8 \\
\hline bit 15
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline R/C-0 & R/C-0 \\
\hline RXOVF7 & RXOVF6 & RXOVF5 & RXOVF4 & RXOVF3 & RXOVF2 & RXOVF1 & RXOVF0 \\
\hline bit 7
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend: & \(C=\) Writable bit, but only ' 0 ' can be written to clear the bit \\
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as 0 ' \\
\(-n=\) Value at POR & \(' 1\) ' \(=\) Bit is set & ' 0 ' \(=\) Bit is cleared \\
\hline
\end{tabular}
bit 15-0 RXOVF<15:0>: Receive Buffer \(n\) Overflow bits
1 = Module attempted to write to a full buffer (set by module)
\(0=\) No overflow condition (cleared by user software)

REGISTER 21-25: CiRXOVF2: ECAN \({ }^{\text {M }}\) RECEIVE BUFFER OVERFLOW REGISTER 2
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline R/C-0 & R/C-0 \\
\hline RXOVF31 & RXOVF30 & RXOVF29 & RXOVF28 & RXOVF27 & RXOVF26 & RXOVF25 & RXOVF24 \\
\hline bit 15
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{1}{|c}{ R/C-0 } & R/C-0 \\
\hline RXOVF23 & RXOVF22 & RXOVF21 & RXOVF20 & RXOVF19 & RXOVF18 & RXOVF17 & RXOVF16 \\
\hline bit 7 & & & & & bit 0 \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend: & \(C=\) Writable bit, but only ' 0 ' can be written to clear the bit \\
\(R=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) Unimplemented bit, read as ' 0 ' \\
\(-\mathrm{n}=\) Value at POR & \(' 1\) ' = Bit is set & \(' 0\) ' \(=\) Bit is cleared \(\quad x=\) Bit is unknown \\
\hline
\end{tabular}
bit 15-0 RXOVF<31:16>: Receive Buffer \(n\) Overflow bits
1 = Module attempted to write to a full buffer (set by module)
\(0=\) No overflow condition (cleared by user software)

\section*{REGISTER 21-26: CiTRmnCON: ECAN \({ }^{\text {M }}\) TxIRx BUFFER m CONTROL REGISTER} ( \(\mathrm{m}=\mathbf{0 , 2 , 4 , 6 ; n = 1 , 3 , 5 , 7 \text { ) } ) ~}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline R/W-0 R-0 & R-0 & R-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 \\
\hline TXENn & TXABTn & TXLARBn & TXERRn & TXREQn & RTRENn & TXnPRI<1:0> \\
\hline bit 15
\end{tabular}
\begin{tabular}{|l|c|c|c|c|c|c|c|}
\hline R/W-0 & R-0 & R-0 & R-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 \\
\hline TXENm & TXABTm \(^{(\mathbf{1 )}}\) & TXLARBm \(^{(\mathbf{1})}\) & TXERRm \(^{(\mathbf{1})}\) & TXREQm & RTRENm & TXmPRI<1:0> \\
\hline bit 7 & & & & bit 0 \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend: & \(C=\) Writable bit, but only ' 0 ' can be written to clear the bit \\
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1\) ' \(=\) Bit is set & ' 0 ' = Bit is cleared \(\quad x=\) Bit is unknown \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline bit 15-8 & See Definition for Bits 7-0, Controls Buffer n \\
\hline \multirow[t]{3}{*}{bit 7} & TXENm: TX/RX Buffer Selection bit \\
\hline & 1 = Buffer TRBn is a transmit buffer \\
\hline & 0 = Buffer TRBn is a receive buffer \\
\hline \multirow[t]{3}{*}{bit 6} & TXABTm: Message Aborted bit \({ }^{(1)}\) \\
\hline & 1 = Message was aborted \\
\hline & 0 = Message completed transmission successfully \\
\hline \multirow[t]{3}{*}{bit 5} & TXLARBm: Message Lost Arbitration bit \({ }^{(1)}\) \\
\hline & 1 = Message lost arbitration while being sent \\
\hline & 0 = Message did not lose arbitration while being sent \\
\hline \multirow[t]{3}{*}{bit 4} & TXERRm: Error Detected During Transmission bit \({ }^{(1)}\) \\
\hline & 1 = A bus error occurred while the message was being sent \\
\hline & 0 = A bus error did not occur while the message was being sent \\
\hline \multirow[t]{3}{*}{bit 3} & TXREQm: Message Send Request bit \\
\hline & 1 = Requests that a message be sent. The bit automatically clears when the message is successfully sent. \\
\hline & 0 = Clearing the bit to ' 0 ' while set requests a message abort. \\
\hline \multirow[t]{3}{*}{bit 2} & RTRENm: Auto-Remote Transmit Enable bit \\
\hline & 1 = When a remote transmit is received, TXREQ will be set \\
\hline & \(0=\) When a remote transmit is received, TXREQ will be unaffected \\
\hline \multirow[t]{5}{*}{bit 1-0} & TXmPRI<1:0>: Message Transmission Priority bits \\
\hline & 11 = Highest message priority \\
\hline & 10 = High intermediate message priority \\
\hline & 01 = Low intermediate message priority \\
\hline & 00 = Lowest message priority \\
\hline
\end{tabular}

Note 1: This bit is cleared when TXREQ is set.

Note: \(\quad\) The buffers, SID, EID, DLC, Data Field and Receive Status registers are located in DMA RAM.

\subsection*{21.3 ECAN Message Buffers}

ECAN Message Buffers are part of RAM Memory. They are not ECAN Special Function Registers. The user application must directly write into the RAM area that is configured for ECAN Message Buffers. The location and size of the buffer area is defined by the user application.

\section*{BUFFER 21-1: ECAN \({ }^{\text {TM }}\) MESSAGE BUFFER WORD 0}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline U-0 & U-0 & U-0 & R/W-x & R/W-x & R/W-x & R/W-x & R/W-x \\
\hline- & - & - & SID10 & SID9 & SID8 & SID7 & SID6 \\
\hline bit 15 & & & bit 8 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline R/W-x & R/W-x \\
\hline SID5 & SID4 & SID3 & SID2 & SID1 & SID0 & SRR & IDE \\
\hline bit 7
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(\mathrm{R}=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) Unimplemented bit, read as ' 0 ' \\
\(-\mathrm{n}=\) Value at POR & \(' 1\) ' \(=\) Bit is set & \(' 0\) ' \(=\) Bit is cleared
\end{tabular}\(\quad \mathrm{x}=\) Bit is unknown
bit 15-13 Unimplemented: Read as ' 0 '
bit 12-2 SID<10:0>: Standard Identifier bits
bit 1 SRR: Substitute Remote Request bit
When TXIDE = 0:
1 = Message will request remote transmission
0 = Normal message
When TXIDE = 1:
The SRR bit must be set to ' 1 '
bit \(0 \quad\) IDE: Extended Identifier bit
1 = Message will transmit extended identifier
\(0=\) Message will transmit standard identifier

\section*{BUFFER 21-2: ECAN \({ }^{\text {M }}\) MESSAGE BUFFER WORD 1}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline U-0 & U-0 & U-0 & U-0 & R/W-x & R/W-x & R/W-x & R/W-x \\
\hline- & - & - & - & EID17 & EID16 & EID15 & EID14 \\
\hline bit 15 & & & & bit 8 \\
\hline
\end{tabular}
\begin{tabular}{|l|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|c|}{ R/W-x } & R/W-x \\
\hline EID13 & EID12 & EID11 & EID10 & EID9 & R/W-x & EID8 & EID7 & EID6 \\
\hline bit 7 & & bit 0 \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1 '=\) Bit is set & \(' 0\) ' = Bit is cleared \\
\hline
\end{tabular}
\begin{tabular}{ll} 
bit 15-12 & Unimplemented: Read as ‘ 0 ' \\
bit 11-0 & EID<17:6>: Extended Identifier bits
\end{tabular}

BUFFER 21-3: ECAN \({ }^{\text {TM }}\) MESSAGE BUFFER WORD 2
\begin{tabular}{|l|c|c|c|c|c|c|c|c|}
\hline R/W-x & R/W-x \\
\hline EID5 & EID4 & EID3 & EID2 & EID1 & EID0 & RTR & RB1 \\
\hline bit 15 &
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline U-x & \(U-x\) & \(U-x\) & \(R / W-x\) \\
\hline- & - & - & \(R B 0\) & DLC3 & DLC2 & DLC1 & DLC0 \\
\hline bit 7 & & & & bit 0 \\
\hline
\end{tabular}

Legend:
\begin{tabular}{lll}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1\) ' = Bit is set & \(' 0\) ' \(=\) Bit is cleared
\end{tabular}
bit 15-10 EID<5:0>: Extended Identifier bits
bit 9 RTR: Remote Transmission Request bit
When TXIDE = 1:
1 = Message will request remote transmission
0 = Normal message
When TXIDE \(=0\) :
The RTR bit is ignored.
bit \(8 \quad\) RB1: Reserved Bit 1
User must set this bit to ' 0 ' per CAN protocol.
bit 7-5 Unimplemented: Read as ' 0 '
bit \(4 \quad\) RB0: Reserved Bit 0
User must set this bit to ' 0 ' per CAN protocol.
bit 3-0 DLC<3:0>: Data Length Code bits

BUFFER 21-4: ECAN \({ }^{\text {TM }}\) MESSAGE BUFFER WORD 3
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline R/W-x & R/W-x \\
\hline \multicolumn{8}{|c|}{Byte 1} \\
\hline bit 15 & & & & & & & bit 8 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline R/W-x & R/W-x \\
\hline \multicolumn{8}{|c|}{Byte 0} \\
\hline bit 7 & & & & & & & bit 0 \\
\hline \multicolumn{8}{|l|}{Legend:} \\
\hline \(\mathrm{R}=\) Readable bit & & W = Writable bit & & \(\mathrm{U}=\) Unimp & ted bit, r & as ' 0 ' & \\
\hline -n = Value at POR & & ' 1 ' = Bit is set & & ' 0 ' = Bit is & & \(\mathrm{x}=\mathrm{Bit}\) is & \\
\hline
\end{tabular}
bit 15-8 Byte \(1<15: 8>\) : ECAN \({ }^{\text {TM }}\) Message byte 0
bit 7-0 Byte 0<7:0>: ECAN Message byte 1

BUFFER 21-5: ECAN \({ }^{\text {TM }}\) MESSAGE BUFFER WORD 4

bit 15-8 Byte \(3<15: 8>\) : ECAN \({ }^{\text {TM }}\) Message byte 3
bit 7-0 \(\quad\) Byte 2<7:0>: ECAN Message byte 2

BUFFER 21-6: ECAN \({ }^{\text {TM }}\) MESSAGE BUFFER WORD 5
\begin{tabular}{|lllllll|}
\hline\(R / W-x\) & \(R / W-x\)
\end{tabular}\(\quad\) R/W-x \begin{tabular}{llll} 
\\
\hline & & Byte 5 & \\
\hline bit 15 & & & \\
\hline
\end{tabular}
\begin{tabular}{|llccccc|}
\hline \multicolumn{1}{|c|}{\(R / W-x\)} & \(R / W-x\) & \(R / W-x\)
\end{tabular}
bit 15-8 Byte 5<15:8>: ECAN \({ }^{\text {TM }}\) Message byte 5
bit 7-0 \(\quad\) Byte 4<7:0>: ECAN Message byte 4

\section*{BUFFER 21-7: ECAN \({ }^{\text {TM }}\) MESSAGE BUFFER WORD 6}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline R/W-x & R/W-x \\
\hline \multicolumn{8}{|c|}{Byte 7} \\
\hline bit 15 & & & & & & & bit 8 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline R/W-x & R/W-x \\
\hline \multicolumn{8}{|c|}{Byte 6} \\
\hline bit 7 & & & & & & & bit 0 \\
\hline \multicolumn{8}{|l|}{Legend:} \\
\hline \(\mathrm{R}=\) Readable bit & & \multicolumn{2}{|l|}{\(\mathrm{W}=\) Writable bit} & \multicolumn{4}{|l|}{\(\mathrm{U}=\) Unimplemented bit, read as ' 0 '} \\
\hline -n = Value at POR & & ' 1 ' = Bit is & & ' 0 ' = Bit is & & \(x=B i t\) is \(u\) & \\
\hline
\end{tabular}
bit 15-8 Byte \(\mathbf{7 < 1 5 : 8 >}\) : ECAN \({ }^{\text {TM }}\) Message byte 7
bit 7-0 Byte 6<7:0>: ECAN Message byte 6

\section*{BUFFER 21-8: ECAN \({ }^{\text {TM }}\) MESSAGE BUFFER WORD 7}
\begin{tabular}{|c|c|c|ccccc|}
\hline\(U-0\) & \(U-0\) & \(U-0\) & \(R / W-x\) \\
\hline- & - & - & & FILHIT \(<4: 0 \gg^{(1)}\) & & \\
\hline bit 15 & & & & bit 8 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline U-0 & U-0 \\
\hline- & - & - & - & - & - & - & - \\
\hline bit 7 & & & & & bit 0 \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend: & & \\
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1\) ' = Bit is set & \(' 0\) ' = Bit is cleared \\
\hline
\end{tabular}
\begin{tabular}{ll} 
bit 15-13 & Unimplemented: Read as ' 0 ' \\
bit 12-8 & FILHIT<4:0>: Filter Hit Code bits \({ }^{(\mathbf{1})}\) \\
& Encodes number of filter that resulted in writing this buffer. \\
bit 7-0 & Unimplemented: Read as ' 0 '
\end{tabular}

Note 1: Only written by module for receive buffers, unused for transmit buffers.

NOTES:

\subsection*{22.0 CHARGE TIME MEASUREMENT UNIT (CTMU)}

Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X, and PIC24EPXXXGP/MC20X family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 33. "Charge Time Measurement Unit (CTMU)" (DS70661) in the "dsPIC33E/PIC24E Family Reference Manual", which is available on the Microchip web site (www.microchip.com).
2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Charge Time Measurement Unit is a flexible analog module that provides accurate differential time measurement between pulse sources, as well as asynchronous pulse generation. Its key features include:
- Four edge input trigger sources
- Polarity control for each edge source
- Control of edge sequence
- Control of response to edges
- Precise time measurement resolution of 1 ns
- Accurate current source suitable for capacitive measurement
- On-chip temperature measurement using a built-in diode

Together with other on-chip analog modules, the CTMU can be used to precisely measure time, measure capacitance, measure relative changes in capacitance or generate output pulses that are independent of the system clock.
The CTMU module is ideal for interfacing with capaci-tive-based sensors. The CTMU is controlled through two registers: CTMUCON and CTMUICON. CTMUCON enables the module and controls edge source selection, edge source polarity selection and edge sequencing. The CTMUICON register controls the selection and trim of the current source.

FIGURE 22-1: CTMU BLOCK DIAGRAM


REGISTER 22-1: CTMUCON1: CTMU CONTROL REGISTER 1
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline R/W-0 & U-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 \\
\hline CTMUEN & - & CTMUSIDL & TGEN & EDGEN & EDGSEQEN & IDISSEN \({ }^{(\mathbf{1})}\) & CTTRIG \\
\hline bit 15 \\
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline U-0 & U-0 & U-0 & U-0 & U-0 & U-0 & U-0 \\
\hline- & - & - & - & - & - & - \\
\hline bit 7 &
\end{tabular}
\end{tabular}\(.\)\begin{tabular}{l} 
U-0 \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend: & & \\
\(R=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) Unimplemented bit, read as ' 0 ' \\
\(-\mathrm{n}=\) Value at POR & \(' 1\) ' \(=\) Bit is set & \(\prime 0\) ' \(=\) Bit is cleared \(\quad x=\) Bit is unknown \\
\hline
\end{tabular}
bit 15 CTMUEN: CTMU Enable bit
1 = Module is enabled
\(0=\) Module is disabled
bit \(14 \quad\) Unimplemented: Read as ' 0 '
bit 13 CTMUSIDL: Stop in Idle Mode bit
1 = Discontinue module operation when device enters Idle mode
0 = Continue module operation in Idle mode
bit 12
TGEN: Time Generation Enable bit
1 = Enables edge delay generation
0 = Disables edge delay generation
bit 11
EDGEN: Edge Enable bit
1 = Hardware modules are used to trigger edges (TMRx, CTEDx, etc.)
0 = Software is used to trigger edges (manual set of EDGxSTAT)
bit 10 EDGSEQEN: Edge Sequence Enable bit
1 = Edge 1 event must occur before Edge 2 event can occur
\(0=\) No edge sequence is needed
bit 9 IDISSEN: Analog Current Source Control bit \({ }^{(\mathbf{1})}\)
1 = Analog current source output is grounded
\(0=\) Analog current source output is not grounded
bit 8 CTTRIG: ADC Trigger Control bit
1 = CTMU triggers ADC start of conversion
\(0=\) CTMU does not trigger ADC start of conversion
bit 7-0 Unimplemented: Read as ' 0 '

Note 1: The ADC module Sample and Hold capacitor is not automatically discharged between sample/conversion cycles. Software using the ADC as part of a capacitance measurement, must discharge the ADC capacitor before conducting the measurement. The IDISSEN bit, when set to ' 1 ', performs this function. The ADC must be sampling while the IDISSEN bit is active to connect the discharge sink to the capacitor array.

REGISTER 22-2: CTMUCON2: CTMU CONTROL REGISTER 2


\section*{Legend:}
\begin{tabular}{lll}
\(\mathrm{R}=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) Unimplemented bit, read as ' 0 ' \\
\(-\mathrm{n}=\) Value at POR & \(' 1\) ' = Bit is set & ' 0 ' \(=\) Bit is cleared
\end{tabular}
bit 15 EDG1MOD: Edge 1 Edge Sampling Mode Selection bit
1 = Edge 1 is edge sensitive
\(0=\) Edge 1 is level sensitive
bit 14 EDG1POL: Edge 1 Polarity Select bit
1 = Edge 1 programmed for a positive edge response
0 = Edge 1 programmed for a negative edge response
bit 13-10 EDG1SEL<3:0>: Edge 1 Source Select bits
1xxx = Reserved

01xx = Reserved
0011 = CTED1 pin
\(0010=\) CTED2 pin
0001 = OC1 module
0000 = Timer1 module
bit 9 EDG2STAT: Edge 2 Status bit
Indicates the status of Edge 2 and can be written to control the edge source.
1 = Edge 2 has occurred
0 = Edge 2 has not occurred
bit 8 EDG1STAT: Edge 1 Status bit
Indicates the status of Edge 1 and can be written to control the edge source.
1 = Edge 1 has occurred
\(0=\) Edge 1 has not occurred
bit 7 EDG2MOD: Edge 2 Edge Sampling Mode Selection bit
1 = Edge 2 is edge sensitive
0 = Edge 2 is level sensitive
bit 6 EDG2POL: Edge 2 Polarity Select bit
1 = Edge 2 programmed for a positive edge response
0 = Edge 2 programmed for a negative edge response
bit 5-2 EDG2SEL<3:0>: Edge 2 Source Select bits
\[
\begin{aligned}
& 1111=\text { Reserved } \\
& 01 x \mathrm{=} \text { Reserved } \\
& 0100=\text { CMP1 module } \\
& 0011=\text { CTED2 pin } \\
& 0010=\text { CTED1 pin } \\
& 0001=\text { OC1 module } \\
& 0000=\text { IC1 module }
\end{aligned}
\]
bit 1-0 Unimplemented: Read as ' 0 '

REGISTER 22-3: CTMUICON: CTMU CURRENT CONTROL REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline R/W-0 & R/W-0 \\
\hline \multicolumn{6}{|c|}{ITRIM<5:0>} & \multicolumn{2}{|c|}{IRNG<1:0>} \\
\hline \multicolumn{6}{|l|}{bit 15} & \multicolumn{2}{|r|}{bit 8} \\
\hline U-0 & U-0 \\
\hline - & - & - & - & - & - & - & - \\
\hline bit 7 & & & & & & & bit 0 \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(\mathrm{R}=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) Unimplemented bit, read as ' 0 ' \\
\(-\mathrm{n}=\) Value at POR & \(' 1\) ' \(=\) Bit is set & \(' 0\) ' = Bit is cleared
\end{tabular}
bit 15-10 ITRIM<5:0>: Current Source Trim bits
011111 = Maximum positive change from nominal current \(+62 \%\)
\(011110=\) Maximum positive change from nominal current \(+60 \%\)
-
-
-
\(000010=\) Minimum positive change from nominal current \(+4 \%\)
\(000001=\) Minimum positive change from nominal current \(+2 \%\)
000000 = Nominal current output specified by IRNG<1:0>
111111 = Minimum negative change from nominal current \(-2 \%\)
\(111110=\) Minimum negative change from nominal current \(-4 \%\)
-
-
-
\(100010=\) Maximum negative change from nominal current \(-60 \%\)
100001 = Maximum negative change from nominal current -62\%
bit 9-8 IRNG<1:0>: Current Source Range Select bits
\(11=100 \times\) Base Current ( \(55 \mu \mathrm{~A}\) )
\(10=10 \times\) Base Current \((5.5 \mu \mathrm{~A})\)
\(01=\) Base Current Level \((0.55 \mu \mathrm{~A})\)
\(00=1000 \times\) Base Current \((550 \mu \mathrm{~A})^{(1)}\)
bit 7-0 Unimplemented: Read as ' 0 '

Note 1: This bit setting is not available to be used with the internal temperature measurement diode.

\subsection*{23.0 10-BIT/12-BIT ANALOG-TODIGITAL CONVERTER (ADC)}

Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X, and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 16. "Analog-toDigital Converter (ADC)" (DS70621) of the "dsPIC33E/PIC24E Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X, and PIC24EPXXXGP/MC20X devices have one ADC module. The ADC module supports up to 16 analog input channels.
On ADC1, the AD12B bit (AD1CON1<10>) allows each of the ADC modules to be configured by the user as either a 10-bit, 4-sample/hold ADC (default configuration) or a 12-bit, 1-sample/hold ADC.

\section*{Note: The ADC module needs to be disabled before modifying the AD12B bit.}

\subsection*{23.1 Key Features}

The 10-bit ADC configuration has the following key features:
- Successive Approximation (SAR) conversion
- Conversion speeds of up to 1.1 Msps
- Up to 16 analog input pins
- External voltage reference input pins
- Simultaneous sampling of up to four analog input pins
- Automatic Channel Scan mode
- Selectable conversion trigger source
- Selectable Buffer Fill modes
- Four result alignment options (signed/unsigned, fractional/integer)
- Operation during CPU Sleep and Idle modes

The 12-bit ADC configuration supports all the above features, except:
- In the 12-bit configuration, conversion speeds of up to 500 ksps are supported
- There is only one sample/hold amplifier in the 12-bit configuration, so simultaneous sampling of multiple channels is not supported.
Depending on the particular device pinout, the ADC can have up to 16 analog input pins, designated ANO through AN15. In addition, there are two analog input pins for external voltage reference connections. These voltage reference inputs can be shared with other analog input pins. The actual number of analog input pins and external voltage reference input configuration depends on the specific device.
A block diagram of the ADC module is shown in Figure 23-1. Figure 23-2 provides a diagram of the ADC conversion clock period.

FIGURE 23-1: ADC MODULE BLOCK DIAGRAM


\section*{FIGURE 23-2: ADC CONVERSION CLOCK PERIOD BLOCK DIAGRAM}


Note 1: \(T P=1 / F P\).
2: See the ADC electrical characteristics for the exact RC clock value.

\section*{REGISTER 23-1: AD1CON1: ADC1 CONTROL REGISTER 1}

\begin{tabular}{|lll|}
\hline Legend: & \(H C=\) Cleared by hardware & \(H S=\) Set by hardware \\
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1 '=\) Bit is set & \(' 0 '=\) Bit is cleared \(\quad x=\) Bit is unknown \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multirow[t]{2}{*}{bit 15} & ADON: ADC Operating Mode bit \\
\hline & 1 = ADC module is operating \(0=A D C\) is off \\
\hline bit 14 & Unimplemented: Read as '0' \\
\hline \multirow[t]{2}{*}{bit 13} & ADSIDL: Stop in Idle Mode bit \\
\hline & \begin{tabular}{l}
1 = Discontinue module operation when device enters Idle mode \\
0 = Continue module operation in Idle mode
\end{tabular} \\
\hline \multirow[t]{2}{*}{bit 12} & ADDMABM: DMA Buffer Build Mode bit \\
\hline & \begin{tabular}{l}
1 = DMA buffers are written in the order of conversion. The module provides an address to the DMA channel that is the same as the address used for the non-DMA stand-alone buffer. \\
\(0=\) DMA buffers are written in Scatter/Gather mode. The module provides a Scatter/Gather address to the DMA channel, based on the index of the analog input and the size of the DMA buffer.
\end{tabular} \\
\hline bit 11 & Unimplemented: Read as '0' \\
\hline \multirow[t]{2}{*}{bit 10} & AD12B: 10-bit or 12-bit Operation Mode bit \\
\hline & 1 = 12-bit, 1-channel ADC operation \(0=10\)-bit, 4-channel ADC operation \\
\hline \multirow[t]{11}{*}{bit 9-8} & FORM<1:0>: Data Output Format bits \\
\hline & For 10-bit operation: \\
\hline & 11 = Signed fractional (Dout = sddd dddd dd00 0000, where s = .NOT.d<9>) \\
\hline & 10 = Fractional (Dout = dddd dddd dd00 0000) \\
\hline & 01 = Signed integer (Dout = ssss sssd dddd dddd, where s = .NOT.d<9>) \\
\hline & \(00=\) Integer (Dout \(=0000\) 00dd dddd dddd) \\
\hline & For 12-bit operation: \\
\hline & 11 = Signed fractional (Dout = sddd dddd dddd 0000, where s = .NOT.d<11>) \\
\hline & 10 = Fractional (Dout = dddd dddd dddd 0000) \\
\hline & 01 = Signed Integer (Dout = ssss sddd dddd dddd, where s = .NOT.d<11>) \\
\hline & \(00=\) Integer (Dout \(=0000\) dddd dddd dddd) \\
\hline
\end{tabular}

Note 1: See Section 24.0 "Peripheral Trigger Generator (PTG) Module" for information on this selection.
2: This setting is available in dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices only.
3: Do not clear the DONE bit in software if Auto-Sample is enabled (ASAM = 1).

\section*{REGISTER 23-1: AD1CON1: ADC1 CONTROL REGISTER 1 (CONTINUED)}
```

bit 7-5 SSRC<2:0>: Sample Clock Source Select bits
If SSRCG = 1:
111 = Reserved

```

```

 101 = PTGO14 primary trigger compare ends sampling and starts conversion(1)
 1 0 0 = ~ P T G O 1 3 ~ p r i m a r y ~ t r i g g e r ~ c o m p a r e ~ e n d s ~ s a m p l i n g ~ a n d ~ s t a r t s ~ c o n v e r s i o n ~ (1) ~
 011 = PTGO12 primary trigger compare ends sampling and starts conversion(1)
 010 = PWM Generator 3 primary trigger compare ends sampling and starts conversion(2)
 001 = PWM Generator 2 primary trigger compare ends sampling and starts conversion (}\mp@subsup{}{}{(2)
 000 = PWM Generator 1 primary trigger compare ends sampling and starts conversion (}\mp@subsup{}{}{(2)
 If SSRCG = 0:
 111 = Internal counter ends sampling and starts conversion (auto-convert)
 110 = CTMU ends sampling and starts conversion
 101 = Reserved
 100 = Timer5 compare ends sampling and starts conversion
 011 = PWM primary Special Event Trigger ends sampling and starts conversion(2)
 010 = Timer3 compare ends sampling and starts conversion
 001 = Active transition on the INT0 pin ends sampling and starts conversion
 000 = Clearing the Sample bit (SAMP) ends sampling and starts conversion (Manual mode)
 bit 4 SSRCG: Sample Clock Source Group bit
See SSRC<2:0> for details.
bit 3 SIMSAM: Simultaneous Sample Select bit (only applicable when CHPS<1:0> = 01 or 1x)
When AD12B = 1, SIMSAM is: U-0, Unimplemented, Read as '0'
1 = Samples CH0, CH1, CH2, CH3 simultaneously (when CHPS<1:0> = 1x); or
Samples CH0 and CH1 simultaneously (when CHPS<1:0> = 01)
0 = Samples multiple channels individually in sequence

```
bit 2 ASAM: ADC Sample Auto-Start bit
    1 = Sampling begins immediately after last conversion. SAMP bit is auto-set.
    \(0=\) Sampling begins when SAMP bit is set
bit 1

SAMP: ADC Sample Enable bit
1 = ADC Sample/Hold amplifiers are sampling
\(0=\) ADC Sample/Hold amplifiers are holding
If ASAM \(=0\), software can write ' 1 ' to begin sampling. Automatically set by hardware if ASAM \(=1\). If SSRC \(=000\), software can write ' 0 ' to end sampling and start conversion. If SSRC \(\neq 000\), automatically cleared by hardware to end sampling and start conversion.
bit 0 DONE: ADC Conversion Status bit \({ }^{(3)}\)
1 = ADC conversion cycle is completed.
\(0=\) ADC conversion not started or in progress
Automatically set by hardware when A/D conversion is complete. Software can write ' 0 ' to clear DONE status (software not allowed to write ' 1 '). Clearing this bit does NOT affect any operation in progress. Automatically cleared by hardware at start of a new conversion.

Note 1: See Section 24.0 "Peripheral Trigger Generator (PTG) Module" for information on this selection.
2: This setting is available in dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices only.
3: Do not clear the DONE bit in software if Auto-Sample is enabled (ASAM = 1).

\section*{REGISTER 23-2: AD1CON2: ADC1 CONTROL REGISTER 2}
\begin{tabular}{|lcc|c|c|c|c|c|}
\hline R/W-0 & R/W-0 & R/W-0 & U-0 & U-0 & R/W-0 & R/W-0 & R/W-0 \\
\hline & VCFG<2:0> & - & - & CSCNA & CHPS<1:0> \\
\hline bit 15 & & & & bit 8 \\
\hline
\end{tabular}
\begin{tabular}{|l|lllll|l|l|}
\hline \multicolumn{1}{|c}{ R-0 } & R/W-0 \\
\hline BUFS & & SMPI<4:0> & & BUFM & ALTS \\
\hline bit 7 & & & & & bit 0 \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1\) ' \(=\) Bit is set & \(' 0\) ' \(=\) Bit is cleared
\end{tabular}\(\quad x=\) Bit is unknown
bit 15-13 VCFG<2:0>: Converter Voltage Reference Configuration bits
\begin{tabular}{|c|c|c|}
\hline & VREFH & VREFL \\
\hline \hline 000 & AVDD & Avss \\
\hline 001 & External VREF+ & Avss \\
\hline 010 & AVDD & External VREF- \\
\hline 011 & External VREF+ & External VREF- \\
\hline \(1 \times x\) & AVDD & Avss \\
\hline
\end{tabular}
bit 12-11 Unimplemented: Read as ' 0 '
bit 10
bit 9-8 CHPS<1:0>: Channel Select bits
When AD12B = 1, CHPS<1:0> is: U-0, Unimplemented, Read as ' 0 '
\(1 \mathrm{x}=\) Converts \(\mathrm{CH} 0, \mathrm{CH} 1, \mathrm{CH} 2\) and CH 3
\(01=\) Converts CH 0 and CH 1
00 = Converts CH0
bit 7 BUFS: Buffer Fill Status bit (only valid when BUFM = 1)
\(1=\) ADC is currently filling the second half of the buffer. The user application should access data in the first half of the buffer
\(0=\) ADC is currently filling the first half of the buffer. The user application should access data in the second half of the buffer.
bit 6-2 SMPI<4:0>: Increment Rate bits
When ADDMAEN = 0:
01111 = Generates interrupt after completion of every 16th sample/conversion operation
01110 = Generates interrupt after completion of every 15th sample/conversion operation
-
.
\(00001=\) Generates interrupt after completion of every 2nd sample/conversion operation
00000 = Generates interrupt after completion of every sample/conversion operation
When ADDMAEN \(=1\) :
11111 = Increments the DMA address after completion of every 32nd sample/conversion operation \(11110=\) Increments the DMA address after completion of every 31st sample/conversion operation
-
.
00001 = Increments the DMA address after completion of every 2nd sample/conversion operation \(00000=\) Increments the DMA address after completion of every sample/conversion operation

\section*{REGISTER 23-2: AD1CON2: ADC1 CONTROL REGISTER 2 (CONTINUED)}
bit 1 BUFM: Buffer Fill Mode Select bit
1 = Starts buffer filling the first half of the buffer on the first interrupt and the second half of the buffer on next interrupt
\(0=\) Always starts filling the buffer from the start address.
bit 0
ALTS: Alternate Input Sample Mode Select bit
1 = Uses channel input selects for Sample A on first sample and Sample B on next sample \(0=\) Always uses channel input selects for Sample A

REGISTER 23-3: AD1CON3: ADC1 CONTROL REGISTER 3
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline R/W-0 & U-0 & U-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 \\
\hline ADRC & - & - & \multicolumn{5}{|c|}{SAMC<4:0> \({ }^{(1)}\)} \\
\hline \multicolumn{8}{|l|}{bit 15 bit 8} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline R/W-0 & R/W-0 \\
\hline \multicolumn{8}{|c|}{ADCS<7:0> \({ }^{(2)}\)} \\
\hline bit 7 & & & & & & & bit 0 \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(\mathrm{R}=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) Unimplemented bit, read as ' 0 ' \\
\(-\mathrm{n}=\) Value at POR & \(' 1\) ' \(=\) Bit is set & \(' 0\) ' = Bit is cleared
\end{tabular}\(\quad \mathrm{x}=\) Bit is unknown
\begin{tabular}{|c|c|}
\hline \multirow[t]{3}{*}{bit 15} & ADRC: ADC Conversion Clock Source bit \\
\hline & 1 = ADC Internal RC Clock \\
\hline & 0 = Clock Derived From System Clock \\
\hline bit 14-13 & Unimplemented: Read as '0' \\
\hline \multirow[t]{7}{*}{bit 12-8} & SAMC<4:0>: Auto Sample Time bits \({ }^{(1)}\) \\
\hline & 11111 = 31 TAD \\
\hline & - \\
\hline & - \\
\hline & - \\
\hline & \(00001=1\) TAD \\
\hline & \(00000=0\) TAD \\
\hline \multirow[t]{8}{*}{bit 7-0} & ADCS<7:0>: ADC Conversion Clock Select bits \({ }^{(2)}\) \\
\hline & \(11111111=\mathrm{TP} \cdot(\mathrm{ADCS}<7: 0>+1)=\mathrm{TP} \cdot 256=\) TAD \\
\hline & - \\
\hline & - \\
\hline & - \\
\hline & \(00000010=T P \cdot(A D C S<7: 0>+1)=T P \cdot 3=\) TAD \\
\hline & \(00000001=T P \cdot(A D C S<7: 0>+1)=T P \cdot 2=\) TAD \\
\hline & \(00000000=T P \cdot(A D C S<7: 0>+1)=T P \cdot 1=T A D\) \\
\hline
\end{tabular}

Note 1: This bit is only used if AD1CON1<7:5> \((S S R C<2: 0>)=111\) and AD1CON1<4> \((S S R C G)=0\).
2: \(\quad\) This bit is not used if \(A D 1 C O N 3<15>(A D R C)=1\).

REGISTER 23-4: AD1CON4: ADC1 CONTROL REGISTER 4
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline U-0 & R/W-0 \\
\hline- & - & - & - & - & - & - & ADDMAEN \\
\hline bit 15
\end{tabular}
\begin{tabular}{|l|c|c|c|c|ccc|}
\hline U-0 & U-0 & U-0 & U-0 & U-0 & R/W-0 & R/W-0 & R/W-0 \\
\hline- & - & - & - & - & & DMABL<2:0> & \\
\hline bit 7 & & & & & bit 0 \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend: & \\
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1 '=\) Bit is set & \(' 0 '=\) Bit is cleared \\
\hline
\end{tabular}
bit 15-7 Unimplemented: Read as ' 0 '
bit 8 ADDMAEN: ADC DMA Enable bit
1 = Conversion results stored in ADC1BUF0 register, for transfer to RAM using DMA
0 = Conversion results stored in ADC1BUF0 through ADC1BUFF registers; DMA will not be used
bit 7-3 Unimplemented: Read as ' 0 '
bit 2-0 DMABL<2:0>: Selects Number of DMA Buffer Locations per Analog Input bits
111 = Allocates 128 words of buffer to each analog input
110 = Allocates 64 words of buffer to each analog input
101 = Allocates 32 words of buffer to each analog input
100 = Allocates 16 words of buffer to each analog input
011 = Allocates 8 words of buffer to each analog input
\(010=\) Allocates 4 words of buffer to each analog input
001 = Allocates 2 words of buffer to each analog input
000 = Allocates 1 word of buffer to each analog input

REGISTER 23-5: AD1CHS123: ADC1 INPUT CHANNEL 1, 2, 3 SELECT REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline U-0 & U-0 & U-0 & U-0 & U-0 & R/W-0 & R/W-0 & R/W-0 \\
\hline- & - & - & - & - & \(C H 123 N B<1: 0>\) & CH123SB \\
\hline bit 15 & & & bit 8 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|c|}{\(\mathrm{U}-\mathrm{O}\)} & U-0 & U-0 & U-0 & U-0 & R/W-0 & R/W-0 & R/W-0 \\
\hline- & - & - & - & - & CH123NA<1:0> & CH123SA \\
\hline bit 7 & & & & bit 0 \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(\mathrm{R}=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) Unimplemented bit, read as ' 0 ' \\
\(-\mathrm{n}=\) Value at POR & \(' 1\) ' \(=\) Bit is set & \(\prime 0\) ' \(=\) Bit is cleared \(\quad \mathrm{x}=\) Bit is unknown \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline bit 15-11 & Unimplemented: Read as '0' \\
\hline \multirow[t]{2}{*}{bit 10-9} & CH123NB<1:0>: Channel 1, 2, 3 Negative Input Select for Sample B bits \\
\hline & \begin{tabular}{l}
When \(\mathrm{AD} 12 \mathrm{~B}=1, \mathrm{CHxNB}\) is: \(\mathrm{U}-0\), Unimplemented, Read as ' 0 ' \\
\(11=\mathrm{CH} 1\) negative input is AN9, CH 2 negative input is AN10, CH 3 negative input is AN11 \\
\(10=\mathrm{CH} 1\) negative input is AN6, CH 2 negative input is AN7, CH 3 negative input is AN8 \\
\(0 x=\mathrm{CH} 1, \mathrm{CH} 2, \mathrm{CH} 3\) negative input is VREFL
\end{tabular} \\
\hline \multirow[t]{2}{*}{bit 8} & CH123SB: Channel 1, 2, 3 Positive Input Select for Sample B bit \\
\hline & \begin{tabular}{l}
When \(\mathrm{AD} 12 \mathrm{~B}=1, \mathrm{CHxSA}\) is: \(\mathrm{U}-0\), Unimplemented, Read as ' 0 ' \\
\(1=\mathrm{CH} 1\) positive input is CMP1, CH 2 positive input is \(\mathrm{CMP} 2, \mathrm{CH} 3\) positive input is CMP3 \\
\(0=\mathrm{CH} 1\) positive input is \(\mathrm{AN} 0, \mathrm{CH} 2\) positive input is \(\mathrm{AN} 1, \mathrm{CH} 3\) positive input is AN2
\end{tabular} \\
\hline bit 7-3 & Unimplemented: Read as '0' \\
\hline \multirow[t]{2}{*}{bit 2-1} & CH123NA<1:0>: Channel 1, 2, 3 Negative Input Select for Sample A bits \\
\hline & \begin{tabular}{l}
When \(\mathrm{AD} 12 \mathrm{~B}=1, \mathrm{CHxNA}\) is: U-0, Unimplemented, Read as ' 0 ' \\
\(11=\mathrm{CH} 1\) negative input is \(\mathrm{AN} 9, \mathrm{CH} 2\) negative input is \(\mathrm{AN} 10, \mathrm{CH} 3\) negative input is AN11 \\
\(10=\mathrm{CH} 1\) negative input is AN6, CH 2 negative input is AN7, CH 3 negative input is AN8 \\
\(0 x=\mathrm{CH} 1, \mathrm{CH} 2, \mathrm{CH} 3\) negative input is VREFL
\end{tabular} \\
\hline \multirow[t]{2}{*}{bit 0} & CH123SA: Channel 1, 2, 3 Positive Input Select for Sample A bit \\
\hline & \begin{tabular}{l}
When \(\mathrm{AD} 12 \mathrm{~B}=1, \mathrm{CHxSA}\) is: \(\mathrm{U}-0\), Unimplemented, Read as ' 0 ' \\
\(1=\mathrm{CH} 1\) positive input is CMP1, CH 2 positive input is CMP2, CH 3 positive input is CMP3 \\
\(0=\mathrm{CH} 1\) positive input is \(\mathrm{AN} 0, \mathrm{CH} 2\) positive input is \(\mathrm{AN} 1, \mathrm{CH} 3\) positive input is AN2
\end{tabular} \\
\hline
\end{tabular}

\section*{REGISTER 23-6: AD1CHS0: ADC1 INPUT CHANNEL 0 SELECT REGISTER}


\section*{Legend:}
\begin{tabular}{lll}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1\) ' \(=\) Bit is set & \(' 0\) ' \(=\) Bit is cleared
\end{tabular}
```

bit 15 CHONB: Channel 0 Negative Input Select for Sample B bit
1 = Channel 0 negative input is AN1
0 = Channel 0 negative input is VREFL
bit 14-13 Unimplemented: Read as ' }0\mathrm{ '
bit 12-8 CH0SB<4:0>: Channel 0 Positive Input Select for Sample B bits
1 1 1 1 1 ~ = ~ O p e n ; ~ u s e ~ t h i s ~ s e l e c t i o n ~ w i t h ~ C T M U ~ c a p a c i t i v e ~ a n d ~ t i m e ~ m e a s u r e m e n t
1 1 1 1 0 ~ = ~ C h a n n e l ~ 0 ~ p o s i t i v e ~ i n p u t ~ i s ~ c o n n e c t e d ~ t o ~ C T M U ~ t e m p e r a t u r e ~ m e a s u r e m e n t ~ d i o d e
(CTMU TEMP)
11101 = Reserved
11100 = Reserved
11011 = Reserved
11010 = Channel 0 positive input is output of CMP3
11001 = Channel 0 positive input is output of CMP2
11000 = Channel 0 positive input is output of CMP1
10110 = Reserved
•
•
•
10000 = Reserved
01111 = Channel 0 positive input is AN15 (1)
01110 = Channel 0 positive input is AN14 (1)
01101 = Channel 0 positive input is AN13(1)
•
•
•
00010 = Channel 0 positive input is AN2 (1)
0 0 0 0 1 = Channel 0 positive input is AN1 (1)
00000 = Channel 0 positive input is ANO(1)
bit $7 \quad$ CHONA: Channel 0 Negative Input Select for Sample A bit
1 = Channel 0 negative input is AN1
0 = Channel 0 negative input is VREFL
bit 6-5 Unimplemented: Read as ' 0 '

```

Note 1: See the "Pin Diagrams" section for the available analog channels for each device.

\section*{REGISTER 23-6: AD1CHS0: ADC1 INPUT CHANNEL 0 SELECT REGISTER}
bit 4-0 CH0SA<4:0>: Channel 0 Positive Input Select for Sample A bits
11111 = Open; use this selection with CTMU capacitive and time measurement
\(11110=\) Channel 0 positive input is connected to CTMU temperature measurement diode (CTMU TEMP)
11101 = Reserved
11100 = Reserved
11011 = Reserved
\(11010=\) Channel 0 positive input is output of CMP3
11001 = Channel 0 positive input is output of CMP2
\(11000=\) Channel 0 positive input is output of CMP1
10110 = Reserved
-
-
-
10000 = Reserved
\(01111=\) Channel 0 positive input is AN15 \({ }^{(1)}\)
\(01110=\) Channel 0 positive input is AN14 \({ }^{(1)}\)
\(01101=\) Channel 0 positive input is AN13 \({ }^{(1)}\)
-
-
-
\(00010=\) Channel 0 positive input is AN2 \({ }^{(1)}\)
\(00001=\) Channel 0 positive input is AN \(1^{(1)}\)
\(00000=\) Channel 0 positive input is \(A N 0^{(1)}\)
Note 1: See the "Pin Diagrams" section for the available analog channels for each device.

REGISTER 23-7: AD1CSSH: ADC1 INPUT SCAN SELECT REGISTER HIGH \({ }^{(1)}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline R/W-0 & R/W-0 & U-0 & U-0 & U-0 & R/W-0 & R/W-0 & R/W-0 \\
\hline CSS31 & CSS30 & - & - & - & CSS26 & CSS25 & CSS24 \\
\hline \multicolumn{7}{|l|}{bit 15} & bit 8 \\
\hline & U-0 \\
\hline - & - & - & - & - & - & - & - \\
\hline bit 7 & & & & & & & bit 0 \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend: & & \\
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1\) ' \(=\) Bit is set & \(' 0\) ' \(=\) Bit is cleared \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multirow[t]{2}{*}{bit 15} & CSS31: ADC Input Scan Selection bits \\
\hline & \begin{tabular}{l}
1 = Select CTMU capacitive and time measurement for input scan (Open) \\
\(0=\) Skip CTMU capacitive and time measurement for input scan (Open)
\end{tabular} \\
\hline \multirow[t]{2}{*}{bit 14} & CSS30: ADC Input Scan Selection bits \\
\hline & \begin{tabular}{l}
1 = Select CTMU on-chip temperature measurement for input scan (CTMU TEMP) \\
0 = Skip CTMU on-chip temperature measurement for input scan (CTMU TEMP)
\end{tabular} \\
\hline bit 13-11 & Unimplemented: Read as '0' \\
\hline \multirow[t]{3}{*}{bit 10} & CSS26: ADC Input Scan Selection bits \\
\hline & 1 = Select CMP3 for input scan \\
\hline & 0 = Skip CMP3 for input scan \\
\hline \multirow[t]{3}{*}{bit 9} & CSS25: ADC Input Scan Selection bits \\
\hline & 1 = Select CMP2 for input scan \\
\hline & 0 = Skip CMP2 for input scan \\
\hline \multirow[t]{3}{*}{bit 8} & CSS24: ADC Input Scan Selection bits \\
\hline & 1 = Select CMP1 for input scan \\
\hline & 0 = Skip CMP1 for input scan \\
\hline bit 7-0 & Unimplemented: Read as '0' \\
\hline
\end{tabular}

Note 1: All ADxCSSH bits can be selected by user software. However, inputs selected for scan without a corresponding input on device convert VREFL.

REGISTER 23-8: AD1CSSL: ADC1 INPUT SCAN SELECT REGISTER LOW(1,2)
\begin{tabular}{|l|l|l|l|l|l|l|l|l|}
\hline R/W-0 & R/W-0 \\
\hline CSS15 & CSS14 & CSS13 & CSS12 & CSS11 & CSS10 & CSS9 & CSS8 \\
\hline bit 15
\end{tabular}
\begin{tabular}{|l|l|l|l|l|l|l|l|l|}
\hline R/W-0 & R/W-0 \\
\hline CSS7 & CSS6 & CSS5 & CSS4 & CSS3 & CSS2 & CSS1 & CSS0 \\
\hline bit 7 & & & & bit 0 \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1 '=\) Bit is set & \(' 0\) ' \(=\) Bit is cleared
\end{tabular}\(\quad x=\) Bit is unknown
bit 15-0 \(\quad\) CSS<15:0>: ADC Input Scan Selection bits
1 = Select ANx for input scan
0 = Skip ANx for input scan
Note 1: On devices with less than 16 analog inputs, all AD1CSSL bits can be selected by the user. However, inputs selected for scan without a corresponding input on device convert VREFL.
2: \(\operatorname{CSS} x=A N x\), where \(x=0-15\).

\subsection*{24.0 PERIPHERAL TRIGGER GENERATOR (PTG) MODULE}

Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X, and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Section 32. Peripheral Trigger Generator (PTG)" of the "dsPIC33E/PIC24E Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

\subsection*{24.1 Module Introduction}

The Peripheral Trigger Generator (PTG) provides a means to schedule complex high-speed peripheral operations that would be difficult to achieve using software. The PTG module uses 8-bit commands called "steps" that the user writes to the PTG Queue register (PTGQUE0-PTQUE7), which performs operations such as wait for input signal, generate output trigger, and wait for timer.

The PTG module has the following major features:
- Multiple clock sources
- Two 16-bit general purpose timers
- Two 16-bit general limit counters
- Configurable for rising or falling edge triggering
- Generates processor interrupts to include:
- Four configurable processor interrupts
- Interrupt on a step event in Single-Step mode
- Interrupt on a PTG Watchdog Timer time-out
- Able to receive trigger signals from these peripherals:
- ADC
- PWM
- Output Compare
- Input Capture
- Op amp/Comparator
- INT2
- Able to trigger or synchronize to these peripherals:
- Watchdog Timer
- Output Compare
- Input Capture
- ADC
- PWM
- Op amp/Comparator

FIGURE 24-1: PTG BLOCK DIAGRAM


Note 1: This is a dedicated Watchdog Timer for the PTG module and is independent of the device watchdog timer.

\section*{REGISTER 24-1: PTGCST: PTG CONTROL/STATUS REGISTER}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline R/W-0 & U-0 & R/W-0 & R/W-0 & U-0 & R/W-0 & R/W-0 & R/W-0 \\
\hline PTGEN & - & PTGSIDL & PTGTOGL & - & PTGSWT \({ }^{(2)}\) & PTGSSEN & PTGIVIS \\
\hline bit 15 8 \\
\begin{tabular}{|l|c|c|c|c|c|c|}
\hline R/W-0 & HS-0 & U-0 & U-0 & U-0 & U-0 & R/W-0 \\
\hline PTGSTRT & PTGWDTO & - & - & - & - & PTGITM<1:0>(1) \\
\hline bit 7 &
\end{tabular}
\end{tabular}\(.\)\begin{tabular}{l} 
bit 0 \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend: & HS = Set by Hardware \\
\(R=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) Unimplemented bit, read as ' 0 ' \\
\(-\mathrm{n}=\) Value at POR & \(' 1\) ' = Bit is set & \(' 0\) ' = Bit is cleared \(\quad \mathrm{x}=\) Bit is unknown \\
\hline
\end{tabular}
\begin{tabular}{ll} 
bit 15 & PTGEN: Module Enable bit \\
& \(1=\) PTG module is enabled \\
\(0=\) PTG module is disabled
\end{tabular}
bit 14 Unimplemented: Read as ' 0 '
bit 13 PTGSIDL: Stop in Idle Mode bit
1 = Discontinue module operation when device enters Idle mode
0 = Continue module operation in Idle mode
bit 12 PTGTOGL: TRIG Output Toggle Mode bit
1 = Toggle state of the PTGOx for each execution of the PTGTRIG command
\(0=\) Each execution of PTGTRIG command will generate a single PTGOx pulse determined by value in PTGPWD
bit 11 Unimplemented: Read as ' 0 '
bit \(10 \quad\) PTGSWT: Software Trigger bit \({ }^{(\mathbf{2})}\)
1 = Trigger the PTG module
\(0=\) No action (clearing this bit will have no effect)
bit \(9 \quad\) PTGSSEN: Enable Single Step
1 = Enable Single Step mode
0 = Disable Single Step mode
bit 8 PTGIVIS: Counter/Timer Visibility Control bit
1 = Reads of the PTGSDLIM, PTGCxLIM or PTGTxLIM registers returns the current values of their corresponding counter/timer registers (PTGSD, PTGCx, PTGTx)
\(0=\) Reads of the PTGSDLIM, PTGCxLIM or PTGTxLIM registers returns the value previously written to those limit registers
bit \(7 \quad\) PTGSTRT: Start PTG Sequencer bit
1 = Start to sequentially execute commands (Continuous mode)
0 = Stop executing commands
bit 6 PTGWDTO: PTG Watchdog Timer Time-out Status bit
1 = PTG watchdog timer has timed out
\(0=\) PTG watchdog timer has not timed out.
bit 5-2 Unimplemented: Read as ' 0 '

Note 1: These bit apply to the PTGWHI and PTGWLO commands only.
2: This bit is only used with the PTGCTRL step command software trigger option.

\section*{REGISTER 24-1: PTGCST: PTG CONTROLISTATUS REGISTER (CONTINUED)}
bit 1-0 PTGITM<1:0>: PTG Input Trigger Command Operating Mode bits \({ }^{(\mathbf{1})}\)
11 = Single level detect with step delay not executed on exit of command (regardless of PTGCTRL command)
\(10=\) Single level detect with step delay executed on exit of command
\(01=\) Continuous edge detect with step delay not executed on exit of command (regardless of PTGCTRL command)
\(00=\) Continuous edge detect with step delay executed on exit of command

Note 1: These bit apply to the PTGWHI and PTGWLO commands only.
2: This bit is only used with the PTGCTRL step command software trigger option.

REGISTER 24-2: PTGCON: PTG CONTROL REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline R/W-0 & R/W-0 \\
\hline \multicolumn{3}{|c|}{PTGCLK<2:0>} & \multicolumn{5}{|c|}{PTGDIV<4:0>} \\
\hline \multicolumn{7}{|l|}{bit 15} & bit 8 \\
\hline R/W-0 & R/W-0 \\
\hline \multicolumn{4}{|c|}{PTGPWD<3:0>} & - & \multicolumn{3}{|c|}{PTGWDT<2:0>} \\
\hline \multicolumn{4}{|l|}{bit 7} & & \multicolumn{3}{|r|}{bit 0} \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1 '=\) Bit is set & \(' 0 '=\) Bit is cleared
\end{tabular}
bit 15-13 PTGCLK<2:0>: Select PTG Module Clock Source bits
111 = Reserved
\(110=\) Reserved
101 = PTG module clock source will be T3CLK
100 = PTG module clock source will be T2CLK
011 = PTG module clock source will be T1CLK
010 = PTG module clock source will be TAD
\(001=\) PTG module clock source will be Fosc
000 = PTG module clock source will be Fp
bit 12-8 PTGDIV<4:0>: PTG Module Clock Prescaler (divider) bits
11111 = Divide by 32
11110 = Divide by 31
-
-
-
00001 = Divide by 2
00000 = Divide by 1
bit 7-4 PTGPWD<3:0>: PTG Trigger Output Pulse Width bits
1111 = All trigger outputs are 16 PTG clock cycles wide
1110 = All trigger outputs are 15 PTG clock cycles wide
-
-
-
0001 = All trigger outputs are 2 PTG clock cycles wide 0000 = All trigger outputs are 1 PTG clock cycle wide
bit \(3 \quad\) Unimplemented: Read as ' 0 '
bit 2-0 PTGWDT<2:0>: Select PTG Watchdog Time-out Count Value bits
111 = Watchdog will time out after 512 PTG clocks
110 = Watchdog will time out after 256 PTG clocks
101 = Watchdog will time out after 128 PTG clocks
\(100=\) Watchdog will time out after 64 PTG clocks
011 = Watchdog will time out after 32 PTG clocks
\(010=\) Watchdog will time out after 16 PTG clocks
001 = Watchdog will time out after 8 PTG clocks
\(000=\) Watchdog is disabled

REGISTER 24-3: PTGBTE: PTG BROADCAST TRIGGER ENABLE REGISTER \({ }^{(1,2)}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline R/W-0 & R/W-0 \\
\hline ADCTS4 & ADCTS3 & ADCTS2 & ADCTS1 & IC4TSS & IC3TSS & IC2TSS & IC1TSS \\
\hline bit 15 \\
\begin{tabular}{|l|c|c|c|c|c|c|c|}
\hline R/W-0 & R/W-0 \\
\hline OC4CS & OC3CS & OC2CS & OC1CS & OC4TSS & OC3TSS & OC2TSS & OC1TSS \\
\hline bit 7 &
\end{tabular}
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend: & \\
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1\) ' = Bit is set & \(' 0\) ' = Bit is cleared \(\quad x=\) Bit is unknown \\
\hline
\end{tabular}
bit 15 ADCTS4: Sample Trigger PTGO15 for ADC bit
1 = Generate trigger when the broadcast command is executed
0 = Do not generate trigger when the broadcast command is executed
bit 14 ADCTS3: Sample Trigger PTGO14 for ADC bit
1 = Generate trigger when the broadcast command is executed
\(0=\) Do not generate trigger when the broadcast command is executed
bit 13 ADCTS2: Sample Trigger PTGO13 for ADC bit
1 = Generate trigger when the broadcast command is executed
\(0=\) Do not generate trigger when the broadcast command is executed
bit 12 ADCTS1: Sample Trigger PTGO12 for ADC bit
1 = Generate trigger when the broadcast command is executed
\(0=\) Do not generate trigger when the broadcast command is executed
bit 11 IC4TSS: Trigger/Synchronization Source for IC4 bit
\(1=\) Generate trigger/synchronization when the broadcast command is executed
\(0=\) Do not generate trigger/synchronization when the broadcast command is executed
bit 10
IC3TSS: Trigger/Synchronization Source for IC3 bit
1 = Generate trigger/synchronization when the broadcast command is executed
0 = Do not generate trigger/synchronization when the broadcast command is executed
bit \(9 \quad\) IC2TSS: Trigger/Synchronization Source for IC2 bit
\(1=\) Generate trigger/synchronization when the broadcast command is executed
0 = Do not generate trigger/synchronization when the broadcast command is executed
bit \(8 \quad\) IC1TSS: Trigger/Synchronization Source for IC1 bit
1 = Generate trigger/synchronization when the broadcast command is executed
0 = Do not generate trigger/synchronization when the broadcast command is executed
bit \(7 \quad\) OC4CS: Clock Source for OC4 bit
1 = Generate clock pulse when the broadcast command is executed
\(0=\) Do not generate clock pulse when the broadcast command is executed
bit 6 OC3CS: Clock Source for OC3 bit
1 = Generate clock pulse when the broadcast command is executed
\(0=\) Do not generate clock pulse when the broadcast command is executed
bit 5 OC2CS: Clock Source for OC2 bit
1 = Generate clock pulse when the broadcast command is executed
\(0=\) Do not generate clock pulse when the broadcast command is executed

Note 1: This register is read only when the PTG module is executing step commands (PTGEN = 1 and PTGSTRT = 1).
2: This register only used with the PTGCTRL OPTION = 1111 step command.

\section*{REGISTER 24-3: PTGBTE: PTG BROADCAST TRIGGER ENABLE REGISTER \({ }^{(1,2)}\) (CONTINUED)}
bit 4 OC1CS: Clock Source for OC1 bit
\(1=\) Generate clock pulse when the broadcast command is executed
\(0=\) Do not generate clock pulse when the broadcast command is executed
bit 3 OC4TSS: Trigger/Synchronization Source for OC4 bit
1 = Generate trigger/synchronization when the broadcast command is executed
\(0=\) Do not generate trigger/synchronization when the broadcast command is executed
bit 2 OC3TSS: Trigger/Synchronization Source for OC3 bit
1 = Generate trigger/synchronization when the broadcast command is executed
0 = Do not generate trigger/synchronization when the broadcast command is executed
bit 1
OC2TSS: Trigger/Synchronization Source for OC2 bit
\(1=\) Generate trigger/synchronization when the broadcast command is executed
\(0=\) Do not generate trigger/synchronization when the broadcast command is executed
bit 0
OC1TSS: Trigger/Synchronization Source for OC1 bit
1 = Generate trigger/synchronization when the broadcast command is executed \(0=\) Do not generate trigger/synchronization when the broadcast command is executed

Note 1: This register is read only when the PTG module is executing step commands (PTGEN = 1 and PTGSTRT = 1).
2: This register only used with the PTGCTRL OPTION = 1111 step command.

REGISTER 24-4: PTGTOLIM: PTG TIMERO LIMIT REGISTER \({ }^{(1)}\)
\begin{tabular}{|llllllll|}
\hline R/W-0 & R/W-0 \\
\hline & & PTGTOLIM<15:8> & & & \\
\hline bit 15 & & & & & \\
\hline & & & & & & & \\
\hline R/W-0 & R/W-0 \\
\hline & & & PTGTOLIM<7:0 & & & \\
\hline bit 7 & & & & & & bit 0 \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1 '=\) Bit is set & \(' 0 '=\) Bit is cleared
\end{tabular}\(\quad x=\) Bit is unknown
bit 15-0 PTGTOLIM<15:0>: PTG Timer0 Limit Register bits
General purpose Timer0 limit register (effective only with a PTGT0 step command).

Note 1: This register is read only when the PTG module is executing step commands (PTGEN = 1 and PTGSTRT = 1).

REGISTER 24-5: PTGT1LIM: PTG TIMER1 LIMIT REGISTER \({ }^{(1)}\)
\begin{tabular}{|llllllll|}
\hline R/W-0 & R/W-0 \\
\hline & & PTGT1LIM<15:8> & & & \\
\hline bit 15 & & & & & & bit 8 \\
\hline
\end{tabular}
\begin{tabular}{|llllllll|}
\hline R/W-0 & R/W-0 \\
\hline & & PTGT1LIM<7:0> & & & \\
\hline bit 7 & & & & & bit 0 \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend: & & \\
\(R=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) Unimplemented bit, read as ' 0 ' \\
\(-\mathrm{n}=\) Value at POR & \(' 1\) ' = Bit is set & ' 0 ' = Bit is cleared \\
\hline
\end{tabular}
bit 15-0 PTGT1LIM<15:0>: PTG Timer1 Limit Register bits
General purpose Timer1 limit register (effective only with a PTGT1 step command).

Note 1: This register is read only when the PTG module is executing step commands (PTGEN = 1 and PTGSTRT = 1).

REGISTER 24-6: PTGSDLIM: PTG STEP DELAY LIMIT REGISTER \({ }^{(1,2)}\)
\begin{tabular}{|llllllll|}
\hline R/W-0 & R/W-0 \\
\hline & & & PTGSDLIM<15:8> & & & \\
\hline bit 15 & & & & & & \\
\hline & & & & & & & \\
\hline R/W-0 & R/W-0 \\
\hline & & & PTGSDLIM<7:0> & & & \\
\hline bit 7 & & & & & & bit 0 \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{|c|c|c|c|}
\hline \(\mathrm{R}=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) Unimplement & as ' 0 ' \\
\hline -n = Value at POR & ' 1 ' = Bit is set & ' 0 ' = Bit is cleared & \(x=\) Bit is unknown \\
\hline
\end{tabular}
bit 15-0 PTGSDLIM<15:0>: PTG Step Delay Limit Register bits
Holds a PTG Step Delay value representing the number of additional PTG clocks between the start of a step command, and the completion of the step command.

Note 1: A base step delay of one PTG clock is added to any value written to the PTGSDLIM register (Step Delay \(=(\) PTGSDLIM \()+1\).
2: This register is read only when the PTG module is executing step commands (PTGEN = 1 and PTGSTRT = 1).

REGISTER 24-7: PTGCOLIM: PTG COUNTER 0 LIMIT REGISTER \({ }^{(\mathbf{1})}\)
\begin{tabular}{|llllllll|}
\hline R/W-0 & R/W-0 \\
\hline & & PTGCOLIM<15:8> & & & \\
\hline bit 15 & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|lllllllll|}
\hline R/W-0 & R/W-0 \\
\hline & & & PTGCOLIM<7:0> & & & & \\
\hline bit 7 & & & & & & & \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{|c|c|c|c|}
\hline \(\mathrm{R}=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) Unimplemen & as ' 0 ' \\
\hline -n = Value at POR & ' 1 ' = Bit is set & ' 0 ' = Bit is cleared & \(x=\) Bit is unknown \\
\hline
\end{tabular}
bit 15-0 PTGCOLIM<15:0>: PTG Counter 0 Limit Register bits
May be used to specify the loop count for the PTGJMPC0 step command, or as a limit register for the general purpose counter 0 .

Note 1: This register is read only when the PTG module is executing step commands (PTGEN = 1 and PTGSTRT = 1).

REGISTER 24-8: PTGC1LIM: PTG COUNTER 1 LIMIT REGISTER \({ }^{(1)}\)
\begin{tabular}{|llllllll|}
\hline R/W-0 & R/W-0 \\
\hline & & PTGC1LIM<15:8> & & & \\
\hline bit 15 & & & & & \\
\hline & & & & & & & \\
\hline R/W-0 & R/W-0 \\
\hline & & & PTGC1LIM<7:0> & & & \\
\hline bit 7 & & & & & & bit 0 \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1 '=\) Bit is set & \(' 0 '=\) Bit is cleared
\end{tabular}\(\quad x=\) Bit is unknown
bit 15-0 PTGC1LIM<15:0>: PTG Counter 1 Limit Register bits
May be used to specify the loop count for the PTGJMPC1 step command, or as a limit register for the general purpose counter 1.

Note 1: This register is read only when the PTG module is executing step commands (PTGEN = 1 and PTGSTRT = 1).

REGISTER 24-9: PTGHOLD: PTG HOLD REGISTER \({ }^{(1)}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline R/W-0 & R/W-0 \\
\hline \multicolumn{8}{|c|}{PTGHOLD<15:8>} \\
\hline bit 15 & & & & & & & bit 8 \\
\hline R/W-0 & R/W-0 \\
\hline \multicolumn{8}{|c|}{PTGHOLD<7:0>} \\
\hline bit 7 & & & & & & & bit 0 \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as '0' \\
\(-n=\) Value at POR & \(' 1 '=\) Bit is set & \(' 0 '=\) Bit is cleared
\end{tabular}
bit 15-0 PTGHOLD<15:0>: PTG General Purpose Hold Register bits
Holds user supplied data to be copied to the PTGTxLIM, PTGCxLIM, PTGSDLIM, or PTGL0 registers with the PTGCOPY command.

Note 1: This register is read only when the PTG module is executing step commands (PTGEN =1 and PTGSTRT = 1).

REGISTER 24-10: PTGADJ: PTG ADJUST REGISTER \({ }^{(\mathbf{1})}\)
\begin{tabular}{|llllllll|}
\hline R/W-0 & R/W-0 \\
\hline & & PTGADJ<15:8> & & & \\
\hline bit 15 & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|llllllll|}
\hline R/W-0 & R/W-0 \\
\hline & & PTGADJ<7:0> & & & \\
\hline bit 7 & & & & & & \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{|c|c|c|c|}
\hline \(\mathrm{R}=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) Unimplement & as ' 0 ' \\
\hline -n = Value at POR & ' 1 ' = Bit is set & ' 0 ' = Bit is cleared & \(x=\) Bit is unknown \\
\hline
\end{tabular}
bit 15-0 PTGADJ<15:0>: PTG Adjust Register bits
This register Holds user supplied data to be added to the PTGTxLIM, PTGCxLIM, PTGSDLIM, or PTGLO registers with the PTGADD command.

Note 1: This register is read only when the PTG module is executing step commands (PTGEN = 1 and PTGSTRT = 1).

\section*{REGISTER 24-11: PTGLO: PTG LITERAL 0 REGISTER \({ }^{(1)}\)}
\begin{tabular}{|llllllll|}
\hline R/W-0 & R/W-0 \\
\hline \multicolumn{7}{l|}{} & PTGL0<15:8> \\
\hline bit 15 & & & & \\
\hline
\end{tabular}
\begin{tabular}{|llllllll|}
\hline R/W-0 & R/W-0 \\
\hline & & PTGLO<7:0> & & & \\
\hline bit 7 & & & & & & bit 0 \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(\mathrm{R}=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) Unimplemented bit, read as ' 0 ' \\
\(-\mathrm{n}=\) Value at POR & \(' 1\) ' \(=\) Bit is set & ' 0 ' \(=\) Bit is cleared
\end{tabular}\(\quad \mathrm{x}=\) Bit is unknown
bit 15-0 PTGL0<15:0>: PTG Literal 0 Register bits
This register holds the 16-bit value to be written to the AD1CHS0 register with the PTGCTRL step command

Note 1: This register is read only when the PTG module is executing step commands (PTGEN = 1 and PTGSTRT = 1).

REGISTER 24-12: PTGQPTR: PTG STEP QUEUE POINTER REGISTER \({ }^{(\mathbf{1})}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline U-0 & U-0 \\
\hline- & - & - & - & - & - & - & - \\
\hline bit 15 \\
\begin{tabular}{|l|c|c|ccccc|}
\hline U-0 & U-0 & U-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 \\
\hline- & - & - & & & PTGQPTR<4:0> & & \\
\hline bit 7 &
\end{tabular}
\end{tabular}\(.\)\begin{tabular}{l} 
bit 0 \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1 '=\) Bit is set & \(' 0 '=\) Bit is cleared
\end{tabular}\(\quad x=\) Bit is unknown
bit 15-0 Unimplemented: Read as ' 0 '
bit 4-0 PTGQPTR<4:0>: PTG Step Queue Pointer Register bits
This register points to the currently active step command in the step queue.
Note 1: This register is read only when the PTG module is executing step commands (PTGEN = 1 and PTGSTRT = 1).

REGISTER 24-13: PTGQUEx: PTG STEP QUEUE REGISTERS \((x=0-7)^{(1,3)}\)
\begin{tabular}{|llllllll|}
\hline R/W-0 & R/W-0 \\
\hline & & \(S T E P(2 x+1)<7: 0>(2)\) & & & \\
\hline bit 15 & & & & & & bit 8 \\
\hline
\end{tabular}
\begin{tabular}{|llllllll|}
\hline R/W-0 & R/W-0 \\
\hline & & & \(S T E P(2 x)<7: 0>{ }^{(2)}\) & & & \\
\hline bit 7 & & & & & & \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{|c|c|c|c|}
\hline \(\mathrm{R}=\) Readable bit & W = Writable bit & \(\mathrm{U}=\) Unimplemen & s '0' \\
\hline -n = Value at POR & ' 1 ' = Bit is set & ' 0 ' = Bit is cleared & \(x=\) Bit is unknown \\
\hline
\end{tabular}
bit 15-8 STEP \((\mathbf{2 x}+\mathbf{1})<7: 0>\) : PTG Step Queue Pointer Register bits \({ }^{(2)}\)
A queue location for storage of the \(\operatorname{STEP}(2 x+1)\) command byte.
bit 7-0 \(\quad \operatorname{STEP}(2 x)<7: 0>:\) PTG Step Queue Pointer Register bits \({ }^{(2)}\)
A queue location for storage of the \(\operatorname{STEP}(2 x)\) command byte.
Note 1: This register is read only when the PTG module is executing step commands (PTGEN = 1 and PTGSTRT = 1).
2: Refer to Table 24-1 for the STEP command encoding.
3: The step registers maintain their values on any type of reset.

\subsection*{24.2 STEP Commands and Format}

\section*{TABLE 24-1: PTG STEP COMMAND FORMAT}
\begin{tabular}{|ll|lll|}
\hline STEP Command Byte: \\
\hline \multicolumn{4}{|c|}{ STEP \(<7: 0>\)} & \\
\hline & \(C M D<3: 0>\) & bit 4 & bit 3 & OPTION \(<3: 0>\)
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{15}{*}{bit 7-4} & CMD<3:0> & \begin{tabular}{l}
Step \\
Command
\end{tabular} & Command Description \\
\hline & 0000 & PTGCTRL & Execute control command as described by OPTION<3:0> \\
\hline & \multirow[t]{2}{*}{0001} & PTGADD & Add contents of PTGADJ register to target register as described by OPTION<3:0> \\
\hline & & PTGCOPY & Copy contents of PTGHOLD register to target register as described by OPTION<3:0> \\
\hline & 001x & PTGSTRB & Copy the value contained in \(\mathrm{CMD}<0>: \mathrm{OPTION}<3: 0>\) to the \(\mathrm{CH} 0 \mathrm{SA}<4: 0>\) bits (AD1CHSO<4:0>) \\
\hline & 0100 & PTGWHI & Wait for a Low to High edge input from selected PTG trigger input as described by OPTION<3:0> \\
\hline & 0101 & PTGWLO & Wait for a High to Low edge input from selected PTG trigger input as described by OPTION<3:0> \\
\hline & 0110 & Reserved & Reserved \\
\hline & 0111 & PTGIRQ & Generate individual interrupt request as described by <OPTION3:0> \\
\hline & 100x & PTGTRIG & Generate individual trigger output as described by <<CMD<0>:OPTION<3:0>> \\
\hline & 101x & PTGJMP & Copy the value indicated in <<CMD<0>:OPTION<3:0>> to the Queue Pointer (PTGQPTR) and jump to that step queue \\
\hline & 110x & PTGJMPC0 & PTGC0 = PTGC0LIM: Increment the Queue Pointer (PTGQPTR) \\
\hline & & & PTGC0 \(\neq\) PTGC0LIM: Increment Counter 0 (PTGC0) and copy the value indicated in <<CMD<0>:OPTION<3:0>> to the Queue Pointer (PTGQPTR) and jump to that step queue \\
\hline & 111x & PTGJMPC1 & PTGC1 = PTGC1LIM: Increment the queue pointer (PTGQPTR) \\
\hline & & & PTGC1 \(=\) PTGC1LIM: Increment Counter 1 (PTGC1) and copy the value indicated in <<CMD<0>:OPTION<3:0>> to the Queue Pointer (PTGQPTR) and jump to that step queue \\
\hline
\end{tabular}

Note 1: All reserved commands or options will execute but have no effect (i.e., execute as a NOP instruction).
2: Refer to Table 24-2 for the trigger output descriptions.
3: This feature is only available on dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices.

TABLE 24-1: PTG STEP COMMAND FORMAT (CONTINUED)
\begin{tabular}{|c|c|c|c|}
\hline bit 3-0 & Step Command & OPTION<3:0> & Option Description \\
\hline & PTGCTRL \({ }^{(1)}\) & 0000 & Reserved \\
\hline & & 0001 & Reserved \\
\hline & & 0010 & Disable Step Delay Timer (PTGSD) \\
\hline & & 0011 & Reserved \\
\hline & & 0100 & Reserved \\
\hline & & 0101 & Reserved \\
\hline & & 0110 & Enable Step Delay Timer (PTGSD) \\
\hline & & 0111 & Reserved \\
\hline & & 1000 & Start and wait for the PTG Timer 0 to match Timer 0 Limit Register \\
\hline & & 1001 & Start and wait for the PTG Timer 1 to match Timer 1 Limit Register \\
\hline & & 1010 & Reserved \\
\hline & & 1011 & Wait for software trigger bit transition from low to high before continuing (PTGSWT = 0 to 1) \\
\hline & & 1100 & Copy contents of the Counter 0 register to the AD1CHS0 register \\
\hline & & 1101 & Copy contents of the Counter 1 register to the AD1CHS0 register \\
\hline & & 1110 & Copy contents of the Literal 0 register to the AD1CHS0 register \\
\hline & & 1111 & Generate triggers indicated in the Broadcast Trigger Enable Register (PTGBTE) \\
\hline & PTGADD \({ }^{(1)}\) & 0000 & Add contents of PTGADJ register to the Counter 0 Limit register (PTGCOLIM) \\
\hline & & 0001 & Add contents of PTGADJ register to the Counter 1 Limit register (PTGC1LIM) \\
\hline & & 0010 & Add contents of PTGADJ register to the Timer 0 Limit register (PTGTOLIM) \\
\hline & & 0011 & Add contents of PTGADJ register to the Timer 1 Limit register (PTGT1LIM) \\
\hline & & 0100 & Add contents of PTGADJ register to the Step Delay Limit register (PTGSDLIM) \\
\hline & & 0101 & Add contents of PTGADJ register to the Literal 0 register (PTGL0) \\
\hline & & 0110 & Reserved \\
\hline & & 0111 & Reserved \\
\hline & PTGCOPY \({ }^{(\mathbf{1})}\) & 1000 & Copy contents of PTGHOLD register to the Counter 0 Limit register (PTGCOLIM) \\
\hline & & 1001 & Copy contents of PTGHOLD register to the Counter 1 Limit register (PTGC1LIM) \\
\hline & & 1010 & Copy contents of PTGHOLD register to the Timer 0 Limit register (PTGTOLIM) \\
\hline & & 1011 & Copy contents of PTGHOLD register to the Timer 1 Limit register (PTGT1LIM) \\
\hline & & 1100 & Copy contents of PTGHOLD register to the Step Delay Limit register (PTGSDLIM) \\
\hline & & 1101 & Copy contents of PTGHOLD register to the Literal 0 register (PTGL0) \\
\hline & & 1110 & Reserved \\
\hline & & 1111 & Reserved \\
\hline
\end{tabular}

Note 1: All reserved commands or options will execute but have no effect (i.e., execute as a NOP instruction).
2: Refer to Table 24-2 for the trigger output descriptions.
3: This feature is only available on dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices.

TABLE 24-1: PTG STEP COMMAND FORMAT (CONTINUED)
\begin{tabular}{|l|l|l|}
\hline bit 3-0 & \begin{tabular}{l} 
Step \\
Command
\end{tabular} & OPTION<3:0>
\end{tabular} Option Description

Note 1: All reserved commands or options will execute but have no effect (i.e., execute as a NOP instruction).
2: Refer to Table 24-2 for the trigger output descriptions.
3: This feature is only available on dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices.

TABLE 24-2: PTG OUTPUT DESCRIPTIONS
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{\begin{tabular}{|l|} 
PTG Output \\
Number
\end{tabular}} & \\
\hline PTGO0 & Trigger/Synchronization Source for OC1 \\
\hline PTGO1 & Trigger/Synchronization Source for OC2 Description \\
\hline PTGO2 & Trigger/Synchronization Source for OC3 \\
\hline PTGO3 & Trigger/Synchronization Source for OC4 \\
\hline PTGO4 & Clock Source for OC1 \\
\hline PTGO5 & Clock Source for OC2 \\
\hline PTGO6 & Clock Source for OC3 \\
\hline PTGO7 & Clock Source for OC4 \\
\hline PTGO8 & Trigger/Synchronization Source for IC1 \\
\hline PTGO9 & Trigger/Synchronization Source for IC2 \\
\hline PTGO10 & Trigger/Synchronization Source for IC3 \\
\hline PTGO11 & Trigger/Synchronization Source for IC4 \\
\hline PTGO12 & Sample Trigger for ADC \\
\hline PTGO13 & Sample Trigger for ADC \\
\hline PTGO14 & Sample Trigger for ADC \\
\hline PTGO15 & Sample Trigger for ADC \\
\hline PTGO16 & PWM Time Base Synchronous Source for PWM \({ }^{(\mathbf{1})}\) \\
\hline PTGO17 & PWM Time Base Synchronous Source for PWM \({ }^{\mathbf{( 1 )}}\) \\
\hline PTGO18 & Mask Input Select for Op Amp/Comparator \\
\hline PTGO19 & Mask Input Select for Op Amp/Comparator \\
\hline PTGO20 & Reserved \\
\hline PTGO21 & Reserved \\
\hline PTGO22 & Reserved \\
\hline PTGO23 & Reserved \\
\hline PTGO24 & Reserved \\
\hline PTGO25 & Reserved \\
\hline PTGO26 & Reserved \\
\hline PTGO27 & Reserved \\
\hline PTGO28 & Reserved \\
\hline PTGO29 & Reserved \\
\hline PTGO30 & PTG output to PPS input selection \\
\hline PTGO31 & \\
\hline
\end{tabular}

Note 1: This feature is only available on dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices.

\subsection*{25.0 OP AMP/COMPARATOR MODULE}

Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X, and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 26. "Comparator" (DS70357) of the "dsPIC33E/ PIC24E Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X, and PIC24EPXXXGP/MC20X devices contain up to four comparators which can be configured in various ways. Comparators CMP1, CMP2, and CMP3 also have the option to be configured as Op amps, with the output being brought to an external pin for gain/filtering connections. As shown in Figure 25-1, individual comparator options are specified by the Comparator module's Special Function Register (SFR) control bits.
These options allow users to:
- Select the edge for trigger and interrupt generation
- Configure the comparator voltage reference
- Configure output blanking and masking
- Configure as a Comparator or Op amp (CMP1, CMP2, and CMP3 only)

Note: Not all Op amp/Comparator input/output connections are available on all packages. See the "Pin Diagrams" section for available connections.

FIGURE 25-1: OP AMP/COMPARATOR I/O OPERATING MODES


FIGURE 25-2: OP AMPICOMPARATOR VOLTAGE REFERENCE BLOCK DIAGRAM


CVR2OE (CVRCON<14>)
Note 1: This reference is always half of CVRSRC.

FIGURE 25-3: USER PROGRAMMABLE BLANKING FUNCTION BLOCK DIAGRAM


FIGURE 25-4: DIGITAL FILTER INTERCONNECT BLOCK DIAGRAM


REGISTER 25-1: CMSTAT: COMPARATOR STATUS REGISTER
\begin{tabular}{|l|c|c|c|c|c|c|c|c|}
\hline R/W-0 & U-0 & U-0 & U-0 & R-0 & R-0 & R-0 & R-0 \\
\hline CMSIDL & - & - & - & C4EVT & C3EVT & C2EVT & C1EVT \\
\hline bit 15 & & & & bit 8 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|c|}{\(\mathrm{U}-0\)} & U-0 & U-0 & U-0 & R-0 & R-0 & R-0 & R-0 \\
\hline- & - & - & - & C4OUT & C3OUT & C2OUT & C1OUT \\
\hline bit 7 & & & & & bit 0 \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend: & & \\
\(R=\) Readable bit & \(W=\) Writable bit & \(\mathrm{U}=\) Unimplemented bit, read as ' 0 ' \\
\(-\mathrm{n}=\) Value at POR & \(' 1\) ' = Bit is set & ' 0 ' = Bit is cleared \\
\hline
\end{tabular}
bit \(15 \quad\) CMSIDL: Stop in Idle Mode bit
bit 14-12 Unimplemented: Read as ' 0 '
bit 11 C4EVT: Comparator 4 Event Status bit
1 = Comparator event occurred
0 = Comparator event did not occur
bit 10
bit 9 C2EVT: Comparator 2 Event Status bit
1 = Comparator event occurred
0 = Comparator event did not occur
bit 8 C1EVT: Comparator 1 Event Status bit
1 = Comparator event occurred
0 = Comparator event did not occur
bit 7-4 Unimplemented: Read as ' 0 '
bit 2 C4OUT: Comparator 4 Output Status bit
When CPOL = 0:
\(1=\) VIN \(+>\) VIN -
\(0=\mathrm{VIN}+<\mathrm{VIN}\) -
When CPOL = 1 :
\(1=\mathrm{VIN}+<\mathrm{VIN}-\)
0 = VIN+ > VIN-
bit 2 C3OUT: Comparator 3 Output Status bit
When CPOL = 0:
\(1=\) VIN \(+>\) VIN -
\(0=\) VIN \(+<\) VIN-
When CPOL = 1:
\(1=\mathrm{VIN}+<\mathrm{VIN}-\)
\(0=\) VIN \(+>\) VIN -

\section*{REGISTER 25-1: CMSTAT: COMPARATOR STATUS REGISTER (CONTINUED)}
\begin{tabular}{|c|c|}
\hline bit 1 & C2OUT: Comparator 2 Output Status bit When CPOL \(=0\). \\
\hline & \(1=\mathrm{VIN}+>\mathrm{VIN}-\) \\
\hline & \(0=\mathrm{VIN}+<\mathrm{VIN}-\) \\
\hline & When CPOL = 1: \\
\hline & \(1=\mathrm{VIN}+<\mathrm{VIN}-\) \\
\hline & \(0=\) VIN \(+>\) VIN - \\
\hline bit 0 & C1OUT: Comparator 1 Output Status bit \\
\hline & When CPOL \(=0\) : \\
\hline & 1 = VIN \(+>\) VIN- \\
\hline & \(0=\mathrm{VIN}+<\mathrm{VIN}-\) \\
\hline & When CPOL = 1: \\
\hline & \(1=\) VIN \(+<\) VIN - \\
\hline & \(0=\mathrm{VIN}+>\) VIN- \\
\hline
\end{tabular}

REGISTER 25-2: CMxCON: COMPARATOR CONTROL REGISTER ( \(\mathrm{x}=1,2\), OR 3 )
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline R/W-0 & R/W-0 & R/W-0 & U-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 \\
\hline CON & COE & CPOL & - & OAO & OPMODE & CEVT & COUT \\
\hline \multicolumn{2}{|l|}{bit 15} & & & & & & bit 8 \\
\hline R/W-0 & R/W-0 & U-0 & R/W-0 & U-0 & U-0 & R/W-0 & R/W-0 \\
\hline \multicolumn{2}{|c|}{EVPOL<1:0>} & - & CREF & - & - & \multicolumn{2}{|c|}{\(\mathrm{CCH}<1: 0>\)} \\
\hline \multicolumn{2}{|l|}{bit 7} & & & & & \multicolumn{2}{|r|}{bit 0} \\
\hline \multicolumn{8}{|l|}{Legend:} \\
\hline \multicolumn{2}{|l|}{\(\mathrm{R}=\) Readable bit} & \multicolumn{2}{|l|}{\(\mathrm{W}=\) Writable bit} & \multicolumn{4}{|l|}{\(\mathrm{U}=\) Unimplemented bit, read as ' 0 '} \\
\hline \multicolumn{2}{|l|}{-n = Value at POR} & \multicolumn{2}{|l|}{' 1 ' = Bit is set} & \multicolumn{2}{|l|}{' 0 ' = Bit is cleared} & \multicolumn{2}{|l|}{\(x=\) Bit is unknown} \\
\hline
\end{tabular}
bit 15 CON: Comparator Enable bit
1 = Comparator is enabled
0 = Comparator is disabled
bit 14 COE: Comparator Output Enable bit
1 = Comparator output is present on the CxOUT pin
0 = Comparator output is internal only
bit 13 CPOL: Comparator Output Polarity Select bit
1 = Comparator output is inverted
0 = Comparator output is not inverted
bit 12 Unimplemented: Read as ' 0 '
bit 11 OAO: Op Amp Output Connected to Outside Pin bit
1 = Op amp output OAxOUT is connected to pin
\(0=\) Op amp output OAxOUT is not connected to pin
bit 10
bit 9
bit 8
OPMODE: Op Amp/Comparator Operation Mode Select bit
1 = Circuit operates as an Op amp
0 = Circuit operates as a Comparator
CEVT: Comparator Event bit
1 = Comparator event according to EVPOL<1:0> settings occurred; disables future triggers and interrupts until the bit is cleared
\(0=\) Comparator event did not occur

> COUT: Comparator Output bit

When CPOL \(=0\) (non-inverted polarity):
\(1=\) VIN \(+>\) VIN -
\(0=\) VIN \(+<\) VIN-
When CPOL \(=1\) (inverted polarity):
\(1=\mathrm{VIN}+<\mathrm{VIN}-\)
\(0=\) VIN \(+>\) VIN-

Note 1: Inputs that are selected and not available will be tied to Vss. See the "Pin Diagrams" section for available inputs for each package.

\section*{REGISTER 25-2: CMxCON: COMPARATOR CONTROL REGISTER ( \(x=1,2\), OR 3 ) (CONTINUED)}
```

bit 7-6 EVPOL<1:0>: Trigger/Event/Interrupt Polarity Select bits
11 = Trigger/Event/Interrupt generated on any change of the comparator output (while CEVT = 0)
10 = Trigger/Event/Interrupt generated only on high to low transition of the polarity-selected
comparator output (while CEVT = 0)
If CPOL = 1 (inverted polarity):
Low-to-high transition of the comparator output
If CPOL = 0 (non-inverted polarity):
High-to-low transition of the comparator output
01 = Trigger/Event/Interrupt generated only on low to high transition of the polarity-selected
comparator output (while CEVT = 0)
If CPOL = 1 (inverted polarity):
High-to-low transition of the comparator output
If CPOL = 0 (non-inverted polarity):
Low-to-high transition of the comparator output
00 = Trigger/Event/Interrupt generation is disabled
bit 5 Unimplemented: Read as '0'
bit 4 CREF: Comparator Reference Select bit (VIN+ input)}\mp@subsup{}{}{\mathbf{(1)}
1 = VIN+ input connects to internal CVREFIN voltage
0 = VIN+ input connects to CxIN1+ pin
bit 3-2 Unimplemented: Read as '0'
bit 1-0 CCH<1:0>: Comparator Channel Select bits (1)
11 = Unimplemented
10 = Unimplemented
01 = Inverting input of Op amp/Comparator connects to CxIN2- pin
00 = Inverting input of Op amp/Comparator connects to CxIN1- pin

```

Note 1: Inputs that are selected and not available will be tied to Vss. See the "Pin Diagrams" section for available inputs for each package.

REGISTER 25-3: CM4CON: COMPARATOR CONTROL REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline R/W-0 & R/W-0 & R/W-0 & U-0 & U-0 & U-0 & R/W-0 & R/W-0 \\
\hline CON & COE & CPOL & - & - & - & CEVT & COUT \\
\hline bit 15 \\
\begin{tabular}{|lc|c|c|c|c|c|}
\hline R/W-0 & R/W-0 & U-0 & R/W-0 & U-0 & U-0 & R/W-0
\end{tabular} R/W-0 \\
\hline EVPOL<1:0> & - & CREF & - & - & CCH<1:0> \\
\hline bit 7
\end{tabular}

\section*{Legend:}
\begin{tabular}{|c|c|c|c|}
\hline \(\mathrm{R}=\) Readable bit & W = Writable bit & \(\mathrm{U}=\) Unimplement & as ' 0 ' \\
\hline -n = Value at POR & ' 1 ' = Bit is set & ' 0 ' = Bit is cleared & \(x=\) Bit is unknown \\
\hline
\end{tabular}
bit 15 CON: Comparator Enable bit
1 = Comparator is enabled
0 = Comparator is disabled
bit 14 COE: Comparator Output Enable bit
1 = Comparator output is present on the CxOUT pin
0 = Comparator output is internal only
bit 13 CPOL: Comparator Output Polarity Select bit
1 = Comparator output is inverted
\(0=\) Comparator output is not inverted
bit 12-10 Unimplemented: Read as ' 0 '
bit 9 CEVT: Comparator Event bit
1 = Comparator event according to EVPOL<1:0> settings occurred; disables future triggers and interrupts until the bit is cleared
0 = Comparator event did not occur
bit 8 COUT: Comparator Output bit
When CPOL = 0 (non-inverted polarity):
\(1=\) VIN \(+>\) VIN-
\(0=\) VIN \(+<\) VIN-
When CPOL = 1 (inverted polarity):
\(1=\mathrm{VIN}+<\mathrm{VIN}-\)
\(0=\) VIN \(+>\) VIN-
bit 7-6 EVPOL<1:0>: Trigger/Event/Interrupt Polarity Select bits
\(11=\) Trigger/Event/Interrupt generated on any change of the comparator output (while CEVT = 0)
10 = Trigger/Event/Interrupt generated only on high to low transition of the polarity-selected comparator output (while CEVT = 0)
If \(\mathrm{CPOL}=1\) (inverted polarity):
Low-to-high transition of the comparator output
If CPOL = 0 (non-inverted polarity):
High-to-low transition of the comparator output
01 = Trigger/Event/Interrupt generated only on low to high transition of the polarity-selected
comparator output (while CEVT = 0)
If CPOL = 1 (inverted polarity):
High-to-low transition of the comparator output
If \(\mathrm{CPOL}=0\) (non-inverted polarity):
Low-to-high transition of the comparator output
\(00=\) Trigger/Event/Interrupt generation is disabled
Note 1: Inputs that are selected and not available will be tied to Vss. See the "Pin Diagrams" section for available inputs for each package.


Note 1: Inputs that are selected and not available will be tied to Vss. See the "Pin Diagrams" section for available inputs for each package.

REGISTER 25-4: CMxMSKSRC: COMPARATOR MASK SOURCE SELECT CONTROL REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline U-0 & U-0 & U-0 & U-0 & R/W-0 & R/W-0 & R/W-0 & RW-0 \\
\hline - & - & - & - & \multicolumn{4}{|c|}{SELSRCC<3:0>} \\
\hline \multicolumn{7}{|l|}{bit 15} & bit 8 \\
\hline R/W-0 & R/W-0 \\
\hline \multicolumn{4}{|c|}{SELSRCB<3:0>} & \multicolumn{4}{|c|}{SELSRCA<3:0>} \\
\hline bit 7 & & & & & & & bit 0 \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(\mathrm{R}=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) Unimplemented bit, read as ' 0 ' \\
\(-\mathrm{n}=\) Value at POR & \(' 1\) ' = Bit is set & \(' 0\) ' = Bit is cleared
\end{tabular}\(\quad \mathrm{x}=\) Bit is unknown
bit 15-12 Unimplemented: Read as ' 0 '
bit 11-8 SELSRCC<3:0>: Mask C Input Select bits
\[
1111 \text { = FLT4 }
\]

1110 = FLT2
\(1101=\) PTGO19
\(1100=\) PTGO18
1011 = Reserved
1010 = Reserved
1001 = Reserved
1000 = Reserved
0111 = Reserved
0110 = Reserved
0101 = PWM3H
\(0100=\) PWM3L
\(0011=\) PWM2H
0010 = PWM2L
0001 = PWM1H
0000 = PWM1L
bit 7-4 SELSRCB<3:0>: Mask B Input Select bits
1111 = FLT4
1110 = FLT2
\(1101=\) PTGO19
\(1100=\) PTGO18
1011 = Reserved
1010 = Reserved
1001 = Reserved
1000 = Reserved
0111 = Reserved
0110 = Reserved
0101 = PWM3H
0100 = PWM3L
0011 = PWM2H
0010 = PWM2L
\(0001=\) PWM1H
\(0000=\) PWM1L

REGISTER 25-4: CMxMSKSRC: COMPARATOR MASK SOURCE SELECT CONTROL REGISTER
bit 3-0 SELSRCA<3:0>: Mask A Input Select bits
\[
\begin{aligned}
& 1111=\text { FLT4 } \\
& 1110=\text { FLT2 } \\
& 1101=\text { PTGO19 } \\
& 1100=\text { PTGO18 } \\
& 1011=\text { Reserved } \\
& 1010=\text { Reserved } \\
& 1001=\text { Reserved } \\
& 1000=\text { Reserved } \\
& 0111=\text { Reserved } \\
& 0110=\text { Reserved } \\
& 0101=\text { PWM3H } \\
& 0100=\text { PWM3L } \\
& 0011=\text { PWM2H } \\
& 0010=\text { PWM2L } \\
& 0001=\text { PWM1H } \\
& 0000=\text { PWM1L }
\end{aligned}
\]

REGISTER 25-5: CMxMSKCON: COMPARATOR MASK GATING CONTROL REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline R/W-0 & U-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 \\
\hline HLMS & - & OCEN & OCNEN & OBEN & OBNEN & OAEN & OANEN \\
\hline bit 15 \\
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline R/W-0 & R/W-0 \\
\hline NAGS & PAGS & ACEN & ACNEN & ABEN & ABNEN & AAEN & AANEN \\
\hline bit 7
\end{tabular}
\end{tabular}
\begin{tabular}{|lll}
\hline Legend: & & \\
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1\) ' = Bit is set & \(' 0\) ' \(=\) Bit is cleared \\
\hline
\end{tabular}
bit 15 HLMS: High or Low-Level Masking Select bits
1 = The masking (blanking) function will prevent any asserted (' 0 ') comparator signal from propagating
\(0=\) The masking (blanking) function will prevent any asserted (' 1 ') comparator signal from propagating
bit 14 Unimplemented: Read as ' 0 '
bit 13 OCEN: OR Gate C Input Inverted Enable bit
\(1=\mathrm{MCl}\) is connected to OR gate
\(0=\mathrm{MCI}\) is not connected to OR gate
bit 12 OCNEN: OR Gate C Input Inverted Enable bit
\(1=\) Inverted MCI is connected to OR gate
\(0=\) Inverted MCl is not connected to OR gate
bit 11 OBEN: OR Gate B Input Inverted Enable bit
\(1=\mathrm{MBI}\) is connected to \(O R\) gate
\(0=\mathrm{MBI}\) is not connected to OR gate
bit 10 OBNEN: OR Gate B Input Inverted Enable bit
\(1=\) Inverted MBI is connected to OR gate
\(0=\) Inverted MBI is not connected to OR gate
bit 9 OAEN: OR Gate A Input Enable bit
\(1=\) MAI is connected to OR gate
\(0=\) MAI is not connected to OR gate
bit 8 OANEN: OR Gate A Input Inverted Enable bit
1 = Inverted MAI is connected to OR gate
\(0=\) Inverted MAI is not connected to OR gate
bit 7 NAGS: Negative AND Gate Output Select
1 = Inverted ANDI is connected to OR gate
\(0=\) Inverted ANDI is not connected to OR gate
bit 6 PAGS: Positive AND Gate Output Select
1 = ANDI is connected to OR gate
\(0=\) ANDI is not connected to OR gate
bit 5 ACEN: AND Gate A1 C Input Inverted Enable bit
\(1=\mathrm{MCl}\) is connected to AND gate
\(0=\mathrm{MCl}\) is not connected to AND gate
bit 4 ACNEN: AND Gate A1 C Input Inverted Enable bit
1 = Inverted MCI is connected to AND gate
\(0=\) Inverted MCl is not connected to AND gate
bit 3 ABEN: AND Gate A1 B Input Inverted Enable bit
\(1=\mathrm{MBI}\) is connected to AND gate
\(0=\mathrm{MBI}\) is not connected to AND gate

REGISTER 25-5: CMxMSKCON: COMPARATOR MASK GATING CONTROL REGISTER


REGISTER 25-6: CMxFLTR: COMPARATOR FILTER CONTROL REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline U-0 & I-0 \\
\hline - & - & - & - & - & - & - & - \\
\hline \multicolumn{7}{|l|}{bit 15} & bit 8 \\
\hline U-0 & R/W-0 \\
\hline - & \multicolumn{3}{|c|}{CFSEL<2:0>} & CFLTREN & \multicolumn{3}{|c|}{CFDIV<2:0>} \\
\hline bit 7 & & & & & & & bit 0 \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(\mathrm{R}=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) Unimplemented bit, read as ' 0 ' \\
\(-\mathrm{n}=\) Value at POR & ' 1 ' = Bit is set & \(' 0\) ' = Bit is cleared
\end{tabular}\(\quad x=\) Bit is unknown
bit 15-7 Unimplemented: Read as ' 0 '
bit 6-4 CFSEL<2:0>: Comparator Filter Input Clock Select bits
\(111=\operatorname{T5CLK}^{(1)}\)
\(110=\) T4CLK \(^{(2)}\)
\(101=\) T3CLK \(^{(1)}\)
\(100=\) T2CLK \(^{(2)}\)
011 = Reserved
\(010=\) SYNCO1 \({ }^{(3)}\)
\(001=\) Fosc \(^{(4)}\)
\(000=\mathrm{Fp}^{(4)}\)
bit 3 CFLTREN: Comparator Filter Enable bit
1 = Digital filter enabled
0 = Digital filter disabled
bit 2-0 CFDIV<2:0>: Comparator Filter Clock Divide Select bits
111 = Clock Divide 1:128
\(110=\) Clock Divide 1:64
101 = Clock Divide 1:32
100 = Clock Divide 1:16
011 = Clock Divide 1:8
010 = Clock Divide 1:4
001 = Clock Divide 1:2
000 = Clock Divide 1:1

Note 1: See the Type C Timer Block Diagram (Figure 13-2).
2: See the Type B Timer Block Diagram (Figure 13-1).
3: See the PWM Module Register Interconnect Diagram (Figure 16-2).
4: See the Oscillator System Diagram (Figure 9-1).

REGISTER 25-7: CVRCON: COMPARATOR VOLTAGE REFERENCE CONTROL REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline U-0 & R/W-0 & U-0 & U-0 & U-0 & R/W-0 & U-0 & U-0 \\
\hline- & CVR2OE \(^{(\mathbf{1})}\) & - & - & - & VREFSEL & - & - \\
\hline bit 15 \\
\begin{tabular}{|cc|c|c|c|cc|}
\hline R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0
\end{tabular} R/W-0 \\
\hline CVREN & CVR1OE \(^{(\mathbf{1})}\) & CVRR & CVRSS & & CVR<3:0> & \\
\hline bit 7 &
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1 '=\) Bit is set & \(' 0 '=\) Bit is cleared
\end{tabular}
bit 15 Unimplemented: Read as ' 0 '
bit 14 CVR2OE: Comparator Voltage Reference 2 Output Enable bit \({ }^{(1)}\)
1 = CVRSRC divided by 2 is connected to the CVREF2O pin
\(0=\) CVRSRC divided by 2 is disconnected from the CVREF2O pin
bit 13-11 Unimplemented: Read as ' 0 '
bit \(10 \quad\) VREFSEL: Voltage Reference Select bit
1 = CVREFIN = VREF+
\(0=\) CVREFIN is generated by the resistor network
bit 9-8 Unimplemented: Read as ' 0 '
bit \(7 \quad\) CVREN: Comparator Voltage Reference Enable bit
1 = Comparator voltage reference circuit powered on
0 = Comparator voltage reference circuit powered down
bit \(6 \quad\) CVR1OE: Comparator Voltage Reference 1 Output Enable bit \({ }^{(1)}\)
1 = Voltage level is output on CVREF10 pin
\(0=\) Voltage level is disconnected from CVREF10 pin
bit 5 CVRR: Comparator Voltage Reference Range Selection bit
1 = CVRSRC/24 step size
0 = CVRSRC/32 step size
bit 4 CVRSS: Comparator Voltage Reference Source Selection bit
1 = Comparator voltage reference source, CVRSRC \(=(\) VREF + ) \(-(\) AVSS \()\)
\(0=\) Comparator voltage reference source, CVRSRC \(=\) AVDD - AVsS
bit 3-0 CVR<3:0> Comparator Voltage Reference Value Selection \(0 \leq C V R<3: 0>\leq 15\) bits
When CVRR = 1:
CVREFIN \(=(\) CVR \(<3: 0>/ 24) \bullet(C V R S R C)\)
When CVRR = 0:
CVREFIN \(=(\mathrm{CVRSRC} / 4)+(\mathrm{CVR}<3: 0>/ 32) \bullet(\mathrm{CVRSRC})\)
Note 1: CVRxOE overrides the TRIS bit setting.

NOTES:

\subsection*{26.0 PROGRAMMABLE CYCLIC REDUNDANCY CHECK (CRC) GENERATOR}

Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X, and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 27. "Programmable Cyclic Redundancy Check (CRC)" (DS70346) of the "dsPIC33E/ PIC24E Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The programmable CRC generator offers the following features:
- User-programmable (up to 32nd order) polynomial CRC equation
- Interrupt output
- Data FIFO

The programmable CRC generator provides a hardware-implemented method of quickly generating checksums for various networking and security applications. It offers the following features:
- User-programmable CRC polynomial equation, up to 32 bits
- Programmable shift direction (little or big-endian)
- Independent data and polynomial lengths
- Configurable Interrupt output
- Data FIFO

A simplified block diagram of the CRC generator is shown in Figure 26-1. A simple version of the CRC shift engine is shown in Figure 26-2.

FIGURE 26-1: CRC BLOCK DIAGRAM


FIGURE 26-2: CRC SHIFT ENGINE DETAIL


Note 1: Each XOR stage of the shift engine is programmable. See text for details.
2: Polynomial length \(n\) is determined by ([PLEN<4:0>] + 1 ).

\subsection*{26.1 Overview}

The CRC module can be programmed for CRC polynomials of up to the 32nd order, using up to 32 bits. Polynomial length, which reflects the highest exponent in the equation, is selected by the PLEN<4:0> bits (CRCCON2<4:0>).
The CRCXORL and CRCXORH registers control which exponent terms are included in the equation. Setting a particular bit includes that exponent term in the equation; functionally, this includes an XOR operation on the corresponding bit in the CRC engine. Clearing the bit disables the XOR.

For example, consider two CRC polynomials, one a 16bit equation and the other a 32-bit equation:
\(\mathrm{x} 16+\mathrm{x} 12+\mathrm{x} 5+1\)
and
\(\mathrm{x} 32+\mathrm{x} 26+\mathrm{x} 23+\mathrm{x} 22+\mathrm{x} 16+\mathrm{x} 12+\mathrm{x} 11+\mathrm{x} 10+\mathrm{x} 8+\mathrm{x} 7\)
\(+\mathrm{x} 5+\mathrm{x} 4+\mathrm{x} 2+\mathrm{x}+1\)

To program these polynomials into the CRC generator, set the register bits as shown in Table 26-1.
Note that the appropriate positions are set to ' 1 ' to indicate that they are used in the equation (for example, X26 and X23). The 0 bit required by the equation is always XORed; thus, X0 is a don't care. For a polynomial of length N , it is assumed that the N th bit will always be used, regardless of the bit setting. Therefore, for a polynomial length of 32, there is no 32nd bit in the CRCxOR register.

TABLE 26-1: CRC SETUP EXAMPLES FOR 16 AND 32-BIT POLYNOMIAL
\begin{tabular}{|l|c|c|}
\hline \multirow{2}{*}{\begin{tabular}{c} 
CRC Control \\
Bits
\end{tabular}} & \multicolumn{3}{|c|}{ Bit Values } \\
\cline { 2 - 3 } & 16-bit Polynomial & 32-bit Polynomial \\
\hline \hline PLEN \(<4: 0>\) & 01111 & 11111 \\
\hline\(X<31: 16>\) & \(000000000000000 x\) & 0000010011000001 \\
\hline\(X<15: 0>\) & \(000100000010000 x\) & \(000111011011011 x\) \\
\hline
\end{tabular}

\section*{REGISTER 26-1: CRCCON1: CRC CONTROL REGISTER 1}
\begin{tabular}{|l|c|c|ccccc|}
\hline R/W-0 & U-0 & R/W-0 & R-0 & R-0 & R-0 & R-0 & R-0 \\
\hline CRCEN & - & CSIDL & & & VWORD<4:0> & & \\
\hline bit 15 & & & & bit 8 \\
\hline
\end{tabular}
\begin{tabular}{|l|c|c|c|c|c|c|c|c|}
\hline \multicolumn{1}{|c|}{ R-0 } & R-1 & R/W-0 & R/W-0 & R/W-0 & U-0 & U-0 & U-0 \\
\hline CRCFUL & CRCMPT & CRCISEL & CRCGO & LENDIAN & - & - & - \\
\hline bit 7 & & & bit 0 \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend: & & \\
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1\) ' = Bit is set & \(' 0\) ' = Bit is cleared \(\quad x=\) Bit is unknown \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multirow[t]{3}{*}{bit 15} & CRCEN: CRC Enable bit \\
\hline & \(1=\) CRC module is enabled \\
\hline & \(0=\) CRC module is disabled. All state machines, pointers, and CRCWDAT/CRCDAT are reset. Other SFRs are not reset. \\
\hline bit 14 & Unimplemented: Read as ' 0 ' \\
\hline \multirow[t]{3}{*}{bit 13} & CSIDL: CRC Stop in Idle Mode bit \\
\hline & 1 = Discontinue module operation when device enters Idle mode \\
\hline & 0 = Continue module operation in Idle mode \\
\hline \multirow[t]{2}{*}{bit 12-8} & VWORD<4:0>: Pointer Value bits \\
\hline & Indicates the number of valid words in the FIFO. Has a maximum value of 8 when PLEN \(<4: 0 \gg 7\), or 16 when PLEN \(<4: 0>\leq 7\). \\
\hline \multirow[t]{3}{*}{bit 7} & CRCFUL: FIFO Full bit \\
\hline & \(1=\) FIFO is full \\
\hline & \(0=\) FIFO is not full \\
\hline \multirow[t]{3}{*}{bit 6} & CRCMPT: FIFO Empty Bit \\
\hline & 1 = FIFO is empty \\
\hline & \(0=\) FIFO is not empty \\
\hline \multirow[t]{3}{*}{bit 5} & CRCISEL: CRC Interrupt Selection bit \\
\hline & 1 = Interrupt on FIFO empty; final word of data is still shifting through CRC \\
\hline & \(0=\) Interrupt on shift complete and CRCWDAT results ready \\
\hline \multirow[t]{3}{*}{bit 4} & CRCGO: Start CRC bit \\
\hline & 1 = Start CRC serial shifter \\
\hline & \(0=\) CRC serial shifter is turned off \\
\hline \multirow[t]{3}{*}{bit 3} & LENDIAN: Data Word Little-Endian Configuration bit \\
\hline & 1 = Data word is shifted into the CRC starting with the LSb (little endian) \\
\hline & \(0=\) Data word is shifted into the CRC starting with the MSb (big endian) \\
\hline bit 2-0 & Unimplemented: Read as '0' \\
\hline
\end{tabular}

\section*{REGISTER 26-2: CRCCON2: CRC CONTROL REGISTER 2}
\begin{tabular}{|c|c|c|ccccc|}
\hline U-0 & U-0 & U-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 \\
\hline- & - & - & & & DWIDTH<4:0> & & \\
\hline bit 15 & & & & & bit 8 \\
\hline
\end{tabular}


\section*{Legend:}
\begin{tabular}{|c|c|c|c|}
\hline \(\mathrm{R}=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) Unimplement & as '0' \\
\hline -n = Value at POR & ' 1 ' = Bit is set & ' 0 ' = Bit is cleared & \(x=\) Bit is unknown \\
\hline
\end{tabular}
bit 15-13 Unimplemented: Read as ' 0 '
bit 12-8 DWIDTH<4:0>: Data Width Select bits
These bits set the width of the data word (DWIDTH<4:0> + 1)
bit 7-5 Unimplemented: Read as ' 0 '
bit 4-0 PLEN<4:0>: Polynomial Length Select bits
These bits set the length of the polynomial (Polynomial Length \(=\) PLEN<4:0> + 1)

\section*{REGISTER 26-3: CRCXORH: CRC XOR POLYNOMIAL HIGH REGISTER}
\begin{tabular}{|llllllll|}
\hline R/W-0 & R/W-0 & \(R / W-0\) \\
\hline & & \(X<31: 24>\) & & & \\
\hline bit 15 & & & & & & & bit 8 \\
\hline
\end{tabular}
\begin{tabular}{|llllllll|}
\hline\(R / W-0\) & \(R / W-0\) \\
\hline & & & \(X<23: 16>\) & & & \\
\hline bit 7 & & & & & & & \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{|c|c|c|c|}
\hline \(\mathrm{R}=\) Readable bit & W = Writable bit & \(\mathrm{U}=\) Unimplement & s ' 0 ' \\
\hline -n = Value at POR & ' 1 ' = Bit is set & ' 0 ' = Bit is cleared & \(x=\) Bit is unknown \\
\hline
\end{tabular}
bit 15-0 \(\quad X<31: 16>\) : \(X O R\) of Polynomial Term \(X^{n}\) Enable bits

REGISTER 26-4: CRCXORL: CRC XOR POLYNOMIAL LOW REGISTER
\begin{tabular}{|llllllll|}
\hline\(R / W-0\) & \(R / W-0\) \\
\hline & & \(X<15: 8>\) & & & \\
\hline bit 15 & & & & & & bit 8 \\
\hline
\end{tabular}
\begin{tabular}{|llllllll|l|}
\hline R/W-0 & U-0 \\
\hline & & \(X<7: 1>\) & & & & - \\
\hline bit 7 & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend: & \\
\(R=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) Unimplemented bit, read as ' 0 ' \\
\(-\mathrm{n}=\) Value at POR & \(' 1\) ' = Bit is set & \(' 0\) ' = Bit is cleared \(\quad x=\) Bit is unknown \\
\hline
\end{tabular}
bit 15-1 \(\quad X<15: 1>\) : XOR of Polynomial Term \(X^{n}\) Enable bits
bit \(0 \quad\) Unimplemented: Read as ' 0 '

NOTES:

\subsection*{27.0 SPECIAL FEATURES}

Note: This data sheet summarizes the features of the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X, and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the related section of the "dsPIC33E/PIC24E Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X, and PIC24EPXXXGP/MC20X devices include several features intended to maximize application flexibility and reliability, and minimize cost through elimination of external components. These are:
- Flexible configuration
- Watchdog Timer (WDT)
- Code Protection and CodeGuard \({ }^{\text {™ }}\) Security
- JTAG Boundary Scan Interface
- In-Circuit Serial Programming \({ }^{\text {TM }}\) (ICSP \({ }^{\text {TM }}\) )
- In-Circuit Emulation

\subsection*{27.1 Configuration Bits}

In dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X, and PIC24EPXXXGP/MC20X devices, the configuration bytes are implemented as volatile memory. This means that configuration data must be programmed each time the device is powered up. Configuration data is stored in at the top of the on-chip
program memory space, known as the Flash Configuration Bytes. Their specific locations are shown in Table 27-1. The configuration data is automatically loaded from the Flash Configuration Bytes to the proper Configuration shadow registers during device Resets.
Note: Configuration data is reloaded on all types of device Resets.
When creating applications for these devices, users should always specifically allocate the location of the Flash Configuration Bytes for configuration data in their code for the compiler. This is to make certain that program code is not stored in this address when the code is compiled.
The upper 2 bytes of all Flash Configuration Words in program memory should always be '1111 11111111 1111'. This makes them appear to be NOP instructions in the remote event that their locations are ever executed by accident. Since Configuration bits are not implemented in the corresponding locations, writing ' 1 's to these locations has no effect on device operation.
\[
\begin{array}{ll}
\text { Note: } & \text { Performing a page erase operation on the } \\
\text { last page of program memory clears the } \\
\text { Flash Configuration Bytes, enabling code } \\
\text { protection as a result. Therefore, users } \\
\text { should avoid performing page erase } \\
\text { operations on the last page of program } \\
\text { memory. }
\end{array}
\]

The Configuration Flash Bytes map is shown in Table 27-1.

TABLE 27-1: CONFIGURATION BYTE REGISTER MAP
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline File Name & Addr. & Bit 23-16 & Bit 7 & Bit 6 & Bit 5 & Bit 4 & Bit 3 & Bit 2 & Bit 1 & Bit 0 \\
\hline Reserved & 00AFEC & - & - & - & - & - & - & - & - & - \\
\hline Reserved & 00AFEE & - & - & - & - & - & - & - & - & - \\
\hline FICD & 00AFF0 & - & - & - & JTAGEN & Reserved \({ }^{(2)}\) & - & - & ICS & <1:0> \\
\hline FPOR & 00AFF2 & - & \multicolumn{2}{|l|}{WDTWIN<1:0>} & ALTI2C2 & ALTI2C1 & - & - & - & - \\
\hline FWDT & 00AFF4 & - & FWDTEN & WINDIS & PLLKEN & WDTPRE & \multicolumn{4}{|c|}{WDTPOST<3:0>} \\
\hline FOSC & 00AFF6 & - & \multicolumn{2}{|r|}{FCKSM<1:0>} & IOL1WAY & - & - & OSCIOFNC & \multicolumn{2}{|l|}{POSCMD<1:0>} \\
\hline FOSCSEL & 00AFF8 & - & IESO & PWMLOCK \({ }^{(1)}\) & - & - & - & \multicolumn{3}{|c|}{FNOSC<2:0>} \\
\hline FGS & 00AFFA & - & - & - & - & - & - & - & GCP & GWRP \\
\hline Reserved & 00AFFC & - & - & - & - & - & - & - & - & - \\
\hline Reserved & 00AFFE & - & - & - & - & - & - & - & - & - \\
\hline
\end{tabular}

Legend: - = unimplemented, read as ' 1 '.
Note 1: These bits are only available on dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices.
2: This bit is reserved; program as ' 0 '.

\section*{TABLE 27-2: CONFIGURATION BITS DESCRIPTION}
\begin{tabular}{|c|c|}
\hline Bit Field & Description \\
\hline GCP & \begin{tabular}{l}
General Segment Code-Protect bit \\
1 = User program memory is not code-protected \\
\(0=\) Code protection is enabled for the entire program memory space
\end{tabular} \\
\hline GWRP & \begin{tabular}{l}
General Segment Write-Protect bit \\
1 = User program memory is not write-protected \\
0 = User program memory is write-protected
\end{tabular} \\
\hline IESO & \begin{tabular}{l}
Two-speed Oscillator Start-up Enable bit \\
1 = Start-up device with FRC, then automatically switch to the user-selected oscillator source when ready \\
\(0=\) Start-up device with user-selected oscillator source
\end{tabular} \\
\hline PWMLOCK \({ }^{(1)}\) & \begin{tabular}{l}
PWM Lock Enable bit \\
1 = Certain PWM registers may only be written after key sequence \\
\(0=\) PWM registers may be written without key
\end{tabular} \\
\hline FNOSC<2:0> & ```
Oscillator Selection bits
111 = Fast RC Oscillator with divide-by-N (FRCDIVN)
110 = Reserved; do not use
101 = Low-Power RC Oscillator (LPRC)
100 = Reserved; do not use
011 = Primary Oscillator with PLL module (XT + PLL, HS + PLL, EC + PLL)
010 = Primary Oscillator (XT, HS, EC)
001 = Fast RC Oscillator with divide-by-N with PLL module (FRCPLL)
000 = Fast RC Oscillator (FRC)
``` \\
\hline FCKSM<1:0> & \begin{tabular}{l}
Clock Switching Mode bits \\
\(1 \mathrm{x}=\) Clock switching is disabled, Fail-Safe Clock Monitor is disabled \\
\(01=\) Clock switching is enabled, Fail-Safe Clock Monitor is disabled \\
\(00=\) Clock switching is enabled, Fail-Safe Clock Monitor is enabled
\end{tabular} \\
\hline IOL1WAY & Peripheral pin select configuration 1 = Allow only one reconfiguration \(0=\) Allow multiple reconfigurations \\
\hline OSCIOFNC & \begin{tabular}{l}
OSC2 Pin Function bit (except in XT and HS modes) \\
1 = OSC2 is clock output \\
\(0=\) OSC2 is general purpose digital I/O pin
\end{tabular} \\
\hline POSCMD<1:0> & \begin{tabular}{l}
Primary Oscillator Mode Select bits \\
11 = Primary oscillator disabled \\
\(10=\) HS Crystal Oscillator mode (\(10 \mathrm{MHz}-32 \mathrm{MHz}\)) \\
01 = XT Crystal Oscillator mode (\(3 \mathrm{MHz}-10 \mathrm{MHz}\)) \\
\(00=\) EC (External Clock) mode (DC - 32 MHz)
\end{tabular} \\
\hline FWDTEN & \begin{tabular}{l}
Watchdog Timer Enable bit \\
\(1=\) Watchdog Timer always enabled (LPRC oscillator cannot be disabled. Clearing the SWDTEN bit in the RCON register will have no effect.) \\
\(0=\) Watchdog Timer enabled/disabled by user software (LPRC can be disabled by clearing the SWDTEN bit in the RCON register)
\end{tabular} \\
\hline WINDIS & \begin{tabular}{l}
Watchdog Timer Window Enable bit \\
\(1=\) Watchdog Timer in Non-Window mode \\
\(0=\) Watchdog Timer in Window mode
\end{tabular} \\
\hline PLLKEN & PLL Lock Enable bit 1 = PLL lock enabled 0 = PLL lock disabled \\
\hline WDTPRE & Watchdog Timer Prescaler bit
\[
\begin{aligned}
& 1=1: 128 \\
& 0=1: 32
\end{aligned}
\] \\
\hline
\end{tabular}

Note 1: This bit is only available on dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices.

TABLE 27-2: CONFIGURATION BITS DESCRIPTION (CONTINUED)
\begin{tabular}{|c|c|}
\hline Bit Field & Description \\
\hline WDTPOST<3:0> & Watchdog Timer Postscaler bits
\[
\begin{aligned}
& 1111=1: 32,768 \\
& 1110=1: 16,384
\end{aligned}
\]
\[
0001=1: 2
\]
\[
0000=1: 1
\] \\
\hline WDTWIN<1:0> & \begin{tabular}{l}
Watchdog Window Select bits \\
11 = WDT Window is \(25 \%\) of WDT period \\
\(10=\) WDT Window is \(37.5 \%\) of WDT period \\
01 = WDT Window is \(50 \%\) of WDT period \\
\(00=\) WDT Window is \(75 \%\) of WDT period
\end{tabular} \\
\hline ALTI2C1 & \begin{tabular}{l}
Alternate \(\mathrm{I}^{2} \mathrm{C} 1\) pins \\
\(1=I^{2} \mathrm{C} 1\) mapped to SDA1/SCL1 pins \\
\(0=I^{2} \mathrm{C} 1\) mapped to ASDA1/ASCL1 pins
\end{tabular} \\
\hline ALTI2C2 & \begin{tabular}{l}
Alternate \(\mathrm{I}^{2} \mathrm{C} 2\) pins \\
\(1=1^{2} \mathrm{C} 2\) mapped to SDA2/SCL2 pins \\
\(0=1^{2} \mathrm{C} 2\) mapped to ASDA2/ASCL2 pins
\end{tabular} \\
\hline JTAGEN & \begin{tabular}{l}
JTAG Enable bit \\
1 = JTAG enabled \\
0 = JTAG disabled
\end{tabular} \\
\hline ICS<1:0> & \begin{tabular}{l}
ICD Communication Channel Select bits \\
11 = Communicate on PGEC1 and PGED1 \\
\(10=\) Communicate on PGEC2 and PGED2 \\
01 = Communicate on PGEC3 and PGED3 \\
\(00=\) Reserved, do not use
\end{tabular} \\
\hline
\end{tabular}

Note 1: This bit is only available on dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices.

\section*{REGISTER 27-1: DEVID: DEVICE ID REGISTER}
\(\left.\begin{array}{|rllllll|}\hline R & R & R & R & R & R & R\end{array}\right]\)

\begin{tabular}{|llllll|}
\hline R & R & R & R & R & R \\
\hline & DEVID \(<7: 0>\) & R & R \\
\hline bit 7 & & & bit 0 \\
\hline
\end{tabular}
Legend: \(\mathrm{R}=\) Read-Only bit \(\mathrm{U}=\) Unimplemented bit
bit 23-0 DEVID<23:0>: Device Identifier bits \({ }^{(\mathbf{1)}}\)

Note 1: Refer to the "dsPIC33E/PIC24E Flash Programming Specification" (DS70619) for the list of device ID values.

\section*{REGISTER 27-2: DEVREV: DEVICE REVISION REGISTER}
\begin{tabular}{|lllllll|}
\hline R & R & R & R & R & R & R \\
\hline & & DEVREV<23:16> & & R \\
\hline bit 23 & & & & bit 16 \\
\hline
\end{tabular}
\begin{tabular}{|rrrrrr|}
\hline\(R\) & \(R\) & \(R\) & \(R\) & \(R\) & \(R\) \\
\hline & & DEVREV \(<15: 8>\) & \(R\) & \(R\) \\
\hline bit 15 & & & & & bit 8 \\
\hline
\end{tabular}
\begin{tabular}{|lllllll|}
\hline R & R & R & R & R & R & R \\
\hline & & DEVREV \(<7: 0>\) & R \\
\hline bit 7 & & & & & \\
\hline
\end{tabular}
Legend: \(\mathrm{R}=\) Read-only bit \(\mathrm{U}=\) Unimplemented bit
bit 23-0 DEVREV<23:0>: Device Revision bits \({ }^{(\mathbf{1})}\)

Note 1: Refer to the "dsPIC33E/PIC24E Flash Programming Specification" (DS70619) for the list of device revision values.

\subsection*{27.2 On-Chip Voltage Regulator}

All of the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X, and PIC24EPXXXGP/ MC20X devices power their core digital logic at a nominal 1.8 V . This can create a conflict for designs that are required to operate at a higher typical voltage, such as 3.3 V . To simplify system design, all devices in the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X, and PIC24EPXXXGP/MC20X family incorporate an onchip regulator that allows the device to run its core logic from VDD.
The regulator provides power to the core from the other VDD pins. A low-ESR (less than 1 Ohm) capacitor (such as tantalum or ceramic) must be connected to the VcAP pin (Figure 27-1). This helps to maintain the stability of the regulator. The recommended value for the filter capacitor is provided in Table 30-5 located in Section 30.0 "Electrical Characteristics".
Note: It is important for the low-ESR capacitor to be placed as close as possible to the VCAP pin.

FIGURE 27-1: CONNECTIONS FOR THE ON-CHIP VOLTAGE REGULATOR \({ }^{(1,2,3)}\)

Note 1: These are typical operating voltages. Refer to Table 30-5 located in Section 30.1 "DC Characteristics" for the full operating ranges of VdD and Vcap.
2: It is important for the low-ESR capacitor to be placed as close as possible to the VcAP pin.
3: Typical VcAP pin voltage \(=1.8 \mathrm{~V}\) when VDD \(\geq\) VDDMIN.

\subsection*{27.3 Brown-out Reset (BOR)}

The Brown-out Reset (BOR) module is based on an internal voltage reference circuit that monitors the regulated supply voltage VCAP. The main purpose of the BOR module is to generate a device Reset when a brown-out condition occurs. Brown-out conditions are generally caused by glitches on the AC mains (for example, missing portions of the AC cycle waveform due to bad power transmission lines, or voltage sags due to excessive current draw when a large inductive load is turned on).
A BOR generates a Reset pulse, which resets the device. The BOR selects the clock source, based on the device Configuration bit values (FNOSC<2:0> and POSCMD<1:0>).
If an oscillator mode is selected, the BOR activates the Oscillator Start-up Timer (OST). The system clock is held until OST expires. If the PLL is used, the clock is held until the LOCK bit (\(\mathrm{OSCCON}<5>\)) is ' 1 '.
Concurrently, the PWRT time-out (TPWRT) is applied before the internal Reset is released. If TPWRT = 0 and a crystal oscillator is being used, then a nominal delay of TFSCM is applied. The total delay in this case is TFSCM. Refer to parameter SY35 in Table 30-24 of Section 30.0 "Electrical Characteristics" for specific TFSCM values.

The BOR Status bit (\(\mathrm{RCON}<1>\)) is set to indicate that a BOR has occurred. The BOR circuit, continues to operate while in Sleep or Idle modes and resets the device should VDD fall below the BOR threshold voltage.

\subsection*{27.4 Watchdog Timer (WDT)}

For dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X, and PIC24EPXXXGP/MC20X devices, the WDT is driven by the LPRC oscillator. When the WDT is enabled, the clock source is also enabled.

\subsection*{27.4.1 PRESCALER/POSTSCALER}

The nominal WDT clock source from LPRC is 32 kHz . This feeds a prescaler that can be configured for either 5 -bit (divide-by-32) or 7-bit (divide-by-128) operation. The prescaler is set by the WDTPRE Configuration bit. With a 32 kHz input, the prescaler yields a WDT timeout period (TWDT), as shown in parameter SY12 in Table 30-24.
A variable postscaler divides down the WDT prescaler output and allows for a wide range of time-out periods. The postscaler is controlled by the WDTPOST<3:0> Configuration bits (FWDT<3:0>), which allow the selection of 16 settings, from \(1: 1\) to \(1: 32,768\). Using the prescaler and postscaler, time-out periods ranging from 1 ms to 131 seconds can be achieved.
The WDT, prescaler and postscaler are reset:
- On any device Reset
- On the completion of a clock switch, whether invoked by software (i.e., setting the OSWEN bit after changing the NOSC bits) or by hardware (i.e., Fail-Safe Clock Monitor)
- When a PWRSAV instruction is executed (i.e., Sleep or Idle mode is entered)
- When the device exits Sleep or Idle mode to resume normal operation
- By a CLRWDT instruction during normal execution
\begin{tabular}{ll}
Note: & \begin{tabular}{l}
The CLRWDT and PWRSAV instructions \\
clear the prescaler and postscaler counts \\
when executed.
\end{tabular} \\
\hline
\end{tabular} clear the prescaler and postscaler counts when executed.

\subsection*{27.4.2 SLEEP AND IDLE MODES}

If the WDT is enabled, it continues to run during Sleep or Idle modes. When the WDT time-out occurs, the device wakes the device and code execution continues from where the PWRSAV instruction was executed. The corresponding SLEEP or IDLE bits (RCON<3,2>) needs to be cleared in software after the device wakes up.

\subsection*{27.4.3 ENABLING WDT}

The WDT is enabled or disabled by the FWDTEN Configuration bit in the FWDT Configuration register. When the FWDTEN Configuration bit is set, the WDT is always enabled.
The WDT can be optionally controlled in software when the FWDTEN Configuration bit has been programmed to ' 0 '. The WDT is enabled in software by setting the SWDTEN control bit (\(\mathrm{RCON}<5>\)). The SWDTEN control bit is cleared on any device Reset. The software WDT option allows the user application to enable the WDT for critical code segments and disable the WDT during non-critical segments for maximum power savings.
The WDT flag bit, WDTO (RCON<4>), is not automatically cleared following a WDT time-out. To detect subsequent WDT events, the flag must be cleared in software.

\subsection*{27.4.4 WDT WINDOW}

The Watchdog Timer has an optional Windowed mode enabled by programming the WINDIS bit in the WDT configuration register (FWDT<6>). In the Windowed mode (WINDIS = 0), the WDT should be cleared based on the settings in the programmable watchdog window select bits (WDTWIN<1:0>).

FIGURE 27-2: WDT BLOCK DIAGRAM

\subsection*{27.5 JTAG Interface}
dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X, and PIC24EPXXXGP/MC20X devices implement a JTAG interface, which supports boundary scan device testing. Detailed information on this interface is provided in future revisions of the document.
\begin{tabular}{ll}
Note: & \begin{tabular}{l}
Refer to Section 24. "Programming and \\
\\
Diagnostics" (DS70608) of the \\
\\
"dsPIC33E/PIC24E Family Reference \\
\\
Manual" for further information on usage, \\
configuration and operation of the JTAG \\
interface.
\end{tabular} \\
\hline
\end{tabular}

\subsection*{27.6 In-Circuit Serial Programming}

The dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X, and PIC24EPXXXGP/MC20X devices can be serially programmed while in the end application circuit. This is done with two lines for clock and data and three other lines for power, ground and the programming sequence. Serial programming allows customers to manufacture boards with unprogrammed devices and then program the device just before shipping the product. Serial programming also allows the most recent firmware or a custom firmware to be programmed. Refer to the "dsPIC33E/PIC24E Flash Programming Specification" (DS70619) for details about In-Circuit Serial Programming (ICSP).
Any of the three pairs of programming clock/data pins can be used:
- PGEC1 and PGED1
- PGEC2 and PGED2
- PGEC3 and PGED3

\subsection*{27.7 In-Circuit Debugger}

When MPLAB \({ }^{\circledR}\) ICD 3 or REAL ICE \({ }^{\text {TM }}\) is selected as a debugger, the in-circuit debugging functionality is enabled. This function allows simple debugging functions when used with MPLAB IDE. Debugging functionality is controlled through the PGECx (Emulation/ Debug Clock) and PGEDx (Emulation/Debug Data) pin functions.
Any of the three pairs of debugging clock/data pins can be used:
- PGEC1 and PGED1
- PGEC2 and PGED2
- PGEC3 and PGED3

To use the in-circuit debugger function of the device, the design must implement ICSP connections to \(\overline{M C L R}\), VDD, Vss, and the PGECx/PGEDx pin pair. In addition, when the feature is enabled, some of the resources are not available for general use. These resources include the first 80 bytes of data RAM and two I/O pins (PGECx and PGEDx).

\subsection*{27.8 Code Protection and CodeGuard \({ }^{\text {TM }}\) Security}

The dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X, and PIC24EPXXXGP/MC20X devices offer basic implementation of CodeGuard Security that supports only General Segment (GS) security. This feature helps protect individual Intellectual Property.
\begin{tabular}{ll}
Note: & \begin{tabular}{l}
Refer to Section 23. "CodeGuard"M \\
\\
Security" (DS70634) of the "dsPIC33E/
\end{tabular} \\
& PIC24E Family Reference Manual" for \\
& further information on usage, \\
& configuration and operation of \\
& CodeGuard Security. \\
\hline
\end{tabular}

NOTES:

\subsection*{28.0 INSTRUCTION SET SUMMARY}

Note: This data sheet summarizes the features of the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X, and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the related section of the "dsPIC33E/PIC24E Family Reference Manual", which is available from the Microchip web site (www.microchip.com).

The dsPIC33EP instruction set is almost identical to that of the dsPIC30F and dsPIC33F. The PIC24EP instruction set is almost identical to that of the PIC24F and PIC24H.

Most instructions are a single program memory word (24 bits). Only three instructions require two program memory locations.
Each single-word instruction is a 24 -bit word, divided into an 8-bit opcode, which specifies the instruction type and one or more operands, which further specify the operation of the instruction.
The instruction set is highly orthogonal and is grouped into five basic categories:
- Word or byte-oriented operations
- Bit-oriented operations
- Literal operations
- DSP operations
- Control operations

Table 28-1 lists the general symbols used in describing the instructions.
The dsPIC33E instruction set summary in Table 28-2 lists all the instructions, along with the status flags affected by each instruction.
Most word or byte-oriented W register instructions (including barrel shift instructions) have three operands:
- The first source operand, which is typically a register 'Wb' without any address modifier
- The second source operand, which is typically a register 'Ws' with or without an address modifier
- The destination of the result, which is typically a register 'Wd' with or without an address modifier
However, word or byte-oriented file register instructions have two operands:
- The file register specified by the value ' \(f\) '
- The destination, which could be either the file register ' \(f\) ' or the W0 register, which is denoted as 'WREG'

Most bit-oriented instructions (including simple rotate/ shift instructions) have two operands:
- The W register (with or without an address modifier) or file register (specified by the value of 'Ws' or ' \(f\) ')
- The bit in the W register or file register (specified by a literal value or indirectly by the contents of register 'Wb')
The literal instructions that involve data movement can use some of the following operands:
- A literal value to be loaded into a W register or file register (specified by ' \(k\) ')
- The W register or file register where the literal value is to be loaded (specified by 'Wb' or ' \(f\) ')
However, literal instructions that involve arithmetic or logical operations use some of the following operands:
- The first source operand, which is a register 'Wb' without any address modifier
- The second source operand, which is a literal value
- The destination of the result (only if not the same as the first source operand), which is typically a register 'Wd' with or without an address modifier
The MAC class of DSP instructions can use some of the following operands:
- The accumulator (A or B) to be used (required operand)
- The W registers to be used as the two operands
- The \(X\) and \(Y\) address space prefetch operations
- The \(X\) and \(Y\) address space prefetch destinations
- The accumulator write back destination

The other DSP instructions do not involve any multiplication and can include:
- The accumulator to be used (required)
- The source or destination operand (designated as Wso or Wdo, respectively) with or without an address modifier
- The amount of shift specified by a \(W\) register ' Wn ' or a literal value
The control instructions can use some of the following operands:
- A program memory address
- The mode of the table read and table write instructions

Most instructions are a single word. Certain doubleword instructions are designed to provide all the required information in these 48 bits. In the second word, the 8 MSbs are ' 0 's. If this second word is executed as an instruction (by itself), it executes as a NOP.
The double-word instructions execute in two instruction cycles.

Most single-word instructions are executed in a single instruction cycle, unless a conditional test is true, or the program counter is changed as a result of the instruction, or a PSV or table read is performed. In these cases, the execution takes multiple instruction cycles
with the additional instruction cycle(s) executed as a NOP. Certain instructions that involve skipping over the subsequent instruction require either two or three cycles if the skip is performed, depending on whether the instruction being skipped is a single-word or two-word instruction. Moreover, double-word moves require two cycles.

TABLE 28-1: SYMBOLS USED IN OPCODE DESCRIPTIONS
\begin{tabular}{|c|c|}
\hline Field & Description \\
\hline \#text & Means literal defined by "text" \\
\hline (text) & Means "content of text" \\
\hline [text] & Means "the location addressed by text" \\
\hline \{\} & Optional field or operation \\
\hline \(a \in\{b, c, d\}\) & \(a\) is selected from the set of values \(b, c, d\) \\
\hline <n:m> & Register bit field \\
\hline .b & Byte mode selection \\
\hline .d & Double-Word mode selection \\
\hline . S & Shadow register select \\
\hline .w & Word mode selection (default) \\
\hline Acc & One of two accumulators \(\{\mathrm{A}, \mathrm{B}\}\) \\
\hline AWB & Accumulator write back destination address register \(\in\{\mathrm{W} 13,[\mathrm{~W} 13]+=2\}\) \\
\hline bit4 & 4-bit bit selection field (used in word addressed instructions) \(\in\{0 . .15\}\) \\
\hline C, DC, N, OV, Z & MCU Status bits: Carry, Digit Carry, Negative, Overflow, Sticky Zero \\
\hline Expr & Absolute address, label or expression (resolved by the linker) \\
\hline f & File register address \(\in\{0 \times 0000 \ldots 0 \times 1 \mathrm{FFF}\}\) \\
\hline lit1 & 1 -bit unsigned literal \(\in\{0,1\}\) \\
\hline lit4 & 4-bit unsigned literal \(\in\{0 . . .15\}\) \\
\hline lit5 & 5 -bit unsigned literal \(\in\{0 \ldots 31\}\) \\
\hline lit8 & 8 -bit unsigned literal \(\in\{0 . . .255\}\) \\
\hline lit10 & 10-bit unsigned literal \(\in\{0 \ldots 255\}\) for Byte mode, \(\{0: 1023\}\) for Word mode \\
\hline lit14 & 14-bit unsigned literal \(\in\{0 \ldots 16384\}\) \\
\hline lit16 & 16-bit unsigned literal \(\in\{0 \ldots 65535\}\) \\
\hline lit23 & 23-bit unsigned literal \(\in\{0 . . .8388608\}\); LSb must be ' 0 ’ \\
\hline None & Field does not require an entry, can be blank \\
\hline OA, OB, SA, SB & DSP Status bits: ACCA Overflow, ACCB Overflow, ACCA Saturate, ACCB Saturate \\
\hline PC & Program Counter \\
\hline Slit10 & 10-bit signed literal \(\in\{-512 \ldots 511\}\) \\
\hline Slit16 & 16-bit signed literal \(\in\{-32768 . . .32767\}\) \\
\hline Slit6 & 6-bit signed literal \(\in\{-16 . .16\}\) \\
\hline Wb & Base W register \(\in\left\{\begin{array}{l}\text { W0...W15\} }\end{array}\right.\) \\
\hline Wd & Destination W register \(\in\left\{\begin{array}{l}\text { Wd, [Wd], [Wd++], [Wd--], [++Wd], [-Wd] }\}\end{array}\right.\) \\
\hline Wdo & \begin{tabular}{l}
Destination W register \(\in\) \\
\{Wnd, [Wnd], [Wnd++], [Wnd---], [++Wnd], [--Wnd], [Wnd+Wb] \}
\end{tabular} \\
\hline Wm, Wn & Dividend, Divisor working register pair (direct addressing) \\
\hline
\end{tabular}

TABLE 28-1: SYMBOLS USED IN OPCODE DESCRIPTIONS (CONTINUED)
\begin{tabular}{|c|c|}
\hline Field & Description \\
\hline Wm*Wm & Multiplicand and Multiplier working register pair for Square instructions \(\in\) \{W4 * W4,W5 * W5,W6 * W6,W7 * W7\} \\
\hline Wm*Wn & Multiplicand and Multiplier working register pair for DSP instructions \(\in\) \{W4 * W5,W4 * W6,W4 * W7,W5 * W6,W5 * W7,W6 * W7\} \\
\hline Wn & One of 16 working registers \(\in\{\) W0...W15\} \\
\hline Wnd & One of 16 destination working registers \(\in\{\) W0...W15\} \\
\hline Wns & One of 16 source working registers \(\in\{\) W0...W15\} \\
\hline WREG & W0 (working register used in file register instructions) \\
\hline Ws & Source W register \(\in\) \{ Ws, [Ws], [Ws++], [Ws--], [++Ws], [--Ws] \} \\
\hline Wso & \begin{tabular}{l}
Source W register \(\in\) \\
\{ Wns, [Wns], [Wns++], [Wns--], [++Wns], [--Wns], [Wns+Wb] \}
\end{tabular} \\
\hline Wx & \[
\begin{array}{|l}
\hline \text { X data space prefetch address register for DSP instructions } \\
\in\{[\mathrm{W} 8]+=6,[\mathrm{~W} 8]+=4,[\mathrm{~W} 8]+=2,[\mathrm{~W} 8],[\mathrm{W} 8]-=6,[\mathrm{~W} 8]-=4,[\mathrm{~W} 8]-=2, \\
{[\mathrm{W} 9]+=6,[\mathrm{~W} 9]+=4,[\mathrm{~W} 9]+=2,[\mathrm{~W} 9],[\mathrm{W} 9]-=6,[\mathrm{~W} 9]-=4,[\mathrm{~W} 9]-=2,} \\
[\mathrm{~W} 9+\mathrm{W} 12], \text { none }\}
\end{array}
\] \\
\hline Wxd & X data space prefetch destination register for DSP instructions \(\in\{\) W4...W7\} \\
\hline Wy & ```
Y data space prefetch address register for DSP instructions
\in{[W10] + = 6,[W10] + = 4,[W10] + = 2,[W10],[W10] - = 6,[W10] - = 4, [W10] - = 2,
 [W11] + = 6,[W11] + = 4,[W11] + = 2,[W11],[W11] - = 6,[W11] - = 4,[W11] - = 2,
 [W11 + W12], none}
``` \\
\hline Wyd & Y data space prefetch destination register for DSP instructions \(\in\{\) W4...W7\} \\
\hline
\end{tabular}

TABLE 28-2: INSTRUCTION SET OVERVIEW
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Base Instr \# & Assembly Mnemonic & & Assembly Syntax & Description & \# of Words & \# of Cycles & Status Flags Affected \\
\hline \multirow[t]{7}{*}{1} & \multirow[t]{7}{*}{ADD} & ADD & \(\mathrm{Acc}^{(1)}\) & Add Accumulators & 1 & 1 & \[
\begin{gathered}
\mathrm{OA}, \mathrm{OB}, \mathrm{SA}, \mathrm{~S} \\
\mathrm{~B}
\end{gathered}
\] \\
\hline & & ADD & f & \(f=f+\) WREG & 1 & 1 & C,DC,N,OV,Z \\
\hline & & ADD & f,WREG & WREG = f + WREG & 1 & 1 & C,DC,N,OV,Z \\
\hline & & ADD & \#lit10,Wn & \(\mathrm{Wd}=\mathrm{lit} 10+\mathrm{Wd}\) & 1 & 1 & C,DC,N,OV,Z \\
\hline & & ADD & Wb, Ws, Wd & \(W d=W b+W s\) & 1 & 1 & C,DC,N,OV,Z \\
\hline & & ADD & Wb, \#lit5, Wd & \(\mathrm{Wd}=\mathrm{Wb}+\mathrm{lit5}\) & 1 & 1 & C,DC,N,OV,Z \\
\hline & & ADD & Wso,\#Slit4, Acc & 16-bit Signed Add to Accumulator & 1 & 1 & \[
\begin{gathered}
\mathrm{OA}, \mathrm{OB}, \mathrm{SA}, \mathrm{~S} \\
\mathrm{~B}
\end{gathered}
\] \\
\hline \multirow[t]{5}{*}{2} & \multirow[t]{5}{*}{ADDC} & ADDC & f & \(\mathrm{f}=\mathrm{f}+\mathrm{WREG}+(\mathrm{C})\) & 1 & 1 & C,DC,N,OV,Z \\
\hline & & ADDC & f,WREG & WREG = f + WREG + (C) & 1 & 1 & C,DC,N,OV,Z \\
\hline & & ADDC & \#lit10,Wn & Wd \(=\) lit10 + Wd + (C) & 1 & 1 & C,DC,N,OV,Z \\
\hline & & ADDC & Wb, Ws, Wd & \(\mathrm{Wd}=\mathrm{Wb}+\mathrm{Ws}+(\mathrm{C})\) & 1 & 1 & C,DC,N,OV,Z \\
\hline & & ADDC & Wb, \#lit5, Wd & \(\mathrm{Wd}=\mathrm{Wb}+\mathrm{lit5}+(\mathrm{C})\) & 1 & 1 & C,DC,N,OV,Z \\
\hline \multirow[t]{5}{*}{3} & \multirow[t]{5}{*}{AND} & AND & \(f\) & \(\mathrm{f}=\mathrm{f}\). AND . WREG & 1 & 1 & N,Z \\
\hline & & AND & f,WREG & WREG = f.AND. WREG & 1 & 1 & N,Z \\
\hline & & AND & \#lit10, Wn & Wd = lit10.AND. Wd & 1 & 1 & N,Z \\
\hline & & AND & Wb,Ws, Wd & \(\mathrm{Wd}=\mathrm{Wb} . A N D . \mathrm{Ws}\) & 1 & 1 & N,Z \\
\hline & & AND & Wb, \#lit5, Wd & Wd = Wb .AND. lit5 & 1 & 1 & N,Z \\
\hline \multirow[t]{5}{*}{4} & \multirow[t]{5}{*}{ASR} & ASR & \(f\) & \(\mathrm{f}=\) Arithmetic Right Shift f & 1 & 1 & C,N,OV,Z \\
\hline & & ASR & f,WREG & WREG = Arithmetic Right Shift f & 1 & 1 & C,N,OV,Z \\
\hline & & ASR & Ws, Wd & Wd = Arithmetic Right Shift Ws & 1 & 1 & C,N,OV,Z \\
\hline & & ASR & Wb, Wns, Wnd & Wnd = Arithmetic Right Shift Wb by Wns & 1 & 1 & N,Z \\
\hline & & ASR & Wb, \#lit5, Wnd & Wnd = Arithmetic Right Shift Wb by lit5 & 1 & 1 & N,Z \\
\hline \multirow[t]{2}{*}{5} & \multirow[t]{2}{*}{BCLR} & BCLR & f, \#bit4 & Bit Clear f & 1 & 1 & None \\
\hline & & BCLR & Ws, \#bit4 & Bit Clear Ws & 1 & 1 & None \\
\hline \multirow[t]{22}{*}{6} & \multirow[t]{22}{*}{BRA} & BRA & C, Expr & Branch if Carry & 1 & 1 (4) & None \\
\hline & & BRA & GE, Expr & Branch if greater than or equal & 1 & 1 (4) & None \\
\hline & & BRA & GEU, Expr & Branch if unsigned greater than or equal & 1 & 1 (4) & None \\
\hline & & BRA & GT, Expr & Branch if greater than & 1 & 1 (4) & None \\
\hline & & BRA & GTU, Expr & Branch if unsigned greater than & 1 & 1 (4) & None \\
\hline & & BRA & LE, Expr & Branch if less than or equal & 1 & 1 (4) & None \\
\hline & & BRA & LEU, Expr & Branch if unsigned less than or equal & 1 & 1 (4) & None \\
\hline & & BRA & LT, Expr & Branch if less than & 1 & 1 (4) & None \\
\hline & & BRA & LTU, Expr & Branch if unsigned less than & 1 & 1 (4) & None \\
\hline & & BRA & N, Expr & Branch if Negative & 1 & 1 (4) & None \\
\hline & & BRA & NC, Expr & Branch if Not Carry & 1 & 1 (4) & None \\
\hline & & BRA & NN, Expr & Branch if Not Negative & 1 & 1 (4) & None \\
\hline & & BRA & NOV, Expr & Branch if Not Overflow & 1 & 1 (4) & None \\
\hline & & BRA & NZ, Expr & Branch if Not Zero & 1 & 1 (4) & None \\
\hline & & BRA & OA, Expr \({ }^{(1)}\) & Branch if Accumulator A overflow & 1 & 1 (4) & None \\
\hline & & BRA & OB, Expr \({ }^{(1)}\) & Branch if Accumulator B overflow & 1 & 1 (4) & None \\
\hline & & BRA & OV, \(\operatorname{Expr}^{(1)}\) & Branch if Overflow & 1 & 1 (4) & None \\
\hline & & BRA & SA, Expr \({ }^{(1)}\) & Branch if Accumulator A saturated & 1 & 1 (4) & None \\
\hline & & BRA & SB, Expr \({ }^{(1)}\) & Branch if Accumulator B saturated & 1 & 1 (4) & None \\
\hline & & BRA & Expr & Branch Unconditionally & 1 & 4 & None \\
\hline & & BRA & Z, Expr & Branch if Zero & 1 & 1 (4) & None \\
\hline & & BRA & Wn & Computed Branch & 1 & 4 & None \\
\hline 7 & \multirow[t]{2}{*}{BSET} & BSET & f, \#bit4 & Bit Set f & 1 & 1 & None \\
\hline & & BSET & Ws, \#bit4 & Bit Set Ws & 1 & 1 & None \\
\hline \multirow[t]{2}{*}{8} & \multirow[t]{2}{*}{BSW} & BSW.C & Ws, Wb & Write C bit to Ws<Wb> & 1 & 1 & None \\
\hline & & BSW. Z & Ws, Wb & Write Z bit to Ws<Wb> & 1 & 1 & None \\
\hline
\end{tabular}

Note 1: This instruction is available in dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices only.
dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X, AND PIC24EPXXXGP/MC20X

TABLE 28-2: INSTRUCTION SET OVERVIEW (CONTINUED)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Base Instr \# & Assembly Mnemonic & & Assembly Syntax & Description & \# of Words & \# of Cycles & Status Flags Affected \\
\hline \multirow[t]{2}{*}{9} & \multirow[t]{2}{*}{BTG} & BTG & f,\#bit4 & Bit Toggle f & 1 & 1 & None \\
\hline & & BTG & Ws, \#bit4 & Bit Toggle Ws & 1 & 1 & None \\
\hline \multirow[t]{2}{*}{10} & \multirow[t]{2}{*}{BTSC} & BTSC & f,\#bit4 & Bit Test f, Skip if Clear & 1 & \[
\begin{gathered}
1 \\
(2 \text { or } 3)
\end{gathered}
\] & None \\
\hline & & BTSC & Ws, \#bit4 & Bit Test Ws, Skip if Clear & 1 & \[
\begin{gathered}
1 \\
(2 \text { or } 3)
\end{gathered}
\] & None \\
\hline \multirow[t]{2}{*}{11} & \multirow[t]{2}{*}{BTSS} & BTSS & f,\#bit4 & Bit Test f, Skip if Set & 1 & \[
\begin{array}{c|}
\hline 1 \\
(2 \text { or } 3) \\
\hline
\end{array}
\] & None \\
\hline & & BTSS & Ws, \#bit4 & Bit Test Ws, Skip if Set & 1 & \[
\begin{gathered}
1 \\
(2 \text { or } 3)
\end{gathered}
\] & None \\
\hline \multirow[t]{5}{*}{12} & \multirow[t]{5}{*}{BTST} & BTST & f,\#bit4 & Bit Test f & 1 & 1 & Z \\
\hline & & BTST.C & Ws, \#bit4 & Bit Test Ws to C & 1 & 1 & C \\
\hline & & BTST.Z & Ws, \#bit4 & Bit Test Ws to Z & 1 & 1 & Z \\
\hline & & BTST.C & Ws, Wb & Bit Test Ws<Wb> to C & 1 & 1 & C \\
\hline & & BTST.Z & Ws, Wb & Bit Test Ws<Wb> to Z & 1 & 1 & Z \\
\hline \multirow[t]{3}{*}{13} & \multirow[t]{3}{*}{BTSTS} & BTSTS & f,\#bit4 & Bit Test then Set f & 1 & 1 & Z \\
\hline & & BTSTS.C & Ws, \#bit4 & Bit Test Ws to C, then Set & 1 & 1 & C \\
\hline & & BTSTS.Z & Ws, \#bit4 & Bit Test Ws to Z, then Set & 1 & 1 & Z \\
\hline \multirow[t]{3}{*}{14} & \multirow[t]{3}{*}{CALL} & CALL & lit23 & Call subroutine & 2 & 4 & SFA \\
\hline & & CALL & Wn & Call indirect subroutine & 1 & 4 & SFA \\
\hline & & CALL.L & Wn & Call indirect subroutine (long address) & 1 & 4 & SFA \\
\hline \multirow[t]{4}{*}{15} & \multirow[t]{4}{*}{CLR} & CLR & f & \(\mathrm{f}=0 \times 0000\) & 1 & 1 & None \\
\hline & & CLR & WREG & WREG \(=0 \times 0000\) & 1 & 1 & None \\
\hline & & CLR & Ws & \(\mathrm{Ws}=0 \times 0000\) & 1 & 1 & None \\
\hline & & CLR & Acc, Wx, Wxd, Wy, Wyd, AWB \({ }^{(1)}\) & Clear Accumulator & 1 & 1 & \[
\underset{\text { B }}{\mathrm{OA}, \mathrm{OB}, \mathrm{SA}, \mathrm{~S}}
\] \\
\hline 16 & CLRWDT & CLRWDT & & Clear Watchdog Timer & 1 & 1 & WDTO,Sleep \\
\hline \multirow[t]{3}{*}{17} & \multirow[t]{3}{*}{COM} & COM & f & \(\mathrm{f}=\overline{\mathrm{f}}\) & 1 & 1 & N,Z \\
\hline & & COM & f,WREG & WREG = \(\bar{f}\) & 1 & 1 & N,Z \\
\hline & & COM & Ws, Wd & \(\mathrm{Wd}=\overline{\mathrm{Ws}}\) & 1 & 1 & N,Z \\
\hline \multirow[t]{3}{*}{18} & \multirow[t]{3}{*}{CP} & CP & f & Compare f with WREG & 1 & 1 & C,DC,N,OV,Z \\
\hline & & CP & Wb, \#lit8 & Compare Wb with lit8 & 1 & 1 & C,DC,N,OV,Z \\
\hline & & CP & Wb, Ws & Compare Wb with Ws (Wb - Ws) & 1 & 1 & C,DC,N,OV,Z \\
\hline \multirow[t]{2}{*}{19} & \multirow[t]{2}{*}{CP0} & CP0 & f & Compare f with 0x0000 & 1 & 1 & C,DC,N,OV,Z \\
\hline & & CP0 & Ws & Compare Ws with 0x0000 & 1 & 1 & C,DC,N,OV,Z \\
\hline \multirow[t]{3}{*}{20} & \multirow[t]{3}{*}{CPB} & CPB & f & Compare f with WREG, with Borrow & 1 & 1 & C,DC,N,OV,Z \\
\hline & & CPB & Wb,\#lit8 & Compare Wb with lit8, with Borrow & 1 & 1 & C,DC,N,OV,Z \\
\hline & & CPB & Wb, Ws & Compare Wb with Ws, with Borrow ( \(\mathrm{Wb}-\mathrm{Ws}-\overline{\mathrm{C}}\) ) & 1 & 1 & C,DC,N,OV,Z \\
\hline \multirow[t]{2}{*}{21} & CPSEQ & CPSEQ & Wb, Wn & Compare Wb with W , skip if \(=\) & 1 & \[
\begin{gathered}
1 \\
(2 \text { or } 3) \\
\hline
\end{gathered}
\] & None \\
\hline & CPBEQ & CPBEQ & Wb, Wn, Expr & Compare Wb with Wn, branch if \(=\) & 1 & 1 (5) & None \\
\hline \multirow[t]{2}{*}{22} & CPSGT & CPSGT & Wb, Wn & Compare Wb with Wn, skip if > & 1 & \[
\begin{gathered}
1 \\
(2 \text { or } 3)
\end{gathered}
\] & None \\
\hline & CPBGT & CPBGT & Wb, Wn, Expr & Compare Wb with Wn, branch if > & 1 & 1 (5) & None \\
\hline \multirow[t]{2}{*}{23} & CPSLT & CPSLT & Wb, Wn & Compare Wb with Wn, skip if < & 1 & \[
\begin{gathered}
\hline 1 \\
(2 \text { or } 3) \\
\hline
\end{gathered}
\] & None \\
\hline & CPBLT & CPBLT & Wb, Wn, Expr & Compare Wb with Wn, branch if < & 1 & 1 (5) & None \\
\hline \multirow[t]{2}{*}{24} & CPSNE & CPSNE & Wb, Wn & Compare Wb with Wn, skip if \(\neq\) & 1 & \[
\begin{gathered}
1 \\
(2 \text { or } 3)
\end{gathered}
\] & None \\
\hline & CPBNE & CPBNE & Wb, Wn, Expr & Compare Wb with Wn, branch if \(\neq\) & 1 & 1 (5) & None \\
\hline
\end{tabular}

Note 1: This instruction is available in dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices only.

TABLE 28-2: INSTRUCTION SET OVERVIEW (CONTINUED)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Base Instr \# & Assembly Mnemonic & & Assembly Syntax & Description & \# of Words & \# of Cycles & Status Flags Affected \\
\hline 25 & DAW & DAW & Wn & Wn = decimal adjust W n & 1 & 1 & C \\
\hline \multirow[t]{3}{*}{26} & \multirow[t]{3}{*}{DEC} & DEC & f & \(\mathrm{f}=\mathrm{f}-1\) & 1 & 1 & C,DC,N,OV,Z \\
\hline & & DEC & f,WREG & WREG \(=\mathrm{f}-1\) & 1 & 1 & C,DC,N,OV,Z \\
\hline & & DEC & Ws, Wd & \(\mathrm{Wd}=\mathrm{Ws}-1\) & 1 & 1 & C,DC,N,OV,Z \\
\hline \multirow[t]{3}{*}{27} & \multirow[t]{3}{*}{DEC2} & DEC2 & f & \(\mathrm{f}=\mathrm{f}-2\) & 1 & 1 & C,DC,N,OV,Z \\
\hline & & DEC2 & f, WREG & WREG = \(\mathrm{f}-2\) & 1 & 1 & C,DC,N,OV,Z \\
\hline & & DEC2 & Ws, Wd & \(\mathrm{Wd}=\mathrm{Ws}-2\) & 1 & 1 & C,DC,N,OV,Z \\
\hline 28 & DISI & DISI & \#lit14 & Disable Interrupts for k instruction cycles & 1 & 1 & None \\
\hline \multirow[t]{4}{*}{29} & \multirow[t]{4}{*}{DIV} & DIV.S & Wm, Wn & Signed 16/16-bit Integer Divide & 1 & 18 & N,Z,C,OV \\
\hline & & DIV.SD & Wm, Wn & Signed 32/16-bit Integer Divide & 1 & 18 & N,Z,C,OV \\
\hline & & DIV.U & Wm, Wn & Unsigned 16/16-bit Integer Divide & 1 & 18 & N,Z,C,OV \\
\hline & & DIV.UD & Wm, Wn & Unsigned 32/16-bit Integer Divide & 1 & 18 & N,Z,C,OV \\
\hline 30 & DIVF & DIVF & Wm, Wn \({ }^{(1)}\) & Signed 16/16-bit Fractional Divide & 1 & 18 & N,Z,C,OV \\
\hline \multirow[t]{2}{*}{31} & \multirow[t]{2}{*}{DO} & DO & \#lit15, Expr \({ }^{(1)}\) & Do code to PC + Expr, lit15 + 1 times & 2 & 2 & None \\
\hline & & DO & Wn, Expr \({ }^{(1)}\) & Do code to PC + Expr, (Wn) + 1 times & 2 & 2 & None \\
\hline 32 & ED & ED & Wm*Wm, Acc, Wx, Wy, Wxd \({ }^{(1)}\) & Euclidean Distance (no accumulate) & 1 & 1 & \[
\begin{aligned}
& \text { OA,OB,OAB, } \\
& \text { SA,SB,SAB }
\end{aligned}
\] \\
\hline 33 & EDAC & EDAC & Wm*Wm, Acc, Wx, Wy, Wxd \({ }^{(\mathbf{1})}\) & Euclidean Distance & 1 & 1 & \[
\begin{aligned}
& \mathrm{OA}, \mathrm{OB}, \mathrm{OAB}, \\
& \mathrm{SA}, \mathrm{SB}, \mathrm{SAB}
\end{aligned}
\] \\
\hline 34 & EXCH & EXCH & Wns, Wnd & Swap Wns with Wnd & 1 & 1 & None \\
\hline 35 & FBCL & FBCL & Ws, Wnd & Find Bit Change from Left (MSb) Side & 1 & 1 & C \\
\hline 36 & FF1L & FF1L & Ws, Wnd & Find First One from Left (MSb) Side & 1 & 1 & C \\
\hline 37 & FF1R & FF1R & Ws, Wnd & Find First One from Right (LSb) Side & 1 & 1 & C \\
\hline \multirow[t]{3}{*}{38} & \multirow[t]{3}{*}{GOTO} & GOTO & Expr & Go to address & 2 & 4 & None \\
\hline & & GOTO & Wn & Go to indirect & 1 & 4 & None \\
\hline & & GOTO. L & Wn & Go to indirect (long address) & 1 & 4 & None \\
\hline \multirow[t]{3}{*}{39} & \multirow[t]{3}{*}{INC} & INC & \(f\) & \(\mathrm{f}=\mathrm{f}+1\) & 1 & 1 & C,DC,N,OV,Z \\
\hline & & INC & f,WREG & WREG = \(\mathrm{f}+1\) & 1 & 1 & C,DC,N,OV,Z \\
\hline & & INC & Ws, Wd & \(\mathrm{Wd}=\mathrm{Ws}+1\) & 1 & 1 & C,DC,N,OV,Z \\
\hline \multirow[t]{3}{*}{40} & \multirow[t]{3}{*}{INC2} & INC2 & f & \(\mathrm{f}=\mathrm{f}+2\) & 1 & 1 & C,DC,N,OV,Z \\
\hline & & INC2 & f, WREG & WREG = f +2 & 1 & 1 & C,DC,N,OV,Z \\
\hline & & INC2 & Ws, Wd & \(\mathrm{Wd}=\mathrm{Ws}+2\) & 1 & 1 & C,DC,N,OV,Z \\
\hline \multirow[t]{5}{*}{41} & \multirow[t]{5}{*}{IOR} & IOR & f & \(\mathrm{f}=\mathrm{f}\). IOR. WREG & 1 & 1 & N,Z \\
\hline & & IOR & f,WREG & WREG = f.IOR. WREG & 1 & 1 & N,Z \\
\hline & & IOR & \#lit10, Wn & \(\mathrm{Wd}=\) lit10 .IOR. Wd & 1 & 1 & N,Z \\
\hline & & IOR & Wb, Ws, Wd & Wd = Wb .IOR. Ws & 1 & 1 & N,Z \\
\hline & & IOR & Wb, \#lit5, Wd & Wd = Wb .IOR. lit5 & 1 & 1 & N,Z \\
\hline 42 & LAC & LAC & Wso,\#Slit4, Acc & Load Accumulator & 1 & 1 & \[
\mathrm{OA}, \mathrm{OB}, \mathrm{OAB},
\]
\[
\mathrm{SA}, \mathrm{SB}, \mathrm{SAB}
\] \\
\hline 43 & LNK & LNK & \#lit14 & Link Frame Pointer & 1 & 1 & SFA \\
\hline \multirow[t]{5}{*}{44} & \multirow[t]{5}{*}{LSR} & LSR & f & \(\mathrm{f}=\) Logical Right Shift f & 1 & 1 & C,N,OV,Z \\
\hline & & LSR & f,WREG & WREG = Logical Right Shift f & 1 & 1 & C,N,OV,Z \\
\hline & & LSR & Ws, Wd & Wd = Logical Right Shift Ws & 1 & 1 & C,N,OV,Z \\
\hline & & LSR & Wb, Wns, Wnd & Wnd = Logical Right Shift Wb by Wns & 1 & 1 & N,Z \\
\hline & & LSR & Wb,\#lit5, Wnd & Wnd = Logical Right Shift Wb by lit5 & 1 & 1 & N,Z \\
\hline \multirow[t]{2}{*}{45} & \multirow[t]{2}{*}{MAC} & MAC & Wm*Wn, Acc, Wx, Wxd, Wy, Wyd, AWB \({ }^{(1)}\) & Multiply and Accumulate & 1 & 1 & \[
\begin{aligned}
& \text { OA,OB,OAB, } \\
& \text { SA,SB,SAB }
\end{aligned}
\] \\
\hline & & MAC & Wm*Wm, Acc , Wx, Wxd, Wy, Wyd \({ }^{(1)}\) & Square and Accumulate & 1 & 1 & \[
\begin{aligned}
& \text { OA,OB,OAB, } \\
& \text { SA,SB,SAB }
\end{aligned}
\] \\
\hline
\end{tabular}

Note 1: This instruction is available in dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices only.

TABLE 28-2: INSTRUCTION SET OVERVIEW (CONTINUED)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Base Instr \# & Assembly Mnemonic & & Assembly Syntax & Description & \# of Words & \# of Cycles & Status Flags Affected \\
\hline \multirow[t]{10}{*}{46} & \multirow[t]{10}{*}{MOV} & MOV & f, Wn & Move f to Wn & 1 & 1 & None \\
\hline & & MOV & f & Move f to f & 1 & 1 & None \\
\hline & & MOV & f, WREG & Move f to WREG & 1 & 1 & None \\
\hline & & MOV & \#lit16, Wn & Move 16-bit literal to Wn & 1 & 1 & None \\
\hline & & MOV.b & \#lit8, Wn & Move 8-bit literal to Wn & 1 & 1 & None \\
\hline & & MOV & Wn, f & Move Wn to f & 1 & 1 & None \\
\hline & & MOV & Wso, Wdo & Move Ws to Wd & 1 & 1 & None \\
\hline & & MOV & WREG, f & Move WREG to f & 1 & 1 & None \\
\hline & & MOV.D & Wns, Wd & Move Double from W(ns):W(ns + 1) to Wd & 1 & 2 & None \\
\hline & & MOV.D & Ws, Wnd & Move Double from Ws to W(nd + 1):W(nd) & 1 & 2 & None \\
\hline \multirow[t]{6}{*}{47} & \multirow[t]{6}{*}{MOVPAG} & MOVPAG & \#lit10, DSRPAG & Move 10-bit literal to DSRPAG & 1 & 1 & None \\
\hline & & MOVPAG & \#lit9, DSWPAG & Move 9-bit literal to DSWPAG & 1 & 1 & None \\
\hline & & MOVPAG & \#lit8, TBLPAG & Move 8-bit literal to TBLPAG & 1 & 1 & None \\
\hline & & MOVPAGW & Ws, DSRPAG & Move Ws<9:0> to DSRPAG & 1 & 1 & None \\
\hline & & MOVPAGW & Ws, DSWPAG & Move Ws<8:0> to DSWPAG & 1 & 1 & None \\
\hline & & MOVPAGW & Ws, TBLPAG & Move Ws \(<7: 0>\) to TBLPAG & 1 & 1 & None \\
\hline 48 & MOVSAC & MOVSAC & Acc, Wx, Wxd, Wy, Wyd, AWB \({ }^{(1)}\) & Prefetch and store accumulator & 1 & 1 & None \\
\hline \multirow[t]{2}{*}{49} & \multirow[t]{2}{*}{MPY} & MPY & Wm*Wn, Acc, Wx, Wxd, Wy, Wyd \({ }^{(1)}\) & Multiply Wm by Wn to Accumulator & 1 & 1 & OA,OB,OAB, SA,SB,SAB \\
\hline & & MPY & Wm*Wm, Acc, Wx, Wxd, Wy, Wyd \({ }^{(1)}\) & Square Wm to Accumulator & 1 & 1 & \[
\begin{aligned}
& \text { OA,OB,OAB, } \\
& \text { SA,SB,SAB }
\end{aligned}
\] \\
\hline 50 & MPY.N & MPY.N & Wm*Wn, Acc, Wx, Wxd, Wy, Wyd \({ }^{(1)}\) & -(Multiply Wm by Wn) to Accumulator & 1 & 1 & None \\
\hline 51 & MSC & MSC & Wm*Wm, Acc, Wx, Wxd, Wy, Wyd, AWB \({ }^{(1)}\) & Multiply and Subtract from Accumulator & 1 & 1 & \[
\begin{aligned}
& \text { OA,OB,OAB, } \\
& \text { SA,SB,SAB }
\end{aligned}
\] \\
\hline \multirow[t]{19}{*}{52} & \multirow[t]{19}{*}{MUL} & MUL.SS & Wb, Ws, Wnd & \[
\begin{aligned}
& \{\text { Wnd + 1, Wnd }\}=\text { signed(Wb) * } \\
& \text { signed(Ws) }
\end{aligned}
\] & 1 & 1 & None \\
\hline & & MUL.SS & Wb, Ws, Acc \({ }^{(1)}\) & Accumulator \(=\operatorname{signed}(\mathrm{Wb}) *\) signed \((\mathrm{Ws})\) & 1 & 1 & None \\
\hline & & MUL. SU & Wb,Ws, Wnd & \[
\begin{aligned}
& \{\text { Wnd }+1, \text { Wnd }\}=\operatorname{signed}(\mathrm{Wb}) \text { * } \\
& \text { unsigned(Ws) }
\end{aligned}
\] & 1 & 1 & None \\
\hline & & MUL.SU & Wb, Ws, Acc \({ }^{(1)}\) & Accumulator \(=\operatorname{signed}(\mathrm{Wb})\) * unsigned(Ws) & 1 & 1 & None \\
\hline & & MUL.SU & Wb, \#lit5, Acc \({ }^{(1)}\) & Accumulator \(=\) signed (Wb) * unsigned(lit5) & 1 & 1 & None \\
\hline & & MUL. US & Wb, Ws, Wnd & \(\{\mathrm{Wnd}+1, \mathrm{Wnd}\}=\) unsigned \((\mathrm{Wb})\) * signed(Ws) & 1 & 1 & None \\
\hline & & MUL.US & Wb, Ws, Acc \({ }^{(1)}\) & \[
\begin{aligned}
& \text { Accumulator = unsigned(Wb) * } \\
& \text { signed }(\mathrm{Ws})
\end{aligned}
\] & 1 & 1 & None \\
\hline & & MUL.UU & Wb, Ws, Wnd & \[
\begin{aligned}
& \{\mathrm{Wnd}+1, \mathrm{Wnd}\}=\text { unsigned(Wb) * } \\
& \text { unsigned(Ws) }
\end{aligned}
\] & 1 & 1 & None \\
\hline & & MUL.UU & Wb, \#lit5, Acc \({ }^{(1)}\) & Accumulator \(=\) unsigned(Wb) * unsigned(lit5) & 1 & 1 & None \\
\hline & & MUL.UU & Wb, Ws, Acc \({ }^{(1)}\) & Accumulator \(=\) unsigned \((\mathrm{Wb})\) * unsigned(Ws) & 1 & 1 & None \\
\hline & & MULW.SS & Wb, Ws, Wnd & Wnd \(=\) signed (Wb) * signed(Ws) & 1 & 1 & None \\
\hline & & MULW.SU & Wb, Ws, Wnd & Wnd = signed(Wb) * unsigned(Ws) & 1 & 1 & None \\
\hline & & MULW.US & Wb, Ws, Wnd & Wnd = unsigned( Wb ) * signed(Ws) & 1 & 1 & None \\
\hline & & MULW.UU & Wb, Ws, Wnd & Wnd = unsigned(Wb) * unsigned(Ws) & 1 & 1 & None \\
\hline & & MUL.SU & Wb, \#lit5, Wnd & \(\{\mathrm{Wnd}+1, \mathrm{Wnd}\}=\operatorname{signed}(\mathrm{Wb})\) * unsigned(lit5) & 1 & 1 & None \\
\hline & & MUL.SU & Wb, \#lit5, Wnd & Wnd = signed(Wb) * unsigned(lit5) & 1 & 1 & None \\
\hline & & MUL.UU & Wb, \#lit5, Wnd & ```
{Wnd + 1,Wnd} = unsigned(Wb) * unsigned(lit5)
``` & 1 & 1 & None \\
\hline & & MUL.UU & Wb, \#lit5, Wnd & Wnd = unsigned(Wb) * unsigned(lit5) & 1 & 1 & None \\
\hline & & MUL & \(f\) & W3:W2 = f * WREG & 1 & 1 & None \\
\hline
\end{tabular}

Note 1: This instruction is available in dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices only.

TABLE 28-2: INSTRUCTION SET OVERVIEW (CONTINUED)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Base Instr \# & Assembly Mnemonic & & Assembly Syntax & Description & \# of Words & \# of Cycles & Status Flags Affected \\
\hline \multirow[t]{4}{*}{53} & \multirow[t]{4}{*}{NEG} & NEG & Acc \({ }^{(1)}\) & Negate Accumulator & 1 & 1 & \[
\begin{aligned}
& \hline \mathrm{OA}, \mathrm{OB}, \mathrm{OAB} \\
& \mathrm{SA}, \mathrm{SB}, \mathrm{SAB}
\end{aligned}
\] \\
\hline & & NEG & \(f\) & \(\mathrm{f}=\overline{\mathrm{f}}+1\) & 1 & 1 & C, DC,N,OV,Z \\
\hline & & NEG & f,WREG & WREG \(=\overline{\mathrm{f}}+1\) & 1 & 1 & C,DC,N,OV,Z \\
\hline & & NEG & Ws, Wd & \(\mathrm{Wd}=\overline{\mathrm{Ws}}+1\) & 1 & 1 & C,DC,N,OV,Z \\
\hline \multirow[t]{2}{*}{54} & \multirow[t]{2}{*}{NOP} & NOP & & No Operation & 1 & 1 & None \\
\hline & & NOPR & & No Operation & 1 & 1 & None \\
\hline \multirow[t]{4}{*}{55} & \multirow[t]{4}{*}{POP} & POP & f & Pop f from Top-of-Stack (TOS) & 1 & 1 & None \\
\hline & & POP & Wdo & Pop from Top-of-Stack (TOS) to Wdo & 1 & 1 & None \\
\hline & & POP.D & Wnd & Pop from Top-of-Stack (TOS) to W(nd):W(nd + 1) & 1 & 2 & None \\
\hline & & POP.S & & Pop Shadow Registers & 1 & 1 & All \\
\hline \multirow[t]{4}{*}{56} & \multirow[t]{4}{*}{PUSH} & PUSH & f & Push f to Top-of-Stack (TOS) & 1 & 1 & None \\
\hline & & PUSH & Wso & Push Wso to Top-of-Stack (TOS) & 1 & 1 & None \\
\hline & & PUSH.D & Wns & Push W(ns):W(ns + 1) to Top-of-Stack (TOS) & 1 & 2 & None \\
\hline & & PUSH.S & & Push Shadow Registers & 1 & 1 & None \\
\hline 57 & PWRSAV & PWRSAV & \#lit1 & Go into Sleep or Idle mode & 1 & 1 & WDTO,Sleep \\
\hline \multirow[t]{2}{*}{58} & \multirow[t]{2}{*}{RCALL} & RCALL & Expr & Relative Call & 1 & 4 & SFA \\
\hline & & RCALL & Wn & Computed Call & 1 & 4 & SFA \\
\hline \multirow[t]{2}{*}{59} & \multirow[t]{2}{*}{REPEAT} & REPEAT & \#lit15 & Repeat Next Instruction lit15 + 1 times & 1 & 1 & None \\
\hline & & REPEAT & Wn & Repeat Next Instruction (Wn) + 1 times & 1 & 1 & None \\
\hline 60 & RESET & RESET & & Software device Reset & 1 & 1 & None \\
\hline 61 & RETFIE & RETFIE & & Return from interrupt & 1 & 6 (5) & SFA \\
\hline 62 & RETLW & RETLW & \#lit10, Wn & Return with literal in Wn & 1 & 6 (5) & SFA \\
\hline 63 & RETURN & RETURN & & Return from Subroutine & 1 & 6 (5) & SFA \\
\hline \multirow[t]{3}{*}{64} & \multirow[t]{3}{*}{RLC} & RLC & f & \(\mathrm{f}=\) Rotate Left through Carry f & 1 & 1 & C,N, Z \\
\hline & & RLC & f, WREG & WREG = Rotate Left through Carry f & 1 & 1 & C,N,Z \\
\hline & & RLC & Ws, Wd & Wd = Rotate Left through Carry Ws & 1 & 1 & C,N,Z \\
\hline \multirow[t]{3}{*}{65} & \multirow[t]{3}{*}{RLNC} & RLNC & f & \(\mathrm{f}=\) Rotate Left (No Carry) f & 1 & 1 & N,Z \\
\hline & & RLNC & f, WREG & WREG = Rotate Left (No Carry) f & 1 & 1 & N,Z \\
\hline & & RLNC & Ws, Wd & Wd = Rotate Left (No Carry) Ws & 1 & 1 & N,Z \\
\hline \multirow[t]{3}{*}{66} & \multirow[t]{3}{*}{RRC} & RRC & f & \(\mathrm{f}=\) Rotate Right through Carry f & 1 & 1 & C,N,Z \\
\hline & & RRC & f, WREG & WREG = Rotate Right through Carry f & 1 & 1 & C,N,Z \\
\hline & & RRC & Ws, Wd & Wd = Rotate Right through Carry Ws & 1 & 1 & C,N,Z \\
\hline \multirow[t]{3}{*}{67} & \multirow[t]{3}{*}{RRNC} & RRNC & f & \(\mathrm{f}=\) Rotate Right (No Carry) f & 1 & 1 & N,Z \\
\hline & & RRNC & f, WREG & WREG = Rotate Right (No Carry) f & 1 & 1 & N,Z \\
\hline & & RRNC & Ws, Wd & Wd = Rotate Right (No Carry) Ws & 1 & 1 & N,Z \\
\hline \multirow[t]{2}{*}{68} & \multirow[t]{2}{*}{SAC} & SAC & Acc,\#Slit4, Wdo \({ }^{(1)}\) & Store Accumulator & 1 & 1 & None \\
\hline & & SAC.R & Acc,\#Slit4, Wdo \({ }^{(1)}\) & Store Rounded Accumulator & 1 & 1 & None \\
\hline 69 & SE & SE & Ws, Wnd & Wnd = sign-extended Ws & 1 & 1 & C,N, Z \\
\hline \multirow[t]{3}{*}{70} & \multirow[t]{3}{*}{SETM} & SETM & f & \(\mathrm{f}=0 \times F F F F\) & 1 & 1 & None \\
\hline & & SETM & WREG & WREG = 0xFFFF & 1 & 1 & None \\
\hline & & SETM & Ws & Ws = 0xFFFF & 1 & 1 & None \\
\hline \multirow[t]{2}{*}{71} & \multirow[t]{2}{*}{SFTAC} & SFTAC & Acc, Wn \({ }^{(1)}\) & Arithmetic Shift Accumulator by (Wn) & 1 & 1 & \[
\begin{aligned}
& \text { OA,OB,OAB, } \\
& \text { SA,SB,SAB }
\end{aligned}
\] \\
\hline & & SFTAC & Acc, \#Slit6 \({ }^{(1)}\) & Arithmetic Shift Accumulator by Slit6 & 1 & 1 & OA,OB,OAB, SA,SB,SAB \\
\hline
\end{tabular}

Note 1: This instruction is available in dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices only.

TABLE 28-2: INSTRUCTION SET OVERVIEW (CONTINUED)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Base Instr \# & Assembly Mnemonic & & Assembly Syntax & Description & \# of Words & \# of Cycles & Status Flags Affected \\
\hline \multirow[t]{5}{*}{72} & \multirow[t]{5}{*}{SL} & SL & f & \(\mathrm{f}=\) Left Shift f & 1 & 1 & C,N,OV,Z \\
\hline & & SL & f,WREG & WREG = Left Shift f & 1 & 1 & C,N,OV,Z \\
\hline & & SL & Ws, Wd & Wd = Left Shift Ws & 1 & 1 & C,N,OV,Z \\
\hline & & SL & Wb, Wns, Wnd & Wnd = Left Shift Wb by Wns & 1 & 1 & N,Z \\
\hline & & SL & Wb, \#lit5, Wnd & Wnd = Left Shift Wb by lit5 & 1 & 1 & N,Z \\
\hline \multirow[t]{6}{*}{73} & \multirow[t]{6}{*}{SUB} & SUB & Acc \({ }^{(1)}\) & Subtract Accumulators & 1 & 1 & \[
\begin{aligned}
& \text { OA,OB,OAB, } \\
& \text { SA,SB,SAB }
\end{aligned}
\] \\
\hline & & SUB & f & \(\mathrm{f}=\mathrm{f}-\) WREG & 1 & 1 & C,DC,N,OV,Z \\
\hline & & SUB & f,WREG & WREG \(=\mathrm{f}-\) WREG & 1 & 1 & C,DC,N,OV,Z \\
\hline & & SUB & \#lit10,Wn & \(\mathrm{Wn}=\mathrm{Wn}-\mathrm{lit} 10\) & 1 & 1 & C,DC,N,OV,Z \\
\hline & & SUB & Wb, Ws, Wd & \(\mathrm{Wd}=\mathrm{Wb}-\mathrm{Ws}\) & 1 & 1 & C,DC,N,OV,Z \\
\hline & & SUB & Wb,\#lit5, Wd & \(\mathrm{Wd}=\mathrm{Wb}-\mathrm{lit5}\) & 1 & 1 & C,DC,N,OV,Z \\
\hline \multirow[t]{5}{*}{74} & \multirow[t]{5}{*}{SUBB} & SUBB & f & \(\mathrm{f}=\mathrm{f}-\) WREG \(-(\overline{\mathrm{C}})\) & 1 & 1 & C,DC,N,OV,Z \\
\hline & & SUBB & f, WREG & WREG = \(\mathrm{f}-\mathrm{WREG}-(\overline{\mathrm{C}})\) & 1 & 1 & C,DC,N,OV,Z \\
\hline & & SUBB & \#lit10,Wn & \(\mathrm{Wn}=\mathrm{W} \mathrm{n}-\mathrm{lit} 10-(\overline{\mathrm{C}})\) & 1 & 1 & C,DC,N,OV,Z \\
\hline & & SUBB & Wb, Ws, Wd & \(\mathrm{Wd}=\mathrm{Wb}-\mathrm{Ws}-(\overline{\mathrm{C}})\) & 1 & 1 & C,DC,N,OV,Z \\
\hline & & SUBB & Wb, \#lit5, Wd & \(\mathrm{Wd}=\mathrm{Wb}-\mathrm{lit5}-(\overline{\mathrm{C}})\) & 1 & 1 & C,DC,N,OV,Z \\
\hline \multirow[t]{4}{*}{75} & \multirow[t]{4}{*}{SUBR} & SUBR & f & \(\mathrm{f}=\) WREG - f & 1 & 1 & C,DC,N,OV,Z \\
\hline & & SUBR & f,WREG & WREG = WREG - f & 1 & 1 & C,DC,N,OV,Z \\
\hline & & SUBR & Wb, Ws, Wd & \(\mathrm{Wd}=\mathrm{Ws}-\mathrm{Wb}\) & 1 & 1 & C,DC,N,OV,Z \\
\hline & & SUBR & Wb, \#lit5, Wd & \(\mathrm{Wd}=\) lit5 -Wb & 1 & 1 & C,DC,N,OV,Z \\
\hline \multirow[t]{4}{*}{76} & \multirow[t]{4}{*}{SUBBR} & SUBBR & f & \(\mathrm{f}=\) WREG \(-\mathrm{f}-(\overline{\mathrm{C}})\) & 1 & 1 & C,DC,N,OV,Z \\
\hline & & SUBBR & f,WREG & WREG = WREG - \(\mathrm{f}-(\overline{\mathrm{C}})\) & 1 & 1 & C,DC,N,OV,Z \\
\hline & & SUBBR & Wb, Ws, Wd & \(W \mathrm{~d}=\mathrm{Ws}-\mathrm{Wb}-(\overline{\mathrm{C}})\) & 1 & 1 & C,DC,N,OV,Z \\
\hline & & SUBBR & Wb, \#lit5, Wd & \(\mathrm{Wd}=\) lit5 \(-\mathrm{Wb}-(\overline{\mathrm{C}})\) & 1 & 1 & C,DC,N,OV,Z \\
\hline \multirow[t]{2}{*}{77} & \multirow[t]{2}{*}{SWAP} & SWAP.b & Wn & Wn = nibble swap Wn & 1 & 1 & None \\
\hline & & SWAP & Wn & Wn = byte swap Wn & 1 & 1 & None \\
\hline 78 & TBLRDH & TBLRDH & Ws, Wd & Read Prog<23:16> to Wd<7:0> & 1 & 5 & None \\
\hline 79 & TBLRDL & TBLRDL & Ws, Wd & Read Prog<15:0> to Wd & 1 & 5 & None \\
\hline 80 & TBLWTH & TBLWTH & Ws, Wd & Write Ws<7:0> to Prog<23:16> & 1 & 2 & None \\
\hline 81 & TBLWTL & TBLWTL & Ws, Wd & Write Ws to Prog<15:0> & 1 & 2 & None \\
\hline 82 & ULNK & ULNK & & Unlink Frame Pointer & 1 & 1 & SFA \\
\hline \multirow[t]{5}{*}{83} & \multirow[t]{5}{*}{XOR} & XOR & f & \(\mathrm{f}=\mathrm{f} . \mathrm{XOR}\). WREG & 1 & 1 & N,Z \\
\hline & & XOR & f, WREG & WREG = f.XOR. WREG & 1 & 1 & N,Z \\
\hline & & XOR & \#lit10, Wn & \(\mathrm{Wd}=\) lit10. \(\mathrm{XOR} . \mathrm{Wd}\) & 1 & 1 & N,Z \\
\hline & & XOR & Wb, Ws, Wd & \(\mathrm{Wd}=\mathrm{Wb} . \mathrm{XOR} . \mathrm{Ws}\) & 1 & 1 & N,Z \\
\hline & & XOR & Wb, \#lit5, Wd & \(\mathrm{Wd}=\mathrm{Wb} . \mathrm{XOR} . \mathrm{lit5}\) & 1 & 1 & N,Z \\
\hline 84 & ZE & ZE & Ws, Wnd & Wnd = Zero-extend Ws & 1 & 1 & C,Z,N \\
\hline
\end{tabular}

Note 1: This instruction is available in dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices only.

NOTES:

\subsection*{29.0 DEVELOPMENT SUPPORT}

The \(\mathrm{PIC}^{\circledR}\) microcontrollers and dsPIC \({ }^{\circledR}\) digital signal controllers are supported with a full range of software and hardware development tools:
- Integrated Development Environment
- MPLAB \({ }^{\circledR}\) IDE Software
- Compilers/Assemblers/Linkers
- MPLAB C Compiler for Various Device Families
- HI-TECH C for Various Device Families
- MPASM \({ }^{\text {TM }}\) Assembler
- MPLINK \({ }^{\text {TM }}\) Object Linker/ MPLIB \({ }^{\text {™ }}\) Object Librarian
- MPLAB Assembler/Linker/Librarian for Various Device Families
- Simulators
- MPLAB SIM Software Simulator
- Emulators
- MPLAB REAL ICE \({ }^{\text {TM }}\) In-Circuit Emulator
- In-Circuit Debuggers
- MPLAB ICD 3
- PICkit \({ }^{\text {TM }} 3\) Debug Express
- Device Programmers
- PICkit \({ }^{\text {TM }} 2\) Programmer
- MPLAB PM3 Device Programmer
- Low-Cost Demonstration/Development Boards, Evaluation Kits, and Starter Kits

\subsection*{29.1 MPLAB Integrated Development Environment Software}

The MPLAB IDE software brings an ease of software development previously unseen in the 8/16/32-bit microcontroller market. The MPLAB IDE is a Windows \({ }^{\circledR}\) operating system-based application that contains:
- A single graphical interface to all debugging tools
- Simulator
- Programmer (sold separately)
- In-Circuit Emulator (sold separately)
- In-Circuit Debugger (sold separately)
- A full-featured editor with color-coded context
- A multiple project manager
- Customizable data windows with direct edit of contents
- High-level source code debugging
- Mouse over variable inspection
- Drag and drop variables from source to watch windows
- Extensive on-line help
- Integration of select third party tools, such as IAR C Compilers
The MPLAB IDE allows you to:
- Edit your source files (either C or assembly)
- One-touch compile or assemble, and download to emulator and simulator tools (automatically updates all project information)
- Debug using:
- Source files (C or assembly)
- Mixed C and assembly
- Machine code

MPLAB IDE supports multiple debugging tools in a single development paradigm, from the cost-effective simulators, through low-cost in-circuit debuggers, to full-featured emulators. This eliminates the learning curve when upgrading to tools with increased flexibility and power.

\subsection*{29.2 MPLAB C Compilers for Various Device Families}

The MPLAB C Compiler code development systems are complete ANSI C compilers for Microchip's PIC18, PIC24 and PIC32 families of microcontrollers and the dsPIC30 and dsPIC33 families of digital signal controllers. These compilers provide powerful integration capabilities, superior code optimization and ease of use.
For easy source level debugging, the compilers provide symbol information that is optimized to the MPLAB IDE debugger.

\subsection*{29.3 HI-TECH C for Various Device Families}

The HI-TECH C Compiler code development systems are complete ANSI C compilers for Microchip's PIC family of microcontrollers and the dsPIC family of digital signal controllers. These compilers provide powerful integration capabilities, omniscient code generation and ease of use.
For easy source level debugging, the compilers provide symbol information that is optimized to the MPLAB IDE debugger.
The compilers include a macro assembler, linker, preprocessor, and one-step driver, and can run on multiple platforms.

\subsection*{29.4 MPASM Assembler}

The MPASM Assembler is a full-featured, universal macro assembler for PIC10/12/16/18 MCUs.
The MPASM Assembler generates relocatable object files for the MPLINK Object Linker, Intel \({ }^{\circledR}\) standard HEX files, MAP files to detail memory usage and symbol reference, absolute LST files that contain source lines and generated machine code and COFF files for debugging.
The MPASM Assembler features include:
- Integration into MPLAB IDE projects
- User-defined macros to streamline assembly code
- Conditional assembly for multi-purpose source files
- Directives that allow complete control over the assembly process

\subsection*{29.5 MPLINK Object Linker/ MPLIB Object Librarian}

The MPLINK Object Linker combines relocatable objects created by the MPASM Assembler and the MPLAB C18 C Compiler. It can link relocatable objects from precompiled libraries, using directives from a linker script.
The MPLIB Object Librarian manages the creation and modification of library files of precompiled code. When a routine from a library is called from a source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications.

The object linker/library features include:
- Efficient linking of single libraries instead of many smaller files
- Enhanced code maintainability by grouping related modules together
- Flexible creation of libraries with easy module listing, replacement, deletion and extraction

\subsection*{29.6 MPLAB Assembler, Linker and Librarian for Various Device Families}

MPLAB Assembler produces relocatable machine code from symbolic assembly language for PIC24, PIC32 and dsPIC devices. MPLAB C Compiler uses the assembler to produce its object file. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. Notable features of the assembler include:
- Support for the entire device instruction set
- Support for fixed-point and floating-point data
- Command line interface
- Rich directive set
- Flexible macro language
- MPLAB IDE compatibility

\subsection*{29.7 MPLAB SIM Software Simulator}

The MPLAB SIM Software Simulator allows code development in a PC-hosted environment by simulating the PIC MCUs and dsPIC \({ }^{\circledR}\) DSCs on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a comprehensive stimulus controller. Registers can be logged to files for further run-time analysis. The trace buffer and logic analyzer display extend the power of the simulator to record and track program execution, actions on I/O, most peripherals and internal registers.
The MPLAB SIM Software Simulator fully supports symbolic debugging using the MPLAB C Compilers, and the MPASM and MPLAB Assemblers. The software simulator offers the flexibility to develop and debug code outside of the hardware laboratory environment, making it an excellent, economical software development tool.

\subsection*{29.8 MPLAB REAL ICE In-Circuit Emulator System}

MPLAB REAL ICE In-Circuit Emulator System is Microchip's next generation high-speed emulator for Microchip Flash DSC and MCU devices. It debugs and programs PIC \({ }^{\circledR}\) Flash MCUs and dsPIC \({ }^{\circledR}\) Flash DSCs with the easy-to-use, powerful graphical user interface of the MPLAB Integrated Development Environment (IDE), included with each kit.

The emulator is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with either a connector compatible with incircuit debugger systems (RJ11) or with the new highspeed, noise tolerant, Low-Voltage Differential Signal (LVDS) interconnection (CAT5).
The emulator is field upgradable through future firmware downloads in MPLAB IDE. In upcoming releases of MPLAB IDE, new devices will be supported, and new features will be added. MPLAB REAL ICE offers significant advantages over competitive emulators including low-cost, full-speed emulation, run-time variable watches, trace analysis, complex breakpoints, a ruggedized probe interface and long (up to three meters) interconnection cables.

\subsection*{29.9 MPLAB ICD 3 In-Circuit Debugger System}

MPLAB ICD 3 In-Circuit Debugger System is Microchip's most cost effective high-speed hardware debugger/programmer for Microchip Flash Digital Signal Controller (DSC) and microcontroller (MCU) devices. It debugs and programs \(\mathrm{PIC}^{\circledR}\) Flash microcontrollers and dsPIC \({ }^{\circledR}\) DSCs with the powerful, yet easy-to-use graphical user interface of MPLAB Integrated Development Environment (IDE).
The MPLAB ICD 3 In-Circuit Debugger probe is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with a connector compatible with the MPLAB ICD 2 or MPLAB REAL ICE systems (RJ-11). MPLAB ICD 3 supports all MPLAB ICD 2 headers.

\subsection*{29.10 PICkit 3 In-Circuit Debuggerl Programmer and PICkit 3 Debug Express}

The MPLAB PICkit 3 allows debugging and programming of \(\mathrm{PIC}^{\circledR}\) and dsPIC \({ }^{\circledR}\) Flash microcontrollers at a most affordable price point using the powerful graphical user interface of the MPLAB Integrated Development Environment (IDE). The MPLAB PICkit 3 is connected to the design engineer's PC using a full speed USB interface and can be connected to the target via an Microchip debug (RJ-11) connector (compatible with MPLAB ICD 3 and MPLAB REAL ICE). The connector uses two device I/O pins and the reset line to implement in-circuit debugging and In-Circuit Serial Programming \({ }^{\text {TM }}\).
The PICkit 3 Debug Express include the PICkit 3, demo board and microcontroller, hookup cables and CDROM with user's guide, lessons, tutorial, compiler and MPLAB IDE software.

\subsection*{29.11 PICkit 2 Development Programmer/Debugger and PICkit 2 Debug Express}

The PICkit \({ }^{\text {TM }} 2\) Development Programmer/Debugger is a low-cost development tool with an easy to use interface for programming and debugging Microchip's Flash families of microcontrollers. The full featured Windows \({ }^{\circledR}\) programming interface supports baseline (PIC10F, PIC12F5xx, PIC16F5xx), midrange (PIC12F6xx, PIC16F), PIC18F, PIC24, dsPIC30, dsPIC33, and PIC32 families of 8-bit, 16-bit, and 32-bit microcontrollers, and many Microchip Serial EEPROM products. With Microchip's powerful MPLAB Integrated Development Environment (IDE) the PICkit \({ }^{\text {TM }} 2\) enables in-circuit debugging on most PIC \({ }^{\circledR}\) microcontrollers. In-Circuit-Debugging runs, halts and single steps the program while the PIC microcontroller is embedded in the application. When halted at a breakpoint, the file registers can be examined and modified.
The PICkit 2 Debug Express include the PICkit 2, demo board and microcontroller, hookup cables and CDROM with user's guide, lessons, tutorial, compiler and MPLAB IDE software.

\subsection*{29.12 MPLAB PM3 Device Programmer}

The MPLAB PM3 Device Programmer is a universal, CE compliant device programmer with programmable voltage verification at VDDMIN and VDDMAX for maximum reliability. It features a large LCD display (\(128 \times 64\)) for menus and error messages and a modular, detachable socket assembly to support various package types. The ICSP \({ }^{\text {™ }}\) cable assembly is included as a standard item. In Stand-Alone mode, the MPLAB PM3 Device Programmer can read, verify and program PIC devices without a PC connection. It can also set code protection in this mode. The MPLAB PM3 connects to the host PC via an RS-232 or USB cable. The MPLAB PM3 has high-speed communications and optimized algorithms for quick programming of large memory devices and incorporates an MMC card for file storage and data applications.

\subsection*{29.13 Demonstration/Development Boards, Evaluation Kits, and Starter Kits}

A wide variety of demonstration, development and evaluation boards for various PIC MCUs and dsPIC DSCs allows quick application development on fully functional systems. Most boards include prototyping areas for adding custom circuitry and provide application firmware and source code for examination and modification.
The boards support a variety of features, including LEDs, temperature sensors, switches, speakers, RS-232 interfaces, LCD displays, potentiometers and additional EEPROM memory.
The demonstration and development boards can be used in teaching environments, for prototyping custom circuits and for learning about various microcontroller applications.
In addition to the PICDEM \({ }^{\text {TM }}\) and dsPICDEM \({ }^{\text {TM }}\) demonstration/development board series of circuits, Microchip has a line of evaluation kits and demonstration software for analog filter design, KEELOQ \({ }^{\circledR}\) security ICs, CAN, IrDA \({ }^{\circledR}\), PowerSmart battery management, SEEVAL \({ }^{\circledR}\) evaluation system, Sigma-Delta ADC, flow rate sensing, plus many more.
Also available are starter kits that contain everything needed to experience the specified device. This usually includes a single application and debug capability, all on one board.
Check the Microchip web page (www.microchip.com) for the complete list of demonstration, development and evaluation kits.

\subsection*{30.0 ELECTRICAL CHARACTERISTICS}

This section provides an overview of dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X, and PIC24EPXXXGP/ MC20X electrical characteristics. Additional information will be provided in future revisions of this document as it becomes available.
Absolute maximum ratings for the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X, and PIC24EPXXXGP/MC20X family are listed below. Exposure to these maximum rating conditions for extended periods may affect device reliability. Functional operation of the device at these or any other conditions above the parameters indicated in the operation listings of this specification is not implied.Absolute Maximum Ratings \({ }^{(1)}\)Ambient temperature under bias... \(-40^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\)
Storage temperature \(-65^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\)
Voltage on VdD with respect to Vss -0.3 V to +4.0 V
Voltage on any pin that is not 5 V tolerant, with respect to \(\mathrm{Vss}{ }^{(3)}\) -0.3 V to \((\mathrm{VDD}+0.3 \mathrm{~V})\)
Voltage on any 5 V tolerant pin with respect to Vss when \(\mathrm{VDD} \geq 3.0 \mathrm{~V}^{(3)}\) -0.3 V to +5.5 V
Voltage on any 5 V tolerant pin with respect to Vss when VDD \(<3.0 \mathrm{~V}^{(3)}\) -0.3 V to 3.6 V
Maximum current out of Vss pin 350 mA
Maximum current into VDD pin \({ }^{(2)}\) 350 mA
Maximum current sunk by any I/O pin \({ }^{(4)}\) 20 mA
Maximum current sourced by any \(1 / \mathrm{O}^{(4)}\) 18 mA
Maximum current sunk by all ports \({ }^{(2,5)}\) 200 mA
Maximum current sourced by all ports \({ }^{(2,5)}\) 200 mA

Note 1: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only, and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.
2: Maximum allowable current is a function of device maximum power dissipation (see Table 30-2).
3: See the "Pin Diagrams" section for the 5V tolerant pins.
4: Exceptions are: RA4, RA9, RB7-RB15, and RC3, which are able to sink/source 30/20 mA.
5: Exceptions are: dsPIC33EPXXXGP502, dsPIC33EPXXXMC202/502, and PIC24EPXXXGP/MC202 devices, which have a maximum sink/source capability of 130 mA when operating at \(+125^{\circ} \mathrm{C}\).

\subsection*{30.1 DC Characteristics}

TABLE 30-1: OPERATING MIPS VS. VOLTAGE
\begin{tabular}{|c|c|c|c|}
\hline \multirow{3}{*}{ Characteristic } & \begin{tabular}{c}
VdD Range \\
(in Volts)
\end{tabular} & \begin{tabular}{c}
Temp Range \\
(in \({ }^{\circ} \mathrm{C}\))
\end{tabular} & \begin{tabular}{c}
Max MIPS
\end{tabular} \\
\cline { 4 - 4 } & & \begin{tabular}{c}
dsPIC33EPXXXGP50X, \\
dsPIC33EPXXXMC20X/50X, \\
PIC24EPXXXGP/MC20X
\end{tabular} \\
\hline \hline- & VBOR-3.6V & \(-40^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\) & 60 \\
\hline- & VBOR-3.6V & \(-40^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) & 60 \\
\hline
\end{tabular}

TABLE 30-2: THERMAL OPERATING CONDITIONS
\begin{tabular}{|c|c|c|c|c|c|}
\hline Rating & Symbol & Min & Typ & Max & Unit \\
\hline \begin{tabular}{l}
Industrial Temperature Devices \\
Operating Junction Temperature Range Operating Ambient Temperature Range
\end{tabular} & \[
\begin{aligned}
& \mathrm{TJ} \\
& \mathrm{TA}
\end{aligned}
\] & \[
\begin{aligned}
& -40 \\
& -40
\end{aligned}
\] & - & \[
\begin{gathered}
+125 \\
+85
\end{gathered}
\] & \[
\begin{aligned}
& { }^{\circ} \mathrm{C} \\
& { }^{\circ} \mathrm{C}
\end{aligned}
\] \\
\hline \begin{tabular}{l}
Extended Temperature Devices \\
Operating Junction Temperature Range Operating Ambient Temperature Range
\end{tabular} & \[
\begin{aligned}
& \mathrm{TJ} \\
& \mathrm{TA}
\end{aligned}
\] & \[
\begin{aligned}
& -40 \\
& -40
\end{aligned}
\] & - & \[
\begin{aligned}
& +140 \\
& +125
\end{aligned}
\] & \[
\begin{aligned}
& { }^{\circ} \mathrm{C} \\
& { }^{\circ} \mathrm{C}
\end{aligned}
\] \\
\hline \begin{tabular}{l}
Power Dissipation: \\
Internal chip power dissipation:
\[
\text { PINT = VDD x (IDD }-\Sigma \text { IOH })
\] \\
I/O Pin Power Dissipation:
\[
\mathrm{I} / \mathrm{O}=\Sigma(\{\mathrm{VDD}-\mathrm{VOH}\} \times \mathrm{IOH})+\Sigma(\text { VoL } \times \text { IoL })
\]
\end{tabular} & PD & & Pint + Pl/o & & W \\
\hline Maximum Allowed Power Dissipation & Pdmax & & \((\mathrm{TJ}-\mathrm{TA}) / \mathrm{\theta}^{\prime} \mathrm{A}\) & & W \\
\hline
\end{tabular}

TABLE 30-3: THERMAL PACKAGING CHARACTERISTICS
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristic & Symbol & Typ & Max & Unit & Notes \\
\hline Package Thermal Resistance, 64-Pin QFN & \(\theta \mathrm{JA}\) & 28.0 & - & \({ }^{\circ} \mathrm{C} / \mathrm{W}\) & 1 \\
\hline Package Thermal Resistance, 64-Pin TQFP 10x10 mm & \(\theta\) JA & 48.3 & - & \({ }^{\circ} \mathrm{C} / \mathrm{W}\) & 1 \\
\hline Package Thermal Resistance, 44-Pin QFN & \(\theta\) JA & 29.0 & - & \({ }^{\circ} \mathrm{C} / \mathrm{W}\) & 1 \\
\hline Package Thermal Resistance, 44-Pin TQFP 10x10 mm & \(\theta\) JA & 49.8 & - & \({ }^{\circ} \mathrm{C} / \mathrm{W}\) & 1 \\
\hline Package Thermal Resistance, 44-Pin TLA 6x6 mm & \(\theta\) JA & 25.2 & - & \({ }^{\circ} \mathrm{C} / \mathrm{W}\) & 1 \\
\hline Package Thermal Resistance, 36-Pin TLA 5x5 mm & \(\theta\) JA & 28.5 & - & \({ }^{\circ} \mathrm{C} / \mathrm{W}\) & 1 \\
\hline Package Thermal Resistance, 28-Pin QFN-S & \(\theta\) JA & 30.0 & - & \({ }^{\circ} \mathrm{C} / \mathrm{W}\) & 1 \\
\hline Package Thermal Resistance, 28-Pin SSOP & \(\theta J \mathrm{~A}\) & 71.0 & - & \({ }^{\circ} \mathrm{C} / \mathrm{W}\) & 1 \\
\hline Package Thermal Resistance, 28-Pin SOIC & \(\theta\) JA & 69.7 & - & \({ }^{\circ} \mathrm{C} / \mathrm{W}\) & 1 \\
\hline Package Thermal Resistance, 28-Pin SPDIP & \(\theta \mathrm{JA}\) & 60.0 & - & \({ }^{\circ} \mathrm{C} / \mathrm{W}\) & 1 \\
\hline
\end{tabular}

Note 1: Junction to ambient thermal resistance, Theta-JA (\(\theta \mathrm{JA}\)) numbers are achieved by package simulations.

TABLE 30-4: DC TEMPERATURE AND VOLTAGE SPECIFICATIONS
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{DC CHARACTERISTICS} & \multicolumn{5}{|l|}{\begin{tabular}{l}
Standard Operating Conditions: 3.0V to 3.6 V \\
(unless otherwise stated) \\
Operating temperature \(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}\) for Industrial \\
\(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C}\) for Extended
\end{tabular}} \\
\hline Param No. & Symbol & Characteristic & Min & Typ \({ }^{(1)}\) & Max & Units & Conditions \\
\hline \multicolumn{8}{|l|}{Operating Voltage} \\
\hline DC10 & VDD & Supply Voltage \({ }^{(3)}\) & VBor & - & 3.6 & V & - \\
\hline DC12 & VDR & RAM Data Retention Voltage \({ }^{(2)}\) & 1.8 & - & - & V & - \\
\hline DC16 & VPOR & Vdd Start Voltage to ensure internal Power-on Reset signal & - & - & Vss & V & - \\
\hline DC17 & SVDD & Vdd Rise Rate to ensure internal Power-on Reset signal & 1.0 & - & - & V/ms & \(0 \mathrm{~V}-3.0 \mathrm{~V}\) in 3 ms \\
\hline
\end{tabular}

Note 1: Data in "Typ" column is at \(3.3 \mathrm{~V}, 25^{\circ} \mathrm{C}\) unless otherwise stated.
2: This is the limit to which VDD may be lowered without losing RAM data.
3: VDD voltage must remain at Vss for a minimum of \(200 \mu\) s to ensure POR.

TABLE 30-5: FILTER CAPACITOR (Cefc) SPECIFICATIONS
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|l|}{\begin{tabular}{l}
Standard Operating Conditions (unless otherwise stated): \\
Operating temperature \\
\(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}\) for Industrial \\
\(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C}\) for Extended
\end{tabular}} \\
\hline \begin{tabular}{c}
Param \\
No.
\end{tabular} & Symbol & \multicolumn{1}{|c|}{ Characteristics } & Min & Typ & Max & Units & Comments \\
\hline \hline & CEFC & \begin{tabular}{l}
External Filter Capacitor \\
Value \({ }^{(1)}\)
\end{tabular} & 4.7 & 10 & - & \(\mu \mathrm{F}\) & \begin{tabular}{l}
Capacitor must have a low \\
series resistance (\(<1\) ohm)
\end{tabular} \\
\hline
\end{tabular}

Note 1: Typical VCAP voltage \(=1.8\) volts when VDD \(\geq\) VDDMIN.

TABLE 30-6: DC CHARACTERISTICS: OPERATING CURRENT (IDD)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{DC CHARACTERISTICS} & \multicolumn{4}{|l|}{\begin{tabular}{l}
Standard Operating Conditions: 3.0 V to 3.6 V \\
(unless otherwise stated) \\
Operating temperature \(-40^{\circ} \mathrm{C} \leq T A \leq+85^{\circ} \mathrm{C}\) for Industrial \\
\(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C}\) for Extended
\end{tabular}} \\
\hline Parameter No. & Typ & Max & Units & & nditio & \\
\hline \multicolumn{7}{|l|}{Operating Current (IDD) \({ }^{(1)}\)} \\
\hline DC20d & 5 & - & mA & \(-40^{\circ} \mathrm{C}\) & \multirow{4}{*}{3.3 V} & \multirow{4}{*}{10 MIPS} \\
\hline DC20a & 5 & - & mA & \(+25^{\circ} \mathrm{C}\) & & \\
\hline DC20b & 5 & - & mA & \(+85^{\circ} \mathrm{C}\) & & \\
\hline DC20c & 5 & - & mA & \(+125^{\circ} \mathrm{C}\) & & \\
\hline DC22d & 10 & - & mA & \(-40^{\circ} \mathrm{C}\) & \multirow{4}{*}{3.3 V} & \multirow{4}{*}{20 MIPS} \\
\hline DC22a & 10 & - & mA & \(+25^{\circ} \mathrm{C}\) & & \\
\hline DC22b & 10 & - & mA & \(+85^{\circ} \mathrm{C}\) & & \\
\hline DC22c & 10 & - & mA & \(+125^{\circ} \mathrm{C}\) & & \\
\hline DC24d & 20 & - & mA & \(-40^{\circ} \mathrm{C}\) & \multirow{4}{*}{3.3 V} & \multirow{4}{*}{40 MIPS} \\
\hline DC24a & 20 & - & mA & \(+25^{\circ} \mathrm{C}\) & & \\
\hline DC24b & 20 & - & mA & \(+85^{\circ} \mathrm{C}\) & & \\
\hline DC24c & 20 & - & mA & \(+125^{\circ} \mathrm{C}\) & & \\
\hline DC25d & 30 & - & mA & \(-40^{\circ} \mathrm{C}\) & \multirow{4}{*}{3.3 V} & \multirow{4}{*}{60 MIPS} \\
\hline DC25a & 30 & - & mA & \(+25^{\circ} \mathrm{C}\) & & \\
\hline DC25b & 30 & - & mA & \(+85^{\circ} \mathrm{C}\) & & \\
\hline DC25c & 30 & - & mA & \(+125^{\circ} \mathrm{C}\) & & \\
\hline
\end{tabular}

Note 1: IDD is primarily a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption. The test conditions for all IDD measurements are as follows:
- Oscillator is configured in EC mode, OSC1 is driven with external square wave from rail-to-rail
- CLKO is configured as an I/O input pin in the Configuration word
- All I/O pins are configured as inputs and pulled to Vss
- \(\overline{M C L R}=\) VDD, WDT and FSCM are disabled
- CPU, SRAM, program memory and data memory are operational
- No peripheral modules are operating; however, every peripheral is being clocked (PMDx bits are all zeroed)
- CPU executing while(1) statement

TABLE 30-7: DC CHARACTERISTICS: IDLE CURRENT (IIDLE)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{DC CHARACTERISTICS} & \multicolumn{4}{|l|}{\begin{tabular}{l}
Standard Operating Conditions: 3.0V to 3.6 V \\
(unless otherwise stated) \\
Operating temperature \(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}\) for Industrial \\
\(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C}\) for Extended
\end{tabular}} \\
\hline Parameter No. & Typ & Max & Units & \multicolumn{3}{|c|}{Conditions} \\
\hline \multicolumn{7}{|l|}{Idle Current (IIDLE) \({ }^{(\mathbf{1})}\)} \\
\hline DC40d & 2 & - & mA & \(-40^{\circ} \mathrm{C}\) & \multirow{4}{*}{3.3 V} & \multirow{4}{*}{10 MIPS} \\
\hline DC40a & 2 & - & mA & \(+25^{\circ} \mathrm{C}\) & & \\
\hline DC40b & 2 & - & mA & \(+85^{\circ} \mathrm{C}\) & & \\
\hline DC40c & 2 & - & mA & \(+125^{\circ} \mathrm{C}\) & & \\
\hline DC42d & 4 & - & mA & \(-40^{\circ} \mathrm{C}\) & \multirow{4}{*}{3.3 V} & \multirow{4}{*}{20 MIPS} \\
\hline DC42a & 4 & - & mA & \(+25^{\circ} \mathrm{C}\) & & \\
\hline DC42b & 4 & - & mA & \(+85^{\circ} \mathrm{C}\) & & \\
\hline DC42c & 4 & - & mA & \(+125^{\circ} \mathrm{C}\) & & \\
\hline DC44d & 10 & - & mA & \(-40^{\circ} \mathrm{C}\) & \multirow{4}{*}{3.3 V} & \multirow{4}{*}{40 MIPS} \\
\hline DC44a & 10 & - & mA & \(+25^{\circ} \mathrm{C}\) & & \\
\hline DC44b & 10 & - & mA & \(+85^{\circ} \mathrm{C}\) & & \\
\hline DC44c & 10 & - & mA & \(+125^{\circ} \mathrm{C}\) & & \\
\hline DC45d & 15 & - & mA & \(-40^{\circ} \mathrm{C}\) & \multirow{4}{*}{3.3 V} & \multirow{4}{*}{60 MIPS} \\
\hline DC45a & 15 & - & mA & \(+25^{\circ} \mathrm{C}\) & & \\
\hline DC45b & 15 & - & mA & \(+85^{\circ} \mathrm{C}\) & & \\
\hline DC45c & 15 & - & mA & \(+125^{\circ} \mathrm{C}\) & & \\
\hline
\end{tabular}

Note 1: Base Idle current (IIDLE) is measured as follows:
- CPU core is off, oscillator is configured in EC mode, OSC1 is driven with external square wave from rail-to-rail
- CLKO is configured as an I/O input pin in the Configuration word
- All I/O pins are configured as inputs and pulled to Vss
- \(\overline{\mathrm{MCLR}}=\mathrm{VDD}\), WDT and FSCM are disabled
- No peripheral modules are operating; however, every peripheral is being clocked (PMDx bits are all zeroed)
- The NVMSIDL bit (NVMCON<12>) = 1 (i.e., Flash regulator is set to stand-by while the device is in Idle mode)
- The VREGSF bit \((\operatorname{RCON}<11>)=0\) (i.e., Flash regulator is set to stand-by while the device is in Sleep mode)

TABLE 30-8: DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{DC CHARACTERISTICS} & \multicolumn{4}{|l|}{\begin{tabular}{l}
Standard Operating Conditions: 3.0V to 3.6 V \\
(unless otherwise stated) \\
Operating temperature \(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}\) for Industrial \\
\(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C}\) for Extended
\end{tabular}} \\
\hline Parameter No. & Typ & Max & Units & \multicolumn{3}{|r|}{Conditions} \\
\hline \multicolumn{7}{|l|}{Power-Down Current (IPD) \({ }^{(1,3)}\)} \\
\hline DC60d & 25 & 100 & \(\mu \mathrm{A}\) & \(-40^{\circ} \mathrm{C}\) & \multirow{4}{*}{3.3 V} & \multirow{4}{*}{Base Power-Down Current} \\
\hline DC60a & 30 & 200 & \(\mu \mathrm{A}\) & \(+25^{\circ} \mathrm{C}\) & & \\
\hline DC60b & 65 & 500 & \(\mu \mathrm{A}\) & \(+85^{\circ} \mathrm{C}\) & & \\
\hline DC60c & 195 & 1000 & \(\mu \mathrm{A}\) & \(+125^{\circ} \mathrm{C}\) & & \\
\hline DC61d & 8 & 10 & \(\mu \mathrm{A}\) & \(-40^{\circ} \mathrm{C}\) & \multirow{4}{*}{3.3 V} & \multirow{4}{*}{Watchdog Timer Current: \(\mathrm{AlWDT}^{(2)}\)} \\
\hline DC61a & 10 & 15 & \(\mu \mathrm{A}\) & \(+25^{\circ} \mathrm{C}\) & & \\
\hline DC61b & 12 & 20 & \(\mu \mathrm{A}\) & \(+85^{\circ} \mathrm{C}\) & & \\
\hline DC61c & 13 & 25 & \(\mu \mathrm{A}\) & \(+125^{\circ} \mathrm{C}\) & & \\
\hline
\end{tabular}

Note 1: IPD (Sleep) current is measured as follows:
- CPU core is off, oscillator is configured in EC mode, OSC1 is driven with external square wave from rail-to-rail
- CLKO is configured as an I/O input pin in the Configuration word
- All I/O pins are configured as inputs and pulled to Vss
- \(\overline{\mathrm{MCLR}}=\mathrm{VDD}, \mathrm{WDT}\) and FSCM are disabled
- All peripheral modules are disabled (PMDx bits are all ones)
- The VREGS bit \((\) RCON \(<8>)=0\) (i.e., core regulator is set to stand-by while the device is in Sleep mode)
- The VREGSF bit \((\operatorname{RCON}<11>)=0\) (i.e., Flash regulator is set to stand-by while the device is in Sleep mode)
2: The \(\Delta\) current is the additional current consumed when the module is enabled. This current should be added to the base IPD current.
3: These currents are measured on the device containing the most memory in this family.

TABLE 30-9: DC CHARACTERISTICS: DOZE CURRENT (IDoze)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{DC CHARACTERISTICS} & \multicolumn{5}{|l|}{\begin{tabular}{l}
Standard Operating Conditions: 3.0V to 3.6 V \\
(unless otherwise stated) \\
Operating temperature \(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}\) for Industrial \\
\(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C}\) for Extended
\end{tabular}} \\
\hline Parameter No. & Typ & Max & \begin{tabular}{l}
Doze \\
Ratio
\end{tabular} & Units & \multicolumn{3}{|c|}{Conditions} \\
\hline \multicolumn{8}{|l|}{Doze Current (Idoze) \({ }^{(\mathbf{1})}\)} \\
\hline DC73a & 20 & 110 & 1:2 & mA & \multirow[b]{2}{*}{\(-40^{\circ} \mathrm{C}\)} & \multirow[b]{2}{*}{3.3 V} & \multirow[b]{2}{*}{Fosc \(=120 \mathrm{MHz}\)} \\
\hline DC73g & 15 & 100 & 1:128 & mA & & & \\
\hline DC70a & 20 & 110 & 1:2 & mA & \multirow{2}{*}{\(+25^{\circ} \mathrm{C}\)} & \multirow{2}{*}{3.3 V} & \multirow{2}{*}{Fosc \(=120 \mathrm{MHz}\)} \\
\hline DC70g & 15 & 100 & 1:128 & mA & & & \\
\hline DC71a & 20 & 110 & 1:2 & mA & \multirow{2}{*}{\(+85^{\circ} \mathrm{C}\)} & \multirow{2}{*}{3.3 V} & \multirow{2}{*}{Fosc \(=120 \mathrm{MHz}\)} \\
\hline DC71g & 15 & 100 & 1:128 & mA & & & \\
\hline DC72a & 20 & 110 & 1:2 & mA & \multirow{2}{*}{\(+125^{\circ} \mathrm{C}\)} & \multirow{2}{*}{3.3 V} & \multirow{2}{*}{Fosc \(=120 \mathrm{MHz}\)} \\
\hline DC72g & 15 & 100 & 1:128 & mA & & & \\
\hline
\end{tabular}

Note 1: IDOZE is primarily a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption. The test conditions for all IDOZE measurements are as follows:
- Oscillator is configured in EC mode, OSC1 is driven with external square wave from rail-to-rail
- CLKO is configured as an I/O input pin in the Configuration word
- All I/O pins are configured as inputs and pulled to Vss
- \(\overline{\mathrm{MCLR}}=\mathrm{VDD}\), WDT and FSCM are disabled
- CPU, SRAM, program memory and data memory are operational
- No peripheral modules are operating; however, every peripheral is being clocked (PMDx bits are all zeroed)
- CPU executing while(1) statement

TABLE 30-10: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{DC CHARACTERISTICS} & \multicolumn{5}{|l|}{\begin{tabular}{l}
Standard Operating Conditions: 3.0 V to 3.6 V \\
(unless otherwise stated) \\
Operating temperature \(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}\) for Industrial \\
\(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C}\) for Extended
\end{tabular}} \\
\hline Param No. & Symbol & Characteristic & Min & Typ \({ }^{(1)}\) & Max & Units & Conditions \\
\hline \[
\begin{aligned}
& \text { DI10 } \\
& \text { DI15 } \\
& \text { DI16 } \\
& \text { DI18 } \\
& \text { DI19 }
\end{aligned}
\] & VIL & \begin{tabular}{l}
Input Low Voltage \\
l/O pins \\
\(\overline{\mathrm{MCLR}}\) \\
I/O Pins with OSC1 \\
I/O Pins with SDAx, SCLx \\
I/O Pins with SDAx, SCLx
\end{tabular} & \[
\begin{aligned}
& \text { Vss } \\
& \text { Vss }
\end{aligned}
\] & -
-
-
-
- & \begin{tabular}{l}
0.2 VdD \\
0.2 VDD \\
0.2 VDD \\
0.3 VDD \\
0.8
\end{tabular} & \[
\begin{aligned}
& \mathrm{V} \\
& \mathrm{~V} \\
& \mathrm{~V} \\
& \mathrm{~V} \\
& \mathrm{~V}
\end{aligned}
\] & \begin{tabular}{l}
SMBus disabled \\
SMBus enabled
\end{tabular} \\
\hline DI20 & VIH & \begin{tabular}{l}
Input High Voltage \\
I/O Pins Not 5V Tolerant \({ }^{(4)}\) \\
I/O Pins 5V Tolerant \({ }^{(4)}\) \\
I/O Pins with SDAx, SCLx \\
I/O Pins with SDAx, SCLx
\end{tabular} & \[
\begin{aligned}
& \text { 0.7 VDD } \\
& 0.7 \mathrm{VDD} \\
& 0.7 \mathrm{VDD} \\
& 2.1
\end{aligned}
\] & — & \[
\begin{aligned}
& \text { VDD } \\
& 5.3 \\
& 5.3 \\
& 5.3
\end{aligned}
\] & \[
\begin{aligned}
& V \\
& V \\
& V \\
& V
\end{aligned}
\] & SMBus disabled SMBus enabled \\
\hline DI30 & ICNPU & Change Notification Pull-up Current & 50 & 250 & 400 & \(\mu \mathrm{A}\) & \(\mathrm{V} D \mathrm{D}=3.3 \mathrm{~V}, \mathrm{VPIN}=\mathrm{VsS}\) \\
\hline DI31 & ICNPD & Change Notification Pulldown Current \({ }^{(5)}\) & - & 50 & - & \(\mu \mathrm{A}\) & VDD \(=3.3 \mathrm{~V}, \mathrm{VPIN}=\mathrm{VDD}\) \\
\hline
\end{tabular}

Note 1: Data in "Typ" column is at \(3.3 \mathrm{~V}, 25^{\circ} \mathrm{C}\) unless otherwise stated.
2: The leakage current on the \(\overline{M C L R}\) pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current can be measured at different input voltages.
3: Negative current is defined as current sourced by the pin.
4: See "Pin Diagrams" for the 5V tolerant I/O pins.
5: VIL source < (Vss - 0.3). Characterized but not tested.
6: Non-5V tolerant pins VIH source \(>(\mathrm{VDD}+0.3), 5 \mathrm{~V}\) tolerant pins VIH source \(>5.5 \mathrm{~V}\). Characterized but not tested.
7: Digital 5V tolerant pins cannot tolerate any "positive" input injection current from input sources \(>5.5 \mathrm{~V}\).
8: Injection currents \(>|0|\) can affect the ADC results by approximately 4-6 counts.
9: Any number and/or combination of I/O pins not excluded under IICL or IICH conditions are permitted provided the mathematical "absolute instantaneous" sum of the input injection currents from all pins do not exceed the specified limit. Characterized but not tested.

TABLE 30-10: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline DC CHA & ARACTER & RISTICS & \multicolumn{5}{|l|}{\begin{tabular}{l}
Standard Operating Conditions: 3.0V to 3.6 V (unless otherwise stated) \\
Operating temperature \\
\(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}\) for Industrial \(-40^{\circ} \mathrm{C} \leq \mathrm{TA}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}\) for Extended
\end{tabular}} \\
\hline Param No. & Symbol & Characteristic & Min & Typ \({ }^{(1)}\) & Max & Units & Conditions \\
\hline DI50 & IIL & Input Leakage Current \({ }^{(2,3)}\) I/O pins 5V Tolerant \({ }^{(4)}\) & - & \(\pm 1\) & - & \(\mu \mathrm{A}\) & Vss \(\leq\) VPIN \(\leq\) VDD, Pin at high-impedance \\
\hline DI51 & & I/O Pins Not 5V Tolerant \({ }^{(4)}\) & - & \(\pm 1\) & - & \(\mu \mathrm{A}\) & Vss \(\leq\) VPIN \(\leq\) Vdd, Pin at high-impedance, \(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}\) \\
\hline DI51a & & I/O Pins Not 5V Tolerant \({ }^{(4)}\) & - & \(\pm 1\) & - & \(\mu \mathrm{A}\) & Analog pins shared with external reference pins, \(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}\) \\
\hline DI51b & & I/O Pins Not 5V Tolerant \({ }^{(4)}\) & - & \(\pm 1\) & - & \(\mu \mathrm{A}\) & Vss \(\leq \operatorname{VPIN} \leq V D D\), Pin at high-impedance,
\[
-40^{\circ} \mathrm{C} \leq \mathrm{T} \mathrm{~A} \leq+125^{\circ} \mathrm{C}
\] \\
\hline DI51c & & I/O Pins Not 5V Tolerant \({ }^{(4)}\) & - & \(\pm 1\) & - & \(\mu \mathrm{A}\) & Analog pins shared with external reference pins, \(-40^{\circ} \mathrm{C} \leq T \mathrm{TA} \leq+125^{\circ} \mathrm{C}\) \\
\hline DI55 & & \(\overline{\mathrm{MCLR}}\) & - & \(\pm 1\) & - & \(\mu \mathrm{A}\) & Vss \(\leq\) VPIN \(\leq\) VDD \\
\hline DI56 & & OSC1 & - & \(\pm 1\) & - & \(\mu \mathrm{A}\) & Vss \(\leq\) VPIN \(\leq\) Vdd, XT and HS modes \\
\hline
\end{tabular}

Note 1: Data in "Typ" column is at \(3.3 \mathrm{~V}, 25^{\circ} \mathrm{C}\) unless otherwise stated.
2: The leakage current on the \(\overline{M C L R}\) pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current can be measured at different input voltages.
3: Negative current is defined as current sourced by the pin.
4: See "Pin Diagrams" for the 5V tolerant I/O pins.
5: VIL source < (Vss - 0.3). Characterized but not tested.
6: Non-5V tolerant pins VIH source \(>(\mathrm{VDD}+0.3), 5 \mathrm{~V}\) tolerant pins VIH source \(>5.5 \mathrm{~V}\). Characterized but not tested.
7: Digital 5 V tolerant pins cannot tolerate any "positive" input injection current from input sources \(>5.5 \mathrm{~V}\).
8: Injection currents > | \(0 \mid\) can affect the ADC results by approximately 4-6 counts.
9: Any number and/or combination of I/O pins not excluded under IICL or IICH conditions are permitted provided the mathematical "absolute instantaneous" sum of the input injection currents from all pins do not exceed the specified limit. Characterized but not tested.

TABLE 30-10: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{DC CHARACTERISTICS} & \multicolumn{5}{|l|}{\[
\begin{aligned}
& \text { Standard Operating Conditions: } 3.0 \mathrm{~V} \text { to } 3.6 \mathrm{~V} \\
& \begin{array}{l}
\text { (unless otherwise stated) } \\
\text { Operating temperature }-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C} \text { for Industrial } \\
\\
-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C} \text { for Extended }
\end{array}
\end{aligned}
\]} \\
\hline Param No. & Symbol & Characteristic & Min & Typ \({ }^{(1)}\) & Max & Units & Conditions \\
\hline DI60a & IICL & Input Low Injection Current & 0 & - & \(-5^{(5,8)}\) & mA & All pins except VdD, Vss, AVDD, AVss, MCLR, VCAP, and RB7 \\
\hline DI60b & IICH & Input High Injection Current & 0 & - & \(+5^{(6,7,8)}\) & mA & All pins except Vdd, Vss, AVDD, AVss, MCLR, Vcap, RB7, and all 5V tolerant pins \({ }^{(7)}\) \\
\hline DI60c & УІст & Total Input Injection Current (sum of all I/O and control pins) & \(-20^{(9)}\) & - & \(+20^{(9)}\) & mA & \begin{tabular}{l}
Absolute instantaneous sum of all \(\pm\) input injection currents from all I/O pins \\
\((\mid\) IICL \(+\mid\) IICH | \() \leq\) ZICT
\end{tabular} \\
\hline
\end{tabular}

Note 1: Data in "Typ" column is at \(3.3 \mathrm{~V}, 25^{\circ} \mathrm{C}\) unless otherwise stated.
2: The leakage current on the \(\overline{M C L R}\) pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current can be measured at different input voltages.
3: Negative current is defined as current sourced by the pin.
4: See "Pin Diagrams" for the 5 V tolerant I/O pins.
5: VIL source < (VSS - 0.3). Characterized but not tested.
6: Non-5V tolerant pins VIH source \(>(\mathrm{VDD}+0.3), 5 \mathrm{~V}\) tolerant pins VIH source \(>5.5 \mathrm{~V}\). Characterized but not tested.
7: Digital 5V tolerant pins cannot tolerate any "positive" input injection current from input sources \(>5.5 \mathrm{~V}\).
8: Injection currents \(>|0|\) can affect the ADC results by approximately 4-6 counts.
9: Any number and/or combination of I/O pins not excluded under IICL or IICH conditions are permitted provided the mathematical "absolute instantaneous" sum of the input injection currents from all pins do not exceed the specified limit. Characterized but not tested.

TABLE 30-11: DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline DC CHA & RACTER & ISTICS & \multicolumn{5}{|l|}{\begin{tabular}{l}
Standard Operating Conditions: 3.0V to 3.6 V (unless otherwise stated) \\
Operating temperature \\
\(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}\) for Industrial \\
\(-40^{\circ} \mathrm{C} \leq \mathrm{TA}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}\) for Extended
\end{tabular}} \\
\hline Param No. & Symbol & Characteristic & Min & Typ & Max & Units & Conditions \\
\hline \begin{tabular}{l}
DO10 \\
DO16
\end{tabular} & Vol & \begin{tabular}{l}
Output Low Voltage I/O pins RA4, RA9, RB7RB15, and RC3 \\
All other I/O pins
\end{tabular} & & & \begin{tabular}{l}
0.4 \\
0.4
\end{tabular} & \begin{tabular}{l}
V \\
V
\end{tabular} & \[
\begin{aligned}
& \mathrm{IOL}=10.8 \mathrm{~mA}, \mathrm{VDD}=3.3 \mathrm{~V} \\
& \mathrm{IOL}=8.8 \mathrm{~mA}, \mathrm{VDD}=3.3 \mathrm{~V}
\end{aligned}
\] \\
\hline \(\begin{array}{r}\text { DO20 } \\ \text { DO26 } \\ \hline\end{array}\) & VOH & \begin{tabular}{l}
Output High Voltage I/O pins RA4, RA9, RB7RB15, and RC3 \\
All other I/O pins
\end{tabular} & \[
\begin{array}{r}
2.40 \\
2.40 \\
\hline
\end{array}
\] & -
- & -
- & V
V & \[
\begin{aligned}
& \mathrm{IOH}=-12.3 \mathrm{~mA}, \mathrm{VDD}=3.3 \mathrm{~V} \\
& \mathrm{IOH}=-8.3 \mathrm{~mA}, \mathrm{VDD}=3.3 \mathrm{~V}
\end{aligned}
\] \\
\hline
\end{tabular}

TABLE 30-12: ELECTRICAL CHARACTERISTICS: BOR
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{DC CHARACTERISTICS} & \multicolumn{5}{|l|}{\begin{tabular}{l}
Standard Operating Conditions: 3.0 V to 3.6 V \\
(unless otherwise stated) \\
Operating temperature \\
\(-40^{\circ} \mathrm{C} \leq \mathrm{TA}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}\) for Industrial \\
\(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C}\) for Extended
\end{tabular}} \\
\hline Param No. & Symbol & Characteristic & Min \({ }^{(1)}\) & Typ & Max & Units & Conditions \\
\hline BO10 & VBor & BOR Event on Vdd transition high-to-low & 2.7 & - & 2.95 & V & See Note 2 \\
\hline
\end{tabular}

Note 1: Parameters are for design guidance only and are not tested in manufacturing.
2: Device will operate as normal until the BOR threshold is reached.

TABLE 30-13: DC CHARACTERISTICS: PROGRAM MEMORY

Note 1: Data in "Typ" column is at \(3.3 \mathrm{~V}, 25^{\circ} \mathrm{C}\) unless otherwise stated.
2: Other conditions: \(F R C=7.37 \mathrm{MHz}, \mathrm{TUN}\left\langle 5: 0>=\mathrm{b}^{\prime} 011111\right.\) (for Min), \(\mathrm{TUN}<5: 0>=\mathrm{b}^{\prime} 100000\) (for Max). This parameter depends on the FRC accuracy (see Table 30-22) and the value of the FRC Oscillator Tuning register (see Register 9-4). For complete details on calculating the Minimum and Maximum time see Section 5.3 "Programming Operations".

TABLE 30-14: ACIDC CHARACTERISTICS: OP AMPICOMPARATOR
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{ACIDC CHARACTERISTICS} & \multicolumn{5}{|l|}{```
Standard Operating Conditions: 3.0V to 3.6V
(unless otherwise stated)
Operating temperature
 -40}\mp@subsup{}{}{\circ}\textrm{C}\leq\textrm{TA}\leq+8\mp@subsup{5}{}{\circ}\textrm{C}\mathrm{ for Industrial
 -40}\mp@subsup{}{}{\circ}\textrm{C}\leq\textrm{TA}\leq+12\mp@subsup{5}{}{\circ}\textrm{C}\mathrm{ for Extended
```} \\
\hline Param No. & Symbol & Characteristic & Min & Typ \({ }^{(1)}\) & Max & Units & Conditions \\
\hline \multicolumn{8}{|l|}{AC Comparator} \\
\hline \begin{tabular}{l}
CM10 \\
CM11
\end{tabular} & \[
\begin{aligned}
& \text { TRESP } \\
& \text { TMC2OV }
\end{aligned}
\] & \begin{tabular}{l}
Large signal response time \\
Comparator mode change to output valid
\end{tabular} &  & \[
50
\] & \begin{tabular}{l}
80 \\
10
\end{tabular} & \begin{tabular}{l}
ns \\
\(\mu \mathrm{s}\)
\end{tabular} & \(\mathrm{V}+\) input step of 100 mV V- input held at Vdd/2 \\
\hline \multicolumn{8}{|l|}{AC Op amp} \\
\hline \[
\begin{aligned}
& \hline \mathrm{CM} 20 \\
& \mathrm{CM} 21 \\
& \mathrm{CM} 22 \\
& \mathrm{CM} 23 \\
& \mathrm{CM} 24
\end{aligned}
\] & \begin{tabular}{l}
SR \\
Рм \\
Gm \\
Gbw \\
THD+N
\end{tabular} & \begin{tabular}{l}
Slew rate \\
Phase margin \\
Gain margin \\
Gain bandwidth \\
Total harmonic distortion plus noise
\end{tabular} & \[
\begin{aligned}
& - \\
& - \\
& - \\
& -
\end{aligned}
\] & \[
\begin{gathered}
7 \\
65 \\
20 \\
10 \\
0.1
\end{gathered}
\] & \[
\begin{aligned}
& - \\
& - \\
& - \\
& -
\end{aligned}
\] &  & \begin{tabular}{l}
\[
\begin{aligned}
& \mathrm{G}=4 \mathrm{~V} / \mathrm{V} \\
& \mathrm{G}=4 \mathrm{~V} / \mathrm{V}
\end{aligned}
\] \\
Vout \(=0.25 \mathrm{~V}\) to V dD -0.5 V \\
BW - 20 kHz
\end{tabular} \\
\hline \multicolumn{8}{|l|}{DC Comparator} \\
\hline CM30
CM31
CM32
CM33 & \begin{tabular}{l}
Voffset \\
VHYST \\
TRISE/ \\
TfaLl \\
Vgain
\end{tabular} & \begin{tabular}{l}
Comparator offset voltage Input hysteresis voltage \\
Comparator output rise/fall time \\
Open loop voltage gain
\end{tabular} & \[
\begin{aligned}
& - \\
& -
\end{aligned}
\] & \[
\begin{gathered}
\pm 10 \\
30 \\
20 \\
90
\end{gathered}
\] & -
-
- & \begin{tabular}{l}
mV \\
mV ns \\
db
\end{tabular} & 1 pF load capacitance on input \\
\hline \multicolumn{8}{|l|}{DC Op amp} \\
\hline \begin{tabular}{l}
CM40 \\
CM41 \\
CM42 \\
CM43 \\
CM44 \\
CM45
\end{tabular} & \begin{tabular}{l}
VCMR \\
CMRR \\
Voffset \\
Vgain \\
Ios \\
IB
\end{tabular} & Common mode input range Common mode rejection ratio Op amp offset voltage Open loop voltage gain Input offset current Input bias current & \[
\begin{gathered}
\hline \text { Vss - } 0.3 \\
70 \\
- \\
- \\
- \\
-
\end{gathered}
\] & \begin{tabular}{l}
80 \\
\(\pm 5\) \\
90 \\
- \\
\(\pm 20\)
\end{tabular} & \[
\text { VDD }+0.3
\] & \begin{tabular}{l}
V \\
db \\
mV \\
db \\
nA \\
nA
\end{tabular} & -
-
- \\
\hline
\end{tabular}

Note 1: Data in "Typ" column is at \(3.3 \mathrm{~V}, 25^{\circ} \mathrm{C}\) unless otherwise stated.

TABLE 30-15: OP AMPICOMPARATOR REFERENCE VOLTAGE SETTLING TIME SPECIFICATIONS
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{AC CHARACTERISTICS} & \multicolumn{5}{|l|}{\begin{tabular}{l}
Standard Operating Conditions: 3.0V to 3.6 V (unless otherwise stated) \\
Operating temperature \(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}\) for Industrial \\
\(-40^{\circ} \mathrm{C} \leq T \mathrm{~A} \leq+125^{\circ} \mathrm{C}\) for Extended
\end{tabular}} \\
\hline Param. & Symbol & Characteristic \({ }^{(1)}\) & Min. & Typ. & Max. & Units & Conditions \\
\hline VR310 & TsET & Settling Time & - & - & 10 & \(\mu \mathrm{s}\) & - \\
\hline
\end{tabular}

Note 1: Setting time measured while CVRR = 1 and CVR<3:0> bits transition from ' 0000 ' to ' 1111 '.
2: These parameters are characterized, but not tested in manufacturing.

TABLE 30-16: OP AMPICOMPARATOR VOLTAGE REFERENCE DC SPECIFICATIONS
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{DC CHARACTERISTICS} & \multicolumn{5}{|l|}{\begin{tabular}{l}
Standard Operating Conditions: 3.0 V to 3.6 V \\
(unless otherwise stated) \\
Operating temperature \\
\(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}\) for Industrial \\
\(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C}\) for Extended
\end{tabular}} \\
\hline \begin{tabular}{l}
Param \\
No.
\end{tabular} & Symbol & Characteristics & Min & Typ & Max & Units & Conditions \\
\hline VRD310 & CVRES & Resolution & CVRSRC/24 & - & CVRSRC/32 & LSb & - \\
\hline VRD311 & CVRAA & Absolute Accuracy & - & \(\pm 25\) & - & mV & CVRSRC \(=3.3 \mathrm{~V}\) \\
\hline VRD312 & CVRUR & Unit Resistor Value (R) & - & 2k & - & \(\Omega\) & - \\
\hline VRD313 & CVRSRC & Input Reference Voltage & 0 & - & AVDD + 0.3 & V & - \\
\hline
\end{tabular}

\subsection*{30.2 AC Characteristics and Timing Parameters}

This section defines dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X, and PIC24EPXXXGP/ MC20X AC characteristics and timing parameters.

TABLE 30-17: TEMPERATURE AND VOLTAGE SPECIFICATIONS - AC
\begin{tabular}{|l|l|}
\hline & \begin{tabular}{l} 
Standard Operating Conditions: 3.0 V to 3.6 V \\
(unless otherwise stated) \\
AC CHARACTERISTICS \\
Operating temperature \(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}\) for Industrial \\
\\
\\
\begin{tabular}{l} 
Operating voltage VDD range as described in Section 30.1 \\
Characteristics".
\end{tabular} \\
\hline
\end{tabular} \\
\hline
\end{tabular}

FIGURE 30-1: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS


TABLE 30-18: CAPACITIVE LOADING REQUIREMENTS ON OUTPUT PINS
\begin{tabular}{|l|l|l|c|c|c|c|l|}
\hline \begin{tabular}{c} 
Param \\
No.
\end{tabular} & Symbol & \multicolumn{1}{|c|}{ Characteristic } & Min & Typ & Max & Units & \multicolumn{1}{c|}{ Conditions } \\
\hline \hline DO50 & CosCo & OSC2 pin & - & - & 15 & pF & \begin{tabular}{l} 
In XT and HS modes when \\
external clock is used to drive
\end{tabular} \\
DO56 & CIO & All I/O pins and OSC2 & - & - & 50 & pF & \begin{tabular}{l} 
OSC1 \\
EC mode \\
DO58
\end{tabular} \\
CB & SCLx, SDAx & - & - & 400 & pF & \(\mathrm{In}^{2} \mathrm{C}^{\text {TM }}\) mode \\
\hline
\end{tabular}

FIGURE 30-2: EXTERNAL CLOCK TIMING


TABLE 30-19: EXTERNAL CLOCK TIMING REQUIREMENTS
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{AC CHARACTERISTICS} & \multicolumn{5}{|l|}{\begin{tabular}{l}
Standard Operating Conditions: 3.0V to 3.6 V \\
(unless otherwise stated) \\
Operating temperature \(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}\) for Industrial \\
\(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C}\) for Extended
\end{tabular}} \\
\hline \begin{tabular}{l}
Param \\
No.
\end{tabular} & Symb & Characteristic & Min & Typ \({ }^{(1)}\) & Max & Units & Conditions \\
\hline \multirow[t]{2}{*}{OS10} & \multirow[t]{2}{*}{FIN} & External CLKI Frequency (External clocks allowed only in EC and ECPLL modes) & DC & - & 60 & MHz & EC \\
\hline & & Oscillator Crystal Frequency & \[
\begin{gathered}
3.5 \\
10
\end{gathered}
\] & - & \[
\begin{aligned}
& 10 \\
& 25
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{MHz} \\
& \mathrm{MHz}
\end{aligned}
\] & \[
\begin{aligned}
& \text { XT } \\
& \text { HS }
\end{aligned}
\] \\
\hline OS20 & Tosc & Tosc \(=1 / \mathrm{Fosc}\) & 8.33 & - & DC & ns & - \\
\hline OS25 & TCY & Instruction Cycle Time \({ }^{(2)}\) & 16.67 & - & DC & ns & - \\
\hline OS30 & TosL, TosH & External Clock in (OSC1) High or Low Time & \(0.375 \times\) Tosc & - & \(0.625 \times\) Tosc & ns & EC \\
\hline OS31 & TosR, TosF & External Clock in (OSC1) Rise or Fall Time & - & - & 20 & ns & EC \\
\hline OS40 & TckR & CLKO Rise Time \({ }^{(3)}\) & - & 5.2 & - & ns & - \\
\hline OS41 & TckF & CLKO Fall Time \({ }^{(3)}\) & - & 5.2 & - & ns & - \\
\hline \multirow[t]{2}{*}{OS42} & \multirow[t]{2}{*}{Gm} & \multirow[t]{2}{*}{\begin{tabular}{l}
External Oscillator \\
Transconductance \({ }^{(4)}\)
\end{tabular}} & \multirow{2}{*}{-} & 12 & - & mA/V & \[
\begin{aligned}
& \mathrm{HS}, \mathrm{VDD}=3.3 \mathrm{~V} \\
& \mathrm{TA}=+25^{\circ} \mathrm{C}
\end{aligned}
\] \\
\hline & & & & 6 & - & mA/V & \[
\begin{aligned}
& \mathrm{XT}, \mathrm{VDD}=3.3 \mathrm{~V} \\
& \mathrm{TA}=+25^{\circ} \mathrm{C}
\end{aligned}
\] \\
\hline
\end{tabular}

Note 1: Data in "Typ" column is at \(3.3 \mathrm{~V}, 25^{\circ} \mathrm{C}\) unless otherwise stated.
2: Instruction cycle period (TCY) equals two times the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "Min" values with an external clock applied to the OSC1 pin. When an external clock input is used, the "Max" cycle time limit is "DC" (no clock) for all devices.
3: Measurements are taken in EC mode. The CLKO signal is measured on the OSC2 pin.
4: This parameter is characterized, but not tested in manufacturing.

TABLE 30-20: PLL CLOCK TIMING SPECIFICATIONS
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{AC CHARACTERISTICS} & \multicolumn{5}{|l|}{Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature \(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}\) for Industrial \(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C}\) for Extended} \\
\hline Param No. & Symbol & Characteristic & Min & Typ \({ }^{(1)}\) & Max & Units & Conditions \\
\hline OS50 & FPLLI & PLL Voltage Controlled Oscillator (VCO) Input Frequency Range & 0.8 & - & 8.0 & MHz & ECPLL, XTPLL modes \\
\hline OS51 & Fsys & On-Chip VCO System Frequency & 120 & - & 340 & MHz & - \\
\hline OS52 & TLOCK & PLL Start-up Time (Lock Time) & 0.9 & 1.5 & 3.1 & mS & - \\
\hline OS53 & DCLK & CLKO Stability (Jitter) \({ }^{(2)}\) & -3 & 0.5 & 3 & \% & - \\
\hline
\end{tabular}

Note 1: Data in "Typ" column is at \(3.3 \mathrm{~V}, 25^{\circ} \mathrm{C}\) unless otherwise stated. Parameters are for design guidance only and are not tested.
2: This jitter specification is based on clock cycle-by-clock cycle measurements. To get the effective jitter for individual time bases or communication clocks used by the application, use the following formula:

Effective Jitter \(=\frac{\text { DCLK }}{\sqrt{\frac{\text { FOSC }}{\text { Time Base or Communication Clock }}}}\)
For example, if Fosc \(=120 \mathrm{MHz}\) and the SPI bit rate \(=10 \mathrm{MHz}\), the effective jitter is as follows:
\[
\text { Effective Jitter }=\frac{D C L K}{\sqrt{\frac{120}{10}}}=\frac{D C L K}{\sqrt{12}}=\frac{D C L K}{3.464}
\]

TABLE 30-21: INTERNAL FRC ACCURACY
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline AC CH & RACTERISTICS & \multicolumn{6}{|l|}{Standard Operating Conditions: 3.0V to 3.6 V (unless otherwise stated) Operating temperature \(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}\) for Industrial \(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C}\) for Extended} \\
\hline Param No. & Characteristic & Min & Typ & Max & Units & Cond & ions \\
\hline & \multicolumn{7}{|l|}{Internal FRC Accuracy @ FRC Frequency = 7.37 MHz \({ }^{(1)}\)} \\
\hline F20a & FRC & -0.9 & 0.5 & +0.9 & \% & \(-40^{\circ} \mathrm{C} \leq T \mathrm{~A} \leq+85^{\circ} \mathrm{C}\) & VDD \(=3.0-3.6 \mathrm{~V}\) \\
\hline F20b & FRC & -2 & 1 & +2 & \% & \(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C}\) & VDD \(=3.0-3.6 \mathrm{~V}\) \\
\hline
\end{tabular}

Note 1: Frequency calibrated at \(25^{\circ} \mathrm{C}\) and 3.3 V . TUN bits can be used to compensate for temperature drift.

TABLE 30-22: INTERNAL LPRC ACCURACY
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline AC CHA & ARACTERISTICS & \multicolumn{6}{|l|}{Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature \(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}\) for Industrial \(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C}\) for Extended} \\
\hline \[
\begin{array}{|l|}
\hline \text { Param } \\
\text { No. }
\end{array}
\] & Characteristic & Min & Typ & Max & Units & Cond & tions \\
\hline & \multicolumn{7}{|l|}{LPRC @ 32.768 kHz \({ }^{(1)}\)} \\
\hline F21a & LPRC & -20 & 15 & +20 & \% & \(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}\) & \(\mathrm{VDD}=3.0-3.6 \mathrm{~V}\) \\
\hline F21b & LPRC & -70 & - & +70 & \% & \(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C}\) & VDD \(=3.0-3.6 \mathrm{~V}\) \\
\hline
\end{tabular}

Note 1: Change of LPRC frequency as VDD changes.

FIGURE 30-3: I/O TIMING CHARACTERISTICS


Note: Refer to Figure 30-1 for load conditions.

TABLE 30-23: I/O TIMING REQUIREMENTS
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{AC CHARACTERISTICS} & \multicolumn{5}{|l|}{\begin{tabular}{l}
Standard Operating Conditions: 3.0V to 3.6 V \\
(unless otherwise stated) \\
Operating temperature \(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}\) for Industrial \\
\(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C}\) for Extended
\end{tabular}} \\
\hline Param No. & Symbol & Characteristic & Min & Typ \({ }^{(1)}\) & Max & Units & Conditions \\
\hline DO31 & TIoR & Port Output Rise Time & - & 5 & 10 & ns & - \\
\hline DO32 & TıF & Port Output Fall Time & - & 5 & 10 & ns & - \\
\hline DI35 & Tinp & INTx Pin High or Low Time (input) & 20 & - & - & ns & - \\
\hline DI40 & TRBP & CNx High or Low Time (input) & 2 & - & - & Tcy & - \\
\hline
\end{tabular}

Note 1: Data in "Typ" column is at \(3.3 \mathrm{~V}, 25^{\circ} \mathrm{C}\) unless otherwise stated.

\section*{FIGURE 30-4: POWER-ON RESET TIMING CHARACTERISTICS}

Power-up Timer Disabled - Clock Sources = (FRC, FRCDIVN, FRCDIV16, FRCPLL, EC, ECPLL and LPRC)

- Power-up Timer Disabled - Clock Sources = (HS, HSPLL, XT, and XTPLL)


Power-up Timer Enabled - Clock Sources = (FRC, FRCDIVN, FRCDIV16, FRCPLL, EC, ECPLL and LPRC)


Power-up Timer Enabled - Clock Sources = (HS, HSPLL, XT, and XTPLL)


Note 1: The Power-up period will be extended if the Power-up sequence completes before the device exits from BOR (Vdd < VBor).

2: The power-up period Includes internal voltage regulator stabilization delay.

FIGURE 30-5: BOR AND MASTER CLEAR RESET TIMING CHARACTERISTICS


TABLE 30-24: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER TIMING REQUIREMENTS
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{AC CHARACTERISTICS} & \multicolumn{5}{|l|}{\begin{tabular}{l}
Standard Operating Conditions: 3.0V to 3.6 V \\
(unless otherwise stated) \\
Operating temperature \\
\(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}\) for Industrial \\
\(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C}\) for Extended
\end{tabular}} \\
\hline Param No. & Symbol & Characteristic \({ }^{(1)}\) & Min & Typ \({ }^{(2)}\) & Max & Units & Conditions \\
\hline SYOO & TPU & Power-up Period & - & 400 & 600 & \(\mu \mathrm{S}\) & - \\
\hline SY10 & Tost & Oscillator Start-up Time & - & 1024 Tosc & - & - & Tosc = OSC1 period \\
\hline SY11 & TPWRT & Power-up Timer Period & - & - & - & - & See Section 27.1 "Configuration Bits" and LPRC specification F21 (Table 30-22) \\
\hline \multirow[t]{2}{*}{SY12} & \multirow[t]{2}{*}{TWDT} & \multirow[t]{2}{*}{Watchdog Timer Time-out Period} & 0.8 & - & 1.2 & ms & WDTPRE = 0, WDTPOST = 0000, using LPRC tolerances indicated in F21 (see Table 30-22) \\
\hline & & & 3.2 & - & 4.8 & ms & WDTPRE = 1, WDTPOST = 0000, using LPRC tolerances indicated in F21 (see Table 30-22) \\
\hline SY13 & TIOZ & I/O High-Impedance from MCLR Low or Watchdog Timer Reset & 0.68 & 0.72 & 1.2 & \(\mu \mathrm{S}\) & - \\
\hline SY20 & TMCLR & \(\overline{\text { MCLR }}\) Pulse Width (low) & 2 & - & - & \(\mu \mathrm{s}\) & - \\
\hline SY30 & TBOR & BOR Pulse Width (low) & 1 & - & - & \(\mu \mathrm{S}\) & - \\
\hline SY35 & TFSCM & Fail-Safe Clock Monitor Delay & - & 500 & 900 & \(\mu \mathrm{s}\) & \(-40^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\) \\
\hline SY36 & TVREG & Voltage regulator standby-to-active mode transition time & - & - & 30 & \(\mu \mathrm{s}\) & - \\
\hline SY37 & Toscdfrc & FRC Oscillator start-up delay & - & - & 29 & \(\mu \mathrm{s}\) & - \\
\hline SY38 & Toscdiprc & LPRC Oscillator start-up delay & - & - & 70 & \(\mu \mathrm{s}\) & - \\
\hline
\end{tabular}

Note 1: These parameters are characterized but not tested in manufacturing.
2: Data in "Typ" column is at \(3.3 \mathrm{~V}, 25^{\circ} \mathrm{C}\) unless otherwise stated.

FIGURE 30-6: TIMER1-TIMER5 EXTERNAL CLOCK TIMING CHARACTERISTICS


Note: Refer to Figure 30-1 for load conditions.

TABLE 30-25: TIMER1 EXTERNAL CLOCK TIMING REQUIREMENTS \({ }^{(1)}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{AC CHARACTERISTICS} & \multicolumn{5}{|l|}{\begin{tabular}{l}
Standard Operating Conditions: 3.0V to 3.6 V (unless otherwise stated) \\
Operating temperature \(-40^{\circ} \mathrm{C} \leq T \mathrm{~A} \leq+85^{\circ} \mathrm{C}\) for Industrial \(-40^{\circ} \mathrm{C} \leq T \mathrm{~A} \leq+125^{\circ} \mathrm{C}\) for Extended
\end{tabular}} \\
\hline Param No. & Symbol & \multicolumn{2}{|l|}{Characteristic \({ }^{(2)}\)} & Min & Typ & Max & Units & Conditions \\
\hline \multirow[t]{2}{*}{TA10} & \multirow[t]{2}{*}{TTXH} & \multirow[t]{2}{*}{TxCK High Time} & Synchronous mode & \[
\begin{aligned}
& \text { Greater of: } \\
& 20 \text { or } \\
& (\mathrm{Tcy}+20) / \mathrm{N}
\end{aligned}
\] & - & - & ns & Must also meet parameter TA15 \(\mathrm{N}=\) prescaler value ( \(1,8,64\), 256) \\
\hline & & & Asynchronous & 35 & - & - & ns & - \\
\hline \multirow[t]{2}{*}{TA11} & \multirow[t]{2}{*}{TTXL} & \multirow[t]{2}{*}{TxCK Low Time} & Synchronous mode & \[
\begin{aligned}
& \text { Greater of: } \\
& 20 \text { or } \\
& (\mathrm{TCY}+20) / \mathrm{N}
\end{aligned}
\] & - & - & ns & Must also meet parameter TA15 \(\mathrm{N}=\) prescaler value (1, 8,64 , 256) \\
\hline & & & Asynchronous & 10 & - & - & ns & - \\
\hline TA15 & TTXP & TxCK Input Period & Synchronous mode & \[
\begin{gathered}
\text { Greater of: } \\
40 \text { or } \\
(2 \mathrm{TcY}+40) / \mathrm{N}
\end{gathered}
\] & - & - & ns & \[
\begin{aligned}
& \mathrm{N}=\text { prescale } \\
& \text { value } \\
& (1,8,64,256)
\end{aligned}
\] \\
\hline OS60 & Ft1 & T1CK Oscilla frequency R enabled by (T1CON<1>) & or Input nge (oscillator tting bit TCS & DC & - & 50 & kHz & - \\
\hline TA20 & TCKEXTMRL & Delay from Clock Edge ment & xternal TxCK Timer Incre- & 0.75 TCY + 40 & - & 1.75 TCY + 40 & ns & - \\
\hline
\end{tabular}

Note 1: Timer1 is a Type A.
2: These parameters are characterized, but are not tested in manufacturing.

TABLE 30-26: TIMER2 AND TIMER4 (TYPE B TIMER) EXTERNAL CLOCK TIMING REQUIREMENTS
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{AC CHARACTERISTICS} & \multicolumn{5}{|l|}{\begin{tabular}{l}
Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) \\
Operating temperature \\
\(-40^{\circ} \mathrm{C} \leq T \mathrm{~A} \leq+85^{\circ} \mathrm{C}\) for Industrial \(-40^{\circ} \mathrm{C} \leq T \mathrm{~A} \leq+125^{\circ} \mathrm{C}\) for Extended
\end{tabular}} \\
\hline Param No. & Symbol & Charac & teristic \({ }^{(1)}\) & Min & Typ & Max & Units & Conditions \\
\hline TB10 & TtxH & TxCK High Time & Synchronous mode & \[
\begin{aligned}
& \text { Greater of: } \\
& 20 \text { or } \\
& (\mathrm{TCY}+20) / \mathrm{N}
\end{aligned}
\] & - & - & ns & Must also meet parameter TB15 \(\mathrm{N}=\) prescale value
\[
(1,8,64,256)
\] \\
\hline TB11 & TtxL & TxCK Low Time & Synchronous mode & \[
\begin{aligned}
& \text { Greater of: } \\
& 20 \text { or } \\
& (\mathrm{Tcy}+20) / \mathrm{N}
\end{aligned}
\] & - & - & ns & Must also meet parameter TB15 \(\mathrm{N}=\) prescale value
\[
(1,8,64,256)
\] \\
\hline TB15 & TtxP & \begin{tabular}{l}
TxCK Input \\
Period
\end{tabular} & Synchronous mode & \[
\begin{gathered}
\text { Greater of: } \\
40 \text { or } \\
(2 \mathrm{TcY}+40) / \mathrm{N}
\end{gathered}
\] & - & - & ns & \[
\begin{array}{|l}
\hline N=\text { prescale } \\
\text { value } \\
(1,8,64,256)
\end{array}
\] \\
\hline TB20 & TCKEXTMRL & Delay from Clock Edge Increment & External TxCK to Timer & 0.75 Tcy + 40 & - & 1.75 TCY + 40 & ns & - \\
\hline
\end{tabular}

Note 1: These parameters are characterized, but are not tested in manufacturing.

TABLE 30-27: TIMER3 AND TIMER5 (TYPE C TIMER) EXTERNAL CLOCK TIMING REQUIREMENTS
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{AC CHARACTERISTICS} & \multicolumn{5}{|l|}{\begin{tabular}{l}
Standard Operating Conditions: 3.0V to 3.6 V (unless otherwise stated) \\
Operating temperature \(-40^{\circ} \mathrm{C} \leq T \mathrm{~A} \leq+85^{\circ} \mathrm{C}\) for Industrial \(-40^{\circ} \mathrm{C} \leq T \mathrm{~A} \leq+125^{\circ} \mathrm{C}\) for Extended
\end{tabular}} \\
\hline Param No. & Symbol & Charac & teristic \({ }^{(1)}\) & Min & Typ & Max & Units & Conditions \\
\hline TC10 & TtxH & TxCK High Time & Synchronous & TCY + 20 & - & - & ns & Must also meet parameter TC15 \\
\hline TC11 & TtxL & TxCK Low Time & Synchronous & TCY + 20 & - & - & ns & Must also meet parameter TC15 \\
\hline TC15 & TtxP & TxCK Input Period & Synchronous, with prescaler & \(2 \mathrm{TcY}+40\) & - & - & ns & \[
\begin{aligned}
& \hline N=\text { prescale } \\
& \text { value } \\
& (1,8,64,256)
\end{aligned}
\] \\
\hline TC20 & TCKEXTMRL & Delay from Clock Edge ment & \begin{tabular}{l}
xternal TxCK \\
o Timer Incre-
\end{tabular} & 0.75 TCY + 40 & - & 1.75 TCY + 40 & ns & - \\
\hline
\end{tabular}

Note 1: These parameters are characterized, but are not tested in manufacturing.

FIGURE 30-7: INPUT CAPTURE (ICx) TIMING CHARACTERISTICS


Note: Refer to Figure 30-1 for load conditions.

TABLE 30-28: INPUT CAPTURE MODULE TIMING REQUIREMENTS
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{AC CHARACTERISTICS} & \multicolumn{6}{|l|}{\[
\begin{aligned}
& \text { Standard Operating Conditions: } 3.0 \mathrm{~V} \text { to } 3.6 \mathrm{~V} \\
& \text { (unless otherwise stated) } \\
& \begin{array}{ll}
\text { Operating temperature } & -40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C} \text { for Industrial } \\
& -40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C} \text { for Extended }
\end{array}
\end{aligned}
\]} \\
\hline Param. No. & Symbol & \multicolumn{2}{|l|}{Characteristics \({ }^{(1)}\)} & Min & Max & Units & \multicolumn{2}{|r|}{Conditions} \\
\hline IC10 & TccL & ICx Inp & Low Time & \[
\begin{gathered}
\text { Greater of } \\
{[(12.5 \text { or } 0.5 \mathrm{TCY}) / \mathrm{N}]} \\
+25
\end{gathered}
\] & - & ns & Must also meet parameter IC15. & \multirow[t]{3}{*}{\[
\begin{aligned}
& \hline \mathrm{N}=\text { prescale } \\
& \text { value }(1,4,16)
\end{aligned}
\]} \\
\hline IC11 & TccH & ICx Inp & High Time & \[
\begin{gathered}
\text { Greater of } \\
{[(12.5 \text { or } 0.5 \mathrm{TCY}) / \mathrm{N}]} \\
+25
\end{gathered}
\] & - & ns & Must also meet parameter IC15. & \\
\hline IC15 & TccP & ICx Inp & Period & \[
\begin{gathered}
\text { Greater of } \\
{[(25 \text { or } 1 \mathrm{TCY}) / \mathrm{N}]} \\
+50
\end{gathered}
\] & - & ns & - & \\
\hline
\end{tabular}

Note 1: These parameters are characterized, but not tested in manufacturing.

FIGURE 30-8: OUTPUT COMPARE MODULE (OCx) TIMING CHARACTERISTICS


Note: Refer to Figure 30-1 for load conditions.

TABLE 30-29: OUTPUT COMPARE MODULE TIMING REQUIREMENTS
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{AC CHARACTERISTICS} & \multicolumn{5}{|l|}{\begin{tabular}{l}
Standard Operating Conditions: 3.0V to 3.6 V \\
(unless otherwise stated) \\
Operating temperature \(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}\) for Industrial \\
\(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C}\) for Extended
\end{tabular}} \\
\hline Param No. & Symbol & Characteristic \({ }^{(1)}\) & Min & Typ & Max & Units & Conditions \\
\hline OC10 & TccF & OCx Output Fall Time & - & - & - & ns & See parameter DO32 \\
\hline OC11 & TccR & OCx Output Rise Time & - & - & - & ns & See parameter DO31 \\
\hline
\end{tabular}

Note 1: These parameters are characterized but not tested in manufacturing.

FIGURE 30-9: OC/PWM MODULE TIMING CHARACTERISTICS
\begin{tabular}{|c:c:c|}
\hline OCFA & & \\
OCx & & \\
& & \\
& & \\
& & \\
& & \\
\hline
\end{tabular}

TABLE 30-30: OC/PWM MODE TIMING REQUIREMENTS
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{AC CHARACTERISTICS} & \multicolumn{5}{|l|}{\begin{tabular}{l}
Standard Operating Conditions: 3.0V to 3.6 V \\
(unless otherwise stated) \\
Operating temperature \(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}\) for Industrial \\
\(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C}\) for Extended
\end{tabular}} \\
\hline Param No. & Symbol & Characteristic \({ }^{(1)}\) & Min & Typ & Max & Units & Conditions \\
\hline OC15 & TFD & Fault Input to PWM I/O Change & - & - & TCY + 20 & ns & - \\
\hline OC20 & Tflt & Fault Input Pulse Width & TCY + 20 & - & - & ns & - \\
\hline
\end{tabular}

Note 1: These parameters are characterized but not tested in manufacturing.

FIGURE 30-10: HIGH-SPEED PWM MODULE FAULT TIMING CHARACTERISTICS (dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X DEVICES ONLY)


FIGURE 30-11:
HIGH-SPEED PWM MODULE TIMING CHARACTERISTICS (dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X DEVICES ONLY)


Note: Refer to Figure 30-1 for load conditions.

TABLE 30-31: HIGH-SPEED PWM MODULE TIMING REQUIREMENTS (dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X DEVICES ONLY)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{AC CHARACTERISTICS} & \multicolumn{5}{|l|}{\begin{tabular}{l}
Standard Operating Conditions: 3.0V to 3.6 V \\
(unless otherwise stated) \\
Operating temperature \(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}\) for Industrial \\
\(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C}\) for Extended
\end{tabular}} \\
\hline Param No. & Symbol & Characteristic \({ }^{(1)}\) & Min & Typ & Max & Units & Conditions \\
\hline MP10 & TfPWM & PWM Output Fall Time & - & - & - & ns & See parameter DO32 \\
\hline MP11 & TRPWM & PWM Output Rise Time & - & - & - & ns & See parameter DO31 \\
\hline MP20 & Tfd & Fault Input \(\downarrow\) to PWM I/O Change & - & - & 15 & ns & - \\
\hline MP30 & TFH & Fault Input Pulse Width & 15 & - & - & ns & - \\
\hline
\end{tabular}

Note 1: These parameters are characterized but not tested in manufacturing.

FIGURE 30-12: TIMERQ (QEI MODULE) EXTERNAL CLOCK TIMING CHARACTERISTICS (dsPIC33EPXXXMC20X/50X AND PIC24EPXXXMC20X DEVICES ONLY)


TABLE 30-32: QEI MODULE EXTERNAL CLOCK TIMING REQUIREMENTS (dsPIC33EPXXXMC20X/50X AND PIC24EPXXXMC20X DEVICES ONLY)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{AC CHARACTERISTICS} & \multicolumn{5}{|l|}{\begin{tabular}{l}
Standard Operating Conditions: 3.0V to 3.6 V (unless otherwise stated) \\
Operating temperature \\
\(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}\) for Industrial \(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C}\) for Extended
\end{tabular}} \\
\hline Param No. & Symbol & Characte & ristic \({ }^{(1)}\) & Min & Typ & Max & Units & Conditions \\
\hline TQ10 & TtQH & TQCK High Time & Synchronous, with prescaler & \[
\begin{gathered}
\hline \text { Greater of } \\
{[(12.5 \text { or }} \\
0.5 \mathrm{TCY}) / \mathrm{N}] \\
+25
\end{gathered}
\] & - & - & ns & Must also meet parameter TQ15. \\
\hline TQ11 & TtQL & TQCK Low Time & Synchronous, with prescaler & Greater of
\[
\begin{aligned}
& {[(12.5 \text { or }} \\
& 0.5 \text { TCY }) / \mathrm{N}] \\
& +25
\end{aligned}
\] & - & - & ns & Must also meet parameter TQ15. \\
\hline TQ15 & TtQP & TQCP Input Period & Synchronous, with prescaler & \[
\begin{gathered}
\text { Greater of } \\
{[(25 \text { or Tcy)/ }} \\
\mathrm{N}]+50
\end{gathered}
\] & - & - & ns & - \\
\hline TQ20 & TCKEXTMRL & Delay from Extern Edge to Timer Inc & al TxCK Clock rement & - & 1 & TCY & - & - \\
\hline
\end{tabular}

Note 1: These parameters are characterized but not tested in manufacturing.

FIGURE 30-13: QEA/QEB INPUT CHARACTERISTICS
(dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X DEVICES ONLY)


TABLE 30-33: QUADRATURE DECODER TIMING REQUIREMENTS (dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X DEVICES ONLY)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{AC CHARACTERISTICS} & \multicolumn{4}{|l|}{\begin{tabular}{l}
Standard Operating Conditions: 3.0V to 3.6 V \\
(unless otherwise stated) \\
Operating temperature \(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}\) for Industrial \\
\(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C}\) for Extended
\end{tabular}} \\
\hline Param No. & Symbol & Characteristic \({ }^{(1)}\) & Typ \({ }^{(2)}\) & Max & Units & Conditions \\
\hline TQ30 & TQuL & Quadrature Input Low Time & 6 Tcy & - & ns & - \\
\hline TQ31 & TquH & Quadrature Input High Time & 6 Tcy & - & ns & - \\
\hline TQ35 & TQulN & Quadrature Input Period & 12 TCY & - & ns & - \\
\hline TQ36 & TQuP & Quadrature Phase Period & 3 TcY & - & ns & - \\
\hline TQ40 & TQuFL & Filter Time to Recognize Low, with Digital Filter & 3 * N TCY & - & ns & \[
\begin{aligned}
& \mathrm{N}=1,2,4,16,32,64, \\
& 128 \text { and } 256 \text { (Note 3) }
\end{aligned}
\] \\
\hline TQ41 & TQuFH & Filter Time to Recognize High, with Digital Filter & 3 * N TCY & - & ns & \[
\begin{aligned}
& \hline \mathrm{N}=1,2,4,16,32,64, \\
& 128 \text { and } 256 \text { (Note 3) }
\end{aligned}
\] \\
\hline
\end{tabular}

Note 1: These parameters are characterized but not tested in manufacturing.
2: Data in "Typ" column is at \(3.3 \mathrm{~V}, 25^{\circ} \mathrm{C}\) unless otherwise stated. Parameters are for design guidance only and are not tested.
3: \(\mathrm{N}=\) Index Channel Digital Filter Clock Divide Select bits. Refer to Section 15. "Quadrature Encoder Interface (QEI)" (DS70601) in the "dsPIC33E/PIC24E Family Reference Manual". Please see the Microchip web site for the latest family reference manual sections.

FIGURE 30-14: QEI MODULE INDEX PULSE TIMING CHARACTERISTICS (dsPIC33EPXXXMC20XI50X and PIC24EPXXXMC20X DEVICES ONLY)


TABLE 30-34: QEI INDEX PULSE TIMING REQUIREMENTS (dsPIC33EPXXXMC20XI50X and PIC24EPXXXMC20X DEVICES ONLY)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{AC CHARACTERISTICS} & \multicolumn{4}{|l|}{\begin{tabular}{l}
Standard Operating Conditions: 3.0V to 3.6 V \\
(unless otherwise stated) \\
Operating temperature \(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}\) for Industrial \\
\(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C}\) for Extended
\end{tabular}} \\
\hline Param No. & Symbol & Characteristic \({ }^{(1)}\) & Min & Max & Units & Conditions \\
\hline TQ50 & TqIL & Filter Time to Recognize Low, with Digital Filter & 3 * \({ }^{\text {* TCY }}\) & - & ns & \[
\begin{aligned}
& \hline N=1,2,4,16,32,64, \\
& 128 \text { and } 256 \text { (Note 2) }
\end{aligned}
\] \\
\hline TQ51 & TqiH & Filter Time to Recognize High, with Digital Filter & 3 * * Tcy & - & ns & \[
\begin{aligned}
& \mathrm{N}=1,2,4,16,32,64, \\
& 128 \text { and } 256 \text { (Note 2) }
\end{aligned}
\] \\
\hline TQ55 & Tqidxr & Index Pulse Recognized to Position Counter Reset (ungated index) & 3 Tcy & - & ns & - \\
\hline
\end{tabular}

Note 1: These parameters are characterized but not tested in manufacturing.
2: Alignment of index pulses to QEA and QEB is shown for position counter Reset timing only. Shown for forward direction only (QEA leads QEB). Same timing applies for reverse direction (QEA lags QEB) but index pulse recognition occurs on falling edge.

TABLE 30-35: SPI2 MAXIMUM DATA/CLOCK RATE SUMMARY
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{AC CHARACTERISTICS} & \multicolumn{4}{|l|}{\begin{tabular}{l}
Standard Operating Conditions: 3.0V to 3.6 V \\
(unless otherwise stated) \\
Operating temperature \(-40^{\circ} \mathrm{C} \leq T \mathrm{~A} \leq+85^{\circ} \mathrm{C}\) for Industrial \\
\(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C}\) for Extended
\end{tabular}} \\
\hline Maximum Data Rate & Master Transmit Only (Half-Duplex) & Master Transmit/Receive (Full-Duplex) & Slave Transmit/Receive (Full-Duplex) & CKE & CKP & SMP \\
\hline 10 MHz & Table 30-44 & - & - & 0,1 & 0,1 & 0,1 \\
\hline 10 MHz & - & Table 30-45 & - & 1 & 0,1 & 1 \\
\hline 10 MHz & - & Table 30-46 & - & 0 & 0,1 & 1 \\
\hline 15 MHz & - & - & Table 30-47 & 1 & 0 & 0 \\
\hline 15 MHz & - & - & Table 30-48 & 1 & 1 & 0 \\
\hline 15 MHz & - & - & Table 30-49 & 0 & 1 & 0 \\
\hline 15 MHz & - & - & Table 30-50 & 0 & 0 & 0 \\
\hline
\end{tabular}

\section*{FIGURE 30-15: SPI2 MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY CKE = 0) TIMING} CHARACTERISTICS


Note: Refer to Figure 30-1 for load conditions.

FIGURE 30-16: SPI2 MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY CKE = 1) TIMING CHARACTERISTICS


TABLE 30-36: SPI2 MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY) TIMING REQUIREMENTS
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{AC CHARACTERISTICS} & \multicolumn{5}{|l|}{\begin{tabular}{l}
Standard Operating Conditions: 3.0V to 3.6V \\
(unless otherwise stated) \\
Operating temperature \(-40^{\circ} \mathrm{C} \leq T \mathrm{~A} \leq+85^{\circ} \mathrm{C}\) for Industrial \\
\(-40^{\circ} \mathrm{C} \leq T \mathrm{~A} \leq+125^{\circ} \mathrm{C}\) for Extended
\end{tabular}} \\
\hline Param No. & Symbol & Characteristic \({ }^{(1)}\) & Min & Typ \({ }^{(2)}\) & Max & Units & Conditions \\
\hline SP10 & TscP & Maximum SCK Frequency & - & - & 10 & MHz & See Note 3 \\
\hline SP20 & TscF & SCKx Output Fall Time & - & - & - & ns & See parameter DO32 and Note 4 \\
\hline SP21 & TscR & SCKx Output Rise Time & - & - & - & ns & See parameter DO31 and Note 4 \\
\hline SP30 & TdoF & SDOx Data Output Fall Time & - & - & - & ns & See parameter DO32 and Note 4 \\
\hline SP31 & TdoR & SDOx Data Output Rise Time & - & - & - & ns & See parameter DO31 and Note 4 \\
\hline SP35 & TscH2doV, TscL2doV & SDOx Data Output Valid after SCKx Edge & - & 6 & 20 & ns & - \\
\hline SP36 & TdiV2scH, TdiV2scL & SDOx Data Output Setup to First SCKx Edge & 30 & - & - & ns & - \\
\hline
\end{tabular}

Note 1: These parameters are characterized, but are not tested in manufacturing.
2: Data in "Typ" column is at \(3.3 \mathrm{~V}, 25^{\circ} \mathrm{C}\) unless otherwise stated.
3: The minimum clock period for SCKx is 20 ns and SCK2 is 100 ns . Therefore, the clock generated in Master mode must not violate this specification.
4: Assumes 50 pF load on all SPIx pins.

FIGURE 30-17: SPI2 MASTER MODE (FULL-DUPLEX, CKE = 1, CKP = X, SMP = 1) TIMING CHARACTERISTICS


\section*{TABLE 30-37: SPI2 MASTER MODE (FULL-DUPLEX, CKE = 1, CKP = x, SMP = 1) TIMING REQUIREMENTS}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{AC CHARACTERISTICS} & \multicolumn{5}{|l|}{\begin{tabular}{l}
Standard Operating Conditions: 3.0V to 3.6 V \\
(unless otherwise stated) \\
Operating temperature \(-40^{\circ} \mathrm{C} \leq T \mathrm{~A} \leq+85^{\circ} \mathrm{C}\) for Industrial \\
\(-40^{\circ} \mathrm{C} \leq T \mathrm{~A} \leq+125^{\circ} \mathrm{C}\) for Extended
\end{tabular}} \\
\hline Param No. & Symbol & Characteristic \({ }^{(1)}\) & Min & Typ \({ }^{(2)}\) & Max & Units & Conditions \\
\hline SP10 & TscP & Maximum SCK Frequency & - & - & 10 & MHz & See Note 3 \\
\hline SP20 & TscF & SCKx Output Fall Time & - & - & - & ns & See parameter DO32 and Note 4 \\
\hline SP21 & TscR & SCKx Output Rise Time & - & - & - & ns & See parameter DO31 and Note 4 \\
\hline SP30 & TdoF & SDOx Data Output Fall Time & - & - & - & ns & See parameter DO32 and Note 4 \\
\hline SP31 & TdoR & SDOx Data Output Rise Time & - & - & - & ns & See parameter DO31 and Note 4 \\
\hline SP35 & TscH2doV, TscL2doV & SDOx Data Output Valid after SCKx Edge & - & 6 & 20 & ns & - \\
\hline SP36 & TdoV2sc, TdoV2scL & SDOx Data Output Setup to First SCKx Edge & 30 & - & - & ns & - \\
\hline SP40 & TdiV2scH, TdiV2scL & Setup Time of SDIx Data Input to SCKx Edge & 30 & - & - & ns & - \\
\hline SP41 & TscH2diL, TscL2diL & Hold Time of SDIx Data Input to SCKx Edge & 30 & - & - & ns & - \\
\hline
\end{tabular}

Note 1: These parameters are characterized, but are not tested in manufacturing.
2: Data in "Typ" column is at \(3.3 \mathrm{~V}, 25^{\circ} \mathrm{C}\) unless otherwise stated.
3: The minimum clock period for SCKx is 100 ns. The clock generated in Master mode must not violate this specification.
4: Assumes 50 pF load on all SPIx pins.

FIGURE 30-18: SPI2 MASTER MODE (FULL-DUPLEX, CKE = 0, CKP = X, SMP = 1) TIMING CHARACTERISTICS


Note: Refer to Figure 30-1 for load conditions.

TABLE 30-38: SPI2 MASTER MODE (FULL-DUPLEX, CKE = 0, CKP = x, SMP = 1) TIMING REQUIREMENTS
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{AC CHARACTERISTICS} & \multicolumn{5}{|l|}{\begin{tabular}{l}
Standard Operating Conditions: 3.0V to 3.6 V \\
(unless otherwise stated) \\
Operating temperature \(-40^{\circ} \mathrm{C} \leq T \mathrm{~A} \leq+85^{\circ} \mathrm{C}\) for Industrial \\
\(-40^{\circ} \mathrm{C} \leq T \mathrm{~A} \leq+125^{\circ} \mathrm{C}\) for Extended
\end{tabular}} \\
\hline Param No. & Symbol & Characteristic \({ }^{(1)}\) & Min & Typ \({ }^{(2)}\) & Max & Units & Conditions \\
\hline SP10 & TscP & Maximum SCK Frequency & - & - & 10 & MHz & \(-40^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) and see Note 3 \\
\hline SP20 & TscF & SCKx Output Fall Time & - & - & - & ns & See parameter DO32 and Note 4 \\
\hline SP21 & TscR & SCKx Output Rise Time & - & - & - & ns & See parameter DO31 and Note 4 \\
\hline SP30 & TdoF & SDOx Data Output Fall Time & - & - & - & ns & See parameter DO32 and Note 4 \\
\hline SP31 & TdoR & SDOx Data Output Rise Time & - & - & - & ns & See parameter DO31 and Note 4 \\
\hline SP35 & TscH2doV, TscL2doV & SDOx Data Output Valid after SCKx Edge & - & 6 & 20 & ns & - \\
\hline SP36 & TdoV2scH,
TdoV2scL & SDOx Data Output Setup to First SCKx Edge & 30 & - & - & ns & - \\
\hline SP40 & TdiV2sch, TdiV2scL & Setup Time of SDIx Data Input to SCKx Edge & 30 & - & - & ns & - \\
\hline SP41 & TscH2diL, TscL2diL & Hold Time of SDIx Data Input to SCKx Edge & 30 & - & - & ns & - \\
\hline
\end{tabular}

Note 1: These parameters are characterized, but are not tested in manufacturing.
2: Data in "Typ" column is at \(3.3 \mathrm{~V}, 25^{\circ} \mathrm{C}\) unless otherwise stated.
3: The minimum clock period for SCKx is 100 ns . The clock generated in Master mode must not violate this specification.
4: Assumes 50 pF load on all SPIx pins.

FIGURE 30-19: SPI2 SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 0, SMP = 0) TIMING CHARACTERISTICS


TABLE 30-39: SPI2 SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 0, SMP = 0) TIMING REQUIREMENTS
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{AC CHARACTERISTICS} & \multicolumn{5}{|l|}{\begin{tabular}{l}
Standard Operating Conditions: 3.0V to 3.6 V (unless otherwise stated) \\
Operating temperature \(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}\) for Industrial \(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C}\) for Extended
\end{tabular}} \\
\hline Param No. & Symbol & Characteristic \({ }^{(1)}\) & Min & Typ \({ }^{(2)}\) & Max & Units & Conditions \\
\hline SP70 & TscP & Maximum SCK Input Frequency & - & - & 15 & MHz & See Note 3 \\
\hline SP72 & TscF & SCKx Input Fall Time & - & - & - & ns & See parameter DO32 and Note 4 \\
\hline SP73 & TscR & SCKx Input Rise Time & - & - & - & ns & See parameter DO31 and Note 4 \\
\hline SP30 & TdoF & SDOx Data Output Fall Time & - & - & - & ns & See parameter DO32 and Note 4 \\
\hline SP31 & TdoR & SDOx Data Output Rise Time & - & - & - & ns & See parameter DO31 and Note 4 \\
\hline SP35 & TscH2doV, TscL2doV & SDOx Data Output Valid after SCKx Edge & - & 6 & 20 & ns & - \\
\hline SP36 & \[
\begin{aligned}
& \hline \text { TdoV2scH, } \\
& \text { TdoV2scL }
\end{aligned}
\] & SDOx Data Output Setup to First SCKx Edge & 30 & - & - & ns & - \\
\hline SP40 & TdiV2scH, TdiV2scL & Setup Time of SDIx Data Input to SCKx Edge & 30 & - & - & ns & - \\
\hline SP41 & TscH2diL, TscL2diL & Hold Time of SDIx Data Input to SCKx Edge & 30 & - & - & ns & - \\
\hline SP50 & TssL2scH, TssL2scL & \(\overline{\text { SSx }} \downarrow\) to SCKx \(\uparrow\) or SCKx \(\downarrow\) Input & 120 & - & - & ns & - \\
\hline SP51 & TssH2doZ & \(\overline{S S x} \uparrow\) to SDOx Output High-Impedance \({ }^{(4)}\) & 10 & - & 50 & ns & - \\
\hline SP52 & \begin{tabular}{l}
TscH2ssH \\
TscL2ssH
\end{tabular} & \(\overline{\text { SSx } \uparrow \text { after SCKx Edge }}\) & 1.5 TCY + 40 & - & - & ns & See Note 4 \\
\hline SP60 & TssL2doV & SDOx Data Output Valid after SSx Edge & - & - & 50 & ns & - \\
\hline
\end{tabular}

Note 1: These parameters are characterized, but are not tested in manufacturing.
2: Data in "Typ" column is at \(3.3 \mathrm{~V}, 25^{\circ} \mathrm{C}\) unless otherwise stated.
3: The minimum clock period for SCKx is 66.7 ns. Therefore, the SCK clock generated by the Master must not violate this specification.
4: Assumes 50 pF load on all SPIx pins.
dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X, AND PIC24EPXXXGP/MC20X

FIGURE 30-20: SPI2 SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 1, SMP = 0) TIMING CHARACTERISTICS


Note: Refer to Figure 30-1 for load conditions.

TABLE 30-40: SPI2 SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 1, SMP = 0) TIMING REQUIREMENTS
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{AC CHARACTERISTICS} & \multicolumn{5}{|l|}{\begin{tabular}{l}
Standard Operating Conditions: 3.0 V to 3.6 V (unless otherwise stated) \\
Operating temperature \(-40^{\circ} \mathrm{C} \leq T \mathrm{~A} \leq+85^{\circ} \mathrm{C}\) for Industrial \\
\(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C}\) for Extended
\end{tabular}} \\
\hline \[
\begin{array}{|l}
\text { Param } \\
\text { No. }
\end{array}
\] & Symbol & Characteristic \({ }^{(1)}\) & Min & Typ \({ }^{(2)}\) & Max & Units & Conditions \\
\hline SP70 & TscP & Maximum SCK Input Frequency & - & - & 15 & MHz & See Note 3 \\
\hline SP72 & TscF & SCKx Input Fall Time & - & - & - & ns & See parameter DO32 and Note 4 \\
\hline SP73 & TscR & SCKx Input Rise Time & - & - & - & ns & See parameter DO31 and Note 4 \\
\hline SP30 & TdoF & SDOx Data Output Fall Time & - & - & - & ns & See parameter DO32 and Note 4 \\
\hline SP31 & TdoR & SDOx Data Output Rise Time & - & - & - & ns & See parameter DO31 and Note 4 \\
\hline SP35 & TscH2doV, TscL2doV & SDOx Data Output Valid after SCKx Edge & - & 6 & 20 & ns & - \\
\hline SP36 & TdoV2scH, TdoV2scL & SDOx Data Output Setup to First SCKx Edge & 30 & - & - & ns & - \\
\hline SP40 & TdiV2sch, TdiV2scL & Setup Time of SDIx Data Input to SCKx Edge & 30 & - & - & ns & - \\
\hline SP41 & TscH2diL, TscL2diL & Hold Time of SDIx Data Input to SCKx Edge & 30 & - & - & ns & - \\
\hline SP50 & \begin{tabular}{l}
TssL2scH, \\
TssL2scL
\end{tabular} & \(\overline{\text { SSx }} \downarrow\) to SCKx \(\uparrow\) or SCKx \(\downarrow\) Input & 120 & - & - & ns & - \\
\hline SP51 & TssH2doZ & \(\overline{\mathrm{SSx}} \uparrow\) to SDOx Output High-Impedance \({ }^{(4)}\) & 10 & - & 50 & ns & - \\
\hline SP52 & TscH2ssH TscL2ssH & \(\overline{\text { SSx }} \uparrow\) after SCKx Edge & 1.5 TCY + 40 & - & - & ns & See Note 4 \\
\hline SP60 & TssL2doV & SDOx Data Output Valid after SSx Edge & - & - & 50 & ns & - \\
\hline
\end{tabular}

Note 1: These parameters are characterized, but are not tested in manufacturing.
2: Data in "Typ" column is at \(3.3 \mathrm{~V}, 25^{\circ} \mathrm{C}\) unless otherwise stated.
3. The minimum clock period for SCKx is 66.67 ns . Therefore, the SCK clock generated by the Master must not violate this specification.
4. Assumes 50 pF load on all SPIx pins.

FIGURE 30-21: SPI2 SLAVE MODE (FULL-DUPLEX CKE = 0, CKP = 1, SMP = 0) TIMING CHARACTERISTICS


TABLE 30-41: SPI2 SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 1, SMP = 0) TIMING REQUIREMENTS
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{AC CHARACTERISTICS} & \multicolumn{5}{|l|}{\begin{tabular}{l}
Standard Operating Conditions: 3.0V to 3.6 V (unless otherwise stated) \\
Operating temperature \(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}\) for Industrial \(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C}\) for Extended
\end{tabular}} \\
\hline \begin{tabular}{l}
Param \\
No.
\end{tabular} & Symbol & Characteristic \({ }^{(1)}\) & Min & Typ \({ }^{(2)}\) & Max & Units & Conditions \\
\hline SP70 & TscP & Maximum SCK Input Frequency & - & - & 15 & MHz & See Note 3 \\
\hline SP72 & TscF & SCKx Input Fall Time & - & - & - & ns & See parameter DO32 and Note 4 \\
\hline SP73 & TscR & SCKx Input Rise Time & - & - & - & ns & See parameter DO31 and Note 4 \\
\hline SP30 & TdoF & SDOx Data Output Fall Time & - & - & - & ns & See parameter DO32 and Note 4 \\
\hline SP31 & TdoR & SDOx Data Output Rise Time & - & - & - & ns & See parameter DO31 and Note 4 \\
\hline SP35 & TscH2doV, TscL2doV & SDOx Data Output Valid after SCKx Edge & - & 6 & 20 & ns & - \\
\hline SP36 & \[
\begin{aligned}
& \text { TdoV2scH, } \\
& \text { TdoV2scL }
\end{aligned}
\] & SDOx Data Output Setup to First SCKx Edge & 30 & - & - & ns & - \\
\hline SP40 & TdiV2scH, TdiV2scL & Setup Time of SDIx Data Input to SCKx Edge & 30 & - & - & ns & - \\
\hline SP41 & TscH2diL, TscL2diL & Hold Time of SDIx Data Input to SCKx Edge & 30 & - & - & ns & - \\
\hline SP50 & TssL2scH, TssL2scL & \(\overline{S S x} \downarrow\) to \(\operatorname{SCKx} \uparrow\) or SCKx \(\downarrow\) Input & 120 & - & - & ns & - \\
\hline SP51 & TssH2doZ & \(\overline{S S x} \uparrow\) to SDOx Output High-Impedance \({ }^{(4)}\) & 10 & - & 50 & ns & - \\
\hline SP52 & \begin{tabular}{l}
TscH2ssH \\
TscL2ssH
\end{tabular} & \(\overline{\text { SSx }} \uparrow\) after SCKx Edge & 1.5 TCY + 40 & - & - & ns & See Note 4 \\
\hline
\end{tabular}

Note 1: These parameters are characterized, but are not tested in manufacturing.
2: Data in "Typ" column is at \(3.3 \mathrm{~V}, 25^{\circ} \mathrm{C}\) unless otherwise stated.
3: The minimum clock period for SCKx is 66.7 ns . Therefore, the SCK clock generated by the Master must not violate this specification.
4: Assumes 50 pF load on all SPIx pins.

FIGURE 30-22: SPI2 SLAVE MODE (FULL-DUPLEX, CKE \(=0\), CKP \(=0\), SMP \(=0\) ) TIMING CHARACTERISTICS


TABLE 30-42: SPI2 SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 0, SMP = 0) TIMING REQUIREMENTS
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{AC CHARACTERISTICS} & \multicolumn{5}{|l|}{\begin{tabular}{l}
Standard Operating Conditions: 3.0V to 3.6 V (unless otherwise stated) \\
Operating temperature \(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}\) for Industrial \(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C}\) for Extended
\end{tabular}} \\
\hline \begin{tabular}{l}
Param \\
No.
\end{tabular} & Symbol & Characteristic \({ }^{(1)}\) & Min & Typ \({ }^{(2)}\) & Max & Units & Conditions \\
\hline SP70 & TscP & Maximum SCK Input Frequency & - & - & 15 & MHz & See Note 3 \\
\hline SP72 & TscF & SCKx Input Fall Time & - & - & - & ns & See parameter DO32 and Note 4 \\
\hline SP73 & TscR & SCKx Input Rise Time & - & - & - & ns & See parameter DO31 and Note 4 \\
\hline SP30 & TdoF & SDOx Data Output Fall Time & - & - & - & ns & See parameter DO32 and Note 4 \\
\hline SP31 & TdoR & SDOx Data Output Rise Time & - & - & - & ns & See parameter DO31 and Note 4 \\
\hline SP35 & TscH2doV, TscL2doV & SDOx Data Output Valid after SCKx Edge & - & 6 & 20 & ns & - \\
\hline SP36 & \[
\begin{aligned}
& \text { TdoV2scH, } \\
& \text { TdoV2scL }
\end{aligned}
\] & SDOx Data Output Setup to First SCKx Edge & 30 & - & - & ns & - \\
\hline SP40 & TdiV2scH, TdiV2scL & Setup Time of SDIx Data Input to SCKx Edge & 30 & - & - & ns & - \\
\hline SP41 & TscH2diL, TscL2diL & Hold Time of SDIx Data Input to SCKx Edge & 30 & - & - & ns & - \\
\hline SP50 & TssL2scH, TssL2scL & \(\overline{S S x} \downarrow\) to \(\operatorname{SCKx} \uparrow\) or SCKx \(\downarrow\) Input & 120 & - & - & ns & - \\
\hline SP51 & TssH2doZ & \(\overline{S S x} \uparrow\) to SDOx Output High-Impedance \({ }^{(4)}\) & 10 & - & 50 & ns & - \\
\hline SP52 & \begin{tabular}{l}
TscH2ssH \\
TscL2ssH
\end{tabular} & \(\overline{\text { SSx }} \uparrow\) after SCKx Edge & 1.5 TCY + 40 & - & - & ns & See Note 4 \\
\hline
\end{tabular}

Note 1: These parameters are characterized, but are not tested in manufacturing.
2: Data in "Typ" column is at \(3.3 \mathrm{~V}, 25^{\circ} \mathrm{C}\) unless otherwise stated.
3: The minimum clock period for SCKx is 66.67 ns . Therefore, the SCK clock generated by the Master must not violate this specification.
4: Assumes 50 pF load on all SPIx pins.

TABLE 30-43: SPI1 MAXIMUM DATA/CLOCK RATE SUMMARY
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{AC CHARACTERISTICS} & \multicolumn{4}{|l|}{\begin{tabular}{l}
Standard Operating Conditions: 3.0V to 3.6 V \\
(unless otherwise stated) \\
Operating temperature \(-40^{\circ} \mathrm{C} \leq T \mathrm{~A} \leq+85^{\circ} \mathrm{C}\) for Industrial \\
\(-40^{\circ} \mathrm{C} \leq T \mathrm{~A} \leq+125^{\circ} \mathrm{C}\) for Extended
\end{tabular}} \\
\hline Maximum Data Rate & Master Transmit Only (Half-Duplex) & Master Transmit/Receive (Full-Duplex) & Slave Transmit/Receive (Full-Duplex) & CKE & CKP & SMP \\
\hline 25 MHz & Table 30-44 & - & - & 0,1 & 0,1 & 0,1 \\
\hline 25 MHz & - & Table 30-45 & - & 1 & 0,1 & 1 \\
\hline 25 MHz & - & Table 30-46 & - & 0 & 0,1 & 1 \\
\hline 25 MHz & - & - & Table 30-47 & 1 & 0 & 0 \\
\hline 25 MHz & - & - & Table 30-48 & 1 & 1 & 0 \\
\hline 25 MHz & - & - & Table 30-49 & 0 & 1 & 0 \\
\hline 25 MHz & - & - & Table 30-50 & 0 & 0 & 0 \\
\hline
\end{tabular}

FIGURE 30-23: SPI1 MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY CKE = 0) TIMING CHARACTERISTICS


FIGURE 30-24: SPI1 MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY CKE = 1) TIMING CHARACTERISTICS


TABLE 30-44: SPI1 MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY) TIMING REQUIREMENTS
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{AC CHARACTERISTICS} & \multicolumn{5}{|l|}{\begin{tabular}{l}
Standard Operating Conditions: 3.0 V to 3.6 V \\
(unless otherwise stated) \\
Operating temperature \(-40^{\circ} \mathrm{C} \leq T \mathrm{~A} \leq+85^{\circ} \mathrm{C}\) for Industrial \\
\(-40^{\circ} \mathrm{C} \leq T \mathrm{~A} \leq+125^{\circ} \mathrm{C}\) for Extended
\end{tabular}} \\
\hline Param No. & Symbol & Characteristic \({ }^{(1)}\) & Min & Typ \({ }^{(2)}\) & Max & Units & Conditions \\
\hline SP10 & TscP & Maximum SCK Frequency & - & - & 25 & MHz & See Note 3 \\
\hline SP20 & TscF & SCKx Output Fall Time & - & - & - & ns & See parameter DO32 and Note 4 \\
\hline SP21 & TscR & SCKx Output Rise Time & - & - & - & ns & See parameter DO31 and Note 4 \\
\hline SP30 & TdoF & SDOx Data Output Fall Time & - & - & - & ns & See parameter DO32 and Note 4 \\
\hline SP31 & TdoR & SDOx Data Output Rise Time & - & - & - & ns & See parameter DO31 and Note 4 \\
\hline SP35 & TscH2doV, TscL2doV & SDOx Data Output Valid after SCKx Edge & - & 6 & 20 & ns & - \\
\hline SP36 & TdiV2scH, TdiV2scL & SDOx Data Output Setup to First SCKx Edge & 30 & - & - & ns & - \\
\hline
\end{tabular}

Note 1: These parameters are characterized, but are not tested in manufacturing.
2: Data in "Typ" column is at \(3.3 \mathrm{~V}, 25^{\circ} \mathrm{C}\) unless otherwise stated.
3: The minimum clock period for SCKx is 66.7 ns. Therefore, the clock generated in Master mode must not violate this specification.
4: Assumes 50 pF load on all SPIx pins.

FIGURE 30-25: SPI1 MASTER MODE (FULL-DUPLEX, CKE =1, CKP = X, SMP =1) TIMING CHARACTERISTICS


TABLE 30-45: SPI1 MASTER MODE (FULL-DUPLEX, CKE = 1, CKP = x, SMP = 1) TIMING REQUIREMENTS
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{AC CHARACTERISTICS} & \multicolumn{5}{|l|}{\begin{tabular}{l}
Standard Operating Conditions: 3.0V to 3.6 V \\
(unless otherwise stated) \\
Operating temperature \(-40^{\circ} \mathrm{C} \leq T \mathrm{~A} \leq+85^{\circ} \mathrm{C}\) for Industrial \(-40^{\circ} \mathrm{C} \leq T \mathrm{~A} \leq+125^{\circ} \mathrm{C}\) for Extended
\end{tabular}} \\
\hline Param No. & Symbol & Characteristic \({ }^{(1)}\) & Min & Typ \({ }^{(2)}\) & Max & Units & Conditions \\
\hline SP10 & TscP & Maximum SCK Frequency & - & - & 25 & MHz & See Note 3 \\
\hline SP20 & TscF & SCKx Output Fall Time & - & - & - & ns & See parameter DO32 and Note 4 \\
\hline SP21 & TscR & SCKx Output Rise Time & - & - & - & ns & See parameter DO31 and Note 4 \\
\hline SP30 & TdoF & SDOx Data Output Fall Time & - & - & - & ns & See parameter DO32 and Note 4 \\
\hline SP31 & TdoR & SDOx Data Output Rise Time & - & - & - & ns & See parameter DO31 and Note 4 \\
\hline SP35 & \begin{tabular}{l}
TscH2doV, \\
TscL2doV
\end{tabular} & SDOx Data Output Valid after SCKx Edge & - & 6 & 20 & ns & - \\
\hline SP36 & TdoV2sc, TdoV2scL & SDOx Data Output Setup to First SCKx Edge & 30 & - & - & ns & - \\
\hline SP40 & TdiV2scH, TdiV2scL & Setup Time of SDIx Data Input to SCKx Edge & 30 & - & - & ns & - \\
\hline SP41 & TscH2diL, TscL2diL & Hold Time of SDIx Data Input to SCKx Edge & 30 & - & - & ns & - \\
\hline
\end{tabular}

Note 1: These parameters are characterized, but are not tested in manufacturing.
2: Data in "Typ" column is at \(3.3 \mathrm{~V}, 25^{\circ} \mathrm{C}\) unless otherwise stated.
3: The minimum clock period for SCKx is 100 ns. The clock generated in Master mode must not violate this specification.
4: Assumes 50 pF load on all SPlx pins.

FIGURE 30-26: SPI1 MASTER MODE (FULL-DUPLEX, CKE = 0, CKP = X, SMP =1) TIMING CHARACTERISTICS


TABLE 30-46: SPI1 MASTER MODE (FULL-DUPLEX, CKE = 0, CKP = x, SMP =1) TIMING REQUIREMENTS
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{AC CHARACTERISTICS} & \multicolumn{5}{|l|}{\begin{tabular}{l}
Standard Operating Conditions: 3.0V to 3.6V \\
(unless otherwise stated) \\
Operating temperature \(-40^{\circ} \mathrm{C} \leq T \mathrm{~A} \leq+85^{\circ} \mathrm{C}\) for Industrial \(-40^{\circ} \mathrm{C} \leq T \mathrm{~A} \leq+125^{\circ} \mathrm{C}\) for Extended
\end{tabular}} \\
\hline Param No. & Symbol & Characteristic \({ }^{(1)}\) & Min & Typ \({ }^{(2)}\) & Max & Units & Conditions \\
\hline SP10 & TscP & Maximum SCK Frequency & - & - & 25 & MHz & \(-40^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) and see Note 3 \\
\hline SP20 & TscF & SCKx Output Fall Time & - & - & - & ns & See parameter DO32 and Note 4 \\
\hline SP21 & TscR & SCKx Output Rise Time & - & - & - & ns & See parameter DO31 and Note 4 \\
\hline SP30 & TdoF & SDOx Data Output Fall Time & - & - & - & ns & See parameter DO32 and Note 4 \\
\hline SP31 & TdoR & SDOx Data Output Rise Time & - & - & - & ns & See parameter DO31 and Note 4 \\
\hline SP35 & TscH2doV, TscL2doV & SDOx Data Output Valid after SCKx Edge & - & 6 & 20 & ns & - \\
\hline SP36 & TdoV2sch,
TdoV2scL & SDOx Data Output Setup to First SCKx Edge & 30 & - & - & ns & - \\
\hline SP40 & TdiV2scH, TdiV2scL & Setup Time of SDIx Data Input to SCKx Edge & 30 & - & - & ns & - \\
\hline SP41 & TscH2diL, TscL2diL & Hold Time of SDIx Data Input to SCKx Edge & 30 & - & - & ns & - \\
\hline
\end{tabular}

Note 1: These parameters are characterized, but are not tested in manufacturing.
2: Data in "Typ" column is at \(3.3 \mathrm{~V}, 25^{\circ} \mathrm{C}\) unless otherwise stated.
3: The minimum clock period for SCKx is 100 ns . The clock generated in Master mode must not violate this specification.
4: Assumes 50 pF load on all SPIx pins.

FIGURE 30-27: SPI1 SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 0, SMP = 0) TIMING CHARACTERISTICS


TABLE 30-47: SPI1 SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 0, SMP = 0) TIMING REQUIREMENTS
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{AC CHARACTERISTICS} & \multicolumn{5}{|l|}{\begin{tabular}{l}
Standard Operating Conditions: 3.0V to 3.6 V \\
(unless otherwise stated) \\
Operating temperature \(-40^{\circ} \mathrm{C} \leq T \mathrm{~A} \leq+85^{\circ} \mathrm{C}\) for Industrial \\
\(-40^{\circ} \mathrm{C} \leq T \mathrm{~A} \leq+125^{\circ} \mathrm{C}\) for Extended
\end{tabular}} \\
\hline Param No. & Symbol & Characteristic \({ }^{(1)}\) & Min & Typ \({ }^{(2)}\) & Max & Units & Conditions \\
\hline SP70 & TscP & Maximum SCK Input Frequency & - & - & 25 & MHz & See Note 3 \\
\hline SP72 & TscF & SCKx Input Fall Time & - & - & - & ns & See parameter DO32 and Note 4 \\
\hline SP73 & TscR & SCKx Input Rise Time & - & - & - & ns & See parameter DO31 and Note 4 \\
\hline SP30 & TdoF & SDOx Data Output Fall Time & - & - & - & ns & See parameter DO32 and Note 4 \\
\hline SP31 & TdoR & SDOx Data Output Rise Time & - & - & - & ns & See parameter DO31 and Note 4 \\
\hline SP35 & TscH2doV, TscL2doV & SDOx Data Output Valid after SCKx Edge & - & 6 & 20 & ns & - \\
\hline SP36 & TdoV2scH, TdoV2scL & SDOx Data Output Setup to First SCKx Edge & 30 & - & - & ns & - \\
\hline SP40 & TdiV2scH, TdiV2scL & Setup Time of SDIx Data Input to SCKx Edge & 30 & - & - & ns & - \\
\hline SP41 & TscH2diL, TscL2diL & Hold Time of SDIx Data Input to SCKx Edge & 30 & - & - & ns & - \\
\hline SP50 & TssL2scH, TssL2scL & \(\overline{\text { SSx }} \downarrow\) to SCKx \(\uparrow\) or SCKx \(\downarrow\) Input & 120 & - & - & ns & - \\
\hline SP51 & TssH2doZ & \(\overline{\mathrm{SSx}} \uparrow\) to SDOx Output High-Impedance \({ }^{(4)}\) & 10 & - & 50 & ns & - \\
\hline SP52 & TscH2ssH TscL2ssH & \(\overline{\text { SSx }} \uparrow\) after SCKx Edge & 1.5 TCY + 40 & - & - & ns & See Note 4 \\
\hline SP60 & TssL2doV & SDOx Data Output Valid after SSx Edge & - & - & 50 & ns & - \\
\hline
\end{tabular}

Note 1: These parameters are characterized, but are not tested in manufacturing.
2: Data in "Typ" column is at \(3.3 \mathrm{~V}, 25^{\circ} \mathrm{C}\) unless otherwise stated.
3: The minimum clock period for SCKx is 66.7 ns. Therefore, the SCK clock generated by the Master must not violate this specification.
4: Assumes 50 pF load on all SPIx pins.

FIGURE 30-28: SPI1 SLAVE MODE (FULL-DUPLEX, CKE =1, CKP = 1, SMP = 0) TIMING CHARACTERISTICS


TABLE 30-48: SPI1 SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 1, SMP = 0) TIMING REQUIREMENTS
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{AC CHARACTERISTICS} & \multicolumn{5}{|l|}{\begin{tabular}{l}
Standard Operating Conditions: 3.0V to 3.6 V (unless otherwise stated) \\
Operating temperature \(-40^{\circ} \mathrm{C} \leq T \mathrm{TA} \leq+85^{\circ} \mathrm{C}\) for Industrial \(-40^{\circ} \mathrm{C} \leq T \mathrm{~A} \leq+125^{\circ} \mathrm{C}\) for Extended
\end{tabular}} \\
\hline Param No. & Symbol & Characteristic \({ }^{(1)}\) & Min & Typ \({ }^{(2)}\) & Max & Units & Conditions \\
\hline SP70 & TscP & Maximum SCK Input Frequency & - & - & 25 & MHz & See Note 3 \\
\hline SP72 & TscF & SCKx Input Fall Time & - & - & - & ns & See parameter DO32 and Note 4 \\
\hline SP73 & TscR & SCKx Input Rise Time & - & - & - & ns & See parameter DO31 and Note 4 \\
\hline SP30 & TdoF & SDOx Data Output Fall Time & - & - & - & ns & See parameter DO32 and Note 4 \\
\hline SP31 & TdoR & SDOx Data Output Rise Time & - & - & - & ns & See parameter DO31 and Note 4 \\
\hline SP35 & TscH2doV, TscL2doV & SDOx Data Output Valid after SCKx Edge & - & 6 & 20 & ns & - \\
\hline SP36 & \[
\begin{aligned}
& \text { TdoV2scH, } \\
& \text { TdoV2scL }
\end{aligned}
\] & SDOx Data Output Setup to First SCKx Edge & 30 & - & - & ns & - \\
\hline SP40 & TdiV2scH, TdiV2scL & Setup Time of SDIx Data Input to SCKx Edge & 30 & - & - & ns & - \\
\hline SP41 & TscH2diL, TscL2diL & Hold Time of SDIx Data Input to SCKx Edge & 30 & - & - & ns & - \\
\hline SP50 & TssL2scH, TssL2scL & \(\overline{S S x} \downarrow\) to SCKx \(\uparrow\) or SCKx \(\downarrow\) Input & 120 & - & - & ns & - \\
\hline SP51 & TssH2doZ & \(\overline{S S x} \uparrow\) to SDOx Output High-Impedance \({ }^{(4)}\) & 10 & - & 50 & ns & - \\
\hline SP52 & TscH2ssH TscL2ssH & \(\overline{\mathrm{SSx}} \uparrow\) after SCKx Edge & 1.5 TCY + 40 & - & - & ns & See Note 4 \\
\hline SP60 & TssL2doV & SDOx Data Output Valid after SSx Edge & - & - & 50 & ns & - \\
\hline
\end{tabular}

Note 1: These parameters are characterized, but are not tested in manufacturing.
2: Data in "Typ" column is at \(3.3 \mathrm{~V}, 25^{\circ} \mathrm{C}\) unless otherwise stated.
3: The minimum clock period for SCKx is 91 ns. Therefore, the SCK clock generated by the Master must not violate this specification.
4: Assumes 50 pF load on all SPIx pins.

FIGURE 30-29: SPI1 SLAVE MODE (FULL-DUPLEX CKE = 0, CKP = 1, SMP = 0) TIMING CHARACTERISTICS


TABLE 30-49: SPI1 SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 1, SMP = 0) TIMING REQUIREMENTS
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{AC CHARACTERISTICS} & \multicolumn{5}{|l|}{\begin{tabular}{l}
Standard Operating Conditions: 3.0V to 3.6 V \\
(unless otherwise stated) \\
Operating temperature \(-40^{\circ} \mathrm{C} \leq T \mathrm{~A} \leq+85^{\circ} \mathrm{C}\) for Industrial \(-40^{\circ} \mathrm{C} \leq T \mathrm{TA} \leq+125^{\circ} \mathrm{C}\) for Extended
\end{tabular}} \\
\hline \begin{tabular}{l}
Param \\
No.
\end{tabular} & Symbol & Characteristic \({ }^{(1)}\) & Min & Typ \({ }^{(2)}\) & Max & Units & Conditions \\
\hline SP70 & TscP & Maximum SCK Input Frequency & - & - & 25 & MHz & See Note 3 \\
\hline SP72 & TscF & SCKx Input Fall Time & - & - & - & ns & See parameter DO32 and Note 4 \\
\hline SP73 & TscR & SCKx Input Rise Time & - & - & - & ns & See parameter DO31 and Note 4 \\
\hline SP30 & TdoF & SDOx Data Output Fall Time & - & - & - & ns & See parameter DO32 and Note 4 \\
\hline SP31 & TdoR & SDOx Data Output Rise Time & - & - & - & ns & See parameter DO31 and Note 4 \\
\hline SP35 & TscH2doV, TscL2doV & SDOx Data Output Valid after SCKx Edge & - & 6 & 20 & ns & - \\
\hline SP36 & \[
\begin{aligned}
& \text { TdoV2scH, } \\
& \text { TdoV2scL }
\end{aligned}
\] & SDOx Data Output Setup to First SCKx Edge & 30 & - & - & ns & - \\
\hline SP40 & TdiV2scH, TdiV2scL & Setup Time of SDIx Data Input to SCKx Edge & 30 & - & - & ns & - \\
\hline SP41 & TscH2diL, TscL2diL & Hold Time of SDIx Data Input to SCKx Edge & 30 & - & - & ns & - \\
\hline SP50 & TssL2scH, TssL2scL & \(\overline{S S x} \downarrow\) to \(\operatorname{SCKx} \uparrow\) or SCKx \(\downarrow\) Input & 120 & - & - & ns & - \\
\hline SP51 & TssH2doZ & \(\overline{S S x} \uparrow\) to SDOx Output High-Impedance \({ }^{(4)}\) & 10 & - & 50 & ns & - \\
\hline SP52 & \begin{tabular}{l}
TscH2ssH \\
TscL2ssH
\end{tabular} & \(\overline{\text { SSx }} \uparrow\) after SCKx Edge & 1.5 TCY + 40 & - & - & ns & See Note 4 \\
\hline
\end{tabular}

Note 1: These parameters are characterized, but are not tested in manufacturing.
2: Data in "Typ" column is at \(3.3 \mathrm{~V}, 25^{\circ} \mathrm{C}\) unless otherwise stated.
3: The minimum clock period for SCKx is 66.7 ns . Therefore, the SCK clock generated by the Master must not violate this specification.
4: Assumes 50 pF load on all SPIx pins.

FIGURE 30-30: SPI1 SLAVE MODE (FULL-DUPLEX, CKE \(=0\), CKP \(=0\), SMP \(=0\) ) TIMING CHARACTERISTICS


TABLE 30-50: SPI1 SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 0, SMP = 0) TIMING REQUIREMENTS
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{AC CHARACTERISTICS} & \multicolumn{5}{|l|}{\begin{tabular}{l}
Standard Operating Conditions: 3.0V to 3.6 V \\
(unless otherwise stated) \\
Operating temperature \(-40^{\circ} \mathrm{C} \leq T \mathrm{~A} \leq+85^{\circ} \mathrm{C}\) for Industrial \(-40^{\circ} \mathrm{C} \leq T \mathrm{TA} \leq+125^{\circ} \mathrm{C}\) for Extended
\end{tabular}} \\
\hline \begin{tabular}{l}
Param \\
No.
\end{tabular} & Symbol & Characteristic \({ }^{(1)}\) & Min & Typ \({ }^{(2)}\) & Max & Units & Conditions \\
\hline SP70 & TscP & Maximum SCK Input Frequency & - & - & 25 & MHz & See Note 3 \\
\hline SP72 & TscF & SCKx Input Fall Time & - & - & - & ns & See parameter DO32 and Note 4 \\
\hline SP73 & TscR & SCKx Input Rise Time & - & - & - & ns & See parameter DO31 and Note 4 \\
\hline SP30 & TdoF & SDOx Data Output Fall Time & - & - & - & ns & See parameter DO32 and Note 4 \\
\hline SP31 & TdoR & SDOx Data Output Rise Time & - & - & - & ns & See parameter DO31 and Note 4 \\
\hline SP35 & TscH2doV, TscL2doV & SDOx Data Output Valid after SCKx Edge & - & 6 & 20 & ns & - \\
\hline SP36 & \[
\begin{aligned}
& \text { TdoV2scH, } \\
& \text { TdoV2scL }
\end{aligned}
\] & SDOx Data Output Setup to First SCKx Edge & 30 & - & - & ns & - \\
\hline SP40 & TdiV2scH, TdiV2scL & Setup Time of SDIx Data Input to SCKx Edge & 30 & - & - & ns & - \\
\hline SP41 & TscH2diL, TscL2diL & Hold Time of SDIx Data Input to SCKx Edge & 30 & - & - & ns & - \\
\hline SP50 & TssL2scH, TssL2scL & \(\overline{S S x} \downarrow\) to \(\operatorname{SCKx} \uparrow\) or SCKx \(\downarrow\) Input & 120 & - & - & ns & - \\
\hline SP51 & TssH2doZ & \(\overline{S S x} \uparrow\) to SDOx Output High-Impedance \({ }^{(4)}\) & 10 & - & 50 & ns & - \\
\hline SP52 & \begin{tabular}{l}
TscH2ssH \\
TscL2ssH
\end{tabular} & \(\overline{\text { SSx }} \uparrow\) after SCKx Edge & 1.5 TCY + 40 & - & - & ns & See Note 4 \\
\hline
\end{tabular}

Note 1: These parameters are characterized, but are not tested in manufacturing.
2: Data in "Typ" column is at \(3.3 \mathrm{~V}, 25^{\circ} \mathrm{C}\) unless otherwise stated.
3: The minimum clock period for SCKx is 91 ns. Therefore, the SCK clock generated by the Master must not violate this specification.
4: Assumes 50 pF load on all SPIx pins.

FIGURE 30-31: I2Cx BUS STARTISTOP BITS TIMING CHARACTERISTICS (MASTER MODE)


Note: Refer to Figure 30-1 for load conditions.

FIGURE 30-32: I2Cx BUS DATA TIMING CHARACTERISTICS (MASTER MODE)


Note: Refer to Figure 30-1 for load conditions.

TABLE 30-51: I2Cx BUS DATA TIMING REQUIREMENTS (MASTER MODE)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{AC CHARACTERISTICS} & \multicolumn{4}{|l|}{\begin{tabular}{l}
Standard Operating Conditions: 3.0V to 3.6 V \\
(unless otherwise stated) \\
Operating temperature \(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}\) for Industrial \\
\(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C}\) for Extended
\end{tabular}} \\
\hline Param No. & Symbol & \multicolumn{2}{|c|}{Characteristic} & \(\mathrm{Min}^{(1)}\) & Max & Units & Conditions \\
\hline \multirow[t]{3}{*}{IM10} & \multirow[t]{3}{*}{TLO:SCL} & \multirow[t]{3}{*}{Clock Low Time} & 100 kHz mode & Tcy/2 (BRG + 2) & - & \(\mu \mathrm{s}\) & - \\
\hline & & & 400 kHz mode & TCY/2 (BRG + 2) & - & \(\mu \mathrm{s}\) & - \\
\hline & & & 1 MHz mode \(^{(2)}\) & TCY/2 (BRG + 2) & - & \(\mu \mathrm{s}\) & - \\
\hline \multirow[t]{3}{*}{IM11} & \multirow[t]{3}{*}{THI:SCL} & \multirow[t]{3}{*}{Clock High Time} & 100 kHz mode & TcY/2 (BRG + 2) & - & \(\mu \mathrm{s}\) & - \\
\hline & & & 400 kHz mode & TCY/2 (BRG + 2) & - & \(\mu \mathrm{s}\) & - \\
\hline & & & 1 MHz mode \(^{(2)}\) & TcY/2 (BRG + 2) & - & \(\mu \mathrm{s}\) & - \\
\hline \multirow[t]{3}{*}{IM20} & \multirow[t]{3}{*}{TF:SCL} & \multirow[t]{3}{*}{SDAx and SCLx Fall Time} & 100 kHz mode & - & 300 & ns & \multirow[t]{3}{*}{CB is specified to be from 10 to 400 pF} \\
\hline & & & 400 kHz mode & \(20+0.1\) Cв & 300 & ns & \\
\hline & & & 1 MHz mode \({ }^{(2)}\) & - & 100 & ns & \\
\hline \multirow[t]{3}{*}{IM21} & \multirow[t]{3}{*}{TR:SCL} & \multirow[t]{3}{*}{SDAx and SCLx Rise Time} & 100 kHz mode & - & 1000 & ns & \multirow[t]{3}{*}{CB is specified to be from 10 to 400 pF} \\
\hline & & & 400 kHz mode & \(20+0.1\) Cв & 300 & ns & \\
\hline & & & 1 MHz mode \({ }^{(2)}\) & - & 300 & ns & \\
\hline \multirow[t]{3}{*}{IM25} & \multirow[t]{3}{*}{Tsu:DAT} & \multirow[t]{3}{*}{Data Input Setup Time} & 100 kHz mode & 250 & - & ns & \multirow[t]{3}{*}{-} \\
\hline & & & 400 kHz mode & 100 & - & ns & \\
\hline & & & 1 MHz mode \(^{(2)}\) & 40 & - & ns & \\
\hline \multirow[t]{3}{*}{IM26} & \multirow[t]{3}{*}{THD:DAT} & \multirow[t]{3}{*}{Data Input Hold Time} & 100 kHz mode & 0 & - & \(\mu \mathrm{s}\) & \multirow[t]{3}{*}{-} \\
\hline & & & 400 kHz mode & 0 & 0.9 & \(\mu \mathrm{s}\) & \\
\hline & & & 1 MHz mode \({ }^{(2)}\) & 0.2 & - & \(\mu \mathrm{s}\) & \\
\hline \multirow[t]{3}{*}{IM30} & \multirow[t]{3}{*}{Tsu:STA} & \multirow[t]{3}{*}{Start Condition Setup Time} & 100 kHz mode & TCY/2 (BRG + 2) & - & \(\mu \mathrm{s}\) & \multirow[t]{3}{*}{Only relevant for Repeated Start condition} \\
\hline & & & 400 kHz mode & TCY/2 (BRG + 2) & - & \(\mu \mathrm{s}\) & \\
\hline & & & 1 MHz mode \({ }^{(2)}\) & Tcy/2 (BRG + 2) & - & \(\mu \mathrm{s}\) & \\
\hline \multirow[t]{3}{*}{IM31} & \multirow[t]{3}{*}{THD:STA} & \multirow[t]{3}{*}{Start Condition Hold Time} & 100 kHz mode & TCY/2 (BRG + 2) & - & \(\mu \mathrm{s}\) & \multirow[t]{3}{*}{After this period the first clock pulse is generated} \\
\hline & & & 400 kHz mode & TCY/2 (BRG +2) & - & \(\mu \mathrm{s}\) & \\
\hline & & & 1 MHz mode \({ }^{(2)}\) & TcY/2 (BRG + 2) & - & \(\mu \mathrm{s}\) & \\
\hline \multirow[t]{3}{*}{IM33} & \multirow[t]{3}{*}{Tsu:STo} & \multirow[t]{3}{*}{Stop Condition Setup Time} & 100 kHz mode & TCY/2 (BRG + 2) & - & \(\mu \mathrm{s}\) & \multirow[t]{3}{*}{-} \\
\hline & & & 400 kHz mode & Tcy/2 (BRG + 2) & - & \(\mu \mathrm{s}\) & \\
\hline & & & 1 MHz mode \({ }^{(2)}\) & TCY/2 (BRG + 2) & - & \(\mu \mathrm{s}\) & \\
\hline \multirow[t]{3}{*}{IM34} & \multirow[t]{3}{*}{THD:Sto} & \multirow[t]{3}{*}{Stop Condition Hold Time} & 100 kHz mode & TCY/2 (BRG + 2) & - & \(\mu \mathrm{s}\) & \multirow[t]{3}{*}{-} \\
\hline & & & 400 kHz mode & TcY/2 (BRG + 2) & - & \(\mu \mathrm{s}\) & \\
\hline & & & \(1 \mathrm{MHz} \mathrm{mode}{ }^{(2)}\) & TCY/2 (BRG + 2) & - & \(\mu \mathrm{s}\) & \\
\hline \multirow[t]{3}{*}{IM40} & \multirow[t]{3}{*}{TAA:SCL} & \multirow[t]{3}{*}{Output Valid From Clock} & 100 kHz mode & - & 3500 & ns & - \\
\hline & & & 400 kHz mode & - & 1000 & ns & - \\
\hline & & & 1 MHz mode \({ }^{(2)}\) & - & 400 & ns & - \\
\hline \multirow[t]{3}{*}{IM45} & \multirow[t]{3}{*}{TbF:SDA} & \multirow[t]{3}{*}{Bus Free Time} & 100 kHz mode & 4.7 & - & \(\mu \mathrm{s}\) & \multirow[t]{3}{*}{Time the bus must be free before a new transmission can start} \\
\hline & & & 400 kHz mode & 1.3 & - & \(\mu \mathrm{s}\) & \\
\hline & & & \(1 \mathrm{MHz} \mathrm{mode}{ }^{(2)}\) & 0.5 & - & \(\mu \mathrm{s}\) & \\
\hline IM50 & Св & \multicolumn{2}{|l|}{Bus Capacitive Loading} & - & 400 & pF & - \\
\hline IM51 & TPGD & \multicolumn{2}{|l|}{Pulse Gobbler Delay} & 65 & 390 & ns & See Note 3 \\
\hline
\end{tabular}

Note 1: BRG is the value of the \(I^{2} \mathrm{C}\) Baud Rate Generator. Refer to Section 19. "Inter-Integrated Circuit ( \(\left.I^{2} C^{\mathrm{Tm}}\right)\) " (DS70330) in the "dsPIC33E/PIC24E Family Reference Manual". Please see the Microchip web site for the latest family reference manual sections.
2: \(\quad\) Maximum pin capacitance \(=10 \mathrm{pF}\) for all I2Cx pins (for 1 MHz mode only).
3: Typical value for this parameter is 130 ns .
4: These parameters are characterized, but not tested in manufacturing.

FIGURE 30-33: I2Cx BUS STARTISTOP BITS TIMING CHARACTERISTICS (SLAVE MODE)


FIGURE 30-34: I2Cx BUS DATA TIMING CHARACTERISTICS (SLAVE MODE)


TABLE 30-52: I2Cx BUS DATA TIMING REQUIREMENTS (SLAVE MODE)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{AC CHARACTERISTICS} & \multicolumn{4}{|l|}{\begin{tabular}{l}
Standard Operating Conditions: 3.0V to 3.6 V (unless otherwise stated) \\
Operating temperature \(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}\) for Industrial \\
\(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C}\) for Extended
\end{tabular}} \\
\hline Param. No. & Symbol & \multicolumn{2}{|c|}{Characteristic} & Min & Max & Units & Conditions \\
\hline \multirow[t]{3}{*}{IS10} & \multirow[t]{3}{*}{TLO:SCL} & \multirow[t]{3}{*}{Clock Low Time} & 100 kHz mode & 4.7 & - & \(\mu \mathrm{s}\) & - \\
\hline & & & 400 kHz mode & 1.3 & - & \(\mu \mathrm{s}\) & - \\
\hline & & & \(1 \mathrm{MHz} \mathrm{mode}{ }^{(1)}\) & 0.5 & - & \(\mu \mathrm{s}\) & - \\
\hline \multirow[t]{3}{*}{IS11} & \multirow[t]{3}{*}{THI:SCL} & \multirow[t]{3}{*}{Clock High Time} & 100 kHz mode & 4.0 & - & \(\mu \mathrm{s}\) & Device must operate at a minimum of 1.5 MHz \\
\hline & & & 400 kHz mode & 0.6 & - & \(\mu \mathrm{s}\) & Device must operate at a minimum of 10 MHz \\
\hline & & & 1 MHz mode \({ }^{(1)}\) & 0.5 & - & \(\mu \mathrm{s}\) & - \\
\hline \multirow[t]{3}{*}{IS20} & \multirow[t]{3}{*}{TF:SCL} & \multirow[t]{3}{*}{SDAx and SCLx Fall Time} & 100 kHz mode & - & 300 & ns & \multirow[t]{3}{*}{CB is specified to be from 10 to 400 pF} \\
\hline & & & 400 kHz mode & \(20+0.1\) Св & 300 & ns & \\
\hline & & & 1 MHz mode \({ }^{(1)}\) & - & 100 & ns & \\
\hline \multirow[t]{3}{*}{IS21} & \multirow[t]{3}{*}{TR:SCL} & \multirow[t]{3}{*}{SDAx and SCLx Rise Time} & 100 kHz mode & - & 1000 & ns & \multirow[t]{3}{*}{CB is specified to be from 10 to 400 pF} \\
\hline & & & 400 kHz mode & \(20+0.1\) Св & 300 & ns & \\
\hline & & & 1 MHz mode \({ }^{(1)}\) & - & 300 & ns & \\
\hline \multirow[t]{3}{*}{IS25} & \multirow[t]{3}{*}{Tsu:DAT} & \multirow[t]{3}{*}{Data Input Setup Time} & 100 kHz mode & 250 & - & ns & \multirow[t]{3}{*}{-} \\
\hline & & & 400 kHz mode & 100 & - & ns & \\
\hline & & & 1 MHz mode \({ }^{(1)}\) & 100 & - & ns & \\
\hline \multirow[t]{3}{*}{IS26} & \multirow[t]{3}{*}{ThD:DAT} & \multirow[t]{3}{*}{Data Input Hold Time} & 100 kHz mode & 0 & - & \(\mu \mathrm{s}\) & \multirow[t]{3}{*}{-} \\
\hline & & & 400 kHz mode & 0 & 0.9 & \(\mu \mathrm{s}\) & \\
\hline & & & 1 MHz mode \({ }^{(1)}\) & 0 & 0.3 & \(\mu \mathrm{S}\) & \\
\hline \multirow[t]{3}{*}{IS30} & \multirow[t]{3}{*}{TSU:STA} & \multirow[t]{3}{*}{Start Condition Setup Time} & 100 kHz mode & 4.7 & - & \(\mu \mathrm{S}\) & \multirow[t]{3}{*}{Only relevant for Repeated Start condition} \\
\hline & & & 400 kHz mode & 0.6 & - & \(\mu \mathrm{s}\) & \\
\hline & & & 1 MHz mode \({ }^{(1)}\) & 0.25 & - & \(\mu \mathrm{s}\) & \\
\hline \multirow[t]{3}{*}{IS31} & \multirow[t]{3}{*}{THD:STA} & \multirow[t]{3}{*}{Start Condition Hold Time} & 100 kHz mode & 4.0 & - & \(\mu \mathrm{s}\) & \multirow[t]{3}{*}{After this period, the first clock pulse is generated} \\
\hline & & & 400 kHz mode & 0.6 & - & \(\mu \mathrm{s}\) & \\
\hline & & & 1 MHz mode \({ }^{(1)}\) & 0.25 & - & \(\mu \mathrm{s}\) & \\
\hline \multirow[t]{3}{*}{IS33} & \multirow[t]{3}{*}{TSU:STO} & \multirow[t]{3}{*}{Stop Condition Setup Time} & 100 kHz mode & 4.7 & - & \(\mu \mathrm{s}\) & \multirow[t]{3}{*}{-} \\
\hline & & & 400 kHz mode & 0.6 & - & \(\mu \mathrm{S}\) & \\
\hline & & & 1 MHz mode \({ }^{(1)}\) & 0.6 & - & \(\mu \mathrm{s}\) & \\
\hline \multirow[t]{3}{*}{IS34} & \multirow[t]{3}{*}{ThD:Sto} & \multirow[t]{3}{*}{Stop Condition Hold Time} & 100 kHz mode & 4 & - & \(\mu \mathrm{s}\) & \multirow[t]{3}{*}{-} \\
\hline & & & 400 kHz mode & 0.6 & - & \(\mu \mathrm{s}\) & \\
\hline & & & 1 MHz mode \({ }^{(1)}\) & 0.25 & & \(\mu \mathrm{s}\) & \\
\hline \multirow[t]{3}{*}{IS40} & \multirow[t]{3}{*}{TAA:SCL} & \multirow[t]{3}{*}{Output Valid From Clock} & 100 kHz mode & 0 & 3500 & ns & \multirow[t]{3}{*}{-} \\
\hline & & & 400 kHz mode & 0 & 1000 & ns & \\
\hline & & & 1 MHz mode \({ }^{(1)}\) & 0 & 350 & ns & \\
\hline \multirow[t]{3}{*}{IS45} & \multirow[t]{3}{*}{TBF:SDA} & \multirow[t]{3}{*}{Bus Free Time} & 100 kHz mode & 4.7 & - & \(\mu \mathrm{s}\) & \multirow[t]{3}{*}{Time the bus must be free before a new transmission can start} \\
\hline & & & 400 kHz mode & 1.3 & - & \(\mu \mathrm{S}\) & \\
\hline & & & \(1 \mathrm{MHz} \mathrm{mode}{ }^{(1)}\) & 0.5 & - & \(\mu \mathrm{s}\) & \\
\hline IS50 & Св & \multicolumn{2}{|l|}{Bus Capacitive Loading} & - & 400 & pF & - \\
\hline IS51 & TPGD & \multicolumn{2}{|l|}{Pulse Gobbler Delay} & 65 & 390 & ns & See Note 2 \\
\hline
\end{tabular}

Note 1: Maximum pin capacitance \(=10 \mathrm{pF}\) for all I2Cx pins (for 1 MHz mode only).
2: The Typical value for this parameter is 130 ns .
3: These parameters are characterized, but not tested in manufacturing.

FIGURE 30-35: ECAN MODULE I/O TIMING CHARACTERISTICS
\begin{tabular}{|lll:l}
\hline \(\begin{array}{l}\text { CiTx Pin } \\
\text { (output) }\end{array}\) & Old Value & & \\
\(\begin{array}{l}\text { CiRx Pin } \\
\text { (input) }\end{array}\) & & CA10 CA11 & \\
& & & CA20 \\
& & & \\
\hline
\end{tabular}
TABLE 30-53: ECAN MODULE I/O TIMING REQUIREMENTS
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{AC CHARACTERISTICS} & \multicolumn{5}{|l|}{\begin{tabular}{l}
Standard Operating Conditions: 3.0V to 3.6 V (unless otherwise stated) \\
Operating temperature \\
\(-40^{\circ} \mathrm{C} \leq T \mathrm{~A} \leq+85^{\circ} \mathrm{C}\) for Industrial \(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C}\) for Extended
\end{tabular}} \\
\hline Param No. & Symbol & Characteristic \({ }^{(1)}\) & Min & Typ \({ }^{(2)}\) & Max & Units & Conditions \\
\hline CA10 & TioF & Port Output Fall Time & - & - & - & ns & See parameter DO32 \\
\hline CA11 & TioR & Port Output Rise Time & - & - & - & ns & See parameter DO31 \\
\hline CA20 & Tcwf & Pulse Width to Trigger CAN Wake-up Filter & 120 & - & - & ns & - \\
\hline
\end{tabular}

Note 1: These parameters are characterized but not tested in manufacturing.
2: Data in "Typ" column is at \(3.3 \mathrm{~V}, 25^{\circ} \mathrm{C}\) unless otherwise stated. Parameters are for design guidance only and are not tested.

FIGURE 30-36: UART MODULE I/O TIMING CHARACTERISTICS
\(\square\)
TABLE 30-54: UART MODULE I/O TIMING REQUIREMENTS
\begin{tabular}{|l|l|l|c|c|c|c|c|}
\hline \multicolumn{2}{|c|}{\begin{tabular}{l} 
AC CHARACTERISTICS
\end{tabular}} & \multicolumn{3}{|l|}{\begin{tabular}{l} 
Standard Operating Conditions: 3.0V to 3.6V \\
(unless otherwise stated) \\
Operating temperature \(-40^{\circ} \mathrm{C} \leq T \mathrm{~A} \leq+125^{\circ} \mathrm{C}\)
\end{tabular}} \\
\hline \begin{tabular}{c} 
Param \\
No.
\end{tabular} & Symbol & \multicolumn{1}{|c|}{ Characteristic \(^{(1)}\)} & Min & Typ \(^{(\mathbf{2})}\) & Max & Units & Conditions \\
\hline \hline UA10 & Tuabaud & UART Baud Time & 66.67 & - & - & ns & - \\
\hline UA11 & Fbaud & UART Baud Frequency & - & - & 15 & mbps & - \\
\hline UA20 & Tcwf & \begin{tabular}{l} 
Start Bit Pulse Width to Trigger \\
UART Wake-up
\end{tabular} & 500 & - & - & ns & - \\
\hline
\end{tabular}

Note 1: These parameters are characterized but not tested in manufacturing.
2: Data in "Typ" column is at \(3.3 \mathrm{~V}, 25^{\circ} \mathrm{C}\) unless otherwise stated. Parameters are for design guidance only and are not tested.

TABLE 30-55: CTMU CURRENT SOURCE SPECIFICATIONS
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|r|}{DC CHARACTERISTICS} & \multicolumn{5}{|l|}{\begin{tabular}{l}
Standard Operating Conditions:3.0V to 3.6 V (unless otherwise stated) \\
Operating temperature \(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}\) for Industrial \\
\(-40^{\circ} \mathrm{C} \leq T \mathrm{~A} \leq+125^{\circ} \mathrm{C}\) for Extended
\end{tabular}} \\
\hline Param No. & Symbol & Characteristic & Min. & Typ & Max. & Units & Conditions \\
\hline \multicolumn{8}{|l|}{CTMU Current Source} \\
\hline CTMUI1 & Iout1 & Base Range \({ }^{(\mathbf{1})}\) & - & 0.55 & - & \(\mu \mathrm{A}\) & CTMUICON<9:8> \(=01\) \\
\hline CTMUI2 & IOUT2 & 10x Range \({ }^{(1)}\) & - & 5.5 & - & \(\mu \mathrm{A}\) & CTMUICON<9:8> \(=10\) \\
\hline CTMUI3 & IOUT3 & 100x Range \({ }^{(1)}\) & - & 55 & - & \(\mu \mathrm{A}\) & CTMUICON<9:8> \(=11\) \\
\hline CTMUI4 & IOUT4 & 1000x Range \({ }^{(\mathbf{1})}\) & - & 550 & - & \(\mu \mathrm{A}\) & CTMUICON<9:8> \(=00\) \\
\hline \multirow[t]{3}{*}{CTMUFV1} & \multirow[t]{3}{*}{VF} & \multirow[t]{3}{*}{Temperature Diode Forward Voltage \({ }^{(1,2)}\)} & - & 0.65 & - & V & \[
\begin{aligned}
& \mathrm{T} \mathrm{~A}=+25^{\circ} \mathrm{C}, \\
& \mathrm{CTMUICON}<9: 8>=01
\end{aligned}
\] \\
\hline & & & - & 0.71 & - & V & \[
\begin{aligned}
& \mathrm{T} \mathrm{~A}=+25^{\circ} \mathrm{C}, \\
& \mathrm{CTMUICON}<9: 8>=10
\end{aligned}
\] \\
\hline & & & - & 0.77 & - & V & \[
\begin{aligned}
& \mathrm{TA}=+25^{\circ} \mathrm{C}, \\
& \mathrm{CTMUICON}<9: 8>=11
\end{aligned}
\] \\
\hline \multirow[t]{3}{*}{CTMUFV2} & \multirow[t]{3}{*}{VFVR} & \multirow[t]{3}{*}{Temperature Diode Rate of Change \({ }^{(1,2)}\)} & - & -1.84 & - & \(\mathrm{mV} /{ }^{\circ} \mathrm{C}\) & CTMUICON<9:8> \(=01\) \\
\hline & & & - & -1.71 & - & \(\mathrm{mV} /{ }^{\circ} \mathrm{C}\) & CTMUICON<9:8> \(=10\) \\
\hline & & & - & -1.60 & - & \(\mathrm{mV} /{ }^{\circ} \mathrm{C}\) & CTMUICON<9:8> = 11 \\
\hline
\end{tabular}

Note 1: Nominal value at center point of current trim range (CTMUICON<15:10> = 0000000).
2: Parameters are characterized but not tested in manufacturing. Measurements taken with the following conditions:
- VREF+ = AVDD \(=3.3 \mathrm{~V}\)
- ADC configured for 10-bit mode
- ADC module configured for conversion speed of 500 ksps
- All PMD bits are cleared (PMDx = 0)
- Executing a while(1) statement
- Device operating from the FRC with no PLL

FIGURE 30-37: FORWARD VOLTAGE VERSUS TEMPERATURE


TABLE 30-56: ADC MODULE SPECIFICATIONS
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{AC CHARACTERISTICS} & \multicolumn{5}{|l|}{\begin{tabular}{l}
Standard Operating Conditions: 3.0V to 3.6V \\
(unless otherwise stated) \\
Operating temperature \(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}\) for Industrial \\
\(-40^{\circ} \mathrm{C} \leq T \mathrm{~A} \leq+125^{\circ} \mathrm{C}\) for Extended
\end{tabular}} \\
\hline Param No. & Symbol & Characteristic & Min & Typ & Max & Units & Conditions \\
\hline \multicolumn{8}{|c|}{Device Supply} \\
\hline AD01 & AVDD & Module VDD Supply & Greater of
\[
\text { VDD }-0.3
\]
\[
\text { or } 3.0
\] & - & Lesser of VDD +0.3 or 3.6 & V & - \\
\hline AD02 & AVss & Module Vss Supply & Vss -0.3 & - & Vss + 0.3 & V & - \\
\hline \multicolumn{8}{|c|}{Reference Inputs} \\
\hline AD05 & VREFH & Reference Voltage High & AVss + 2.5 & - & AVDD & V & \begin{tabular}{l}
See Note 1 \\
VREFH = VREF+ \\
VRefl = VREF-
\end{tabular} \\
\hline AD05a & & & 3.0 & - & 3.6 & V & \[
\begin{aligned}
& \text { VREFH }=\text { AVDD } \\
& \text { VREFL }=A V S S=0
\end{aligned}
\] \\
\hline AD06 & VREFL & Reference Voltage Low & AVss & - & AVDD - 2.7 & V & See Note 1 \\
\hline AD06a & & & 0 & - & 0 & V & \[
\begin{aligned}
& \text { VREFH = AVDD } \\
& \text { VREFL }=A V S S=0
\end{aligned}
\] \\
\hline AD07 & VREF & Absolute Reference Voltage & 2.7 & - & 3.6 & V & VREF = VREFH - Vrefl \\
\hline AD08 & IREF & Current Drain & — & — & \[
\begin{gathered}
\hline 10 \\
600 \\
\hline
\end{gathered}
\] & \[
\begin{aligned}
& \mu \mathrm{A} \\
& \mu \mathrm{~A}
\end{aligned}
\] & ADC off ADC on \\
\hline AD09 & IAD & Operating Current & \[
\begin{aligned}
& - \\
& -
\end{aligned}
\] & \[
\begin{aligned}
& \hline 9.0 \\
& 3.2
\end{aligned}
\] & - & \[
\begin{aligned}
& \mathrm{mA} \\
& \mathrm{~mA}
\end{aligned}
\] & ADC operating in 10-bit mode, see Note 1 ADC operating in 12-bit mode, see Note 1 \\
\hline \multicolumn{8}{|c|}{Analog Input} \\
\hline AD12 & VINH & Input Voltage Range VINH & VINL & - & VREFH & V & This voltage reflects Sample and Hold Channels 0, 1, 2, and \(3(\mathrm{CHO}-\mathrm{CH} 3)\), positive input \\
\hline AD13 & VINL & Input Voltage Range VINL & VREFL & - & AVss + 1V & V & This voltage reflects Sample and Hold Channels 0, 1, 2, and \(3(\mathrm{CH} 0-\mathrm{CH} 3)\), negative input \\
\hline AD17 & RIN & Recommended Impedance of Analog Voltage Source & - & - & 200 & \(\Omega\) & Impedance to achieve maximum performance of ADC \\
\hline
\end{tabular}

Note 1: These parameters are not characterized or tested in manufacturing.

TABLE 30-57: ADC MODULE SPECIFICATIONS (12-BIT MODE)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{AC CHARACTERISTICS} & \multicolumn{5}{|l|}{\begin{tabular}{l}
Standard Operating Conditions: 3.0V to 3.6 V \\
(unless otherwise stated) \\
Operating temperature \(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}\) for Industrial \(-40^{\circ} \mathrm{C} \leq T \mathrm{~A} \leq+125^{\circ} \mathrm{C}\) for Extended
\end{tabular}} \\
\hline Param No. & Symbol & Characteristic & Min & Typ & Max & Units & Conditions \\
\hline \multicolumn{8}{|c|}{ADC Accuracy (12-bit Mode) - Measurements with external Vref+/Vref-} \\
\hline AD20a & Nr & Resolution & & data b & & bits & - \\
\hline AD21a & INL & Integral Nonlinearity & -2 & - & +2 & LSb & \[
\begin{aligned}
& \text { VINL = AVSS = VREFL = OV, AVDD } \\
& =\text { VREFH }=3.6 \mathrm{~V}
\end{aligned}
\] \\
\hline AD22a & DNL & Differential Nonlinearity & >-1 & - & <1 & LSb & \[
\begin{aligned}
& \text { VINL = AVSS = VREFL }=0 \mathrm{~V} \text {, AVDD } \\
& =\text { VREFH }=3.6 \mathrm{~V}
\end{aligned}
\] \\
\hline AD23a & GERR & Gain Error & 1.25 & 1.5 & 3 & LSb & \[
\begin{aligned}
& \text { VINL = AVSS = VREFL = OV, AVDD } \\
& =\text { VREFH }=3.6 \mathrm{~V}
\end{aligned}
\] \\
\hline AD24a & EOFF & Offset Error & 1.25 & 1.52 & 2 & LSb & \[
\begin{aligned}
& \text { VINL = AVSS = VREFL = OV, AVDD } \\
& =\text { VREFH }=3.6 \mathrm{~V}
\end{aligned}
\] \\
\hline AD25a & - & Monotonicity & - & - & - & - & Guaranteed \\
\hline \multicolumn{8}{|c|}{ADC Accuracy (12-bit Mode) - Measurements with internal Vref+/Vref-} \\
\hline AD20a & Nr & Resolution & & data b & & bits & - \\
\hline AD21a & INL & Integral Nonlinearity & -2 & - & +2 & LSb & \(\mathrm{VINL}=\mathrm{AVSS}=0 \mathrm{~V}, \mathrm{AVDD}=3.6 \mathrm{~V}\) \\
\hline AD22a & DNL & Differential Nonlinearity & >-1 & - & <1 & LSb & \(\mathrm{VINL}=\mathrm{AVSS}=0 \mathrm{~V}, \mathrm{AVDD}=3.6 \mathrm{~V}\) \\
\hline AD23a & GERR & Gain Error & 2 & 3 & 7 & LSb & \(\mathrm{VINL}=\mathrm{AVSS}=0 \mathrm{~V}, \mathrm{AVDD}=3.6 \mathrm{~V}\) \\
\hline AD24a & Eoff & Offset Error & 2 & 3 & 5 & LSb & \(\mathrm{VINL}=\mathrm{AVSS}=0 \mathrm{~V}, \mathrm{AVDD}=3.6 \mathrm{~V}\) \\
\hline AD25a & - & Monotonicity & - & - & - & - & Guaranteed \\
\hline \multicolumn{8}{|c|}{Dynamic Performance (12-bit Mode)} \\
\hline AD30a & THD & Total Harmonic Distortion & - & - & -75 & dB & - \\
\hline AD31a & SINAD & Signal to Noise and Distortion & 68.5 & 69.5 & - & dB & - \\
\hline AD32a & SFDR & Spurious Free Dynamic Range & 80 & - & - & dB & - \\
\hline AD33a & FNYQ & Input Signal Bandwidth & - & - & 250 & kHz & - \\
\hline AD34a & ENOB & Effective Number of Bits & 11.09 & 11.3 & - & bits & - \\
\hline
\end{tabular}

TABLE 30-58: ADC MODULE SPECIFICATIONS (10-BIT MODE)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{AC CHARACTERISTICS} & \multicolumn{5}{|l|}{\begin{tabular}{l}
Standard Operating Conditions: 3.0V to 3.6V \\
(unless otherwise stated) \\
Operating temperature \(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}\) for Industrial \(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C}\) for Extended
\end{tabular}} \\
\hline Param No. & Symbol & Characteristic & Min & Typ & Max & Units & Conditions \\
\hline \multicolumn{8}{|c|}{ADC Accuracy (10-bit Mode) - Measurements with external Vref+/Vref-} \\
\hline AD20b & Nr & Resolution & & data b & & bits & - \\
\hline AD21b & INL & Integral Nonlinearity & -1 & - & +1 & LSb & \[
\begin{aligned}
& \text { VINL }=\text { AVSS }=\text { VREFL }=0 \mathrm{~V}, \\
& \text { AVDD }=\text { VREFH }=3.6 \mathrm{~V}
\end{aligned}
\] \\
\hline AD22b & DNL & Differential Nonlinearity & >-1 & - & <1 & LSb & \[
\begin{aligned}
& \mathrm{VINL}=\mathrm{AVSS}=\mathrm{VREFL}=0 \mathrm{~V}, \\
& \text { AVDD }=\mathrm{VREFH}=3.6 \mathrm{~V}
\end{aligned}
\] \\
\hline AD23b & GERR & Gain Error & 1 & 3 & 6 & LSb & \[
\begin{aligned}
& \text { VINL }=\mathrm{AVSS}=\mathrm{VREFL}=0 \mathrm{~V}, \\
& \text { AVDD }=\mathrm{VREFH}=3.6 \mathrm{~V}
\end{aligned}
\] \\
\hline AD24b & EOFF & Offset Error & 1 & 2 & 3 & LSb & \[
\begin{aligned}
& \text { VINL = AVSS = VREFL }=0 \mathrm{~V}, \\
& \text { AVDD = VREFH }=3.6 \mathrm{~V}
\end{aligned}
\] \\
\hline AD25b & - & Monotonicity & - & - & - & - & Guaranteed \\
\hline \multicolumn{8}{|c|}{ADC Accuracy (10-bit Mode) - Measurements with internal Vref+/Vref-} \\
\hline AD20b & Nr & Resolution & & data b & & bits & - \\
\hline AD21b & INL & Integral Nonlinearity & -1.5 & - & +1.5 & LSb & \(\mathrm{VINL}=\mathrm{AVSS}=0 \mathrm{~V}, \mathrm{AVDD}=3.6 \mathrm{~V}\) \\
\hline AD22b & DNL & Differential Nonlinearity & >-1 & - & <1 & LSb & \(\mathrm{VINL}=\mathrm{AVSS}=0 \mathrm{~V}, \mathrm{AVDD}=3.6 \mathrm{~V}\) \\
\hline AD23b & GERR & Gain Error & 1 & 5 & 6 & LSb & \(\mathrm{VINL}=\mathrm{AVss}=0 \mathrm{~V}, \mathrm{AVDD}=3.6 \mathrm{~V}\) \\
\hline AD24b & EOFF & Offset Error & 1 & 2 & 5 & LSb & \(\mathrm{VINL}=\mathrm{AVss}=0 \mathrm{~V}, \mathrm{AVDD}=3.6 \mathrm{~V}\) \\
\hline AD25b & - & Monotonicity & - & - & - & - & Guaranteed \\
\hline \multicolumn{8}{|c|}{Dynamic Performance (10-bit Mode)} \\
\hline AD30b & THD & Total Harmonic Distortion & - & - & -64 & dB & - \\
\hline AD31b & SINAD & Signal to Noise and Distortion & 57 & 58.5 & - & dB & - \\
\hline AD32b & SFDR & Spurious Free Dynamic Range & 72 & - & - & dB & - \\
\hline AD33b & FNYQ & Input Signal Bandwidth & - & - & 550 & kHz & - \\
\hline AD34b & ENOB & Effective Number of Bits & 9.16 & 9.4 & - & bits & - \\
\hline
\end{tabular}

FIGURE 30-38: ADC CONVERSION (12-BIT MODE) TIMING CHARACTERISTICS (ASAM \(=0, S S R C<2: 0>=000, S S R C G=0)\)


TABLE 30-59: ADC CONVERSION (12-BIT MODE) TIMING REQUIREMENTS
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{AC CHARACTERISTICS} & \multicolumn{5}{|l|}{\begin{tabular}{l}
Standard Operating Conditions: 3.0 V to 3.6 V (unless otherwise stated) \\
Operating temperature \\
\(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}\) for Industrial \(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C}\) for Extended
\end{tabular}} \\
\hline Param No. & Symbol & Characteristic & Min & Typ & Max & Units & Conditions \\
\hline \multicolumn{8}{|c|}{Clock Parameters} \\
\hline AD50 & TAD & ADC Clock Period & 117.6 & - & - & ns & - \\
\hline AD51 & tRC & ADC Internal RC Oscillator Period & - & 250 & - & ns & - \\
\hline \multicolumn{8}{|c|}{Conversion Rate} \\
\hline AD55 & tCONV & Conversion Time & - & 14 TAD & & ns & - \\
\hline AD56 & FcNv & Throughput Rate & - & - & 500 & Ksps & - \\
\hline AD57 & TsAMP & Sample Time & 3 TAD & - & - & - & - \\
\hline \multicolumn{8}{|c|}{Timing Parameters} \\
\hline AD60 & tPCS & Conversion Start from Sample Trigger \({ }^{(2)}\) & 2 TAd & - & 3 TAD & - & Auto convert trigger not selected \\
\hline AD61 & tPSS & Sample Start from Setting Sample (SAMP) bit \({ }^{(2)}\) & 2 TAD & - & 3 TAD & - & - \\
\hline AD62 & tcss & Conversion Completion to Sample Start (ASAM = 1) \({ }^{(\mathbf{2})}\) & - & 0.5 TAD & - & - & - \\
\hline AD63 & tDPU & Time to Stabilize Analog Stage from ADC Off to ADC On \({ }^{(2)}\) & - & - & 20 & \(\mu \mathrm{s}\) & See Note 3 \\
\hline
\end{tabular}

Note 1: Because the sample caps will eventually lose charge, clock rates below 10 kHz may affect linearity performance, especially at elevated temperatures.
2: These parameters are characterized but not tested in manufacturing.
3: The parameter tDPU is the time required for the ADC module to stabilize at the appropriate level when the module is turned on (ADON (AD1CON1<15>) \(=\) ' 1 '). During this time, the ADC result is indeterminate.

FIGURE 30-39: ADC CONVERSION (10-BIT MODE) TIMING CHARACTERISTICS \((C H P S<1: 0>=01, S I M S A M=0, A S A M=0, S S R C<2: 0>=000, S S R C G=0)\)


FIGURE 30-40: ADC CONVERSION (10-BIT MODE) TIMING CHARACTERISTICS (CHPS<1:0> \(=01\), SIMSAM \(=0\), ASAM \(=1, S S R C<2: 0>=111, S S R C G=0, S A M C<4: 0>=00010)\)


TABLE 30-60: ADC CONVERSION (10-BIT MODE) TIMING REQUIREMENTS
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{AC CHARACTERISTICS} & \multicolumn{5}{|l|}{\begin{tabular}{l}
Standard Operating Conditions: 3.0V to 3.6 V (unless otherwise stated) \\
Operating temperature \(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}\) for Industrial \\
\(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C}\) for Extended
\end{tabular}} \\
\hline Param No. & Symbol & Characteristic & Min & Typ \({ }^{(1)}\) & Max & Units & Conditions \\
\hline \multicolumn{8}{|c|}{Clock Parameters} \\
\hline AD50 & TAd & ADC Clock Period & 76 & - & - & ns & - \\
\hline AD51 & tRC & ADC Internal RC Oscillator Period & - & 250 & - & ns & - \\
\hline \multicolumn{8}{|c|}{Conversion Rate} \\
\hline AD55 & tconv & Conversion Time & - & 12 TAD & - & - & - \\
\hline AD56 & FCNV & Throughput Rate & - & - & 1.1 & Msps & Using Simultaneous Sampling \\
\hline AD57 & Tsamp & Sample Time & 2 TAD & - & - & - & - \\
\hline \multicolumn{8}{|c|}{Timing Parameters} \\
\hline AD60 & tPCS & Conversion Start from Sample Trigger \({ }^{(1)}\) & 2 TAD & - & 3 TAD & - & Auto-Convert Trigger not selected \\
\hline AD61 & tPSS & Sample Start from Setting Sample (SAMP) bit \({ }^{(1)}\) & 2 TAD & - & 3 TAD & - & - \\
\hline AD62 & tcss & Conversion Completion to Sample Start (ASAM =1) \({ }^{(\mathbf{1})}\) & - & 0.5 TAD & - & - & - \\
\hline AD63 & tDPU & Time to Stabilize Analog Stage from ADC Off to ADC On \({ }^{(1)}\) & - & - & 20 & \(\mu \mathrm{s}\) & See Note 3 \\
\hline
\end{tabular}

Note 1: These parameters are characterized but not tested in manufacturing.
2: Because the sample caps will eventually lose charge, clock rates below 10 kHz may affect linearity performance, especially at elevated temperatures.
3: The parameter tDPU is the time required for the ADC module to stabilize at the appropriate level when the module is turned on (AD1CON1<ADON> = 1). During this time, the ADC result is indeterminate.

TABLE 30-61: DMA MODULE TIMING REQUIREMENTS
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline AC CHA & RACTERISTICS & \multicolumn{5}{|l|}{\begin{tabular}{l}
Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) \\
Operating temperature \(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}\) for Industrial \\
\(-40^{\circ} \mathrm{C} \leq T \mathrm{~A} \leq+125^{\circ} \mathrm{C}\) for Extended
\end{tabular}} \\
\hline Param No. & Characteristic & Min & Typ & Max & Units & Conditions \\
\hline DM1 & DMA Byte/Word Transfer Latency & \(1 \mathrm{TCY}^{(2)}\) & - & - & ns & - \\
\hline
\end{tabular}

Note 1: These parameters are characterized, but not tested in manufacturing.
2: Because DMA transfers use the CPU data bus, this time is dependent on other functions on the bus.

\subsection*{31.0 PACKAGING INFORMATION}

\subsection*{31.1 Package Marking Information}

Example

Example
        dsPIC33EP64GP
        dsPIC33EP64GP
        502-I/SO e3

Example


28-Lead SSOP


\section*{28-Lead SPDIP}


\section*{28-Lead SOIC}


Legend: XX...X Customer-specific information


YY Year code (last 2 digits of calendar year)
WW Week code (week of January 1 is week ' 01 ')
NNN Alphanumeric traceability code
e3) Pb-free JEDEC designator for Matte Tin (Sn)
This package is Pb -free. The Pb -free JEDEC designator (e3) can be found on the outer packaging for this package.
Note: In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for customer-specific information.

\subsection*{31.1 Package Marking Information (Continued)}

28-Lead QFN-S


\section*{36-Lead TLA}


44-Lead TLA


Example


Example

\(\left.\begin{array}{|lll|}\hline \text { Legend: } & \text { XX...X } & \text { Customer-specific information } \\ & \text { Y } & \text { Year code (last digit of calendar year) } \\ & \text { WW } & \text { Year code (last 2 digits of calendar year) } \\ & \text { Week code (week of January 1 is week '01') }\end{array}\right\}\)

\subsection*{31.1 Package Marking Information (Continued)}


64-Lead QFN (9x9x0.9 mm)


\section*{Example}


Example


64-Lead TQFP (10x10x1 mm)


Example


Legend: \(X X\)...X Customer-specific information
\(Y \quad\) Year code (last digit of calendar year)
YY Year code (last 2 digits of calendar year)
WW Week code (week of January 1 is week ' 01 ')
NNN Alphanumeric traceability code
(e3) Pb-free JEDEC designator for Matte Tin (Sn)
* This package is Pb -free. The Pb -free JEDEC designator (e3) can be found on the outer packaging for this package.

Note: In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for customer-specific information.

\subsection*{31.2 Package Details}

\section*{28-Lead Skinny Plastic Dual In-Line (SP) - \(\mathbf{3 0 0}\) mil Body [SPDIP]}

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

\begin{tabular}{|l|c|c|c|c|}
\hline & Units & \multicolumn{3}{|c|}{ INCHES } \\
\hline \multicolumn{2}{|c|}{ Dimension Limits } & \multicolumn{2}{|c|}{ MIN } & NOM \\
\hline & N & \multicolumn{3}{|c|}{28} \\
\hline Number of Pins & e & \multicolumn{3}{|c|}{.100 BSC} \\
\hline Pitch & A & - & - & .200 \\
\hline Top to Seating Plane & A2 & .120 & .135 & .150 \\
\hline Molded Package Thickness & A 1 & .015 & - & - \\
\hline Base to Seating Plane & E & .290 & .310 & .335 \\
\hline Shoulder to Shoulder Width & E 1 & .240 & .285 & .295 \\
\hline Molded Package Width & D & 1.345 & 1.365 & 1.400 \\
\hline Overall Length & L & .110 & .130 & .150 \\
\hline Tip to Seating Plane & c & .008 & .010 & .015 \\
\hline Lead Thickness & b 1 & .040 & .050 & .070 \\
\hline Upper Lead Width & b & .014 & .018 & .022 \\
\hline Lower Lead Width & eB & - & - & .430 \\
\hline Overall Row Spacing § & & & & \\
\hline
\end{tabular}

\section*{Notes}
1. Pin 1 visual index feature may vary, but must be located within the hatched area.
2. § Significant Characteristic.
3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.
4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

\section*{28-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]}

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging


VIEW A-A

\section*{28-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]}

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Units} & \multicolumn{3}{|c|}{MILLIMETERS} \\
\hline \multicolumn{2}{|r|}{Dimension Limits} & MIN & NOM & MAX \\
\hline Number of Pins & N & \multicolumn{3}{|c|}{28} \\
\hline Pitch & e & \multicolumn{3}{|c|}{1.27 BSC} \\
\hline Overall Height & A & - & - & 2.65 \\
\hline Molded Package Thickness & A2 & 2.05 & - & - \\
\hline Standoff § & A1 & 0.10 & - & 0.30 \\
\hline Overall Width & E & \multicolumn{3}{|c|}{10.30 BSC} \\
\hline Molded Package Width & E1 & \multicolumn{3}{|c|}{7.50 BSC} \\
\hline Overall Length & D & \multicolumn{3}{|c|}{17.90 BSC} \\
\hline Chamfer (Optional) & h & 0.25 & - & 0.75 \\
\hline Foot Length & L & 0.40 & - & 1.27 \\
\hline Footprint & L1 & \multicolumn{3}{|c|}{1.40 REF} \\
\hline Lead Angle & \(\Theta\) & \(0^{\circ}\) & - & - \\
\hline Foot Angle & \(\varphi\) & \(0^{\circ}\) & - & \(8^{\circ}\) \\
\hline Lead Thickness & c & 0.18 & - & 0.33 \\
\hline Lead Width & b & 0.31 & - & 0.51 \\
\hline Mold Draft Angle Top & \(\alpha\) & \(5^{\circ}\) & - & \(15^{\circ}\) \\
\hline Mold Draft Angle Bottom & \(\beta\) & \(5^{\circ}\) & - & \(15^{\circ}\) \\
\hline
\end{tabular}

\section*{Notes:}
1. Pin 1 visual index feature may vary, but must be located within the hatched area.
2. § Significant Characteristic
3. Dimension \(D\) does not include mold flash, protrusions or gate burrs, which shall not exceed 0.15 mm per end. Dimension E1 does not include interlead flash or protrusion, which shall not exceed 0.25 mm per side.
4. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.
REF: Reference Dimension, usually without tolerance, for information purposes only.
5. Datums A \& B to be determined at Datum H.

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging


\section*{RECOMMENDED LAND PATTERN}
\begin{tabular}{|l|c|c|c|c|}
\hline & Units & \multicolumn{3}{|c|}{ MILLIMETERS } \\
\hline \multicolumn{3}{|c|}{ Dimension Limits } & \multicolumn{2}{c|}{ MIN } \\
\hline \multicolumn{2}{|c|}{ NOM } & MAX \\
\hline Contact Pitch & E & \multicolumn{3}{|c|}{9.40} \\
\hline Contact Pad Spacing & C & & \\
\hline Contact Pad Width (X28) & X & & & 0.60 \\
\hline Contact Pad Length (X28) & Y & & & 2.00 \\
\hline Distance Between Pads & Gx & 0.67 & & \\
\hline Distance Between Pads & G & 7.40 & & \\
\hline
\end{tabular}

Notes:
1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.
Microchip Technology Drawing No. C04-2052A

\section*{28-Lead Plastic Shrink Small Outline (SS) - \(\mathbf{5 . 3 0} \mathbf{m m}\) Body [SSOP]}

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Units} & \multicolumn{3}{|c|}{MILLIMETERS} \\
\hline \multicolumn{2}{|r|}{Dimension Limits} & MIN & NOM & MAX \\
\hline Number of Pins & N & & 28 & \\
\hline Pitch & e & & . 65 BS & \\
\hline Overall Height & A & - & - & 2.00 \\
\hline Molded Package Thickness & A2 & 1.65 & 1.75 & 1.85 \\
\hline Standoff & A1 & 0.05 & - & - \\
\hline Overall Width & E & 7.40 & 7.80 & 8.20 \\
\hline Molded Package Width & E1 & 5.00 & 5.30 & 5.60 \\
\hline Overall Length & D & 9.90 & 10.20 & 10.50 \\
\hline Foot Length & L & 0.55 & 0.75 & 0.95 \\
\hline Footprint & L1 & & . 25 RE & \\
\hline Lead Thickness & C & 0.09 & - & 0.25 \\
\hline Foot Angle & \(\phi\) & \(0^{\circ}\) & \(4^{\circ}\) & \(8^{\circ}\) \\
\hline Lead Width & b & 0.22 & - & 0.38 \\
\hline
\end{tabular}

Notes:
1. Pin 1 visual index feature may vary, but must be located within the hatched area.
2. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.20 mm per side.
3. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.
REF: Reference Dimension, usually without tolerance, for information purposes only.
Microchip Technology Drawing C04-073B

\section*{28-Lead Plastic Shrink Small Outline (SS) - 5.30 mm Body [SSOP]}

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

\begin{tabular}{|l|c|c|c|c|}
\hline & Units & \multicolumn{3}{|c|}{ MILLIMETERS } \\
\hline \multicolumn{2}{|c|}{ Dimension Limits } & MIN & NOM & MAX \\
\hline Contact Pitch & E & \multicolumn{3}{|c|}{0.65 BSC } \\
\hline Contact Pad Spacing & C & & 7.20 & \\
\hline Contact Pad Width (X28) & X 1 & & & 0.45 \\
\hline Contact Pad Length (X28) & Y 1 & & & 1.75 \\
\hline Distance Between Pads & G & 0.20 & & \\
\hline
\end{tabular}

Notes:
1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.
Microchip Technology Drawing No. C04-2073A

\section*{28-Lead Plastic Quad Flat, No Lead Package (MM) - 6x6x0.9 mm Body [QFN-S] with 0.40 mm Contact Length}

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Units} & \multicolumn{3}{|c|}{MILLIMETERS} \\
\hline \multicolumn{2}{|r|}{Dimension Limits} & MIN & NOM & MAX \\
\hline Number of Pins & N & & 28 & \\
\hline Pitch & e & & 65 BS & \\
\hline Overall Height & A & 0.80 & 0.90 & 1.00 \\
\hline Standoff & A1 & 0.00 & 0.02 & 0.05 \\
\hline Contact Thickness & A3 & & 20 RE & \\
\hline Overall Width & E & & 00 BS & \\
\hline Exposed Pad Width & E2 & 3.65 & 3.70 & 4.70 \\
\hline Overall Length & D & & 00 BS & \\
\hline Exposed Pad Length & D2 & 3.65 & 3.70 & 4.70 \\
\hline Contact Width & b & 0.23 & 0.38 & 0.43 \\
\hline Contact Length & L & 0.30 & 0.40 & 0.50 \\
\hline Contact-to-Exposed Pad & K & 0.20 & - & - \\
\hline
\end{tabular}

\section*{Notes:}
1. Pin 1 visual index feature may vary, but must be located within the hatched area.
2. Package is saw singulated.
3. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.
REF: Reference Dimension, usually without tolerance, for information purposes only.
Microchip Technology Drawing C04-124B

\section*{28-Lead Plastic Quad Flat, No Lead Package (MM) - 6x6x0.9 mm Body [QFN-S] with 0.40 mm Contact Length}

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging


RECOMMENDED LAND PATTERN
\begin{tabular}{|l|c|l|c|c|}
\hline & Units & \multicolumn{3}{r|}{ MILLIMETERS } \\
\hline \multicolumn{2}{|c|}{ Dimension Limits } & MIN & NOM & MAX \\
\hline Contact Pitch & E & \multicolumn{3}{|c|}{0.65 BSC } \\
\hline Optional Center Pad Width & W2 & & & 4.70 \\
\hline Optional Center Pad Length & T2 & & & 4.70 \\
\hline Contact Pad Spacing & C1 & & 6.00 & \\
\hline Contact Pad Spacing & C2 & & 6.00 & \\
\hline Contact Pad Width (X28) & X1 & & & 0.40 \\
\hline Contact Pad Length (X28) & Y1 & & & 0.85 \\
\hline Distance Between Pads & G & 0.25 & & \\
\hline
\end{tabular}

Notes:
1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.
Microchip Technology Drawing No. C04-2124A

\section*{36-Lead Thermal Leadless Array Package (TL) - 5x5x0.9 mm Body with Exposed Pad [TLA]}

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging


Microchip Technology Drawing C04-187B Sheet 1 of 2

\section*{36-Lead Thermal Leadless Array Package (TL) - 5x5x0.9 mm Body with Exposed Pad [TLA]}

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging


DETAIL A
\begin{tabular}{|l|c|c|c|c|}
\hline & \multicolumn{4}{|c|}{ Units } \\
& \multicolumn{4}{|c|}{ MILLIMETERS } \\
\hline \multicolumn{1}{|c|}{ Dimension } & Limits & \multicolumn{3}{|c|}{ MIN } \\
\hline & NOM & MAX \\
\hline Number of Pins & ND & \multicolumn{3}{|c|}{10} \\
\hline Number of Pins per Side & NE & \multicolumn{3}{|c|}{8} \\
\hline Number of Pins per Side & e & \multicolumn{3}{|c|}{0.50 BSC} \\
\hline Pitch & A & 0.80 & 0.90 & 1.00 \\
\hline Overall Height & A1 & 0.025 & - & 0.075 \\
\hline Standoff & E & \multicolumn{3}{|c|}{5.00 BSC} \\
\hline Overall Width & E2 & 3.60 & 3.75 & 3.90 \\
\hline Exposed Pad Width & D & \multicolumn{3}{|c|}{5.00 BSC} \\
\hline Overall Length & D2 & 3.60 & 3.75 & 3.90 \\
\hline Exposed Pad Length & b & 0.20 & 0.25 & 0.30 \\
\hline Contact Width & L & 0.20 & 0.25 & 0.30 \\
\hline Contact Length & K & 0.20 & - & - \\
\hline Contact-to-Exposed Pad & & & \\
\hline
\end{tabular}

\section*{Notes:}
1. Pin 1 visual index feature may vary, but must be located within the hatched area.
2. Package is saw singulated.
3. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.
REF: Reference Dimension, usually without tolerance, for information purposes only.
Microchip Technology Drawing C04-187B Sheet 2 of 2

\section*{44-Lead Plastic Thin Quad Flatpack (PT) - 10x10x1 mm Body, 2.00 mm [TQFP]}

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Units} & \multicolumn{3}{|c|}{MILLIMETERS} \\
\hline \multicolumn{2}{|r|}{Dimension Limits} & MIN & NOM & MAX \\
\hline Number of Leads & N & \multicolumn{3}{|c|}{44} \\
\hline Lead Pitch & e & \multicolumn{3}{|c|}{0.80 BSC} \\
\hline Overall Height & A & - & - & 1.20 \\
\hline Molded Package Thickness & A2 & 0.95 & 1.00 & 1.05 \\
\hline Standoff & A1 & 0.05 & - & 0.15 \\
\hline Foot Length & L & 0.45 & 0.60 & 0.75 \\
\hline Footprint & L1 & \multicolumn{3}{|c|}{1.00 REF} \\
\hline Foot Angle & \(\phi\) & \(0^{\circ}\) & \(3.5{ }^{\circ}\) & \(7^{\circ}\) \\
\hline Overall Width & E & \multicolumn{3}{|c|}{12.00 BSC} \\
\hline Overall Length & D & \multicolumn{3}{|c|}{12.00 BSC} \\
\hline Molded Package Width & E1 & \multicolumn{3}{|c|}{10.00 BSC} \\
\hline Molded Package Length & D1 & \multicolumn{3}{|c|}{10.00 BSC} \\
\hline Lead Thickness & c & 0.09 & - & 0.20 \\
\hline Lead Width & b & 0.30 & 0.37 & 0.45 \\
\hline Mold Draft Angle Top & \(\alpha\) & \(11^{\circ}\) & \(12^{\circ}\) & \(13^{\circ}\) \\
\hline Mold Draft Angle Bottom & \(\beta\) & \(11^{\circ}\) & \(12^{\circ}\) & \(13^{\circ}\) \\
\hline
\end{tabular}

\section*{Notes:}
1. Pin 1 visual index feature may vary, but must be located within the hatched area.
2. Chamfers at corners are optional; size may vary.
3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.
4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.
REF: Reference Dimension, usually without tolerance, for information purposes only.
Microchip Technology Drawing C04-076B

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging


RECOMMENDED LAND PATTERN
\begin{tabular}{|l|c|c|c|c|}
\hline & Units & \multicolumn{3}{|c|}{ MILLIMETERS } \\
\hline \multicolumn{2}{|c|}{ Dimension Limits } & MIN & NOM & MAX \\
\hline Contact Pitch & E & \multicolumn{3}{|c|}{0.80 BSC } \\
\hline Contact Pad Spacing & C1 & & 11.40 & \\
\hline Contact Pad Spacing & C2 & & 11.40 & \\
\hline Contact Pad Width (X44) & X1 & & & 0.55 \\
\hline Contact Pad Length (X44) & Y1 & & & 1.50 \\
\hline Distance Between Pads & G & 0.25 & & \\
\hline
\end{tabular}

Notes:
1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.
Microchip Technology Drawing No. C04-2076B

\section*{44-Lead Plastic Quad Flat, No Lead Package (ML) - 8x8 mm Body [QFN]}

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

\begin{tabular}{|c|c|c|c|c|}
\hline & Units & \multicolumn{3}{|c|}{MILLIMETERS} \\
\hline \multicolumn{2}{|r|}{Dimension Limits} & MIN & NOM & MAX \\
\hline Number of Pins & N & & 44 & \\
\hline Pitch & e & & 65 BS & \\
\hline Overall Height & A & 0.80 & 0.90 & 1.00 \\
\hline Standoff & A1 & 0.00 & 0.02 & 0.05 \\
\hline Contact Thickness & A3 & & 20 RE & \\
\hline Overall Width & E & & 00 BS & \\
\hline Exposed Pad Width & E2 & 6.30 & 6.45 & 6.80 \\
\hline Overall Length & D & & 00 BS & \\
\hline Exposed Pad Length & D2 & 6.30 & 6.45 & 6.80 \\
\hline Contact Width & b & 0.25 & 0.30 & 0.38 \\
\hline Contact Length & L & 0.30 & 0.40 & 0.50 \\
\hline Contact-to-Exposed Pad & K & 0.20 & - & - \\
\hline
\end{tabular}

\section*{Notes:}
1. Pin 1 visual index feature may vary, but must be located within the hatched area.
2. Package is saw singulated.
3. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.
REF: Reference Dimension, usually without tolerance, for information purposes only.

\section*{44-Lead Plastic Quad Flat, No Lead Package (ML) - 8x8 mm Body [QFN]}

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging


RECOMMENDED LAND PATTERN
\begin{tabular}{|l|c|c|c|c|}
\hline & \multicolumn{4}{r|}{ Units } \\
\multicolumn{2}{|c|}{ Dimension Limits } & \multicolumn{3}{r|}{ MILLIMETERS } \\
\hline \multicolumn{6}{|c|}{} & N & \multicolumn{3}{|c|}{0.65 BSC} \\
\hline Contact Pitch & W2 & & & 6.80 \\
\hline Optional Center Pad Width & T2 & & & 6.80 \\
\hline Optional Center Pad Length & C1 & & 8.00 & \\
\hline Contact Pad Spacing & C2 & & 8.00 & \\
\hline Contact Pad Spacing & X1 & & & 0.35 \\
\hline Contact Pad Width (X44) & Y1 & & & 0.80 \\
\hline Contact Pad Length (X44) & G & 0.25 & & \\
\hline Distance Between Pads & & & & \\
\hline
\end{tabular}

Notes:
1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.
Microchip Technology Drawing No. C04-2103A

\section*{44-Lead Thermal Leadless Array Package (TL) - 6x6x0.9 mm Body with Exposed Pad [TLA]}

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging


\section*{44-Lead Thermal Leadless Array Package (TL) - 6x6x0.9 mm Body with Exposed Pad [TLA]}

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging


DETAIL A
\begin{tabular}{|l|c|c|c|c|}
\hline & \multicolumn{1}{|c|}{ Units } & \multicolumn{3}{|c|}{ MILLIMETERS } \\
\hline \multicolumn{1}{|c|}{ Dimension } & Limits & MIN & NOM & MAX \\
\hline Number of Pins & N & \multicolumn{3}{|c|}{44} \\
\hline Number of Pins per Side & ND & \multicolumn{3}{|c|}{12} \\
\hline Number of Pins per Side & NE & \multicolumn{3}{|c|}{10} \\
\hline Pitch & E & \multicolumn{3}{|c|}{0.50 BSC} \\
\hline Overall Height & A & 0.80 & 0.90 & 1.00 \\
\hline Standoff & A 1 & 0.025 & - & 0.075 \\
\hline Overall Width & E & \multicolumn{3}{|c|}{6.00 BSC} \\
\hline Exposed Pad Width & E 2 & 4.40 & 4.55 & 4.70 \\
\hline Overall Length & D & \multicolumn{3}{|c|}{6.00 BSC} \\
\hline Exposed Pad Length & D 2 & 4.40 & 4.55 & 4.70 \\
\hline Contact Width & B & 0.20 & 0.25 & 0.30 \\
\hline Contact Length & L & 0.20 & 0.25 & 0.30 \\
\hline Contact-to-Exposed Pad & K & 0.20 & - & - \\
\hline
\end{tabular}

\section*{Notes:}
1. Pin 1 visual index feature may vary, but must be located within the hatched area.
2. Package is saw singulated.
3. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.
REF: Reference Dimension, usually without tolerance, for information purposes only.

\section*{64-Lead Plastic Quad Flat, No Lead Package (MR) - 9x9x0.9 mm Body [QFN] With \(7.15 \times 7.15\) Exposed Pad [QFN]}

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging


BOTTOM VIEW
Microchip Technology Drawing C04-149C Sheet 1 of 2

\section*{64-Lead Plastic Quad Flat, No Lead Package (MR) - 9x9x0.9 mm Body [QFN] With \(7.15 \times 7.15\) Exposed Pad [QFN]}

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Units} & \multicolumn{3}{|c|}{MILLIMETERS} \\
\hline \multicolumn{2}{|r|}{Dimension Limits} & MIN & NOM & MAX \\
\hline Number of Pins & N & & 64 & \\
\hline Pitch & e & & . 50 BS & \\
\hline Overall Height & A & 0.80 & 0.90 & 1.00 \\
\hline Standoff & A1 & 0.00 & 0.02 & 0.05 \\
\hline Contact Thickness & A3 & & . 20 RE & \\
\hline Overall Width & E & & . 00 BS & \\
\hline Exposed Pad Width & E2 & 7.05 & 7.15 & 7.50 \\
\hline Overall Length & D & & .00 BS & \\
\hline Exposed Pad Length & D2 & 7.05 & 7.15 & 7.50 \\
\hline Contact Width & b & 0.18 & 0.25 & 0.30 \\
\hline Contact Length & L & 0.30 & 0.40 & 0.50 \\
\hline Contact-to-Exposed Pad & K & 0.20 & - & - \\
\hline
\end{tabular}

Notes:
1. Pin 1 visual index feature may vary, but must be located within the hatched area.
2. Package is saw singulated.
3. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.
REF: Reference Dimension, usually without tolerance, for information purposes only.
Microchip Technology Drawing C04-149C Sheet 2 of 2

64-Lead Plastic Quad Flat, No Lead Package (MR) - 9x9x0.9 mm Body [QFN] With 0.40 mm Contact Length

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

\begin{tabular}{|l|c|c|c|c|}
\hline & Units & \multicolumn{3}{|c|}{ MILLIMETERS } \\
\hline \multicolumn{2}{|c|}{ Dimension Limits } & \multicolumn{2}{|c|}{ MIN } & NOM \\
\hline & E & \multicolumn{3}{|c|}{0.50 BSC} \\
\hline Contact Pitch & W2 & & & 7.35 \\
\hline Optional Center Pad Width & T2 & & & 7.35 \\
\hline Optional Center Pad Length & C1 & & 8.90 & \\
\hline Contact Pad Spacing & C2 & & 8.90 & \\
\hline Contact Pad Spacing & X1 & & & 0.30 \\
\hline Contact Pad Width (X64) & Y1 & & & 0.85 \\
\hline Contact Pad Length (X64) & G & 0.20 & & \\
\hline Distance Between Pads & & \\
\hline
\end{tabular}

Notes:
1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.
Microchip Technology Drawing No. C04-2149A

\section*{64-Lead Plastic Thin Quad Flatpack (PT) - 10x10x1 mm Body, 2.00 mm Footprint [TQFP]}

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Units} & \multicolumn{3}{|c|}{MILLIMETERS} \\
\hline \multicolumn{2}{|r|}{Dimension Limits} & MIN & NOM & MAX \\
\hline Number of Leads & N & \multicolumn{3}{|c|}{64} \\
\hline Lead Pitch & e & \multicolumn{3}{|c|}{0.50 BSC} \\
\hline Overall Height & A & - & - & 1.20 \\
\hline Molded Package Thickness & A2 & 0.95 & 1.00 & 1.05 \\
\hline Standoff & A1 & 0.05 & - & 0.15 \\
\hline Foot Length & L & 0.45 & 0.60 & 0.75 \\
\hline Footprint & L1 & \multicolumn{3}{|c|}{1.00 REF} \\
\hline Foot Angle & \(\phi\) & \(0^{\circ}\) & \(3.5{ }^{\circ}\) & \(7^{\circ}\) \\
\hline Overall Width & E & \multicolumn{3}{|c|}{12.00 BSC} \\
\hline Overall Length & D & \multicolumn{3}{|c|}{12.00 BSC} \\
\hline Molded Package Width & E1 & \multicolumn{3}{|c|}{10.00 BSC} \\
\hline Molded Package Length & D1 & \multicolumn{3}{|c|}{10.00 BSC} \\
\hline Lead Thickness & c & 0.09 & - & 0.20 \\
\hline Lead Width & b & 0.17 & 0.22 & 0.27 \\
\hline Mold Draft Angle Top & \(\alpha\) & \(11^{\circ}\) & \(12^{\circ}\) & \(13^{\circ}\) \\
\hline Mold Draft Angle Bottom & \(\beta\) & \(11^{\circ}\) & \(12^{\circ}\) & \(13^{\circ}\) \\
\hline
\end{tabular}

\section*{Notes:}
1. Pin 1 visual index feature may vary, but must be located within the hatched area.
2. Chamfers at corners are optional; size may vary.
3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.
4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.
REF: Reference Dimension, usually without tolerance, for information purposes only.
Microchip Technology Drawing C04-085B

64-Lead Plastic Thin Quad Flatpack (PT) 10x10x1 mm Body, 2.00 mm Footprint [TQFP]
Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging


RECOMMENDED LAND PATTERN
\begin{tabular}{|l|c|c|c|c|}
\hline & Units & \multicolumn{3}{|c|}{ MILLIMETERS } \\
\hline \multicolumn{2}{|c|}{ Dimension Limits } & MIN & NOM & MAX \\
\hline Contact Pitch & E & \multicolumn{3}{|c|}{0.50 BSC} \\
\hline Contact Pad Spacing & C1 & & 11.40 & \\
\hline Contact Pad Spacing & C2 & & 11.40 & \\
\hline Contact Pad Width (X64) & X1 & & & 0.30 \\
\hline Contact Pad Length (X64) & Y1 & & & 1.50 \\
\hline Distance Between Pads & G & 0.20 & & \\
\hline
\end{tabular}

Notes:
1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.
Microchip Technology Drawing No. C04-2085B

\section*{APPENDIX A: REVISION HISTORY}

\section*{Revision A (April 2011)}

This is the initial released version of this document.

\section*{Revision B (July 2011)}

This revision includes minor typographical and formatting changes throughout the data sheet text.
All other major changes are referenced by their respective section in Table A-1.

\section*{TABLE A-1: MAJOR SECTION UPDATES}
\begin{tabular}{|c|c|}
\hline Section Name & Update Description \\
\hline "High-Performance, 16-bit Digital Signal Controllers and Microcontrollers" & Changed all pin diagrams references of VLAP to TLA. \\
\hline Section 4.0 "Memory Organization" & Updated the All Resets values for CLKDIV and PLLFBD in the System Control Register Map (see Table 4-35). \\
\hline Section 5.0 "Flash Program Memory" & Updated "one word" to "two words" in the first paragraph of Section 5.2 "RTSP Operation". \\
\hline Section 9.0 "Oscillator Configuration" & \begin{tabular}{l}
Updated the PLL Block Diagram (see Figure 9-2). \\
Updated the Oscillator Mode, Fast RC Oscillator (FRC) with divide-by-N and PLL (FRCPLL), by changing (FRCDIVN + PLL) to (FRCPLL). \\
Changed (FRCDIVN + PLL) to (FRCPLL) for COSC<2:0> = 001 and NOSC<2:0> \(=001\) in the Oscillator Control Register (see Register 9-1). \\
Changed the POR value from 0 to 1 for the DOZE \(<1: 0>\) bits, from 1 to 0 for the FRCDIV<0> bit, and from 0 to 1 for the PLLPOST<0> bit; Updated the default definitions for the DOZE \(<2: 0>\) and FRCDIV \(<2: 0>\) bits and updated all bit definitions for the PLLPOST<1:0> bits in the Clock Divisor Register (see Register 9-2). \\
Changed the POR value from 0 to 1 for the PLLDIV<5:4> bits and updated the default definitions for all PLLDIV<8:0> bits in the PLL Feedback Division Register (see Register 9-2).
\end{tabular} \\
\hline Section 22.0 "Charge Time Measurement Unit (CTMU)" & Updated the bit definitions for the IRNG<1:0> bits in the CTMU Current Control Register (see Register 22-3). \\
\hline Section 25.0 "Op amp/ Comparator Module" & Updated the voltage reference block diagrams (see Figure 25-1 and Figure 25-2). \\
\hline Section 30.0 "Electrical Characteristics" & \begin{tabular}{l}
Removed Voltage on Vcap with respect to Vss and added Note 5 in Absolute Maximum Ratings \({ }^{(1)}\). \\
Removed parameter DC18 (VCORE) and Note 3 from the DC Temperature and Voltage Specifications (see Table 30-4). \\
Updated Note 1 in the DC Characteristics: Operating Current (IDD) (see Table 30-6). \\
Updated Note 1 in the DC Characteristics: Idle Current (IIDLE) (see Table 30-7). \\
Changed the Typical values for parameters DC60a-DC60d and updated Note 1 in the DC Characteristics: Power-down Current (IPD) (see Table 30-8). \\
Updated Note 1 in the DC Characteristics: Doze Current (IDOZE) (see Table 30-9). \\
Updated Note 2 in the Electrical Characteristics: BOR (see Table 30-12). \\
Updated parameters CM20 and CM31, and added parameters CM44 and CM45 in the AC/DC Characteristics: Op amp/Comparator (see Table 30-14). \\
Added the Op amp/Comparator Reference Voltage Settling Time Specifications (see Table 30-15). \\
Added Op amp/Comparator Voltage Reference DC Specifications (see Table 30-16). Updated Internal FRC Accuracy parameter F20a (see Table 30-21). \\
Updated the Typical value and Units for parameter CTMUI1, and added parameters CTMUI4, CTMUFV1, and CTMUFV2 to the CTMU Current Source Specifications (see Table 30-55).
\end{tabular} \\
\hline
\end{tabular}

TABLE A-1: MAJOR SECTION UPDATES (CONTINUED)
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Section Name } & \multicolumn{1}{c|}{ Update Description } \\
\hline \hline \begin{tabular}{l} 
Section 31.0 "Packaging \\
Information"
\end{tabular} & Updated packages by replacing references of VLAP with TLA. \\
\hline \begin{tabular}{l} 
"Product Identification \\
System"
\end{tabular} & Changed VLAP to TLA. \\
\hline
\end{tabular}

\section*{INDEX}
A
AC Characteristics ..... 385
Capacitive Loading Requirements on Output Pins ... 385
Internal FRC Accuracy ..... 387
Internal RC Accuracy. ..... 387
Load Conditions ..... 385
ADC
Initialization ..... 297
Key Features. ..... 297
Analog-to-Digital Converter (ADC). ..... 297
Arithmetic Logic Unit (ALU). ..... 45
Assembler
MPASM Assembler ..... 368
B
Bit-Reversed Addressing
Example ..... 105
Implementation ..... 104
Sequence Table (16-Entry) ..... 105
Bit-Reversed Addressing (dsPIC33EPXXXMC20X/50X and dsPIC33EPXXXGP50X Devices Only) ..... 104
Block Diagrams
16-bit Timer1 Module ..... 193
ADC Conversion Clock Period ..... 299
ADC1 and ADC2 Module ..... 298
Comparator I/O Operating Modes ..... 327
Comparator Voltage Reference ..... 328
Connections for On-Chip Voltage Regulator. ..... 353
CPU Core ..... 38
CRC Module ..... 343
CRC Shift Engine ..... 344
CTMU Configurations Time Measurement ..... 293
Digital Filter Interconnect ..... 329
dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X, and PIC24EPXXXGP/MC20X ..... 26
ECAN Module ..... 268
Input Capture ..... 201
Oscillator System Diagram ..... 143
Output Compare ..... 205
PLL. ..... 144
Quadrature Encoder Interface ..... 232
Reset System ..... 113
Shared Port Structure ..... 163
SPIx module ..... 246
Type B (Timer2 and Timer4) ..... 196
Type C (Timer3 and Timer5) ..... 196
UART ..... 261
User Programmable Blanking Function ..... 328
Watchdog Timer (WDT) ..... 354
C
C Compilers
MPLAB C18 ..... 368
Charge Time Measurement Unit. See CTMU. Code Examples
Port Write/Read ..... 164
PWRSAV Instruction Syntax ..... 153
Code Protection ..... 349, 355
Configuring Analog Port Pins ..... 164

CPUControl Register41
CPU Clocking System ..... 144
Sources ..... 144
CRC
User Interface ..... 344
Data ..... 344
CTMU Module
Register Map ..... 87
Customer Change Notification Service ..... 467
Customer Notification Service ..... 467
Customer Support ..... 467
D
Data Address Space ..... 49
Alignment ..... 49
Memory Map for dsPIC33EP64MC20X/50X and dsPIC33EP64GP50X Devices ..... 50
Memory Map for PIC24EP64GP/MC20X/50X Devices ..... 51
Near Data Space ..... 49
SFR ..... 49
Width ..... 49
DC Characteristics ..... 372
BOR ..... 381
I/O Pin Input Specifications ..... 378
I/O Pin Output Specifications. ..... 381
Idle Current (IDoze) ..... 377
Idle Current (IIDLE) ..... 375
Internal Voltage Regulator ..... 373
Operating Current (IDD) ..... 374
Power-Down Current (IPD). ..... 376
Program Memory ..... 382, 383
Temperature and Voltage Specifications ..... 373
Development Support ..... 367
DMA Module
DSADR register ..... 137
supported peripherals ..... 129
DMAC Registers ..... 132
DMAxCNT ..... 132
DMAxCON ..... 132
DMAxPAD ..... 132
DMAxREQ ..... 132
DMAxSTA ..... 132
DMAxSTB ..... 132
Doze Mode ..... 155
DSP Engine ..... 45
E
ECAN Module
CiBUFPNT1 register ..... 278
CiBUFPNT2 register ..... 279
CiBUFPNT3 register ..... 279
CiBUFPNT4 register ..... 280
CiCFG1 register. ..... 276
CiCFG2 register ..... 277
CiCTRL1 register ..... 269
CiCTRL2 register ..... 270
CiEC register ..... 276
CiFCTRL register ..... 272
CiFEN1 register ..... 278
CiFIFO register ..... 273
CiFMSKSEL1 register ..... 282
CiFMSKSEL2 register ..... 283
CilNTE register ..... 275
CilNTF register ..... 274
CiRXFnEID register ..... 282
CiRXFnSID register ..... 281
CiRXFUL1 register ..... 285
CiRXFUL2 register ..... 285
CiRXMnEID register. ..... 284
CiRXMnSID register ..... 284
CiRXOVF1 register ..... 286
CiRXOVF2 register ..... 286
CiTRmnCON register ..... 287
CiVEC register ..... 271
Modes of Operation ..... 268
Overview ..... 267
ECAN Registers
Acceptance Filter Enable Register (CiFEN1) ..... 278
Acceptance Filter Extended Identifier Register n (CiRXFnEID) ..... 282
Acceptance Filter Mask Extended Identifier Register n (CiRXMnEID) ..... 284
Acceptance Filter Mask Standard Identifier Register n
(CiRXMnSID) ..... 284
Acceptance Filter Standard Identifier Register n (CiRXFnSID) ..... 281
Baud Rate Configuration Register 1 (CiCFG1) ..... 276
Baud Rate Configuration Register 2 (CiCFG2) ..... 277
Control Register 1 (CiCTRL1) ..... 269
Control Register 2 (CiCTRL2) ..... 270
FIFO Control Register (CiFCTRL) ..... 272
FIFO Status Register (CiFIFO) ..... 273
Filter 0-3 Buffer Pointer Register (CiBUFPNT1) ....... 278
Filter 12-15 Buffer Pointer Register (CiBUFPNT4) ... 280
Filter 15-8 Mask Selection Register (CiFMSKSEL2). 283
Filter 4-7 Buffer Pointer Register (CiBUFPNT2) ....... 279
Filter 7-0 Mask Selection Register (CiFMSKSEL1)... 282
Filter 8-11 Buffer Pointer Register (CiBUFPNT3) ..... 279
Interrupt Code Register (CiVEC) ..... 271
Interrupt Enable Register (CiINTE) ..... 275
Interrupt Flag Register (CilNTF) ..... 274
Receive Buffer Full Register 1 (CiRXFUL1). ..... 285
Receive Buffer Full Register 2 (CiRXFUL2). ..... 285
Receive Buffer Overflow Register 2 (CiRXOVF2)..... 286
Receive Overflow Register (CiRXOVF1) ..... 286
ECAN Transmit/Receive Error Count Register (CiEC) ..... 276
ECAN TX/RX Buffer m Control Register (CiTRmnCON) ..... 287
Electrical Characteristics. ..... 371
AC . ..... 385
Enhanced CAN Module ..... 267
Equations
Device Operating Frequency ..... 144
Errata ..... 24
F
Flash Program Memory. ..... 109
Control Registers ..... 110
Operations ..... 110
Programming Algorithm ..... 112
RTSP Operation ..... 110
Table Instructions ..... 109
Flexible Configuration ..... 349
H
High-Speed PWM ..... 211

\section*{I}
I/O Ports. ..... 163
Parallel I/O (PIO) ..... 163
Write/Read Timing ..... 164
In-Circuit Debugger. ..... 355
In-Circuit Emulation ..... 349
In-Circuit Serial Programming (ICSP). ..... 349, 355
Input Capture ..... 201
Registers ..... 202
Input Change Notification ..... 164
Instruction Addressing Modes ..... 101
File Register Instructions ..... 101
Fundamental Modes Supported ..... 102
MAC Instructions (dsPIC33EPXXXMC20X/50X ..... and
dsPIC33EPXXXGP50X Devices Only) ..... 102
MCU Instructions ..... 101
Move and Accumulator Instructions. ..... 102
Other Instructions ..... 102
Instruction Set
Overview ..... 360
Summary ..... 357
Instruction-Based Power-Saving Modes. ..... 153
Idle ..... 154
Sleep ..... 154
Internal RC Oscillator
Use with WDT. ..... 354
Internet Address ..... 467
Interrupt Control and Status Registers ..... 121
IFSx ..... 121
INTCON1 ..... 121
INTCON2 ..... 121
Interrupt Vector Table (IVT) ..... 117
Interrupts Coincident with Power Save Instructions ..... 154
J
JTAG Boundary Scan Interface ..... 349
JTAG Interface. ..... 355
M
Memory Organization ..... 47
Microchip Internet Web Site. ..... 467
Modulo Addressing
Applicability ..... 104
Operation Example ..... 103
Start and End Address ..... 103
W Address Register Selection ..... 103
Modulo Addressing (dsPIC33EPXXXMC20X/50X ..... and
dsPIC33EPXXXGP50X Devices Only) ..... 103
Most Recent RAM Address Low Register ..... 137
Most Recent RAM High Address ..... 137
MPLAB ASM30 Assembler, Linker, Librarian ..... 368
MPLAB Integrated Development Environment Software ..... 367
MPLAB PM3 Device Programmer ..... 370
MPLAB REAL ICE In-Circuit Emulator System ..... 369
MPLINK Object Linker/MPLIB Object Librarian ..... 368
0
Open-Drain Configuration ..... 164
Output Compare ..... 205
P
Packaging ..... 435
Details. ..... 456
Marking ..... 435, 437
Peripheral Module Disable (PMD) ..... 155
Peripheral Trigger Generator (PTG) Module ..... 311
Peripherals supported by DMA ..... 129
Pinout I/O Descriptions (table) ..... 27
Power-Saving Features ..... 153
Clock Frequency and Switching ..... 153
Program Address Space ..... 47
Construction ..... 106
Data Access from Program Memory Using Table Instructions ..... 107
Data Access from, Address Generation ..... 106
Memory Map ..... 47
Table Read Instructions
TBLRDH ..... 107
TBLRDL ..... 107
Program Memory
Organization ..... 48
Reset Vector ..... 48
Programmable CRC Special Function Registers ..... 79
Programmer's Model ..... 38
Register Description. ..... 39
PTG
Introduction ..... 311
Q
Quadrature Encoder Interface (QEI) ..... 231
R
Reader Response ..... 468
Register
PTG Adjust (PTGADJ) ..... 321
PTG Literal (PTGLO) ..... 321
PTG Step Queue Pointer (PTGQPTR) ..... 322
PTG Step Queue Pointer Register 0 (PTGQUEO) ..... 322
Register Maps
ADC1 and ADC2 ..... 75
Comparator ..... 87
CPU Core (dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X Devices Only) ..... 53
CPU Core (PIC24EPXXXGP/MC20X Devices Only) ..... 55
CPU Core for dsPIC33EPXXXGP50X andPIC24EPXXXGP20X Devices Only .55
DMAC ..... 88
ECAN1 (When WIN (C1CTRL) \(=0\) or 1) dsPIC33EPXXXMC/GP50X Devices Only. ..... 76
ECAN1 (When WIN \((\) C1CTRL \()=0)\)
dsPIC33EPXXXMC/GP50X Devices Only. ..... 76
ECAN1 (WIN (C1CTRL) = 1) dsPIC33EPXXXMC/GP50X Devices Only.......... 77
I2C1 and I2C2 ..... 73
Input Capture 1 through Input Capture 16 ..... 67
Interrupt Controller
(dsPIC33EPXXXGP50X Devices Only) ..... 60
Interrupt Controller(dsPIC33EPXXXMC20X Devices Only)62
Interrupt Controller(dsPIC33EPXXXMC50X Devices Only) ............. 64
Interrupt Controller
(PIC24EPXXXGP20X Devices Only). ..... 56
Interrupt Controller (PIC24EPXXXMC20X Devices Only) ..... 58
Output Compare 1 through Output Compare 16 ..... 68
Peripheral Pin Select Input
(dsPIC33EPXXXGP50X Devices Only) ..... 82
Peripheral Pin Select Input
(dsPIC33EPXXXMC20X Devices Only) ..... 83
Peripheral Pin Select Input
(dsPIC33EPXXXMC50X Devices Only) ..... 82
Peripheral Pin Select Input
(PIC24EPXXXGP20X Devices Only) ..... 81
Peripheral Pin Select Input (PIC24EPXXXMC20X Devices Only) ..... 81
Peripheral Pin Select Output
(dsPIC33EPXXXGP/MC202/502 andPIC24EPXXXGP/MC202 Devices Only)79
Peripheral Pin Select Output(dsPIC33EPXXXGP/MC203/503 andPIC24EPXXXGP/MC203 Devices Only) ............ 79
Peripheral Pin Select Output
(dsPIC33EPXXXGP/MC204/504 andPIC24EPXXXGP/MC204 Devices Only)80
Peripheral Pin Select Output
(dsPIC33EPXXXGP/MC206/506 andPIC24EPXXGP/MC206 Devices Only)80
PMD (dsPIC33EPXXXMC50X Devices Only) ..... 86
PMD (PIC24EPXXXGP20X Devices Only) ..... 85
PORTA
(PIC24EPXXXGP/MC202 and
dsPIC33EPXXXGP/MC202/502 Devices Only).. ..... 94
PORTA
(PIC24EPXXXGP/MC203 and
dsPIC33EPXXXGP/MC203/503 Devices Only).. 93
PORTA
(PIC24EPXXXGP/MC204 and
dsPIC33EPXXXGP/MC204/504 Devices Only).. 92PORTA
(PIC24EPXXXGP/MC206 and
dsPIC33EPXXXGP/MC206/506 Devices Only). ..... 89
PORTB
(PIC24EPXXXGP/MC202 anddsPIC33EPXXXGP/MC202/50294
PORTB
(PIC24EPXXXGP/MC203 and
dsPIC33EPXXXGP/MC203/503 Devices Only).. ..... 93
PORTB
(PIC24EPXXXGP/MC204 and
dsPIC33EPXXXGP/MC204/504 Devices Only ..... 92
PORTB
(PIC24EPXXXGP/MC206
and dsPIC33EPXXXGP/MC206/506 Devices Only)89
PORTC
(PIC23EPXXXGP/MC203 and
dsPIC33EPXXXGP/MC203/503 Devices Only). ..... 93
PORTC
(PIC24EPXXXGP/MC204 and
dsPIC33EPXXXGP/MC204/504 Devices Only).. 9PORTC
(PIC24EPXXXGP/MC206 anddsPIC33EPXXXGP/MC206/506 Devices Only).. 89

PORTD
(PIC24EPXXXGP/MC206 anddsPIC33EPXXXGP/MC206/506 Devices Only).. 90
PORTE
(PIC24EPXXXGP/MC206 and
dsPIC33EPXXXGP/MC206/506 Devices Only).. 90

PORTF
(PIC24EPXXXGP/MC206 and
PORTG
(PIC24EPXXXGP/MC206 anddsPIC33EPXXXGP/MC206/506 Devices Only).. 91
PWM
(dsPIC33EPXXXMC20X/50X andPIC24EPXXXMC20X Devices Only).70
PWM Generator 1
(dsPIC33EPXXXMC20X/50X and
PIC24EPXXXMC20X Devices Only). ..... 70
PWM Generator 2(dsPIC33EPXXXMC20X/50X and
PIC24EPXXXMC20X Devices Only) ..... 71
PWM Generator 3
(dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X Devices Only). ..... 71
QEI1 Register Map (dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X Devices Only). ..... 72
Reference Clock ..... 84
SPI1, SPI2, SPI3, and SPI4 ..... 74
System Control ..... 84
Timer1 through Timer9 ..... 66
UART1, UART2, UART3, and UART4 ..... 73
Registers
AD1CHS0 (ADC1 Input Channel 0 Select)............... 306AD1CHS123 (ADC1 Input Channel 1, 2, 3 Select) ... 305
AD1CON1 (ADC1 Control 1) ..... 300
AD1CON2 (ADC1 Control 2) ..... 302
AD1CON3 (ADC1 Control 3) ..... 303
AD1CON4 (ADC1 Control 4) ..... 304
AD1CSSH (ADC1 Input Scan Select High) ..... 308
AD1CSSL (ADC1 Input Scan Select Low) ..... 309
ALTDTRx (PWM Alternate Dead-Time) ..... 223
AUXCONx (PWM Auxiliary Control). ..... 230
CHOP (PWM Chop Clock Generator) ..... 219
CiBUFPNT1 (ECAN Filter 0-3 Buffer Pointer). ..... 278
CiBUFPNT2 (ECAN Filter 4-7 Buffer Pointer) ..... 279
CiBUFPNT3 (ECAN Filter 8-11 Buffer Pointer) ..... 279
CiBUFPNT4 (ECAN Filter 12-15 Buffer Pointer). ..... 280
CiCFG1 (ECAN Baud Rate Configuration 1) ..... 276
CiCFG2 (ECAN Baud Rate Configuration 2) ..... 277
CiCTRL1 (ECAN Control 1) ..... 269
CiCTRL2 (ECAN Control 2) ..... 270
CiEC (ECAN Transmit/Receive Error Count). ..... 276
CiFCTRL (ECAN FIFO Control) ..... 272
CiFEN1 (ECAN Acceptance Filter Enable) ..... 278
CiFIFO (ECAN FIFO Status) ..... 273
CiFMSKSEL1 (ECAN Filter 7-0 Mask Selection). ..... 282
CiFMSKSEL2 (ECAN Filter 15-8 Mask Selection).. ..... 283
CilNTE (ECAN Interrupt Enable) ..... 275
CilNTF (ECAN Interrupt Flag). ..... 274
CiRXFnEID (ECAN Acceptance Filter n Extended Identifier ..... 282
CiRXFnSID (ECAN Acceptance Filter n Standard Identifier) ..... 281
CiRXFUL1 (ECAN Receive Buffer Full 1) ..... 285
CiRXFUL2 (ECAN Receive Buffer Full 2) ..... 285
CiRXMnEID (ECAN Acceptance Filter Mask n Extended Identifier). ..... 284
CiRXMnSID (ECAN Acceptance Filter Mask n Standard Identifier) ..... 284
CiRXOVF1 (ECAN Receive Buffer Overflow 1) ........ 286
CiRXOVF2 (ECAN Receive Buffer Overflow 2) ........ 286CiTRBnSID (ECAN Buffer n Standard Identifier) ..... 288,289, 291
CiTRmnCON (ECAN TX/RX Buffer m Control) ..... 287
CiVEC (ECAN Interrupt Code). ..... 271
CLKDIV (Clock Divisor) ..... 148
CM4CON (Comparator Control 4) ..... 334
CMSTAT (Comparator Status) ..... 330
CMxCON (Comparator Control 1-3) ..... 332
CMxFLTR (Comparator Filter Control) ..... 340
CMxMSKCON (Comparator Mask Gating Control) .. 338
CMxMSKSRC (Comparator Mask Source Control).. 336CORCON (Core Control).43, 123
CTMUCON (CTMU Control) ..... 294, 295
CTMUCON1 (CTMU Control Register 1). ..... 294
CTMUCON1 (CTMU Control Register 2). ..... 295
CTMUICON (CTMU Current Control) ..... 296
CVRCON (Comparator Voltage Reference Control) ..... 341
DEVID (Device ID). ..... 352
DEVREV (Device Revision). ..... 352
DTRx (PWM Dead-Time). ..... 223
FCLCONx (PWM Fault Current-Limit Control). ..... 226
12CxCON (I2Cx Control) ..... 255
I2CxMSK (I2Cx Slave Mode Address Mask) ..... 259
I2CxSTAT (I2Cx Status) ..... 257
ICxCON1 (Input Capture \(\times\) Control 1) ..... 202
ICxCON2 (Input Capture x Control 2). ..... 203
IDNXxCNTH (Index Counter High Word) ..... 240
INDXxCNTL (Index Counter Low Word) ..... 240
INDXxHLD (Index Counter Hold) ..... 241
INTCON1 (Interrupt Control 1). ..... 124
INTCON2 (Interrupt Control 2). ..... 126
INTCON2 (Interrupt Control 3) ..... 127
INTCON4 (Interrupt Control 4). ..... 127
INTTREG Interrupt Control and Status Register ..... 128
INTxHLDH (Interval Timer Hold High Word). ..... 244
INTxHLDL (Interval Timer Hold Low Word). ..... 244
INTxTMRH (Interval Timer High Word) ..... 243
INTxTMRL (INterval Timer Low Word). ..... 244
IOCONx (PWM I/O Control). ..... 224
LEBCONx (Leading-Edge Blanking Control). ..... 228
LEBDLYx (Leading-Edge Blanking Delay) ..... 229
MDC (PWM Master Duty Cycle) ..... 219
NVMCOM (Flash Memory Control). ..... 112
NVMCON (Non-volatile (NVM) Memory Control) ..... 111
NVMKEY (Non-volatile Memory Key). ..... 112
OCxCON1 (Output Compare \(x\) Control 1) ..... 206
OCxCON2 (Output Compare x Control 2) ..... 208
OSCCON (Oscillator Control). ..... 146
OSCTUN (FRC Oscillator Tuning). ..... 151
PDCx (PWM Generator Duty Cycle). ..... 222
PHASEx (PWM Primary Phase Shift) ..... 222
PLLFBD (PLL Feedback Divisor). ..... 150
PMD1 (Peripheral Module Disable Control 1). ..... 156
PMD2 (Peripheral Module Disable Control 2) ..... 158
PMD3 (Peripheral Module Disable Control 3) ..... 159
PMD4 (Peripheral Module Disable Control 4) ..... 159
PMD6 (Peripheral Module Disable Control 6) ..... 160
PMD7 (Peripheral Module Disable Control 7) ..... 161
POSxCNTH (Position Counter High Word) ..... 239
POSxCNTL (Position Counter Low Word).. ..... 239
POSxHLD (Position Counter Hold). ..... 239
PTCON (PWM Time Base Control) ..... 215
PTCON2 (Primary Master Clock Divider Select) ..... 217
PTG Broadcast Trigger Enable (PTGBTE) ..... 316
PTG Control (PTGCON). ..... 315
PTG Control/Status (PTGCST) ..... 313
PTG Counter 0 Limit (PTGCOLIM). ..... 319
PTG Counter 1 Limit (PTGC1LIM) ..... 320
PTG Hold (PTGHOLD) ..... 320
PTG Step Delay Limit (PTGSDLIM) ..... 319
PTG Timer0 Limit (PTGTOLIM). ..... 318
PTG Timer1 Limit (PTGT1LIM) ..... 318
PTPER (Primary Master Time Base Period) ..... 218
PWMCONx (PWM Control) ..... 220
QEI1CON (QEI Control). ..... 233
QEI1GECH (Greater Than or Equal Compare High Word) ..... 243
QEI1GECL (Greater Than or Equal Compare Low Word) ..... 243
QEI1ICH (Initialization/Capture High Word) ..... 241
QEI1ICL (Initialization/Capture Low Word) ..... 241
QEI1IOC (QEI I/O Control) ..... 235
QEI1LECH (Less Than or Equal Compare High Word) ..... 242
QEI1LECL (Less Than or Equal Compare Low Word) ..... 242
QEI1STAT (QEI Status) ..... 237
RCON (Reset Control) ..... 114
REFOCON (Reference Oscillator Control) ..... 152
RPINRO (Peripheral Pin Select Input 0) ..... 170
RPINR1 (Peripheral Pin Select Input 1) ..... 171
RPINR11 (Peripheral Pin Select Input 11) ..... 175
RPINR12 (Peripheral Pin Select Input 12) ..... 176
RPINR14 (Peripheral Pin Select Input 14) ..... 177
RPINR15 (Peripheral Pin Select Input 15) ..... 178
RPINR18 (Peripheral Pin Select Input 18). ..... 179
RPINR19 (Peripheral Pin Select Input 19) ..... 180
RPINR20 (Peripheral Pin Select Input 20) ..... 181
RPINR23 (Peripheral Pin Select Input 23) ..... 182
RPINR26 (Peripheral Pin Select Input 26) ..... 183
RPINR3 (Peripheral Pin Select Input 3) ..... 172
RPINR37 (Peripheral Pin Select Input 37) ..... 184
RPINR38 (Peripheral Pin Select Input 38) ..... 185
RPINR40 (Peripheral Pin Select Input 40) ..... 186
RPINR7 (Peripheral Pin Select Input 7) ..... 173
RPINR8 (Peripheral Pin Select Input 8). ..... 174
RPORO (Peripheral Pin Select Output 0) ..... 187
RPOR1 (Peripheral Pin Select Output 1) ..... 187
RPOR2 (Peripheral Pin Select Output 2) ..... 188
RPOR3 (Peripheral Pin Select Output 3) ..... 188
RPOR4 (Peripheral Pin Select Output 4) ..... 189
RPOR5 (Peripheral Pin Select Output 5) ..... 189
RPOR6 (Peripheral Pin Select Output 6) ..... 190
RPOR7 (Peripheral Pin Select Output 7) ..... 190
RPOR8 (Peripheral Pin Select Output 8) ..... 191
RPOR9 (Peripheral Pin Select Output 9) ..... 191
SEVTCMP (Primary Special Event Compare) ..... 218
SPIxCON1 (SPIx Control 1) ..... 249
SPIxCON2 (SPlx Control 2) ..... 251
SPIxSTAT (SPIx Status and Control) ..... 247
SR (CPU Status) ..... 41, 122
T1CON (Timer1 Control). ..... 194
TxCON (T2CON or T4CON Control) ..... 198
TyCON (T3CON or T5CON Control) ..... 199
UxMODE (UARTx Mode) ..... 262
UxSTA (UARTx Status and Control) ..... 264
VELxCNT (Velocity Counter) ..... 240
Reset
Illegal Opcode ..... 113
Uninitialized W Register. ..... 113
Reset Sequence ..... 117
Resets ..... 113
Resources Required for Digital PFC. ..... 34, 36
S
Serial Peripheral Interface (SPI) ..... 245
Software Simulator (MPLAB SIM) ..... 369
Software Stack Pointer, Frame Pointer CALLL Stack Frame ..... 101
Special Features of the CPU ..... 349
Symbols Used in Opcode Descriptions ..... 358
T
Temperature and Voltage Specifications
AC. ..... 385
Timer1 ..... 193
Timer2/3 and Timer4/5 ..... 195
Timing Characteristics
CLKO and I/O ..... 388
Timing Diagrams
10-bit ADC Conversion (CHPS<1:0> \(=01\), SIMSAM \(=0\), ASAM \(=0\), SSRC<3:0> = 000) ..... 433
10-bit ADC Conversion (CHPS \(<1: 0>=01\), SIMSAM \(=0\), ASAM \(=1\), SSRC<2:0> = 111, SAMC<4:0> \(=00001\) ). ..... 433
10-bit ADC Conversion (CHPS \(<1: 0>=01\), SIMSAM \(=0\), ASAM \(=1, S S R C<3: 0>=111\), SAMC \(4: 0>=00010\) ) ..... 433
12-bit ADC Conversion (ASAM \(=0, S S R C<3: 0>=000)\) ..... 432
ECAN I/O ..... 427
External Clock ..... 386
I2Cx Bus Data (Master Mode) ..... 423
I2Cx Bus Data (Slave Mode) ..... 425
I2Cx Bus Start/Stop Bits (Master Mode) ..... 423
I2Cx Bus Start/Stop Bits (Slave Mode). ..... 425
Input Capture (CAPx) ..... 393
Motor Control PWM ..... 395
Motor Control PWM Fault ..... 395
OC/PWM ..... 394
Output Compare (OCx) ..... 393
QEA/QEB Input ..... 397
QEI Module Index Pulse ..... 398
Reset, Watchdog Timer, Oscillator Start-up Timer and Power-up Timer ..... 389
Timer1, 2, 3 External Clock ..... 390, 391
TimerQ (QEI Module) External Clock ..... 396
Timing Requirements
CLKO and I/O ..... 388
DCI AC-Link Mode ..... 433
DCI Multi-Channel, I \({ }^{2}\) S Modes ..... 433
DMA Module ..... 434
External Clock ..... 386
Timing Specifications
10-bit ADC Conversion Requirements ..... 434
12-bit ADC Conversion Requirements ..... 432
CAN I/O Requirements ..... 427
I2Cx Bus Data Requirements (Master Mode) ..... 424
I2Cx Bus Data Requirements (Slave Mode) ..... 426
Motor Control PWM Requirements ..... 395
Output Compare Requirements ..... 393
PLL Clock ..... 387
QEI External Clock Requirements ..... 396
QEI Index Pulse Requirements ..... 398
Quadrature Decoder Requirements ..... 397
Reset, Watchdog Timer, Oscillator Start-up Timer,Power-up Timer and Brown-out ResetRequirements390
Simple OC/PWM Mode Requirements ..... 394
Timer1 External Clock Requirements ..... 391
Timer2 External Clock Requirements ..... 392
Timer3 External Clock Requirements ..... 392
\(\mathbf{U}\)
Universal Asynchronous Receiver Transmitter (UART)... ..... 261
V
Voltage Regulator (On-Chip). ..... 353
W
Watchdog Timer (WDT) ..... 349, 354
Programming Considerations ..... 354
WWW Address ..... 467
WWW, On-Line Support. ..... 24

\section*{THE MICROCHIP WEB SITE}

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:
- Product Support - Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support - Frequently Asked Questions (FAQs), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip - Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

\section*{CUSTOMER CHANGE NOTIFICATION SERVICE}

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.
To register, access the Microchip web site at www.microchip.com. Under "Support", click on "Customer Change Notification" and follow the registration instructions.

\section*{CUSTOMER SUPPORT}

Users of Microchip products can receive assistance through several channels:
- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support
- Development Systems Information Line

Customers should contact their distributor, representative or field application engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.
Technical support is available through the web site at: http://microchip.com/support

\section*{READER RESPONSE}

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.

Please list the following information, and use this outline to provide us with your comments about this document.


Application (optional):
Would you like a reply? \(\quad \mathrm{N}\)
Device: dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X, and Literature Number: DS70657B PIC24EPXXXGP/MC20X
Questions:
1. What are the best features of this document?
\(\qquad\)
2. How does this document meet your hardware and software development needs?
\(\qquad\)
3. Do you find the organization of this document easy to follow? If not, why?
\(\qquad\)
\(\qquad\)
4. What additions to the document do you think would enhance the structure and subject?
\(\qquad\)
\(\qquad\)
5. What deletions from the document could be made without affecting the overall usefulness?
\(\qquad\)
6. Is there any incorrect or misleading information (what and where)?
\(\qquad\)
7. How would you improve this document?
\(\qquad\)
\(\qquad\)

\section*{PRODUCT IDENTIFICATION SYSTEM}

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.


Microchip

\section*{Worldwide Sales and Service}

\section*{AMERICAS}

Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://www.microchip.com/ support
Web Address:
www.microchip.com

\section*{Atlanta}

Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455

\section*{Boston}

Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088

\section*{Chicago}

Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075

\section*{Cleveland}

Independence, OH
Tel: 216-447-0464
Fax: 216-447-0643

\section*{Dallas}

Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924
Detroit
Farmington Hills, MI
Tel: 248-538-2250
Fax: 248-538-2260
Indianapolis
Noblesville, IN
Tel: 317-773-8323
Fax: 317-773-5453
Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
Santa Clara
Santa Clara, CA
Tel: 408-961-6444
Fax: 408-961-6445

\section*{Toronto}

Mississauga, Ontario, Canada
Tel: 905-673-0699
Fax: 905-673-6509

\section*{ASIA/PACIFIC}

Asia Pacific Office
Suites 3707-14, 37th Floor
Tower 6, The Gateway
Harbour City, Kowloon
Hong Kong
Tel: 852-2401-1200
Fax: 852-2401-3431
Australia - Sydney
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755
China-Beijing
Tel: 86-10-8569-7000
Fax: 86-10-8528-2104
China - Chengdu
Tel: 86-28-8665-5511
Fax: 86-28-8665-7889
China - Chongqing
Tel: 86-23-8980-9588
Fax: 86-23-8980-9500
China - Hangzhou
Tel: 86-571-2819-3180
Fax: 86-571-2819-3189
China - Hong Kong SAR
Tel: 852-2401-1200
Fax: 852-2401-3431
China - Nanjing
Tel: 86-25-8473-2460
Fax: 86-25-8473-2470
China - Qingdao
Tel: 86-532-8502-7355
Fax: 86-532-8502-7205
China - Shanghai
Tel: 86-21-5407-5533
Fax: 86-21-5407-5066
China - Shenyang
Tel: 86-24-2334-2829
Fax: 86-24-2334-2393
China - Shenzhen
Tel: 86-755-8203-2660
Fax: 86-755-8203-1760
China - Wuhan
Tel: 86-27-5980-5300
Fax: 86-27-5980-5118
China - Xian
Tel: 86-29-8833-7252
Fax: 86-29-8833-7256
China - Xiamen
Tel: 86-592-2388138
Fax: 86-592-2388130
China - Zhuhai
Tel: 86-756-3210040
Fax: 86-756-3210049

ASIA/PACIFIC
India - Bangalore
Tel: 91-80-3090-4444
Fax: 91-80-3090-4123
India - New Delhi
Tel: 91-11-4160-8631
Fax: 91-11-4160-8632
India - Pune
Tel: 91-20-2566-1512
Fax: 91-20-2566-1513
Japan - Yokohama
Tel: 81-45-471-6166
Fax: 81-45-471-6122
Korea - Daegu
Tel: 82-53-744-4301
Fax: 82-53-744-4302
Korea - Seoul
Tel: 82-2-554-7200
Fax: 82-2-558-5932 or 82-2-558-5934
Malaysia - Kuala Lumpur
Tel: 60-3-6201-9857
Fax: 60-3-6201-9859
Malaysia - Penang
Tel: 60-4-227-8870
Fax: 60-4-227-4068
Philippines - Manila
Tel: 63-2-634-9065
Fax: 63-2-634-9069

\section*{Singapore}

Tel: 65-6334-8870
Fax: 65-6334-8850
Taiwan - Hsin Chu
Tel: 886-3-6578-300
Fax: 886-3-6578-370
Taiwan - Kaohsiung
Tel: 886-7-213-7830
Fax: 886-7-330-9305
Taiwan - Taipei
Tel: 886-2-2500-6610
Fax: 886-2-2508-0102
Thailand - Bangkok
Tel: 66-2-694-1351
Fax: 66-2-694-1350

\section*{EUROPE}

Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393
Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829
France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781
Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340
Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91
UK - Wokingham
Tel: 44-118-921-5869
Fax: 44-118-921-5820```


[^0]:    TABLE 4-36: REFERENCE CLOCK REGISTER MAP

    | File Name | Addr. | Bit 15 | Bit 14 | Bit 13 | Bit 12 | Bit 11 | Bit 10 | Bit 9 | Bit 8 | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | All Resets |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | REFOCON | 074E | ROON | - | ROSSLP | ROSEL |  | RO | <3:0> |  | - | - | - | - | - | - | - | - | 0000 |

    TABLE 4-37: PMD REGISTER MAP FOR PIC24EPXXXGP20X DEVICES ONLY

    | File Name | Addr. | Bit 15 | Bit 14 | Bit 13 | Bit 12 | Bit 11 | Bit 10 | Bit 9 | Bit 8 | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | $\begin{array}{\|c\|} \text { All } \\ \text { Resets } \end{array}$ |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | PMD1 | 0760 | T5MD | T4MD | T3MD | T2MD | T1MD | - | - | - | 12C1MD | U2MD | U1MD | SPI2MD | SPI1MD | - | - | AD1MD | 0000 |
    | PMD2 | 0762 | - | - | - | - | IC4MD | IC3MD | IC2MD | IC1MD | - | - | - | - | OC4MD | OC3MD | OC2MD | OC1MD | 0000 |
    | PMD3 | 0764 | - | - | - | - | - | CMPMD | - | - | CRCMD | - | - | - | - | - | 12C2MD | - | 0000 |
    | PMD4 | 0766 | - | - | - | - | - | - | - | - | - | - | - | - | REFOMD | CTMUMD | - | - | 0000 |
    | PMD6 | 076A | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 0000 |
    | PMD7 | 076C | - | - | - | - | - | - | - | - | - | - | - | DMAOMD <br> DMA1MD <br> DMA2MD <br> DMA3MD | PTGMD | - | - | - | 0000 |
    | Legend |  |  |  | , |  |  | Re |  |  | mal. |  |  |  |  |  |  |  |  |

    Legend: $\quad x=$ unknown value on Reset, $-=$ unimplemented, read as ' 0 '. Reset values are shown in hexadecimal.
    TABLE 4-38: PMD REGISTER MAP FOR PIC24EPXXXMC20X DEVICES ONLY
    
    TABLE 4-39: PMD REGISTER MAP FOR dsPIC33EPXXXGP50X DEVICES ONLY

    | $\begin{aligned} & \text { File } \\ & \text { Name } \end{aligned}$ | Addr. | Bit 15 | Bit 14 | Bit 13 | Bit 12 | Bit 11 | Bit 10 | Bit 9 | Bit 8 | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | $\begin{array}{\|c\|} \text { All } \\ \text { Resets } \end{array}$ |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | PMD1 | 0760 | T5MD | T4MD | T3MD | T2MD | T1MD | - | - | - | I2C1MD | U2MD | U1MD | SPI2MD | SPI1MD | - | C1MD | AD1MD | 0000 |
    | PMD2 | 0762 | - | - | - | - | IC4MD | IC3MD | IC2MD | IC1MD | - | - | - | - | OC4MD | OC3MD | OC2MD | OC1MD | 0000 |
    | PMD3 | 0764 | - | - | - | - | - | CMPMD | - | - | CRCMD | - | - | - | - | - | 12C2MD | - | 0000 |
    | PMD4 | 0766 | - | - | - | - | - | - | - | - | - | - | - | - | REFOMD | CTMUMD | - | - | 0000 |
    | PMD6 | 076A | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 0000 |
    | PMD7 | 076C | - | - | - | - | - | - | - | - | - | - | - | DMA0MD <br> DMA1MD <br> DMA2MD <br> DMA3MD | PTGMD | - | - | - | 0000 |

    Legend: $\quad x=$ unknown value on Reset, $-=$ unimplemented, read as '0'. Reset values are shown in hexadecimal.
    TABLE 4-40: PMD REGISTER MAP FOR dsPIC33EPXXXMC50X DEVICES ONLY

    | File Name | Addr. | Bit 15 | Bit 14 | Bit 13 | Bit 12 | Bit 11 | Bit 10 | Bit 9 | Bit 8 | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | $\begin{gathered} \text { All } \\ \text { Resets } \end{gathered}$ |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | PMD1 | 0760 | T5MD | T4MD | T3MD | T2MD | T1MD | QEI1MD | PWMMD | - | 12C1MD | U2MD | U1MD | SPI2MD | SPI1MD | - | C1MD | AD1MD | 0000 |
    | PMD2 | 0762 | - | - | - | - | IC4MD | IC3MD | IC2MD | IC1MD | - | - | - | - | OC4MD | OC3MD | OC2MD | OC1MD | 0000 |
    | PMD3 | 0764 | - | - | - | - | - | CMPMD | - | - | CRCMD | - | - | - | - | - | 12C2MD | - | 0000 |
    | PMD4 | 0766 | - | - | - | - | - | - | - | - | - | - | - | - | REFOMD | CTMUMD | - | - | 0000 |
    | PMD6 | 076A | - | - | - | - | - | PWM3MD | PWM2MD | PWM1MD | - | - | - | - | - | - | - | - | 0000 |
    | PMD7 | 076C | - | - | - | - | - | - | - | - | - | - | - | DMA0MD <br> DMA1MD <br> DMA2MD <br> DMA3MD | PTGMD | - | - | - | 0000 |

    Legend: $\quad x=$ unknown value on Reset, $-=$ unimplemented, read as ' 0 '. Reset values are shown in hexadecimal.

    TABLE 4-41: PMD REGISTER MAP FOR dsPIC33EPXXXMC20X DEVICES ONLY

    | File Name | Addr. | Bit 15 | Bit 14 | Bit 13 | Bit 12 | Bit 11 | Bit 10 | Bit 9 | Bit 8 | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | All Resets |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | PMD1 | 0760 | T5MD | T4MD | T3MD | T2MD | T1MD | QEI1MD | PWMMD | - | 12C1MD | U2MD | U1MD | SPI2MD | SPI1MD | - | - | AD1MD | 0000 |
    | PMD2 | 0762 | - | - | - | - | IC4MD | IC3MD | IC2MD | IC1MD | - | - | - | - | OC4MD | OC3MD | OC2MD | OC1MD | 0000 |
    | PMD3 | 0764 | - | - | - | - | - | CMPMD | - | - | CRCMD | - | - | - | - | - | I2C2MD | - | 0000 |
    | PMD4 | 0766 | - | - | - | - | - | - | - | - | - | - | - | - | REFOMD | CTMUMD | - | - | 0000 |
    | PMD6 | 076A | - | - | - | - | - | PWM3MD | PWM2MD | PWM1MD | - | - | - | - | - | - | - | - | 0000 |
    | PMD7 | 076C | - | - | - | - | - | - | - | - | - | - | - | DMA0MD <br> DMA1MD <br> DMA2MD <br> DMA3MD | PTGMD | - | - | - | 0000 |
    |  |  |  |  |  |  |  |  |  |  |  |  |  | DMA3MD |  |  |  |  |  |

    TABLE 4-42: OP AMP/COMPARATOR REGISTER MAP

    | File Name | Addr. | Bit 15 | Bit 14 | Bit 13 | Bit 12 | Bit 11 | Bit 10 | Bit 9 | Bit 8 | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | $\begin{array}{\|c\|} \text { All } \\ \text { Resets } \end{array}$ |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | CMSTAT | 0A80 | PSIDL | - | - | - | C4EVT | C3EVT | C2EVT | C1EVT | - | - | - | - | C40UT | C3OUT | C20UT | C10UT | 0000 |
    | CVRCON | OA82 | - | CVR2OE | - | - | - | VREFSEL | - | - | CVREN | CVR10E | CVRR | CVRSS |  | CVR | 3:0> |  | 0000 |
    | CM1CON | OA84 | CON | COE | CPOL | - | OAO | OPMODE | CEVT | cout | EVPOL | <1:0> | - | CREF | - | - | CC | 1:0> | 0000 |
    | CM1MSKSRC | 0A86 | - | - | - | - | SELSRCC<3:0> |  |  |  | SELSRCB<3:0> |  |  |  | SELSRCA<3:0> |  |  |  | 0000 |
    | CM1MSKCON | OA88 | HLMS | - | OCEN | OCNEN | OBEN | OBNEN | OAEN | OANEN | NAGS | PAGS | ACEN | ACNEN | ABEN | ABNEN | AAEN | AANEN | 0000 |
    | CM1FLTR | 0A8A | - | - | - | - | - | - | - | - | - | CFSEL<2:0> |  |  | CFLTREN | CFDIV<2:0> |  |  | 0000 |
    | CM2CON | 0A8C | CON | COE | CPOL | - | OAO | OPMODE | CEVT | COUT | EVPOL | <1:0> | - | CREF | - | - | CCH | 1:0> | 0000 |
    | CM2MSKSRC | 0A8E | - | - | - | - | SELSRCC<3:0> |  |  |  | SELSRCB<3:0> |  |  |  | SELSRCA<3:0> |  |  |  | 0000 |
    | CM2MSKCON | 0A90 | HLMS | - | OCEN | OCNEN | OBEN | OBNEN | OAEN | OANEN | NAGS | PAGS | ACEN | ACNEN | ABEN | ABNEN | AAEN | AANEN | 0000 |
    | CM2FLTR | 0A92 | - | - | - | - | - | - | - | - | CFSEL<2:0> |  |  |  | CFLTREN | CFDIV<2:0> |  |  | 0000 |
    | CM3CON | OA94 | CON | COE | CPOL | - | OAO | OPMODE | CEVT | COUT | EVPOL | <1:0> | - | CREF | - | - | CCH | 1:0> | 0000 |
    | CM3MSKSRC | 0A96 | - | - | - | - | SELSRCC<3:0> |  |  |  | SELSRCB<3:0> |  |  |  | SELSRCA<3:0> |  |  |  | 0000 |
    | CM3MSKCON | 0A98 | HLMS | - | OCEN | OCNEN | OBEN | OBNEN | OAEN | OANEN | NAGS | PAGS | ACEN | ACNEN | ABEN | ABNEN | AAEN | AANEN | 0000 |
    | CM3FLTR | 0A9A | - | - | - | - | - | - | - | - | CFSEL<2:0> |  |  |  | CFLTREN | CFDIV<2:0> |  |  | 0000 |
    | CM4CON | 0A9C | CON | COE | CPOL | - | - | - | CEVT | COUT | EVPOL | <1:0> | - | CREF | - | - | CCH | 1:0> | 0000 |
    | CM4MSKSRC | OA9E | - | - | - | - | SELSRCC<3:0> |  |  |  | SELSRCB<3:0> |  |  |  | SELSRCA<3:0> |  |  |  | 0000 |
    | CM4MSKCON | OAAO | HLMS | - | OCEN | OCNEN | OBEN | OBNEN | OAEN | OANEN | NAGS | PAGS | ACEN | ACNEN | ABEN | ABNEN | AAEN | AANEN | 0000 |
    | CM4FLTR | OAA2 | - | - | - | - | - | - | - | - | - | CFSEL<2:0> |  |  | CFLTREN | CFDIV<2:0> |  |  | 0000 |

    PORTA REGISTER MAP FOR PIC24EPXXXGP/MC206 AND dsPIC33EPXXXGP/MC206/506 DEVICES ONLY

    | File Name | Addr. | Bit 15 | Bit 14 | Bit 13 | Bit 12 | Bit 11 | Bit 10 | Bit 9 | Bit 8 | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | $\begin{gathered} \text { All } \\ \text { Resets } \end{gathered}$ |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | TRISA | 0E00 | - | - | - | TRISA12 | TRISA11 | TRISA10 | TRISA9 | TRISA8 | TRISA7 | - | - | TRISA4 | - | - | TRISA1 | TRISAO | 1F93 |
    | PORTA | 0E02 | - | - | - | RA12 | RA11 | RA10 | RA9 | RA8 | RA7 | - | - | RA4 | - | - | RA1 | RAO | 0000 |
    | LATA | 0E04 | - | - | - | LATA12 | LATA11 | LATA10 | LATA9 | LATA8 | LATA7 | - | - | LATA4 | - | - | LA1TA1 | LAOTAO | 0000 |
    | ODCA | 0E06 | - | - | - | ODCA12 | ODCA11 | ODCA10 | ODCA9 | ODCA8 | ODCA7 | - | - | ODCA4 | - | - | ODCA1 | ODCAO | 0000 |
    | CNENA | 0E08 | - | - | - | CNIEA12 | CNIEA11 | CNIEA10 | CNIEA9 | CNIEA8 | CNIEA7 | - | - | CNIEA4 | - | - | CNIEA1 | CNIEAO | 0000 |
    | CNPUA | OEOA | - | - | - | CNPUA12 | CNPUA11 | CNPUA10 | CNPUA9 | CNPUA8 | CNPUA7 | - | - | CNPUA4 | - | - | CNPUA1 | CNPUAO | 0000 |
    | CNPDA | 0EOC | - | - | - | CNPDA12 | CNPDA11 | CNPDA10 | CNPDA9 | CNPDA8 | CNPDA7 | - | - | CNPDA4 | - | - | CNPDA1 | CNPDA0 | 0000 |
    | ANSELA | 0EOE | - | - | - | ANSA12 | ANSA11 | - | - | - | - | - | - | ANSA4 | - | - | ANSA1 | ANSAO | 1813 |

    Legend: $\quad x=$ unknown value on Reset, $-=$ unimplemented, read as ' 0 '. Reset values are shown in hexadecimal.
    TABLE 4-49:

    | File Name | Addr. | Bit 15 | Bit 14 | Bit 13 | Bit 12 | Bit 11 | Bit 10 | Bit 9 | Bit 8 | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | $\begin{gathered} \text { All } \\ \text { Resets } \end{gathered}$ |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | TRISD | 0E30 | - | - | - | - | - | - | - | TRISD8 | - | TRISD6 | TRISD5 | - | - | - | - | - | 0160 |
    | PORTD | 0E32 | - | - | - | - | - | - | - | RD8 | - | RD6 | RD5 | - | - | - | - | - | xxxx |
    | LATD | 0E34 | - | - | - | - | - | - | - | LATD8 | - | LATD6 | LATD5 | - | - | - | - | - | xxxx |
    | ODCD | 0E36 | - | - | - | - | - | - | - | ODCD8 | - | ODCD6 | ODCD5 | - | - | - | - | - | 0000 |
    | CNEND | 0E38 | - | - | - | - | - | - | - | CNIED8 | - | CNIED6 | CNIED5 | - | - | - | - | - | 0000 |
    | CNPUD | 0E3A | - | - | - | - | - | - | - | CNPUD8 | - | CNPUD6 | CNPUD5 | - | - | - | - | - | 0000 |
    | CNPDD | 0E3C | - | - | - | - | - | - | - | CNPDD8 | - | CNPDD6 | CNPDD5 | - | - | - | - | - | 0000 |

    TABLE 4-50: PORTE REGISTER MAP FOR PIC24EPXXXGP/MC206 AND dsPIC33EPXXXGP/MC206/506 DEVICES ONLY

    | File Name | Addr. | Bit 15 | Bit 14 | Bit 13 | Bit 12 | Bit 11 | Bit 10 | Bit 9 | Bit 8 | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | All Resets |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | TRISE | 0E40 | TRISE15 | TRISE14 | TRISE13 | TRISE12 | - | - | - | - | - | - | - | - | - | - | - | - | F000 |
    | PORTE | 0E42 | RE15 | RE14 | RE13 | RE12 | - | - | - | - | - | - | - | - | - | - | - | - | xxxx |
    | LATE | 0E44 | LATE15 | LATE14 | LATE13 | LATE12 | - | - | - | - | - | - | - | - | - | - | - | - | xxxx |
    | ODCE | 0E46 | ODCE15 | ODCE14 | ODCE13 | ODCE12 | - | - | - | - | - | - | - | - | - | - | - | - | 0000 |
    | CNENE | 0E48 | CNIEE15 | CNIEE14 | CNIEE13 | CNIEE12 | - | - | - | - | - | - | - | - | - | - | - | - | 0000 |
    | CNPUE | 0E4A | CNPUE15 | CNPUE14 | CNPUE13 | CNPUE12 | - | - | - | - | - | - | - | - | - | - | - | - | 0000 |
    | CNPDE | 0E4C | CNPDE15 | CNPDE14 | CNPDE13 | CNPDE12 | - | - | - | - | - | - | - | - | - | - | - | - | 0000 |
    | ANSELE | 0E4E | ANSE15 | ANSE14 | ANSE13 | ANSE12 | - | - | - | - | - | - | - | - | - | - | - | - | 0000 |

    TABLE 4-51: PORTF REGISTER MAP FOR PIC24EPXXXGP/MC206 AND dsPIC33EPXXXGP/MC206/506 DEVICES ONLY

    | File Name | Addr. | Bit 15 | Bit 14 | Bit 13 | Bit 12 | Bit 11 | Bit 10 | Bit 9 | Bit 8 | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | All Resets |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | TRISF | 0E50 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | TRISF1 | TRISF0 | 0173 |
    | PORTF | 0E52 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | RF1 | RFO | xxxx |
    | LATF | 0E54 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | LATF1 | LATFO | xxxx |
    | ODCF | 0E56 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | ODCF1 | ODCFO | 0000 |
    | CNENF | 0E58 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | CNIEF1 | CNIEFO | 0000 |
    | CNPUF | 0E5A | - | - | - | - | - | - | - | - | - | - | - | - | - | - | CNPUF1 | CNPUFO | 0000 |
    | CNPDF | 0E5C | - | - | - | - | - | - | - | - | - | - | - | - | - | - | CNPDF1 | CNPDFO | 0000 |

    
    
    TABLE 4-56: PORTA REGISTER MAP FOR PIC24EPXXXGP/MC203 AND dsPIC33EPXXXGP/MC203/503 DEVICES ONLY

    | File Name | Addr. | Bit 15 | Bit 14 | Bit 13 | Bit 12 | Bit 11 | Bit 10 | Bit 9 | Bit 8 | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | $\begin{array}{\|c\|} \text { All } \\ \text { Resets } \end{array}$ |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | TRISA | 0E00 | - | - | - | - | - | - | - | TRISA8 | - | - | - | TRISA4 | TRISA3 | TRISA2 | TRISA1 | TRISAO | 011F |
    | PORTA | 0E02 | - | - | - | - | - | - | - | RA8 | - | - | - | RA4 | RA3 | RA2 | RA1 | RaO | 0000 |
    | LATA | 0E04 | - | - | - | - | - | - | - | LATA8 | - | - | - | LATA4 | LATA3 | LATA2 | LA1TA1 | LAOTAO | 0000 |
    | ODCA | 0E06 | - | - | - | - | - | - | - | ODCA8 | - | - | - | ODCA4 | ODCA3 | ODCA2 | ODCA1 | ODCAO | 0000 |
    | CNENA | 0E08 | - | - | - | - | - | - | - | CNIEA8 | - | - | - | CNIEA4 | CNIEA3 | CNIEA2 | CNIEA1 | CNIEAO | 0000 |
    | CNPUA | 0EOA | - | - | - | - | - | - | - | CNPUA8 | - | - | - | CNPUA4 | CNPUA3 | CNPUA2 | CNPUA1 | CNPUAO | 0000 |
    | CNPDA | 0EOC | - | - | - | - | - | - | - | CNPDA8 | - | - | - | CNPDA4 | CNPDA3 | CNPDA2 | CNPDA1 | CNPDAO | 0000 |
    | ANSELA | 0EOE | - | - | - | - | - | - | - | - | - | - | - | ANSA4 | - | - | ANSA1 | ANSA0 | 0013 |

    TABLE 4-59: PORTA REGISTER MAP FOR PIC24EPXXXGPIMC202 AND dsPIC33EPXXXGP/MC202/502 DEVICES ONLY

    | File Name | Addr. | Bit 15 | Bit 14 | Bit 13 | Bit 12 | Bit 11 | Bit 10 | Bit 9 | Bit 8 | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | $\begin{gathered} \text { All } \\ \text { Resets } \end{gathered}$ |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | TRISA | 0E00 | - | - | - | - | - | - | - | - | - | - | - | TRISA4 | TRISA3 | TRISA2 | TRISA1 | TRISAO | 001C |
    | PORTA | 0E02 | - | - | - | - | - | - | - | - | - | - | - | RA4 | RA3 | RA2 | RA1 | RAO | 0000 |
    | LATA | 0E04 | - | - | - | - | - | - | - | - | - | - | - | LATA4 | LATA3 | LATA2 | LA1TA1 | LAOTAO | 0000 |
    | ODCA | 0E06 | - | - | - | - | - | - | - | - | - | - | - | ODCA4 | ODCA3 | ODCA2 | ODCA1 | OdCAO | 0000 |
    | CNENA | OE08 | - | - | - | - | - | - | - | - | - | - | - | CNIEA4 | CNIEA3 | CNIEA2 | CNIEA1 | CNIEAO | 0000 |
    | CNPUA | OEOA | - | - | - | - | - | - | - | - | - | - | - | CNPUA4 | CNPUA3 | CNPUA2 | CNPUA1 | CNPUAO | 0000 |
    | CNPDA | OEOC | - | - | - | - | - | - | - | - | - | - | - | CNPDA4 | CNPDA3 | CNPDA2 | CNPDA1 | CNPDAO | 0000 |
    | ANSELA | OEOE | - | - | - | - | - | - | - | - | - | - | - | ANSA4 | - | - | ANSA1 | ANSA0 | 0013 |


    ### 4.2.6 PAGED MEMORY SCHEME

    The dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X, and PIC24EPXXXGP/MC20X architecture extends the available data space through a paging scheme, which allows the available data space to be accessed using MOV instructions in a linear fashion for pre- and post-modified effective addresses (EA). The upper half of base data space address is used in conjunction with the data space page registers, the 10-bit read page register (DSRPAG) or the 9-bit write page register (DSWPAG), to form an extended data space (EDS) address or Program Space Visibility (PSV) address. The data space page registers are located in the SFR space.

    Construction of the EDS address is shown in Figure 4-1. When DSRPAG<9> $=0$ and base address bit EA<15> = 1, DSRPAG<8:0> is concatenated onto $E A<14: 0>$ to form the 24 -bit EDS read address. Similarly when base address bit EA<15> $=1$, DSWPAG<8:0> is concatenated onto EA<14:0> to form the 24-bit EDS write address.

    EXAMPLE 4-1: EXTENDED DATA SPACE (EDS) READ ADDRESS GENERATION
    

    Note: DS read access when DSRPAG $=0 \times 000$ will force an Address Error trap.

    EXAMPLE 4-2: EXTENDED DATA SPACE (EDS) WRITE ADDRESS GENERATION
    

    The paged memory scheme provides access to multiple 32-Kbyte windows in the EDS and PSV memory. The data space page registers DSxPAG, in combination with the upper half of data space address can provide up to 16 Mbytes of additional address space in the EDS and 8 Mbytes (DSRPAG only) of PSV address space. The paged data memory space is shown in Example 4-3.
    The program space (PS) can be accessed with DSRPAG of $0 \times 200$ or greater. Only reads from PS are supported using the DSRPAG. Writes to PS are not supported, so DSWPAG is dedicated to DS, including EDS, only. The data space and EDS can be read from and written to using DSRPAG and DSWPAG, respectively.
    EXAMPLE 4-3: PAGED DATA MEMORY SPACE
    

    Allocating different page registers for read and write access allows the architecture to support data movement between different pages in data memory. This is accomplished by setting the DSRPAG register value to the page from which you want to read, and configuring the DSWPAG register to the page to which it needs to be written. Data can also be moved from different PSV to EDS pages, by configuring the DSRPAG and DSWPAG registers to address PSV and EDS space, respectively. The data can be moved between pages by a single instruction.
    When an EDS or PSV page overflow or underflow occurs, $\mathrm{EA}<15>$ is cleared as a result of the register indirect EA calculation. An overflow or underflow of the EA in the EDS or PSV pages can occur at the page boundaries when:

    - The initial address prior to modification addresses an EDS or PSV page
    - The EA calculation uses pre- or post-modified register indirect addressing. However, this does not include register offset addressing

    In general, when an overflow is detected, the DSxPAG register is incremented, and the $\mathrm{EA}<15>$ bit is set to keep the base address within the EDS or PSV window. When an underflow is detected, the DSxPAG register is decremented, and the EA<15> bit is set to keep the base address within the EDS or PSV window. This creates a linear EDS and PSV address space, but only when using Register Indirect Addressing modes.
    Exceptions to the operation described above arise when entering and exiting the boundaries of page 0 , EDS, and PSV spaces. Table 4-61 lists the effects of overflow and underflow scenarios at different boundaries.

    In the following cases, when overflow or underflow occurs, the EA<15> bit is set and the DSxPAG is not modified; therefore, the EA will wrap to the beginning of the current page:

    - Register indirect with register offset addressing
    - Modulo Addressing
    - Bit-reversed addressing

    TABLE 4-61: OVERFLOW AND UNDERFLOW SCENARIOS AT PAGE 0, EDS, and PSV SPACE BOUNDARIES

    | OIU, R/W | Operation | Before |  |  | After |  |  |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    |  |  | DSxPAG | $\begin{gathered} \text { DS } \\ E A<15> \end{gathered}$ | Page Description | DSxPAG | $\begin{gathered} \mathrm{DS} \\ \mathrm{EA}<15> \end{gathered}$ | Page Description |
    | O, Read | $\begin{gathered} {[++W n]} \\ \text { or } \\ {[W n++]} \end{gathered}$ | DSRPAG = 0x1FF | 1 | EDS: Last page | DSRPAG = 0x1FF | 0 | See Note 1 |
    | O, Read |  | DSRPAG = 0x2FF | 1 | PSV: Last Isw page | DSRPAG = 0x300 | 1 | PSV: First MSB page |
    | O, Read |  | DSRPAG $=0 \times 3 \mathrm{FF}$ | 1 | PSV: Last MSB page | DSRPAG = 0x3FF | 0 | See Note 1 |
    | O, Write |  | DSWPAG = 0x1FF | 1 | EDS: Last page | DSWPAG = 0x1FF | 0 | See Note 1 |
    | U, Read | $\begin{gathered} {[--W n]} \\ \text { or } \\ {[W n--]} \end{gathered}$ | DSRPAG = 0x001 | 1 | PSV page | DSRPAG = 0x001 | 0 | See Note 1 |
    | U, Read |  | DSRPAG $=0 \times 200$ | 1 | PSV: First Isw page | DSRPAG $=0 \times 200$ | 0 | See Note 1 |
    | $\mathrm{U},$ <br> Read |  | DSRPAG $=0 \times 300$ | 1 | PSV: First MSB page | DSRPAG = 0x2FF | 1 | PSV: Last Isw page |

    Legend: $\mathrm{O}=$ Overflow, U = Underflow, $\mathrm{R}=$ Read, $\mathrm{W}=$ Write
    Note 1: The register indirect address now addresses a location in the base data space ( $0 \times 0000-0 \times 8000$ ).
    2: An EDS access with DSxPAG $=0 \times 000$ will generate an address error trap.
    3: Only reads from PS are supported using DSRPAG. An attempt to write to PS using DSWPAG will generate an address error trap.
    4: Pseudo-linear addressing is not supported for large offsets.

    ### 4.2.7 EXTENDED X DATA SPACE

    The lower portion of the base address space range between $0 \times 0000$ and $0 \times 2$ FFF is always accessible regardless of the contents of the data space page registers. It is indirectly addressable through the register indirect instructions. It can be regarded as being located in the default EDS page 0 (i.e., EDS address range of $0 \times 000000$ to $0 \times 002$ FFF with the base address bit $\mathrm{EA}<15>=0$ for this address range). However, page 0 cannot be accessed through upper 32 Kbytes, $0 \times 8000$ to $0 x F F F F$, of base data space in combination with DSRPAG $=0 \times 00$ or DSWPAG $=$ $0 \times 00$. Consequently, DSRPAG and DSWPAG are initialized to 0x001 at Reset.

    Note 1: DSxPAG should not be used to access page 0 . An EDS access with DSxPAG set to $0 \times 000$ will generate an Address Error trap.
    2: Clearing the DSxPAG in software has no effect.

    The remaining pages including both EDS and PSV pages are only accessible using the DSRPAG or DSWPAG registers in combination with the upper 32 Kbytes, $0 \times 8000$ to 0xFFFF, of the base address, where base address bit EA<15> = 1 .
    For example, when DSRPAG $=0 \times 01$ or DSWPAG $=$ $0 \times 01$, accesses to the upper 32 Kbytes, $0 \times 8000$ to 0xFFFF, of the data space will map to the EDS address range of $0 \times 008000$ to $0 x 00 F F F F$. When DSRPAG $=$ $0 \times 02$ or DSWPAG $=0 \times 02$, accesses to the upper 32 Kbytes of the data space will map to the EDS address range of $0 \times 010000$ to $0 \times 017 \mathrm{FFF}$ and so on, as shown in the EDS memory map in Figure 4-5.
    For more information of the PSV page access using data space page registers refer to 4.5 "Program Space Visibility from Data Space" in Section 4. "Program Memory" (DS70613) of the "dsPIC33E/ PIC24E Family Reference Manual".

    FIGURE 4-5: EDS MEMORY MAP
    

    ### 4.2.8 EDS ARBITRATION AND BUS MASTER PRIORITY

    EDS accesses from bus masters in the system are arbitrated.
    The arbiter for data memory (including EDS) arbitrates between the CPU, the DMA, and the ICD module. In the event of coincidental access to a bus by the bus masters, the arbiter determines which bus master access has the highest priority. The other bus masters are suspended and processed after the access of the bus by the bus master with the highest priority.
    By default, the CPU is bus master 0 (M0) with the highest priority, and the ICD is bus master 4 (M4) with the lowest priority. The remaining bus masters (DMA Controllers) are allocated to M2 and M3, respectively
    (M1 is reserved and cannot be used). The user application may raise or lower the priority of the masters to be above that of the CPU by setting the appropriate bits in the EDS Bus Master Priority Control (MSTRPR) register. All bus masters with raised priorities will maintain the same priority relationship relative to each other (i.e., M1 being highest and M3 being lowest with M2 in between). Also, all the bus masters with priorities below that of the CPU maintain the same priority relationship relative to each other. The priority schemes for bus masters with different MSTRPR values are tabulated in Table 4-62.

    This bus master priority control allows the user application to manipulate the real-time response of the system, either statically during initialization, or dynamically in response to real-time events.

    TABLE 4-62: EDS BUS ARBITER PRIORITY

    | Priority | MSTRPR<15:0> Bit Setting ${ }^{(\mathbf{1})}$ |  |  |  |
    | :---: | :---: | :---: | :---: | :---: |
    |  | $\mathbf{0 x 0 0 0 0}$ | $\mathbf{0 x 0 0 0 8}$ | $\mathbf{0 x 0 0 2 0}$ | $\mathbf{0 \times 0 0 2 8}$ |
    | M0 (highest) | CPU | Reserved | DMA | Reserved |
    | M1 | Reserved | CPU | CPU | DMA |
    | M2 | Reserved | Reserved | Reserved | CPU |
    | M3 | DMA | DMA | Reserved | Reserved |
    | M4 (lowest) | ICD | ICD | ICD | ICD |

    Note 1: All other values of MSTRPR<15:0> are Reserved.
    FIGURE 4-6: ARBITER ARCHITECTURE
    

    ### 4.2.9 SOFTWARE STACK

    The W15 register serves as a dedicated software Stack Pointer (SP) and is automatically modified by exception processing, subroutine calls and returns; however, W15 can be referenced by any instruction in the same manner as all other $W$ registers. This simplifies reading, writing and manipulating of the Stack Pointer (for example, creating stack frames).
    

    W15 is initialized to $0 \times 1000$ during all Resets. This address ensures that the SP points to valid RAM in all dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X, and PIC24EPXXXGP/MC20X devices and permits stack availability for non-maskable trap exceptions. These can occur before the SP is initialized by the user software. You can reprogram the SP during initialization to any location within data space.
    The Stack Pointer always points to the first available free word and fills the software stack working from lower toward higher addresses. Figure 4-7 illustrates how it pre-decrements for a stack pop (read) and postincrements for a stack push (writes).
    When the PC is pushed onto the stack, $\mathrm{PC}<15: 0>$ is pushed onto the first available stack word, then $\mathrm{PC}<22: 16>$ is pushed into the second available stack location. For a PC push during any CALL instruction, the MSB of the PC is zero-extended before the push, as shown in Figure 4-7. During exception processing, the MSB of the PC is concatenated with the lower 8 bits of the CPU STATUS register, SR. This allows the contents of SRL to be preserved automatically during interrupt processing.

    Note 1: To maintain system stack pointer (W15) coherency, W15 is never subject to (EDS) paging, and is therefore restricted to an address range of $0 \times 0000$ to $0 x F F F F$. The same applies to the W14 when used as a Stack Frame Pointer (SFA = 1).
    2: As the stack can be placed in, and can access, $X$ and $Y$ spaces, care must be taken regarding its use, particularly with regard to local automatic variables in a C development environment

    FIGURE 4-7: CALL STACK FRAME
    

    ### 4.3 Instruction Addressing Modes

    The addressing modes shown in Table 4-63 form the basis of the addressing modes optimized to support the specific features of individual instructions. The addressing modes provided in the MAC class of instructions differ from those in the other instruction types.

    ### 4.3.1 FILE REGISTER INSTRUCTIONS

    Most file register instructions use a 13-bit address field (f) to directly address data present in the first 8192 bytes of data memory (near data space). Most file register instructions employ a working register, W0, which is denoted as WREG in these instructions. The destination is typically either the same file register or WREG (with the exception of the MUL instruction), which writes the result to a register or register pair. The MOV instruction allows additional flexibility and can access the entire data space.

    ### 4.3.2 MCU INSTRUCTIONS

    The three-operand MCU instructions are of the form:
    Operand 3 = Operand 1 <function> Operand 2
    where Operand 1 is always a working register (that is, the addressing mode can only be Register Direct), which is referred to as Wb . Operand 2 can be a W register, fetched from data memory, or a 5-bit literal. The result location can be either a W register or a data memory location. The following addressing modes are supported by MCU instructions:

    - Register Direct
    - Register Indirect
    - Register Indirect Post-Modified
    - Register Indirect Pre-Modified
    - 5-bit or 10 -bit Literal

    Note: Not all instructions support all the addressing modes given above. Individ-
    ual instructions can support different
    subsets of these addressing modes.

    ## TABLE 4-63: FUNDAMENTAL ADDRESSING MODES SUPPORTED

    | Addressing Mode | Description |
    | :--- | :--- |
    | File Register Direct | The address of the file register is specified explicitly. |
    | Register Direct | The contents of a register are accessed directly. |
    | Register Indirect | The contents of Wn forms the Effective Address (EA). |
    | Register Indirect Post-Modified | The contents of Wn forms the EA. Wn is post-modified (incremented <br> or decremented) by a constant value. |
    | Register Indirect Pre-Modified | Wn is pre-modified (incremented or decremented) by a signed constant value <br> to form the EA. |
    | Register Indirect with Register Offset <br> (Register Indexed) | The sum of Wn and Wb forms the EA. |
    | Register Indirect with Literal Offset | The sum of Wn and a literal forms the EA. |

    ### 4.3.3 MOVE AND ACCUMULATOR INSTRUCTIONS

    Move instructions, which apply to dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X, and PIC24EPXXXGP/MC20X devices, and the DSP accumulator class of instructions, which apply to the dsPIC33EPXXXMC20X/50X and dsPIC33EPXXXGP50X devices, provide a greater degree of addressing flexibility than other instructions. In addition to the addressing modes supported by most MCU instructions, move and accumulator instructions also support Register Indirect with Register Offset Addressing mode, also referred to as Register Indexed mode.

    $$
    \begin{array}{ll}
    \text { Note: } & \text { For the MOV instructions, the addressing } \\
    \text { mode specified in the instruction can differ } \\
    \text { for the source and destination EA. } \\
    \text { However, the } 4 \text {-bit Wb (Register Offset) } \\
    \text { field is shared by both source and } \\
    \text { destination (but typically only used by } \\
    \text { one). }
    \end{array}
    $$

    In summary, the following addressing modes are supported by move and accumulator instructions:

    - Register Direct
    - Register Indirect
    - Register Indirect Post-modified
    - Register Indirect Pre-modified
    - Register Indirect with Register Offset (Indexed)
    - Register Indirect with Literal Offset
    - 8-bit Literal
    - 16-bit Literal

    Note: Not all instructions support all the addressing modes given above. Individual instructions may support different subsets of these addressing modes.

    ### 4.3.4 MAC INSTRUCTIONS (dsPIC33EPXXXMC20X/50X and dsPIC33EPXXXGP50X DEVICES ONLY)

    The dual source operand DSP instructions (CLR, ED, EDAC, MAC, MPY, MPY . N, MOVSAC and MSC), also referred to as MAC instructions, use a simplified set of addressing modes to allow the user application to effectively manipulate the data pointers through register indirect tables.

    The two-source operand prefetch registers must be members of the set $\{\mathrm{W} 8, \mathrm{~W} 9, \mathrm{~W} 10, \mathrm{~W} 11\}$. For data reads, W8 and W9 are always directed to the X RAGU, and W10 and W11 are always directed to the Y AGU. The effective addresses generated (before and after modification) must, therefore, be valid addresses within X data space for W 8 and W 9 and Y data space for W 10 and W11.

    > | Note: | $\begin{array}{l}\text { Register Indirect with Register Offset } \\ \text { Addressing mode is available only for W9 } \\ \text { (in X space) and W11 (in Y space). }\end{array}$ |
    | :--- | :--- |

    In summary, the following addressing modes are supported by the MAC class of instructions:

    - Register Indirect
    - Register Indirect Post-Modified by 2
    - Register Indirect Post-Modified by 4
    - Register Indirect Post-Modified by 6
    - Register Indirect with Register Offset (Indexed)


    ### 4.3.5 OTHER INSTRUCTIONS

    Besides the addressing modes outlined previously, some instructions use literal constants of various sizes. For example, BRA (branch) instructions use 16-bit signed literals to specify the branch destination directly, whereas the DISI instruction uses a 14-bit unsigned literal field. In some instructions, such as ULNK, the source of an operand or result is implied by the opcode itself. Certain operations, such as NOP, do not have any operands.

    ### 4.4 Modulo Addressing (dsPIC33EPXXXMC20XI50X and dsPIC33EPXXXGP50X Devices Only)

    Modulo Addressing mode is a method of providing an automated means to support circular data buffers using hardware. The objective is to remove the need for software to perform data address boundary checks when executing tightly looped code, as is typical in many DSP algorithms.
    Modulo Addressing can operate in either data or program space (since the data pointer mechanism is essentially the same for both). One circular buffer can be supported in each of the $X$ (which also provides the pointers into program space) and $Y$ data spaces. Modulo Addressing can operate on any W register pointer. However, it is not advisable to use W14 or W15 for Modulo Addressing since these two registers are used as the Stack Frame Pointer and Stack Pointer, respectively.
    In general, any particular circular buffer can be configured to operate in only one direction as there are certain restrictions on the buffer start address (for incrementing buffers), or end address (for decrementing buffers), based upon the direction of the buffer.
    The only exception to the usage restrictions is for buffers that have a power-of-two length. As these buffers satisfy the start and end address criteria, they can operate in a bidirectional mode (that is, address boundary checks are performed on both the lower and upper address boundaries).

    ### 4.4.1 START AND END ADDRESS

    The Modulo Addressing scheme requires that a starting and ending address be specified and loaded into the 16-bit Modulo Buffer Address registers: XMODSRT, XMODEND, YMODSRT and YMODEND (see Table 4-1).

    $$
    \begin{array}{ll}
    \text { Note: } & \text { Y space Modulo Addressing EA calcula- } \\
    \text { tions assume word-sized data (LSb of } \\
    \text { every EA is always clear). }
    \end{array}
    $$

    The length of a circular buffer is not directly specified. It is determined by the difference between the corresponding start and end addresses. The maximum possible length of the circular buffer is 32 K words (64 Kbytes).

    ### 4.4.2 W ADDRESS REGISTER SELECTION

    The Modulo and Bit-Reversed Addressing Control register, MODCON<15:0>, contains enable flags as well as a W register field to specify the W Address registers. The XWM and YWM fields select the registers that operate with Modulo Addressing:

    - If $\mathrm{XWM}=15, \mathrm{X}$ RAGU and X WAGU Modulo Addressing is disabled
    - If YWM = 15, Y AGU Modulo Addressing is disabled

    The X Address Space Pointer W register (XWM), to which Modulo Addressing is to be applied, is stored in MODCON $<3: 0>$ (see Table 4-1). Modulo Addressing is enabled for $X$ data space when $X W M$ is set to any value other than ' 15 ' and the XMODEN bit is set at MODCON<15>.
    The Y Address Space Pointer W register (YWM) to which Modulo Addressing is to be applied is stored in MODCON<7:4>. Modulo Addressing is enabled for $Y$ data space when YWM is set to any value other than ' 15 ' and the YMODEN bit is set at MODCON<14>.

    FIGURE 4-8: MODULO ADDRESSING OPERATION EXAMPLE
    Byte
    Address
    $0 \times 1100$

    ### 4.4.3 MODULO ADDRESSING APPLICABILITY

    Modulo Addressing can be applied to the Effective Address (EA) calculation associated with any W register. Address boundaries check for addresses equal to:

    - The upper boundary addresses for incrementing buffers
    - The lower boundary addresses for decrementing buffers
    It is important to realize that the address boundaries check for addresses less than or greater than the upper (for incrementing buffers) and lower (for decrementing buffers) boundary addresses (not just equal to). Address changes can, therefore, jump beyond boundaries and still be adjusted correctly.

    $$
    \begin{array}{ll}
    \text { Note: } & \text { The modulo corrected effective address is } \\
    \text { written back to the register only when Pre- } \\
    \text { Modify or Post-Modify Addressing mode is } \\
    \text { used to compute the effective address. } \\
    \text { When an address offset (such as [W7 + } \\
    \text { W2]) is used, Modulo Address correction } \\
    \text { is performed but the contents of the } \\
    \text { register remain unchanged. }
    \end{array}
    $$

    ### 4.5 Bit-Reversed Addressing (dsPIC33EPXXXMC20X/50X and dsPIC33EPXXXGP50X Devices Only)

    Bit-Reversed Addressing mode is intended to simplify data reordering for radix-2 FFT algorithms. It is supported by the X AGU for data writes only.
    The modifier, which can be a constant value or register contents, is regarded as having its bit order reversed. The address source and destination are kept in normal order. Thus, the only operand requiring reversal is the modifier.

    ### 4.5.1 BIT-REVERSED ADDRESSING IMPLEMENTATION

    Bit-Reversed Addressing mode is enabled in any of these situations:

    - BWM bits (W register selection) in the MODCON register are any value other than ' 15 ' (the stack cannot be accessed using Bit-Reversed Addressing)
    - The BREN bit is set in the XBREV register
    - The addressing mode used is Register Indirect with Pre-Increment or Post-Increment

    If the length of a bit-reversed buffer is $M=2^{N}$ bytes, the last ' $N$ ' bits of the data buffer start address must be zeros.
    $X B<14: 0>$ is the Bit-Reversed Address modifier, or 'pivot point,' which is typically a constant. In the case of an FFT computation, its value is equal to half of the FFT data buffer size.

    Note: All bit-reversed EA calculations assume word-sized data (LSb of every EA is always clear). The XB value is scaled accordingly to generate compatible (byte) addresses.

    When enabled, Bit-Reversed Addressing is executed only for Register Indirect with Pre-Increment or PostIncrement Addressing and word-sized data writes. It does not function for any other addressing mode or for byte-sized data, and normal addresses are generated instead. When Bit-Reversed Addressing is active, the W Address Pointer is always added to the address modifier (XB), and the offset associated with the Register Indirect Addressing mode is ignored. In addition, as word-sized data is a requirement, the LSb of the EA is ignored (and always clear).

    ## Note: Modulo Addressing and Bit-Reversed Addressing should not be enabled together. If an application attempts to do so, Bit-Reversed Addressing assumes priority when active for the X WAGU and X WAGU, Modulo Addressing is disabled. However, Modulo Addressing continues to function in the $X$ RAGU.

    If Bit-Reversed Addressing has already been enabled by setting the BREN (XBREV<15>) bit, a write to the XBREV register should not be immediately followed by an indirect read operation using the W register that has been designated as the bit-reversed pointer.

    FIGURE 4-9: BIT-REVERSED ADDRESS EXAMPLE
    

    TABLE 4-64: BIT-REVERSED ADDRESS SEQUENCE (16-ENTRY)

    | Normal Address |  |  |  | Bit-Reversed Address |  |  |  |  |  |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | A3 | A2 | A1 | A0 | Decimal | A3 | A2 | A1 | A0 | Decimal |
    | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
    | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 8 |
    | 0 | 0 | 1 | 0 | 2 | 0 | 1 | 0 | 0 | 4 |
    | 0 | 0 | 1 | 1 | 3 | 1 | 1 | 0 | 0 | 12 |
    | 0 | 1 | 0 | 0 | 4 | 0 | 0 | 1 | 0 | 2 |
    | 0 | 1 | 0 | 1 | 5 | 1 | 0 | 1 | 0 | 10 |
    | 0 | 1 | 1 | 0 | 6 | 0 | 1 | 1 | 0 | 6 |
    | 0 | 1 | 1 | 1 | 7 | 1 | 1 | 1 | 0 | 14 |
    | 1 | 0 | 0 | 0 | 8 | 0 | 0 | 0 | 1 | 1 |
    | 1 | 0 | 0 | 1 | 9 | 1 | 0 | 0 | 1 | 9 |
    | 1 | 0 | 1 | 0 | 10 | 0 | 1 | 0 | 1 | 5 |
    | 1 | 0 | 1 | 1 | 11 | 1 | 1 | 0 | 1 | 13 |
    | 1 | 1 | 0 | 0 | 12 | 0 | 0 | 1 | 1 | 3 |
    | 1 | 1 | 0 | 1 | 13 | 1 | 0 | 1 | 1 | 11 |
    | 1 | 1 | 1 | 0 | 14 | 0 | 1 | 1 | 1 | 7 |
    | 1 | 1 | 1 | 1 | 15 | 1 | 1 | 1 | 1 | 15 |

    ### 4.6 Interfacing Program and Data Memory Spaces

    The dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X, and PIC24EPXXXGP/MC20X architecture uses a 24-bit-wide program space and a 16-bit-wide data space. The architecture is also a modified Harvard scheme, meaning that data can also be present in the program space. To use this data successfully, it must be accessed in a way that preserves the alignment of information in both spaces.
    Aside from normal execution, the architecture of the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X, and PIC24EPXXXGP/MC20X devices provides two methods by which program space can be accessed during operation:

    - Using table instructions to access individual bytes or words anywhere in the program space
    - Remapping a portion of the program space into the data space (Program Space Visibility)

    Table instructions allow an application to read or write to small areas of the program memory. This capability makes the method ideal for accessing data tables that need to be updated periodically. It also allows access to all bytes of the program word. The remapping method allows an application to access a large block of data on a read-only basis, which is ideal for look-ups from a large table of static data. The application can only access the least significant word of the program word.

    TABLE 4-65: PROGRAM SPACE ADDRESS CONSTRUCTION

    | Access Type | Access Space | Program Space Address |  |  |  |  |  |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    |  |  | <23> | <22:16> | <15> |  | <14:1> | <0> |
    | Instruction Access (Code Execution) | User | 0 | $\mathrm{PC}<22: 1>$ |  |  |  | 0 |
    |  |  | 0xx $\quad$ xxxx |  | xx xxxx xxxx xxx0 |  |  |  |
    | TBLRD/TBLWT (Byte/Word Read/Write) | User | TBLPAG<7:0> |  | Data EA<15:0> |  |  |  |
    |  |  | 0xxx xxxx |  | xxxx xxxx xxxx xxxx |  |  |  |
    |  | Configuration | TBLPAG<7:0> |  | Data EA<15:0> |  |  |  |
    |  |  | 1xxx xxxx |  | xxxx xxxx xxxx xxxx |  |  |  |

    FIGURE 4-10:
    DATA ACCESS FROM PROGRAM SPACE ADDRESS GENERATION
    

    Note 1: The Least Significant bit (LSb) of program space addresses is always fixed as ' 0 ' to maintain word alignment of data in the program and data spaces.
    2: Table operations are not required to be word aligned. Table read operations are permitted in the configuration memory space.

    ### 4.6.1 DATA ACCESS FROM PROGRAM MEMORY USING TABLE INSTRUCTIONS

    The TBLRDL and TBLWTL instructions offer a direct method of reading or writing the lower word of any address within the program space without going through data space. The TBLRDH and TBLWTH instructions are the only method to read or write the upper 8 bits of a program space word as data.

    The PC is incremented by two for each successive 24-bit program word. This allows program memory addresses to directly map to data space addresses. Program memory can thus be regarded as two 16-bitwide word address spaces, residing side by side, each with the same address range. TBLRDL and TBLWTL access the space that contains the least significant data word. TBLRDH and TBLWTH access the space that contains the upper data byte.
    Two table instructions are provided to move byte or word-sized (16-bit) data to and from program space. Both function as either byte or word operations.

    - TBLRDL (Table Read Low):
    - In Word mode, this instruction maps the lower word of the program space location ( $\mathrm{P}<15: 0>$ ) to a data address ( $\mathrm{D}<15: 0>$ )
    - In Byte mode, either the upper or lower byte of the lower program word is mapped to the lower byte of a data address. The upper byte is selected when Byte Select is ' 1 '; the lower byte is selected when it is ' 0 '.
    - TBLRDH (Table Read High):
    - In Word mode, this instruction maps the entire upper word of a program address ( $\mathrm{P}<23: 16>$ ) to a data address. The 'phantom' byte ( $D<15: 8>$ ), is always ' 0 '.
    - In Byte mode, this instruction maps the upper or lower byte of the program word to $\mathrm{D}<7: 0>$ of the data address, in the TBLRDL instruction. The data is always ' 0 ' when the upper 'phantom' byte is selected (Byte Select = 1).
    In a similar fashion, two table instructions, TBLWTH and TBLWTL, are used to write individual bytes or words to a program space address. The details of their operation are explained in Section 5.0 "Flash Program Memory".
    For all table operations, the area of program memory space to be accessed is determined by the Table Page register (TBLPAG). TBLPAG covers the entire program memory space of the device, including user application and configuration spaces. When TBLPAG<7> = 0, the table page is located in the user memory space. When TBLPAG<7> = 1, the page is located in configuration space.

    FIGURE 4-11: ACCESSING PROGRAM MEMORY WITH TABLE INSTRUCTIONS
    

    NOTES:

    ### 5.0 FLASH PROGRAM MEMORY

    Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X, and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 5. "Flash Programming" (DS70609) of the "dsPIC33E/ PIC24E Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
    2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

    The dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X, and PIC24EPXXXGP/MC20X devices contain internal Flash program memory for storing and executing application code. The memory is readable, writable and erasable during normal operation over the entire VDD range.
    Flash memory can be programmed in two ways:

    - In-Circuit Serial Programming ${ }^{\text {TM }}$ (ICSP ${ }^{\text {TM }}$ ) programming capability
    - Run-Time Self-Programming (RTSP)

    ICSP allows for a dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X, and PIC24EPXXXGP/ MC20X device to be serially programmed while in the end application circuit. This is done with two lines for
    programming clock and programming data (one of the alternate programming pin pairs: PGECx/PGEDx), and three other lines for power (VDD), ground (VSS) and Master Clear ( $\overline{\mathrm{MCLR}}$ ). This allows customers to manufacture boards with unprogrammed devices and then program the digital signal controller just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed.
    RTSP is accomplished using TBLRD (table read) and TBLWT (table write) instructions. With RTSP, the user application can write program memory data a single program memory word, and erase program memory in blocks or 'pages' of 1024 instructions ( 3072 bytes) at a time.

    ### 5.1 Table Instructions and Flash Programming

    Regardless of the method used, all programming of Flash memory is done with the table read and table write instructions. These allow direct read and write access to the program memory space from the data memory while the device is in normal operating mode. The 24-bit target address in the program memory is formed using bits $<7: 0>$ of the TBLPAG register and the Effective Address (EA) from a W register specified in the table instruction, as shown in Figure 5-1.
    The TBLRDL and the TBLWTL instructions are used to read or write to bits <15:0> of program memory. TBLRDL and TBLWTL can access program memory in both Word and Byte modes.
    The TBLRDH and TBLWTH instructions are used to read or write to bits <23:16> of program memory. TBLRDH and TBLWTH can also access program memory in Word or Byte mode.

    ## FIGURE 5-1: ADDRESSING FOR TABLE REGISTERS

    

    ### 5.2 RTSP Operation

    RTSP allows the user application to erase a page of memory, which consists of eight rows (1024 instructions) at a time, and to program two words at a time. Table 30-13 lists typical erase and programming times. The 8 -row erase pages are edge-aligned from the beginning of program memory, on boundaries of 3072 bytes.
    For more information on erasing and programming Flash memory, refer to Section 5. "Flash Programming" (DS70609) in the "dsPIC33E/PIC24E Family Reference Manual".

    ### 5.3 Programming Operations

    A complete programming sequence is necessary for programming or erasing the internal Flash in RTSP mode. The processor stalls (waits) until the programming operation is finished.
    For erase and program times, refer to parameters DI37a and DI37b (Page Erase Time), and DI38a and DI38b (Word Write Cycle Time), in Table 30-13: "DC Characteristics: Program Memory".
    Setting the WR bit (NVMCON<15>) starts the operation, and the WR bit is automatically cleared when the operation is finished.

    ### 5.3.1 PROGRAMMING ALGORITHM FOR FLASH PROGRAM MEMORY

    Programmers can program two adjacent words ( 24 bits $\times 2$ ) of program Flash memory at a time on every other word address boundary ( $0 \times 000002$, $0 \times 000006,0 \times 00000 \mathrm{~A}$, etc.). To do this, it is necessary to erase the 8 -row erase page that contains the desired address of the location the user wants to change.
    For protection against accidental operations, the write initiate sequence for NVMKEY must be used to allow any erase or program operation to proceed. After the programming command has been executed, the user application must wait for the programming time until programming is complete. The two instructions following the start of the programming sequence should be NOPs.
    Refer to Section 5. "Flash Programming" (DS70609) in the "dsPIC33E/PIC24E Family Reference Manual" for details and codes examples on programming using RTSP.

    ### 5.4 Control Registers

    Four SFRs are used to read and write the program Flash memory: NVMCON, NVMKEY, NVMADRU, and NVMADR.
    The NVMCON register (Register 5-1) controls which blocks are to be erased, which memory type is to be programmed and the start of the programming cycle.
    NVMKEY (Register 5-4) is a write-only register that is used for write protection. To start a programming or erase sequence, the user application must consecutively write $0 \times 55$ and $0 \times A A$ to the NVMKEY register.
    There are two NVM address registers: NVMADRU and NVMADR. These two registers, when concatenated, form the 24-bit effective address (EA) of the selected row or word for programming operations, or the selected page for erase operations.
    The NVMADRU register is used to hold the upper 8 bits of the EA, while the NVMADR register is used to hold the lower 16 bits of the EA.

    REGISTER 5-1: NVMCON: NONVOLATILE MEMORY (NVM) CONTROL REGISTER

    | R/SO-0 | (1) | R/W-0 $\mathbf{0}^{(\mathbf{1})}$ | R/W-0 |  |  |  |  |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | (1) | R/W-0 | U-0 | U-0 | U-0 | U-0 |  |  |
    | WR | WREN | WRERR | NVMSIDL $^{(\mathbf{2})}$ | - | - | - | - |
    | bit 15 |  |  |  |  |  |  |  |


    | U-0 | U-0 | U-0 | U-0 | R/W-0 ${ }^{(1)}$ | R/W-0 ${ }^{(1)}$ | R/W-0 ${ }^{(1)}$ | R/W-0 ${ }^{(1)}$ |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | - | - | - | - | NVMOP<3:0> ${ }^{(3,4)}$ |  |  |  |
    | bit 7 |  |  |  |  |  |  | bit 0 |


    | Legend: | SO = Settable only bit |  |
    | :--- | :--- | :--- |
    | $R=$ Readable bit | $\mathrm{W}=$ Writable bit | $\mathrm{U}=$ Unimplemented bit, read as ' 0 ' |
    | $-\mathrm{n}=$ Value at POR | $' 1$ ' = Bit is set | $' 0$ ' = Bit is cleared $\quad \mathrm{x}=$ Bit is unknown |

    bit 15 WR: Write Control bit
    1 = Initiates a Flash memory program or erase operation. The operation is self-timed and the bit is cleared by hardware once operation is complete
    $0=$ Program or erase operation is complete and inactive
    bit 14 WREN: Write Enable bit
    1 = Enable Flash program/erase operations
    0 = Inhibit Flash program/erase operations
    bit 13 WRERR: Write Sequence Error Flag bit
    1 = An improper program or erase sequence attempt or termination has occurred (bit is set automatically on any set attempt of the WR bit)
    $0=$ The program or erase operation completed normally
    bit 12
    NVMSIDL: NVM Stop-in-Idle Control bit ${ }^{(2)}$
    1 = Discontinue Flash operation when the device enters Idle mode
    $0=$ Continue Flash operation when the device enters Idle mode
    bit 11-4
    Unimplemented: Read as ' 0 '
    bit 3-0 NVMOP<3:0>: NVM Operation Select bits ${ }^{(3,4)}$
    1111 = Reserved
    1110 = Reserved
    1101 = Reserved
    $1100=$ Reserved
    1011 = Reserved
    1010 = Reserved
    0011 = Memory page erase operation
    0010 = Reserved
    $0001=$ Memory double-word program operation ${ }^{(5)}$
    0000 = Reserved

    Note 1: These bits can only be reset on POR.
    2: If this bit is set, upon exiting Idle mode there is a delay (TVREG) before Flash memory becomes operational.
    3: All other combinations of $\mathrm{NVMOP}<3: 0>$ are unimplemented.
    4: Execution of the PWRSAV instruction is ignored while any of the NVM operations are in progress.
    5: Two adjacent words on a 4-word boundary are programmed during execution of this operation.

    REGISTER 5-2: NVMADRU: NONVOLATILE MEMORY UPPER ADDRESS REGISTER

    | U-0 |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | - | - | - | - | - | - | - | - |
    | bit 15 | bit 8 |  |  |  |  |  |  |


    | R/W-x |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | NVMADRU<7:0> |  |  |  |  |  |  |  |
    | bit 7 |  |  |  |  |  |  | bit 0 |

    ## Legend:

    | $\mathrm{R}=$ Readable bit | $\mathrm{W}=$ Writable bit | $\mathrm{U}=$ Unimplemented bit, read as ' 0 ' |
    | :--- | :--- | :--- |
    | $-\mathrm{n}=$ Value at POR | $' 1$ ' $=$ Bit is set | $' 0$ ' $=$ Bit is cleared |$\quad \mathrm{x}=$ Bit is unknown

    bit 15-8 Unimplemented: Read as ' 0 '
    bit 7-0 NVMADRU<7:0>: Non-volatile Memory Upper Write Address bits
    Selects the upper 8 bits of the location to program or erase in program Flash memory. This register may be read or written by the user application.

    ## REGISTER 5-3: NVMADR: NONVOLATILE MEMORY LOWER ADDRESS REGISTER

    | R/W-x |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | NVMADR<15:8> |  |  |  |  |  |  |  |
    | bit 15 |  |  |  |  |  |  | bit 8 |


    | $R / W-x$ |
    | :--- | :--- | :--- | :--- | :--- | :--- | :--- |$\quad$ R/W-x |  |  |  |  |
    | :--- | :--- | :--- | :--- |
    |  |  | NVMADR<7:0> |  |
    | bit 7 |  |  |  |

    ## Legend:

    | $R=$ Readable bit | $W=$ Writable bit | $U=$ Unimplemented bit, read as ' 0 ' |
    | :--- | :--- | :--- |
    | $-n=$ Value at POR | $' 1$ ' $=$ Bit is set | $' 0$ ' $=$ Bit is cleared |$\quad x=$ Bit is unknown

    bit 15-0 NVMADR<15:0>: Non-volatile Memory Lower Write Address bits
    Selects the lower 16 bits of the location to program or erase in program Flash memory. This register may be read or written by the user application.

    REGISTER 5-4: NVMKEY: NONVOLATILE MEMORY KEY REGISTER

    | U-0 |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | - | - | - | - | - | - | - | - |
    | bit 15 bit 8 |  |  |  |  |  |  |  |
    | W-0 |
    | NVMKEY<7:0> |  |  |  |  |  |  |  |
    | bit 7 |  |  |  |  |  |  | bit 0 |

    ## Legend:

    | $\mathrm{R}=$ Readable bit | $\mathrm{W}=$ Writable bit | $\mathrm{U}=$ Unimplemented bit, read as ' 0 ' |
    | :--- | :--- | :--- |
    | $-\mathrm{n}=$ Value at POR | $' 1$ ' $=$ Bit is set | ' 0 ' $=$ Bit is cleared |

    bit 15-8 Unimplemented: Read as ' 0 '
    bit 7-0 NVMKEY<7:0>: Key Register (write-only) bits

    ### 6.0 RESETS

    Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X, and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 8. "Reset" (DS70602) of the "dsPIC33E/PIC24E Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
    2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

    The Reset module combines all reset sources and controls the device Master Reset Signal, SYSRST. The following is a list of device Reset sources:

    - POR: Power-on Reset
    - BOR: Brown-out Reset
    - MCLR: Master Clear Pin Reset
    - SWR: RESET Instruction
    - WDTO: Watchdog Timer Reset
    - CM: Configuration Mismatch Reset
    - TRAPR: Trap Conflict Reset
    - IOPUWR: Illegal Condition Device Reset
    - Illegal Opcode Reset
    - Uninitialized W Register Reset
    - Security Reset

    A simplified block diagram of the Reset module is shown in Figure 6-1.
    Any active source of Reset will make the SYSRST signal active. On system Reset, some of the registers associated with the CPU and peripherals are forced to a known Reset state and some are unaffected.

    Note: Refer to the specific peripheral section or Section 4.0 "Memory Organization" of this manual for register Reset states.

    All types of device Reset sets a corresponding status bit in the RCON register to indicate the type of Reset (see Register 6-1).
    A POR clears all the bits, except for the POR and BOR bits ( $\mathrm{RCON}<1: 0>$ ), that are set. The user application can set or clear any bit at any time during code execution. The RCON bits only serve as status bits. Setting a particular Reset status bit in software does not cause a device Reset to occur.
    The RCON register also has other bits associated with the Watchdog Timer and device power-saving states. The function of these bits is discussed in other sections of this manual.

    Note: The status bits in the RCON register should be cleared after they are read so that the next RCON register value after a device Reset is meaningful.

    There are two types of Reset, a cold Reset and a warm Reset. A cold Reset is the result of a POR or BOR and the FNOSC Configuration bits in the FOSC device Configuration register select the device clock source. A warm Reset is the result of all other Resets including the RESET instruction and the Current Oscillator Selection bits (COSC<2:0>) in the Oscillator Control register ( $\mathrm{OSCCON}<14: 12>$ ) select the clock source.

    FIGURE 6-1: RESET SYSTEM BLOCK DIAGRAM
    

    ## REGISTER 6-1: RCON: RESET CONTROL REGISTER ${ }^{(1)}$

    | R/W-0 | R/W-0 | U-0 | U-0 | R/W-0 | U-0 | R/W-0 | R/W-0 |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | TRAPR | IOPUWR | - | - | VREGSF | - | CM | VREGS |
    | bit 15 |  |  |  |  |  |  |  |


    | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-1 | R/W-1 |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | EXTR | SWR | SWDTEN ${ }^{(2)}$ | WDTO | SLEEP | IDLE | BOR | POR |
    | bit 7 |  |  |  |  |  |  |  |

    ## Legend:

    | $R=$ Readable bit | $W=$ Writable bit | $U=$ Unimplemented bit, read as ' 0 ' |
    | :--- | :--- | :--- |
    | $-n=$ Value at POR | $' 1$ ' $=$ Bit is set | 0 ' $=$ Bit is cleared |$\quad x=$ Bit is unknown


    | bit 15 | TRAPR: Trap Reset Flag bit |
    | :---: | :---: |
    |  | 1 = A Trap Conflict Reset has occurred 0 = A Trap Conflict Reset has not occurred |
    | bit 14 | IOPUWR: Illegal Opcode or Uninitialized W Access Reset Flag bit |
    |  | 1 = An illegal opcode detection, an illegal address mode or uninitialized $W$ register used as an Address Pointer caused a Reset <br> $0=$ An illegal opcode or uninitialized W Reset has not occurred |
    | bit 13-12 | Unimplemented: Read as ' 0 ' |
    | bit 11 | VREGSF: Flash Voltage Regulator Standby During Sleep bit |
    |  | 1 = Flash Voltage regulator is active during Sleep |
    |  | 0 = Flash Voltage regulator goes into Standby mode during Sleep |
    | bit 10 | Unimplemented: Read as ' 0 ' |
    | bit 9 | CM: Configuration Mismatch Flag bit <br> 1 = A configuration mismatch Reset has occurred. <br> 0 = A configuration mismatch Reset has NOT occurred |
    | bit 8 | VREGS: Voltage Regulator Standby During Sleep bit |
    |  | 1 = Voltage regulator is active during Sleep |
    |  | 0 = Voltage regulator goes into Standby mode during Sleep |
    | bit 7 | EXTR: External Reset ( $\overline{\mathrm{MCLR}})$ Pin bit |
    |  | 1 = A Master Clear (pin) Reset has occurred |
    |  | 0 = A Master Clear (pin) Reset has not occurred |
    | bit 6 | SWR: Software Reset (Instruction) Flag bit |
    |  | 1 = A RESET instruction has been executed |
    |  | 0 = A RESET instruction has not been executed |
    | bit 5 | SWDTEN: Software Enable/Disable of WDT bit ${ }^{(2)}$ |
    |  | 1 = WDT is enabled |
    |  | $0=$ WDT is disabled |
    | bit 4 | WDTO: Watchdog Timer Time-out Flag bit |
    |  | 1 = WDT time-out has occurred |
    |  | 0 = WDT time-out has not occurred |
    | bit 3 | SLEEP: Wake-up from Sleep Flag bit |
    |  | 1 = Device has been in Sleep mode $0=$ Device has not been in Sleep mode |

    Note 1: All of the Reset status bits can be set or cleared in software. Setting one of these bits in software does not cause a device Reset.
    2: If the FWDTEN Configuration bit is ' 1 ' (unprogrammed), the WDT is always enabled, regardless of the SWDTEN bit setting.

    ## REGISTER 6-1: RCON: RESET CONTROL REGISTER ${ }^{(1)}$ (CONTINUED)

    bit 2 IDLE: Wake-up from Idle Flag bit
    1 = Device was in Idle mode
    0 = Device was not in Idle mode
    bit 1
    BOR: Brown-out Reset Flag bit
    1 = A Brown-out Reset has occurred
    0 = A Brown-out Reset has not occurred
    bit 0
    POR: Power-on Reset Flag bit
    1 = A Power-on Reset has occurred
    0 = A Power-on Reset has not occurred

    Note 1: All of the Reset status bits can be set or cleared in software. Setting one of these bits in software does not cause a device Reset.
    2: If the FWDTEN Configuration bit is ' 1 ' (unprogrammed), the WDT is always enabled, regardless of the SWDTEN bit setting.

    NOTES:

    ### 7.0 INTERRUPT CONTROLLER

    Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X, and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 6. "Interrupts" (DS70600) of the "dsPIC33E/PIC24E Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
    2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

    The dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X, and PIC24EPXXXGP/MC20X interrupt controller reduces the numerous peripheral interrupt request signals to a single interrupt request signal to the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X, and PIC24EPXXXGP/MC20X CPU.
    The interrupt controller has the following features:

    - Up to eight processor exceptions and software traps
    - Eight user-selectable priority levels
    - Interrupt Vector Table (IVT) with a unique vector for each interrupt or exception source
    - Fixed priority within a specified user priority level
    - Fixed interrupt entry and return latencies


    ### 7.1 Interrupt Vector Table

    The dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X, and PIC24EPXXXGP/MC20X Interrupt Vector Table (IVT), shown in Figure 7-1, resides in program memory, starting at location 000004h. The IVT contains seven non-maskable trap vectors and up to 114 sources of interrupt. In general, each interrupt source has its own vector. Each interrupt vector contains a 24-bit-wide address. The value programmed into each interrupt vector location is the starting address of the associated Interrupt Service Routine (ISR).
    Interrupt vectors are prioritized in terms of their natural priority. This priority is linked to their position in the vector table. Lower addresses generally have a higher natural priority. For example, the interrupt associated with vector 0 takes priority over interrupts at any other vector address.

    ### 7.2 Reset Sequence

    A device Reset is not a true exception because the interrupt controller is not involved in the Reset process. The dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X, and PIC24EPXXXGP/MC20X devices clear their registers in response to a Reset, which forces the PC to zero. The device then begins program execution at location $0 \times 000000$. A GOTO instruction at the Reset address can redirect program execution to the appropriate start-up routine.

    Note: Any unimplemented or unused vector locations in the IVT should be programmed with the address of a default interrupt handler routine that contains a RESET instruction.

    FIGURE 7-1: dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X, AND PIC24EPXXXGP/MC20X INTERRUPT VECTOR TABLE
    

    TABLE 7-1: INTERRUPT VECTOR DETAILS

    | Interrupt Source | Vector <br> Number | IRQ | IVT <br> Address | Interrupt Bit Location |  |  |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    |  |  |  |  | Flag | Enable | Priority |
    | Highest Natural Order Priority |  |  |  |  |  |  |
    | INTO - External Interrupt 0 | 8 | 0 | 0x000014 | IFSO<0> | IEC0<0> | IPC0<2:0> |
    | IC1 - Input Capture 1 | 9 | 1 | 0x000016 | IFS0<1> | IEC0<1> | IPC0<6:4> |
    | OC1 - Output Compare 1 | 10 | 2 | 0x000018 | IFSO<2> | IEC0<2> | IPC0<10:8> |
    | T1 - Timer1 | 11 | 3 | 0x00001A | IFS0<3> | IEC0<3> | IPC0<14:12> |
    | DMA0 - DMA Channel 0 | 12 | 4 | 0x00001C | IFSO<4> | IEC0<4> | IPC1<2:0> |
    | IC2 - Input Capture 2 | 13 | 5 | 0x00001E | IFS0<5> | IEC0<5> | IPC1<6:4> |
    | OC2 - Output Compare 2 | 14 | 6 | 0x000020 | IFS0<6> | IEC0<6> | IPC1<10:8> |
    | T2 - Timer2 | 15 | 7 | 0x000022 | IFS0<7> | IEC0<7> | IPC1<14:12> |
    | T3 - Timer3 | 16 | 8 | 0x000024 | IFS0<8> | IEC0<8> | IPC2<2:0> |
    | SPI1E - SPI1 Fault | 17 | 9 | 0x000026 | IFS0<9> | IEC0<9> | IPC2<6:4> |
    | SPI1 - SPI1 Transfer Done | 18 | 10 | 0x000028 | IFSO<10> | IEC0<10> | IPC2<10:8> |
    | U1RX - UART1 Receiver | 19 | 11 | 0x00002A | IFS0<11> | IEC0<11> | IPC2<14:12> |
    | U1TX - UART1 Transmitter | 20 | 12 | 0x00002C | IFSO<12> | IEC0<12> | IPC3<2:0> |
    | AD1 - ADC1 Convert Done | 21 | 13 | 0x00002E | IFS0<13> | IEC0<13> | IPC3<6:4> |
    | DMA1 - DMA Channel 1 | 22 | 14 | 0x000030 | IFSO<14> | IEC0<14> | IPC3<10:8> |
    | Reserved | 23 | 15 | 0x000032 | - | - | - |
    | SI2C1 - I2C1 Slave Event | 24 | 16 | 0x000034 | IFS1<0> | IEC1<0> | IPC4<2:0> |
    | MI2C1 - I2C1 Master Event | 25 | 17 | 0x000036 | IFS1<1> | IEC1<1> | IPC4<6:4> |
    | CM - Comparator Combined Event | 26 | 18 | 0x000038 | IFS1<2> | IEC1<2> | IPC4<10:8> |
    | CN - Input Change Interrupt | 27 | 19 | 0x00003A | IFS1<3> | IEC1<3> | IPC4<14:12> |
    | INT1 - External Interrupt 1 | 28 | 20 | 0x00003C | IFS1<4> | IEC1<4> | IPC5<2:0> |
    | Reserved | 29-31 | 21-23 | $\begin{gathered} 0 \times 00003 E- \\ 0 \times 00042 \end{gathered}$ | - | - | - |
    | DMA2 - DMA Channel 2 | 32 | 24 | 0x000044 | IFS1<8> | IEC1<8> | IPC6<2:0> |
    | OC3 - Output Compare 3 | 33 | 25 | 0x000046 | IFS1<9> | IEC1<9> | IPC6<6:4> |
    | OC4 - Output Compare 4 | 34 | 26 | 0x000048 | IFS1<10> | IEC1<10> | IPC6<10:8> |
    | T4 - Timer4 | 35 | 27 | 0x00004A | IFS1<11> | IEC1<11> | IPC6<14:12> |
    | T5 - Timer5 | 36 | 28 | 0x00004C | IFS1<12> | IEC1<12> | IPC7<2:0> |
    | INT2 - External Interrupt 2 | 37 | 29 | 0x00004E | IFS1<13> | IEC1<13> | IPC7<6:4> |
    | U2RX - UART2 Receiver | 38 | 30 | 0x000050 | IFS1<14> | IEC1<14> | IPC7<10:8> |
    | U2TX - UART2 Transmitter | 39 | 31 | 0x000052 | IFS1<15> | IEC1<15> | IPC7<14:12> |
    | SPI2E - SPI2 Fault | 40 | 32 | 0x000054 | IFS2<0> | IEC2<0> | IPC8<2:0> |
    | SPI2 - SPI2 Transfer Done | 41 | 33 | 0x000056 | IFS2<1> | IEC2<1> | IPC8<6:4> |
    | C1RX - CAN1 RX Data Ready ${ }^{(1)}$ | 42 | 34 | 0x000058 | IFS2<2> | IEC2<2> | IPC8<10:8> |
    | C1 - CAN1 Event ${ }^{(1)}$ | 43 | 35 | 0x00005A | IFS2<3> | IEC2<3> | IPC8<14:12> |
    | DMA3 - DMA Channel 3 | 44 | 36 | 0x00005C | IFS2<4> | IEC2<4> | IPC9<2:0> |
    | IC3 - Input Capture 3 | 45 | 37 | 0x00005E | IFS2<5> | IEC2<5> | IPC9<6:4> |
    | IC4 - Input Capture 4 | 46 | 38 | 0x000060 | IFS2<6> | IEC2<6> | IPC9<10:8> |
    | Reserved | 47-56 | 39-48 | $\begin{aligned} & 0 \times 000062- \\ & 0 \times 000074 \end{aligned}$ | - | - | - |
    | SI2C2 - I2C2 Slave Event | 57 | 49 | 0x000076 | IFS3<1> | IEC3<1> | IPC12<6:4> |
    | MI2C2-12C2 Master Event | 58 | 50 | 0x000078 | IFS3<2> | IEC3<2> | IPC12<10:8> |

    Note 1: This interrupt source is available on dsPIC33EP64GP50X and dsPIC33EP64MC50X devices only.
    2: This interrupt source is available on dsPIC33EP64MC20X/50X and PIC24EP64MC20X devices only.

    TABLE 7-1: INTERRUPT VECTOR DETAILS (CONTINUED)

    | Interrupt Source | Vector <br> Number | IRQ | IVT <br> Address | Interrupt Bit Location |  |  |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    |  |  |  |  | Flag | Enable | Priority |
    | Reserved | 59-64 | 51-56 | $\begin{gathered} \hline 0 \times 00007 \mathrm{~A}- \\ 0 \times 000084 \end{gathered}$ | - | - | - |
    | PSEM - PWM Special Event Match ${ }^{(2)}$ | 65 | 57 | 0x000086 | IFS3<9> | IEC3<9> | IPC14<6:4> |
    | QEI1 - QEI1 Position Counter Compare ${ }^{(2)}$ | 66 | 58 | 0x000088 | IFS3<10> | IEC3<10> | IPC14<10:8> |
    | Reserved | 67-72 | 59-64 | $\begin{aligned} & 0 \times 00008 \mathrm{~A}- \\ & 0 \times 000094 \end{aligned}$ | - | - | - |
    | U1E - UART1 Error Interrupt | 73 | 65 | 0x000096 | IFS4<1> | IEC4<1> | IPC16<6:4> |
    | U2E - UART2 Error Interrupt | 74 | 66 | 0x000098 | IFS4<2> | IEC4<2> | IPC16<10:8> |
    | CRC - CRC Generator Interrupt | 75 | 67 | 0x00009A | IFS4<3> | IEC4<3> | IPC16<14:12> |
    | Reserved | 76-77 | 68-69 | $\begin{aligned} & \text { 0x00009C- } \\ & 0 \times 00009 \mathrm{E} \end{aligned}$ | - | - | - |
    | C1TX - CAN1 TX Data Request ${ }^{(1)}$ | 78 | 70 | 0x000A0 | IFS4<6> | IEC4<6> | IPC17<10:8> |
    | Reserved | 79-84 | 71-76 | $\begin{aligned} & 0 \times 0000 \mathrm{~A} 2- \\ & 0 \times 0000 \mathrm{AC} \end{aligned}$ | - | - | - |
    | CTMU - CTMU Interrupt | 85 | 77 | 0x0000AE | IFS5<13> | IEC4<13> | IPC19<6:4> |
    | Reserved | 86-101 | 78-93 | $\begin{aligned} & \hline \text { 0x0000B0- } \\ & 0 \times 0000 \mathrm{CE} \end{aligned}$ | - | - | - |
    | PWM1 - PWM Generator $1^{(2)}$ | 102 | 94 | 0x0000D0 | IFS5<14> | IEC5<14> | IPC23<10:8> |
    | PWM2 - PWM Generator $2^{(2)}$ | 103 | 95 | 0x0000D2 | IFS5<15> | IEC5<15> | IPC23<14:12> |
    | PWM3 - PWM Generator $3^{(2)}$ | 104 | 96 | 0x0000D4 | IFS6<0> | IEC6<0> | IPC24<2:0> |
    | Reserved | 105-149 | 97-141 | $\begin{gathered} \hline 0 \times 0001 D 6- \\ 0 \times 00012 E \end{gathered}$ | - | - | - |
    | ICD - ICD Application | 150 | 142 | 0x000142 | IFS8<14> | IEC8<14> | IPC35<10:8> |
    | JTAG - JTAG Programming | 151 | 143 | 0x000130 | IFS8<15> | IEC8<15> | IPC35<14:12> |
    | Reserved | 152 | 144 | 0x000134 | - | - | - |
    | PTGSTEP - PTG Step | 153 | 145 | 0x000136 | IFS9<1> | IEC9<1> | IPC36<6:4> |
    | PTGWDT - PTG Watchdog Time-out | 154 | 146 | 0x000138 | IFS9<2> | IEC9<2> | IPC36<10:8> |
    | PTG0 - PTG Interrupt 0 | 155 | 147 | 0x00013A | IFS9<3> | IEC9<3> | IPC36<14:12> |
    | PTG1 - PTG Interrupt 1 | 156 | 148 | 0x00013C | IFS9<4> | IEC9<4> | IPC37<2:0> |
    | PTG2 - PTG Interrupt 2 | 157 | 149 | 0x00013E | IFS9<5> | IEC9<5> | IPC37<6:4> |
    | PTG3 - PTG Interrupt 3 | 158 | 150 | 0x000140 | IFS9<6> | IEC9<6> | IPC37<10:8> |
    | Reserved | 159-245 | 151-245 | $\begin{aligned} & \hline 0 \times 000142- \\ & 0 \times 0001 \mathrm{FE} \end{aligned}$ | - | - | - |

    Lowest Natural Order Priority
    Note 1: This interrupt source is available on dsPIC33EP64GP50X and dsPIC33EP64MC50X devices only.
    2: This interrupt source is available on dsPIC33EP64MC20X/50X and PIC24EP64MC20X devices only.

    ### 7.3 Interrupt Control and Status Registers

    dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X, and PIC24EPXXXGP/MC20X devices implement the following registers for the interrupt controller:

    - INTCON1
    - INTCON2
    - INTCON3
    - INTCON4
    - INTTREG


    ### 7.3.1 INTCON1 THROUGH INTCON4

    Global interrupt control functions are controlled from INTCON1, INTCON2, INTCON3 and INTCON4.
    INTCON1 contains the Interrupt Nesting Disable bit (NSTDIS) as well as the control and status flags for the processor trap sources.
    The INTCON2 register controls external interrupt request signal behavior and the use of the alternate vector table. This register also contains the General Interrupt Enable bit (GIE).
    INTCON3 contains the status flags for the DMA, and DO stack overflow status trap sources.
    The INTCON4 register contains the software generated hard trap status bit (SGHT).

    ### 7.3.2 IFSx

    The IFS registers maintain all of the interrupt request flags. Each source of interrupt has a status bit, which is set by the respective peripherals or external signal and is cleared via software.

    ### 7.3.3 IECx

    The IEC registers maintain all of the interrupt enable bits. These control bits are used to individually enable interrupts from the peripherals or external signals.

    ### 7.3.4 IPCx

    The IPC registers are used to set the interrupt priority level for each source of interrupt. Each user interrupt source can be assigned to one of eight priority levels.

    ### 7.3.5 INTTREG

    The INTTREG register contains the associated interrupt vector number and the new CPU interrupt priority level, which are latched into vector number (VECNUM<6:0>) and Interrupt level bit (ILR<3:0>) fields in the INTTREG register. The new interrupt priority level is the priority of the pending interrupt.
    The interrupt sources are assigned to the IFSx, IECx and IPCx registers in the same sequence as they are listed in Table 7-1. For example, the INTO (External Interrupt 0 ) is shown as having vector number 8 and a natural order priority of 0 . Thus, the INTOIF bit is found in IFSO<0>, the INTOIE bit in IECO<0> and the INTOIP bits in the first position of IPC0 (IPC0<2:0>).

    ### 7.3.6 STATUS/CONTROL REGISTERS

    Although these registers are not specifically part of the interrupt control hardware, two of the CPU Control registers contain bits that control interrupt functionality. For more information on these registers refer to Section 2. "CPU" (DS70359) in the "dsPIC33E/ PIC24E Family Reference Manual".

    - The CPU STATUS register, SR, contains the IPL<2:0> bits ( $\mathrm{SR}<7: 5>$ ). These bits indicate the current CPU interrupt priority level. The user software can change the current CPU priority level by writing to the IPL bits.
    - The CORCON register contains the IPL3 bit which, together with IPL<2:0>, also indicates the current CPU priority level. IPL3 is a read-only bit so that trap events cannot be masked by the user software.
    All Interrupt registers are described in Register 7-3 through Register 7-7 in the following pages.


    ## REGISTER 7-1: SR: CPU STATUS REGISTER ${ }^{(1)}$

    | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/C-0 | R/C-0 | R -0 | R/W-0 |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | OA | OB | SA | SB | OAB | SAB | DA | DC |
    | bit 15 |  |  | bit 8 |  |  |  |  |


    | R/W-0 ${ }^{(3)}$ | R/W-0 ${ }^{(3)}$ | R/W-0 ${ }^{(3)}$ | R-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    |  | IPL<2:0> ${ }^{(2)}$ |  | RA | N | OV | Z | C |
    | bit $7 \times$ bit 0 |  |  |  |  |  |  |  |


    | Legend: |  | $U=$ Unimplemented bit, read as ' 0 ' |
    | :--- | :--- | :--- |
    | $R=$ Readable bit | $W=$ Writable bit | $C=$ Clearable bit |
    | $-n=$ Value at POR | $' 1$ ' = Bit is set | $' 0 '=$ Bit is cleared |

    bit 7-5 IPL<2:0>: CPU Interrupt Priority Level Status bits ${ }^{(2,3)}$
    111 = CPU Interrupt Priority Level is 7 (15). User interrupts disabled
    110 = CPU Interrupt Priority Level is 6 (14)
    101 = CPU Interrupt Priority Level is 5 (13)
    100 = CPU Interrupt Priority Level is 4 (12)
    011 = CPU Interrupt Priority Level is 3 (11)
    010 = CPU Interrupt Priority Level is 2 (10)
    001 = CPU Interrupt Priority Level is 1 (9)
    000 = CPU Interrupt Priority Level is 0 (8)

    Note 1: For complete register details, see Register 3-1.
    2: The IPL<2:0> bits are concatenated with the IPL<3> bit (CORCON<3>) to form the CPU Interrupt Priority Level. The value in parentheses indicates the IPL, if IPL<3> = 1. User interrupts are disabled when $\mid \mathrm{PL}<3>=1$.

    3: The IPL<2:0> Status bits are read-only when the NSTDIS bit $($ INTCON1<15>) $=1$.

    ## REGISTER 7-2: CORCON: CORE CONTROL REGISTER ${ }^{(1)}$

    | R/W-0 | U-0 | R/W-0 | R/W-0 | R/W-0 | R-0 | R-0 | R-0 |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | VAR | - | US<1:0> |  | EDT | DL<2:0> |  |  |
    | bit 15 |  |  |  |  |  |  | bit 8 |
    | R/W-0 | R/W-0 | R/W-1 | R/W-0 | R/C-0 | R-0 | R/W-0 | R/W-0 |
    | SATA | SATB | SATDW | ACCSAT | IPL3 ${ }^{(2)}$ | SFA | RND | IF |
    | bit 7 |  |  |  |  |  |  | bit 0 |

    Legend:

    | $\mathrm{R}=$ Readable bit | $\mathrm{W}=$ Writable bit | $\mathrm{U}=$ Unimplemented bit, read as ' 0 ' |
    | :--- | :--- | :--- |
    | $-\mathrm{n}=$ Value at POR | $' 1$ ' = Bit is set | $' 0$ ' = Bit is cleared |$\quad \mathrm{x}=$ Bit is unknown

    bit 15 VAR: Variable Exception Processing Latency Control bit
    1 = Variable exception processing enabled
    0 = Fixed exception processing enabled
    bit $3 \quad$ IPL3: CPU Interrupt Priority Level Status bit 3(2)
    $1=\mathrm{CPU}$ interrupt priority level is greater than 7
    $0=$ CPU interrupt priority level is 7 or less

    Note 1: For complete register details, see Register 3-2.
    2: The IPL3 bit is concatenated with the IPL<2:0> bits ( $\mathrm{SR}<7: 5>$ ) to form the CPU Interrupt Priority Level.

    REGISTER 7-3: INTCON1: INTERRUPT CONTROL REGISTER 1
    

    | Legend: |  |  |
    | :--- | :--- | :--- |
    | $R=$ Readable bit | $W=$ Writable bit | $U=$ Unimplemented bit, read as ' 0 ' |
    | $-n=$ Value at POR | $' 1$ ' = Bit is set | $' 0$ ' $=$ Bit is cleared $\quad x=$ Bit is unknown |

    bit 15 NSTDIS: Interrupt Nesting Disable bit 1 = Interrupt nesting is disabled
    $0=$ Interrupt nesting is enabled
    bit 14 OVAERR: Accumulator A Overflow Trap Flag bit ${ }^{(\mathbf{1})}$
    1 = Trap was caused by overflow of Accumulator A
    $0=$ Trap was not caused by overflow of Accumulator A
    bit 13 OVBERR: Accumulator B Overflow Trap Flag bit ${ }^{(\mathbf{1})}$
    1 = Trap was caused by overflow of Accumulator B
    $0=$ Trap was not caused by overflow of Accumulator B
    bit 12 COVAERR: Accumulator A Catastrophic Overflow Trap Flag bit ${ }^{(\mathbf{1})}$
    1 = Trap was caused by catastrophic overflow of Accumulator A
    0 = Trap was not caused by catastrophic overflow of Accumulator A
    bit 11 COVBERR: Accumulator B Catastrophic Overflow Trap Flag bit ${ }^{(\mathbf{1})}$
    1 = Trap was caused by catastrophic overflow of Accumulator B
    $0=$ Trap was not caused by catastrophic overflow of Accumulator B
    bit $10 \quad$ OVATE: Accumulator A Overflow Trap Enable bit ${ }^{(1)}$
    1 = Trap overflow of Accumulator A
    $0=$ Trap is disabled
    bit $9 \quad$ OVBTE: Accumulator B Overflow Trap Enable bit ${ }^{(1)}$
    1 = Trap overflow of Accumulator B
    0 = Trap is disabled
    bit 8 COVTE: Catastrophic Overflow Trap Enable bit ${ }^{(1)}$
    1 = Trap on catastrophic overflow of Accumulator A or B enabled
    0 = Trap is disabled
    bit $7 \quad$ SFTACERR: Shift Accumulator Error Status bit ${ }^{(1)}$
    1 = Math error trap was caused by an invalid accumulator shift
    0 = Math error trap was not caused by an invalid accumulator shift
    bit 6 DIVOERR: Divide-by-zero Error Status bit
    1 = Math error trap was caused by a divide by zero
    $0=$ Math error trap was not caused by a divide by zero
    bit 5 DMACERR: DMAC Trap Flag bit
    1 = DMAC trap has occurred
    0 = DMAC trap has not occurred
    bit 4 MATHERR: Math Error Status bit
    1 = Math error trap has occurred
    $0=$ Math error trap has not occurred

    Note 1: This bit is available on dsPIC33EPXXXMC20X/50X and dsPIC33EPXXXGP50X devices only.

    ## REGISTER 7-3: INTCON1: INTERRUPT CONTROL REGISTER 1 (CONTINUED)

    bit 3 ADDRERR: Address Error Trap Status bit
    1 = Address error trap has occurred
    0 = Address error trap has not occurred
    bit 2 STKERR: Stack Error Trap Status bit
    1 = Stack error trap has occurred
    0 = Stack error trap has not occurred
    bit 1 OSCFAIL: Oscillator Failure Trap Status bit 1 = Oscillator failure trap has occurred
    $0=$ Oscillator failure trap has not occurred
    bit 0 Unimplemented: Read as ' 0 '

    Note 1: This bit is available on dsPIC33EPXXXMC20X/50X and dsPIC33EPXXXGP50X devices only.

    REGISTER 7-4: INTCON2: INTERRUPT CONTROL REGISTER 2

    | R/W-1 | R/W-0 | R/W-0 | U-0 | U-0 | U-0 | U-0 | U-0 |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | GIE | DISI | SWTRAP | - | - | - | - | - |
    | bit 15 |  |  |  |  |  |  | bit 8 |
    | U-0 | U-0 | U-0 | U-0 | U-0 | R/W-0 | R/W-0 | R/W-0 |
    | - | - | - | - | - | INT2EP | INT1EP | INT0EP |
    | bit 7 |  |  |  |  |  |  | bit 0 |
    | Legend: |  |  |  |  |  |  |  |
    | $\mathrm{R}=$ Readable bit <br> $-n=$ Value at $P O R$ |  | $\begin{aligned} & \text { W }=\text { Writable bit } \\ & \text { ' } 1 \text { ' }=\text { Bit is set } \end{aligned}$ |  | $\mathrm{U}=$ Unimplemented bit, read as '0' |  |  |  |

    bit 15 GIE: Global Interrupt Enable bit
    1 = Interrupts and Associated IE bits are enabled
    0 = Interrupts are disabled, but traps are still enabled
    bit 14 DISI: DISI Instruction Status bit
    1 = DISI instruction is active
    $0=$ DISI instruction is not active
    bit 13 SWTRAP: Software Trap Status bit
    1 = Software trap is enabled
    0 = Software trap is disabled
    bit 12-3 Unimplemented: Read as ' 0 '
    bit 2 INT2EP: External Interrupt 2 Edge Detect Polarity Select bit
    1 = Interrupt on negative edge
    0 = Interrupt on positive edge
    bit 1 INT1EP: External Interrupt 1 Edge Detect Polarity Select bit
    1 = Interrupt on negative edge
    $0=$ Interrupt on positive edge
    bit $0 \quad$ INTOEP: External Interrupt 0 Edge Detect Polarity Select bit
    1 = Interrupt on negative edge
    $0=$ Interrupt on positive edge

    REGISTER 7-5: INTCON3: INTERRUPT CONTROL REGISTER 3

    | U-0 |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | - | - | - | - | - | - | - | - |
    | bit $15 \times$ bit 8 |  |  |  |  |  |  |  |
    | U-0 | U-0 | R/W-0 | R/W-0 | U-0 | U-0 | U-0 | U-0 |
    | - | - | DAE | DOOVR | - | - | - | - |
    | bit 7 bit 0 |  |  |  |  |  |  |  |


    | Legend: |  |  |
    | :--- | :--- | :--- |
    | $R=$ Readable bit | $\mathrm{W}=$ Writable bit | $\mathrm{U}=$ Unimplemented bit, read as ' 0 ' |
    | $-\mathrm{n}=$ Value at POR | $' 1$ ' $=$ Bit is set | ' 0 ' = Bit is cleared |

    bit 15-6 Unimplemented: Read as ' 0 '
    bit 5 DAE: DMA Address Error Soft Trap Status bit 1 = DMA Address error soft trap has occurred 0 = DMA Address error soft trap has not occurred
    bit 4 DOOVR: Do Stack Overflow Soft Trap Status bit 1 = Do stack overflow soft trap has occurred 0 = Do stack overflow soft trap has not occurred
    bit 3-0
    Unimplemented: Read as ' 0 '

    REGISTER 7-6: INTCON4: INTERRUPT CONTROL REGISTER 4

    | U-0 |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | - | - | - | - | - | - | - | - |
    | bit 15 |  |  |  |  |  |  |  |


    | U-0 | R/W-0 | | | | | | |
|---|---|---|---|---|---|---|---|
    | - | - | - | - | - | - | - | SGHT |
    | bit 7 |  |  |  |  |  |  |  |


    | Legend: |  |  |  |
    | :---: | :---: | :---: | :---: |
    | $\mathrm{R}=$ Readable bit | $\mathrm{W}=$ Writable bit | $\mathrm{U}=$ Unimplemente | as ' 0 ' |
    | -n = Value at POR | ' 1 ' = Bit is set | ' 0 ' = Bit is cleared | $\mathrm{x}=\mathrm{B}$ |

    bit 15-1 Unimplemented: Read as ' 0 '
    bit $0 \quad$ SGHT: Software Generated Hard Trap Status bit
    1 = Software generated hard trap has occurred
    $0=$ Software generated hard trap has not occurred

    REGISTER 7-7: INTTREG: INTERRUPT CONTROL AND STATUS REGISTER

    | U-0 | U-0 | U-0 | U-0 | R-0 | R-0 | R-0 | R-0 |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | - | - | - | - |  | ILR<3:0> |  |  |
    | bit 15 |  |  | bit 8 |  |  |  |  |


    | U-0 | R-0 | | | | | | |
|---|---|---|---|---|---|---|---|
    | - |  |  |  | VECNUM $<7: 0>$ |  |  |  |
    | bit 7 |  |  |  |  | bit 0 |  |  |

    ## Legend:

    | $\mathrm{R}=$ Readable bit | W = Writable bit | $\mathrm{U}=$ Unimplemen | as ' 0 ' |
    | :---: | :---: | :---: | :---: |
    | -n = Value at POR | ' 1 ' = Bit is set | ' 0 ' = Bit is cleared | $x=$ Bit is unknown |

    bit 15-12 Unimplemented: Read as ' 0 '
    bit 11-8 ILR<3:0>: New CPU Interrupt Priority Level bits
    1111 = CPU Interrupt Priority Level is 15
    -
    -
    -
    0001 = CPU Interrupt Priority Level is 1 $0000=$ CPU Interrupt Priority Level is 0
    bit $7 \quad$ Unimplemented: Read as ' 0 '
    bit 6-0 VECNUM<6:0>: Vector Number of Pending Interrupt bits
    1111111 = Interrupt vector pending is number 127
    -
    -
    -
    $0000001=$ Interrupt vector pending is number 9 $0000000=$ Interrupt vector pending is number 8

    ### 8.0 DIRECT MEMORY ACCESS (DMA)

    Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X, and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 22. "Direct Memory Access (DMA)" (DS70348) of the "dsPIC33E/PIC24E Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
    2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

    The DMA controller transfers data between peripheral data registers and data space SRAM
    In addition, DMA can access the entire data memory space. The Data Memory Bus Arbiter is utilized when either the CPU or DMA attempt to access SRAM, resulting in potential DMA or CPU stalls.
    The DMA controller supports 4 independent channels. Each channel can be configured for transfers to or from selected peripherals. Some of the peripherals supported by the DMA controller include:

    - ECAN ${ }^{\text {tm }}$
    - Analog-to-Digital Converter (ADC)
    - Serial Peripheral Interface (SPI)
    - UART
    - Input Capture
    - Output Compare

    Refer to Table 8-1 for a complete list of supported peripherals.

    ## FIGURE 8-1: DMA CONTROLLER

    

    In addition, DMA transfers can be triggered by Timers as well as external interrupts. Each DMA channel is unidirectional. Two DMA channels must be allocated to read and write to a peripheral. If more than one channel receive a request to transfer data, a simple fixed priority scheme, based on channel number, dictates which channel completes the transfer and which channel, or channels, are left pending. Each DMA channel moves a block of data, after which it generates an interrupt to the CPU to indicate that the block is available for processing.
    The DMA controller provides these functional capabilities:

    - Four DMA channels
    - Register Indirect With Post-increment Addressing mode
    - Register Indirect Without Post-increment Addressing mode
    - Peripheral Indirect Addressing mode (peripheral generates destination address)
    - CPU interrupt after half or full-block transfer complete
    - Byte or word transfers
    - Fixed priority channel arbitration
    - Manual (software) or Automatic (peripheral DMA requests) transfer initiation
    - One-Shot or Auto-Repeat block transfer modes
    - Ping-Pong mode (automatic switch between two SRAM start addresses after each block transfer complete)
    - DMA request for each channel can be selected from any supported interrupt source
    Debug support features
    The peripherals that can utilize DMA are listed in Table 8-1.


    ## TABLE 8-1: DMA CHANNEL TO PERIPHERAL ASSOCIATIONS

    | Peripheral to DMA Association | DMAxREQ Register IRQSEL<7:0> Bits | DMAxPAD Register (Values to Read from Peripheral) | DMAxPAD Register (Values to Write to Peripheral) |
    | :---: | :---: | :---: | :---: |
    | INT0 - External Interrupt 0 | 00000000 | - | - |
    | IC1 - Input Capture 1 | 00000001 | $0 \times 0144$ (IC1BUF) | - |
    | IC2 - Input Capture 2 | 00000101 | 0x014C (IC2BUF) | - |
    | IC3 - Input Capture 3 | 00100101 | $0 \times 0154$ (IC3BUF) | - |
    | IC4 - Input Capture 4 | 00100110 | 0x015C (IC4BUF) | - |
    | OC1 - Output Compare 1 | 00000010 | - | $\begin{gathered} \hline 0 \times 0906 \text { (OC1R) } \\ 0 \times 0904 \text { (OC1RS) } \\ \hline \end{gathered}$ |
    | OC2 - Output Compare 2 | 00000110 | - | $\begin{gathered} \hline 0 \times 0910 \text { (OC2R) } \\ 0 \times 090 \mathrm{E} \text { (OC2RS) } \\ \hline \end{gathered}$ |
    | OC3 - Output Compare 3 | 00011001 | - | $\begin{gathered} 0 \times 091 \mathrm{~A} \text { (OC3R) } \\ 0 \times 0918 \text { (OC3RS) } \\ \hline \end{gathered}$ |
    | OC4 - Output Compare 4 | 00011010 | - | $\begin{gathered} \hline 0 \times 0924 \text { (OC4R) } \\ 0 \times 0922 \text { (OC4RS) } \\ \hline \end{gathered}$ |
    | TMR2 - Timer2 | 00000111 | - | - |
    | TMR3 - Timer3 | 00001000 | - | - |
    | TMR4 - Timer4 | 00011011 | - | - |
    | TMR5 - Timer5 | 00011100 | - | - |
    | SPI1 Transfer Done | 00001010 | 0x0248 (SPI1BUF) | 0x0248 (SPI1BUF) |
    | SPI2 Transfer Done | 00100001 | 0x0268 (SPI2BUF) | $0 \times 0268$ (SPI2BUF) |
    | UART1RX - UART1 Receiver | 00001011 | 0x0226 (U1RXREG) | - |
    | UART1TX - UART1 Transmitter | 00001100 | - | 0x0224 (U1TXREG) |
    | UART2RX - UART2 Receiver | 00011110 | 0x0236 (U2RXREG) | - |
    | UART2TX - UART2 Transmitter | 00011111 | - | 0x0234 (U2TXREG) |
    | ECAN1 - RX Data Ready | 00100010 | 0x0440 (C1RXD) | - |
    | ECAN1 - TX Data Request | 01000110 | - | 0x0442 (C1TXD) |
    | ADC1 - ADC1 Convert Done | 00001101 | 0x0300 (ADC1BUF0) | - |

    FIGURE 8-2: DMA CONTROLLER BLOCK DIAGRAM
    

    ### 8.1 DMAC Registers

    Each DMAC Channel x (where $\mathrm{x}=0$ through 3) contains the following registers:

    - 16-bit DMA Channel Control register (DMAxCON)
    - 16-bit DMA Channel IRQ Select register (DMAxREQ)
    - 32-bit DMA RAM Primary Start Address register (DMAxSTA)
    - 32-bit DMA RAM Secondary Start Address register (DMAxSTB)
    - 16-bit DMA Peripheral Address register (DMAxPAD)
    - 14-bit DMA Transfer Count register (DMAxCNT)

    Additional status registers (DMAPWC, DMARQC, DMAPPS, DMALCA, and DSADR) are common to all DMAC channels. These status registers provide information on write and request collisions, as well as on last address and channel access information.
    The interrupt flags (DMAxIF) are located in an IFSx register in the interrupt controller. The corresponding interrupt enable control bits (DMAxIE) are located in an IECx register in the interrupt controller, and the corresponding interrupt priority control bits (DMAxIP) are located in an IPCx register in the interrupt controller.

    ## REGISTER 8-1: DMAxCON: DMA CHANNEL x CONTROL REGISTER

    | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | U-0 | U-0 | U-0 |
    | ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | CHEN | SIZE | DIR | HALF | NULLW | - | - | - |
    | bit 15 |  |  | bit 8 |  |  |  |  |


    | U-0 | U-0 | R/W-0 | R/W-0 | U-0 | U-0 | R/W-0 |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | - | - | AMODE<1:0> | - | - | MODE<1:0> |  |
    | bit 7 |  |  |  |  | bit 0 |  |

    ## Legend:

    | $\mathrm{R}=$ Readable bit | $\mathrm{W}=$ Writable bit | $\mathrm{U}=$ Unimplement | s '0' |
    | :---: | :---: | :---: | :---: |
    | -n = Value at POR | ' 1 ' = Bit is set | ' 0 ' = Bit is cleared | $x=$ Bit is unknown |


    | bit 15 | CHEN: Channel Enable bit <br> 1 = Channel enabled <br> $0=$ Channel disabled |
    | :---: | :---: |
    | bit 14 | SIZE: Data Transfer Size bit <br> 1 = Byte <br> $0=$ Word |
    | bit 13 | DIR: Transfer Direction bit (source/destination bus select) 1 = Read from RAM address, write to peripheral address $0=$ Read from Peripheral address, write to RAM address |
    | bit 12 | HALF: Block Transfer Interrupt Select bit <br> 1 = Initiate interrupt when half of the data has been moved <br> $0=$ Initiate interrupt when all of the data has been moved |
    | bit 11 | NULLW: Null Data Peripheral Write Mode Select bit <br> 1 = Null data write to peripheral in addition to RAM write (DIR bit must also be clear) <br> $0=$ Normal operation |
    | bit 10-6 | Unimplemented: Read as '0' |
    | bit 5-4 | AMODE<1:0>: DMA Channel Addressing Mode Select bits <br> 11 = Reserved <br> 10 = Peripheral Indirect Addressing mode <br> 01 = Register Indirect without Post-Increment mode <br> 00 = Register Indirect with Post-Increment mode |
    | bit 3-2 | Unimplemented: Read as '0' |
    | bit 1-0 | MODE<1:0>: DMA Channel Operating Mode Select bits <br> 11 = One-Shot, Ping-Pong modes enabled (one block transfer from/to each DMA buffer) <br> $10=$ Continuous, Ping-Pong modes enabled <br> 01 = One-Shot, Ping-Pong modes disabled <br> $00=$ Continuous, Ping-Pong modes disabled |

    ## REGISTER 8-2: DMAxREQ: DMA CHANNEL x IRQ SELECT REGISTER

    | R/S-0 | U-0 | | | | | | |
|---|---|---|---|---|---|---|---|
    | FORCE ${ }^{(1)}$ | - | - | - | - | - | - | - |
    | bit 15 |  |  |  |  |  |  | bit 8 |
    | R/W-0 |
    | IRQSEL<7:0> |  |  |  |  |  |  |  |
    | bit 7 |  |  |  |  |  |  | bit 0 |

    ## Legend:

    | $\mathrm{R}=$ Readable bit | $\mathrm{W}=$ Writable bit | $\mathrm{U}=$ Unimplemented bit, read as ' 0 ' |
    | :--- | :--- | :--- |
    | $-\mathrm{n}=$ Value at POR | $' 1$ ' $=$ Bit is set | $' 0$ ' $=$ Bit is cleared |

    bit $15 \quad$ FORCE: Force DMA Transfer bit ${ }^{(\mathbf{1})}$
    1 = Force a single DMA transfer (Manual mode)
    $0=$ Automatic DMA transfer initiation by DMA Request
    bit 14-8 Unimplemented: Read as ' 0 '
    bit 7-0 IRQSEL<7:0>: DMA Peripheral IRQ Number Select bits
    $01000110=$ ECAN1 - TX Data Request ${ }^{(2)}$
    $00100110=$ IC4 - Input Capture 4
    00100101 = IC3 - Input Capture 3
    $00100010=$ ECAN1 - RX Data Ready ${ }^{(2)}$
    00100001 = SPI2 Transfer Done
    00011111 = UART2TX - UART2 Transmitter
    $00011110=$ UART2RX - UART2 Receiver
    00011100 = TMR5 - Timer5
    00011011 = TMR4 - Timer4
    $00011010=$ OC4 - Output Compare 4
    00011001 = OC3 - Output Compare 3
    00001101 = ADC1 - ADC1 Convert done
    00001100 = UART1TX - UART1 Transmitter
    00001011 = UART1RX - UART1 Receiver
    $00001010=$ SPI1 - Transfer Done
    00001000 = TMR3 - Timer3
    00000111 = TMR2 - Timer2
    00000110 = OC2 - Output Compare 2
    00000101 = IC2 - Input Capture 2
    00000010 = OC1 - Output Compare 1
    00000001 = IC1 - Input Capture 1
    $00000000=$ INTO - External Interrupt 0
    Note 1: The FORCE bit cannot be cleared by user software. The FORCE bit is cleared by hardware when the forced DMA transfer is complete or the channel is disabled (CHEN $=0$ ).
    2: This selection is available in dsPIC33EPXXXGP/MC50X devices only.

    REGISTER 8-3: DMAxSTAH: DMA CHANNEL x START ADDRESS REGISTER A (HIGH)

    | U-0 | U-0 | U-0 | U-0 | R/W-0 | U-0 | U-0 | U-0 |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | - | - | - | - | - | - | - | - |
    | bit 15 bit 8 |  |  |  |  |  |  |  |
    | R/W-0 |
    | STA<23:16> |  |  |  |  |  |  |  |
    | bit 7 |  |  |  |  |  |  | bit 0 |

    ## Legend:

    | $R=$ Readable bit | $W=$ Writable bit | $U=$ Unimplemented bit, read as ' 0 ' |
    | :--- | :--- | :--- |
    | $-n=$ Value at POR | $' 1 '=$ Bit is set | $' 0 '=$ Bit is cleared |$\quad x=$ Bit is unknown


    | bit 15-8 | Unimplemented: Read as ' 0 ' |
    | :--- | :--- |
    | bit $7-0$ | STA<23:16>: Primary Start Address bits (source or destination) |

    REGISTER 8-4: DMAxSTAL: DMA CHANNEL x START ADDRESS REGISTER A (LOW)

    | R/W-0 |
    | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
    |  |  | $S T A<15: 8>$ |  |  |  |  |  |
    | bit 15 |  |  |  |  |  | bit 8 |  |


    | $R / W-0$ | R/W-0 | | | | | | |
|---|---|---|---|---|---|---|---|
    |  |  | $S T A<7: 0>$ |  |  |  |  |  |
    | bit 7 |  |  |  |  | bit 0 |  |  |


    | Legend: |  |  |
    | :--- | :--- | :--- |
    | $R=$ Readable bit | $\mathrm{W}=$ Writable bit | $\mathrm{U}=$ Unimplemented bit, read as ' 0 ' |
    | $-\mathrm{n}=$ Value at POR | $' 1$ ' = Bit is set | $' 0$ ' = Bit is cleared $\quad \mathrm{x}=$ Bit is unknown |

    bit 15-0 STA<15:0>: Primary Start Address bits (source or destination)

    REGISTER 8-5: DMAxSTBH: DMA CHANNEL x START ADDRESS REGISTER B (HIGH)

    | U-0 | U-0 | U-0 | U-0 | R/W-0 | U-0 | U-0 | U-0 |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | - | - | - | - | - | - | - | - |
    | bit 15 |  |  |  |  |  |  | bit 8 |
    | R/W-0 |
    | STB<23:16> |  |  |  |  |  |  |  |
    | bit 7 |  |  |  |  |  |  | bit 0 |


    | Legend: |  |  |
    | :--- | :--- | :--- |
    | $R=$ Readable bit | $W=$ Writable bit | $U=$ Unimplemented bit, read as ' 0 ' |
    | $-n=$ Value at POR | $' 1$ ' = Bit is set | $' 0$ ' $=$ Bit is cleared $\quad x=$ Bit is unknown |


    | bit 15-8 | Unimplemented: Read as '0' |
    | :--- | :--- |
    | bit 7-0 | STB<23:16>: Primary Start Address bits (source or destination) |

    REGISTER 8-6: DMAxSTBL: DMA CHANNEL x START ADDRESS REGISTER B (LOW)

    | R/W-0 | R/W-0 | R/W-0 | $R / W-0$ | | | | |
|---|---|---|---|---|---|---|---|
    |  |  | $S T B<15: 8>$ |  |  |  |  |  |
    | bit 15 |  |  |  |  |  |  | bit 8 |


    | $R / W-0$ |
    | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
    |  |  | $S T B<7: 0>$ |  |  |  |  |  |
    | bit 7 |  |  |  |  |  | bit 0 |  |


    | Legend: |  |  |
    | :--- | :--- | :--- |
    | $R=$ Readable bit | $W=$ Writable bit | $U=$ Unimplemented bit, read as ' 0 ' |
    | $-n=$ Value at POR | $' 1$ ' = Bit is set | $' 0$ ' = Bit is cleared |

    bit 15-0 STB<15:0>: Secondary Start Address Offset bits (source or destination)

    REGISTER 8-7: DMAXPAD: DMA CHANNEL $\times$ PERIPHERAL ADDRESS REGISTER ${ }^{(1)}$

    | R/W-0 |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | PAD<15:8> |  |  |  |  |  |  |  |
    | bit 15 |  |  |  |  |  |  | bit 8 |
    | R/W-0 |
    | PAD<7:0> |  |  |  |  |  |  |  |
    | bit 7 |  |  |  |  |  |  | bit 0 |

    ## Legend:

    $R=$ Readable bit
    $-n=$ Value at POR
    $W=$ Writable bit
    ' 1 ' $=$ Bit is set
    $\mathrm{U}=$ Unimplemented bit, read as ' 0 '

    PAD<15:0>: Peripheral Address Register bits
    Note 1: If the channel is enabled (i.e., active), writes to this register may result in unpredictable behavior of the DMA channel and should be avoided.

    ## REGISTER 8-8: DMAxCNT: DMA CHANNEL $\times$ TRANSFER COUNT REGISTER ${ }^{(1)}$

    | U-0 | U-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | - | - |  | $C N T<13: 8>{ }^{(2)}$ |  |  |  |  |
    | bit 15 |  |  |  | bit 8 |  |  |  |


    | R/W-0 |
    | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
    |  |  | $C N T<7: 0>{ }^{(2)}$ |  |  |  |  |  |
    | bit 7 |  |  |  |  |  | bit 0 |  |


    | Legend: |  |  |
    | :--- | :--- | :--- |
    | $R=$ Readable bit | $\mathrm{W}=$ Writable bit | $\mathrm{U}=$ Unimplemented bit, read as ' 0 ' |
    | $-\mathrm{n}=$ Value at POR | $' 1$ ' = Bit is set | ' 0 ' = Bit is cleared |


    | bit 15-14 | Unimplemented: Read as ' 0 ' |
    | :--- | :--- |
    | bit 13-0 | CNT<13:0>: DMA Transfer Count Register bits ${ }^{(2)}$ |

    Note 1: If the channel is enabled (i.e., active), writes to this register may result in unpredictable behavior of the DMA channel and should be avoided.
    2: The number of DMA transfers $=C N T<13: 0>+1$.

    ## REGISTER 8-9: DSADRH: MOST RECENT RAM HIGH ADDRESS REGISTER

    | U-0 | U-0 | U-0 | U-0 | R/W-0 | U-0 | U-0 | U-0 |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | - | - | - | - | - | - | - | - |
    | bit 15 |  |  |  |  |  |  |  |


    | R-0 |
    | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
    |  |  | DSADR<23:16> |  |  |  |  |  |
    | bit 7 |  |  |  |  | bit 0 |  |  |


    | Legend: |  |  |
    | :--- | :--- | :--- |
    | $R=$ Readable bit | $W=$ Writable bit | $U=$ Unimplemented bit, read as ' 0 ' |
    | $-n=$ Value at POR | $' 1$ ' = Bit is set | $' 0$ ' = Bit is cleared $\quad x=$ Bit is unknown |


    | bit 15-8 | Unimplemented: Read as ' 0 ' |
    | :--- | :--- |
    | bit 7-0 | DSADR<23:16>: Most Recent DMA Address Accessed by DMA bits |

    REGISTER 8-10: DSADRL: MOST RECENT RAM LOW ADDRESS REGISTER

    | R-0 |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | DSADR<15:8> |  |  |  |  |  |  |  |
    | bit 15 |  |  |  |  |  |  | bit 8 |


    | R-0 |
    | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
    |  |  | DSADR<7:0> |  |  |  |  |  |
    | bit 7 |  |  |  |  | bit 0 |  |  |


    | Legend: |  |  |
    | :--- | :--- | :--- |
    | $R=$ Readable bit | $W=$ Writable bit | $U=$ Unimplemented bit, read as ' 0 ' |
    | $-n=$ Value at POR | $' 1$ ' = Bit is set | $' 0$ ' = Bit is cleared $\quad x=$ Bit is unknown |

    bit 15-0 DSADR<15:0>: Most Recent DMA Address Accessed by DMA bits

    ## REGISTER 8-11: DMAPWC: DMA PERIPHERAL WRITE COLLISION STATUS REGISTER

    | U-0 |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | - | - | - | - | - | - | - | - |
    | bit 15 |  |  |  |  |  |  |  |


    | U-0 | U-0 | U-0 | U-0 | R-0 | R-0 | R-0 | R-0 |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | - | - | - | - | PWCOL3 | PWCOL2 | PWCOL1 | PWCOL0 |
    | bit 7 |  |  |  |  | bit 0 |  |  |

    ## Legend:

    | $R=$ Readable bit | $W=$ Writable bit | $U=$ Unimplemented bit, read as ' 0 ' |
    | :--- | :--- | :--- |
    | $-n=$ Value at POR | $' 1 '=$ Bit is set | $' 0$ ' $=$ Bit is cleared |$\quad x=$ Bit is unknown

    bit 15-4 Unimplemented: Read as ' 0 '
    bit 3 PWCOL3: Channel 3 Peripheral Write Collision Flag bit 1 = Write collision detected
    $0=$ No write collision detected
    bit 2 PWCOL2: Channel 2 Peripheral Write Collision Flag bit
    $1=$ Write collision detected
    $0=$ No write collision detected
    bit 1 PWCOL1: Channel 1 Peripheral Write Collision Flag bit
    1 = Write collision detected
    $0=$ No write collision detected
    bit $0 \quad$ PWCOLO: Channel 0 Peripheral Write Collision Flag bit
    $1=$ Write collision detected
    $0=$ No write collision detected

    REGISTER 8-12: DMARQC: DMA REQUEST COLLISION STATUS REGISTER

    | U-0 |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | - | - | - | - | - | - | - | - |
    | bit 15 |  |  |  |  |  |  |  |


    | U-0 | U-0 | U-0 | U-0 | R-0 | R-0 | R-0 | R-0 |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | - | - | - | - | RQCOL3 | RQCOL2 | RQCOL1 | RQCOL0 |
    | bit 7 |  |  |  |  | bit 0 |  |  |

    ## Legend:

    | $\mathrm{R}=$ Readable bit | $\mathrm{W}=$ Writable bit | $\mathrm{U}=$ Unimplemented bit, read as ' 0 ' |
    | :--- | :--- | :--- |
    | $-\mathrm{n}=$ Value at POR | $' 1$ ' $=$ Bit is set | $' 0$ ' $=$ Bit is cleared |


    | bit 15-4 | Unimplemented: Read as '0' |
    | :---: | :---: |
    | bit 3 | RQCOL3: Channel 3 Transfer Request Collision Flag bit <br> 1 = User FORCE and Interrupt-based request collision detected <br> $0=$ No request collision detected |
    | bit 2 | RQCOL2: Channel 2 Transfer Request Collision Flag bit <br> 1 = User FORCE and Interrupt-based request collision detected <br> $0=$ No request collision detected |
    | bit 1 | RQCOL1: Channel 1 Transfer Request Collision Flag bit <br> 1 = User FORCE and Interrupt-based request collision detected <br> $0=$ No request collision detected |
    | bit 0 | RQCOLO: Channel 0 Transfer Request Collision Flag bit <br> 1 = User FORCE and Interrupt-based request collision detected <br> $0=$ No request collision detected |

    ## REGISTER 8-13: DMALCA: DMA LAST CHANNEL ACTIVE DMA STATUS REGISTER

    | U-0 |  | | | | | | |
|---|---|---|---|---|---|---|---|
    | - | - | - | - | - | - | - | - |
    | bit 15 |  |  |  |  |  |  |  |


    | $\mathrm{U}-0$ |  |  |  |  |  |  |  |  | $\mathrm{U}-0$ | $\mathrm{U}-0$ | $\mathrm{U}-0$ | $\mathrm{R}-1$ | $\mathrm{R}-1$ | $\mathrm{R}-1$ | $\mathrm{R}-1$ |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    |  | - | - | - | - |  | LSTCH<3:0> |  |  |  |  |  |  |  |  |  |
    | bit 7 |  |  |  | bit 0 |  |  |  |  |  |  |  |  |  |  |  |

    ## Legend:

    | $\mathrm{R}=$ Readable bit | $\mathrm{W}=$ Writable bit | $\mathrm{U}=$ Unimplemented bit, read as ' 0 ' |
    | :--- | :--- | :--- |
    | $-\mathrm{n}=$ Value at POR | $' 1$ ' = Bit is set | ' 0 ' = Bit is cleared |


    | bit 15-4 | Unimplemented: Read as ‘0' |
    | :--- | :--- |
    | bit 3-0 | LSTCH<3:0>: Last DMAC Channel Active Status bits |
    | $1111=$ No DMA transfer has occurred since system Reset |  |
    | $1110=$ Reserved |  |
    |  | - |
    |  |  |
    |  | $0100=$ Reserved |
    |  | $0011=$ Last data transfer was handled by Channel 3 |
    | $0010=$ Last data transfer was handled by Channel 2 |  |
    | $0001=$ Last data transfer was handled by Channel 1 |  |
    |  | $0000=$ Last data transfer was handled by Channel 0 |

    REGISTER 8-14: DMAPPS: DMA PING-PONG STATUS REGISTER

    | U-0 |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | - | - | - | - | - | - | - | - |
    | bit 15 |  |  |  |  |  |  |  |


    | U-0 |  |  |  |  |  |  |  |  |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    |  | U-0 | U-0 | U-0 | R-0 | R-0 | R-0 | R-0 |  |
    | - | - | - | - | PPST3 | PPST2 | PPST1 | PPST0 |  |
    | bit 7 |  |  |  |  | bit 0 |  |  |  |

    ## Legend:

    | $R=$ Readable bit | $W=$ Writable bit | $U=$ Unimplemented bit, read as ' 0 ' |
    | :--- | :--- | :--- |
    | $-n=$ Value at POR | $' 1 '=$ Bit is set | $' 0$ ' $=$ Bit is cleared |$\quad x=$ Bit is unknown

    bit 15-4 Unimplemented: Read as '0'
    bit 3 PPST3: Channel 3 Ping-Pong Mode Status Flag bit 1 = DMASTB3 register selected
    $0=$ DMASTA3 register selected
    bit 2 PPST2: Channel 2 Ping-Pong Mode Status Flag bit
    1 = DMASTB2 register selected
    0 = DMASTA2 register selected
    bit $1 \quad$ PPST1: Channel 1 Ping-Pong Mode Status Flag bit
    1 = DMASTB1 register selected
    0 = DMASTA1 register selected
    bit $0 \quad$ PPSTO: Channel 0 Ping-Pong Mode Status Flag bit
    1 = DMASTB0 register selected
    $0=$ DMASTA0 register selected

    NOTES:

    ### 9.0 OSCILLATOR CONFIGURATION

    Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X, and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 7. "Oscillator" (DS70580) of the "dsPIC33E/PIC24E Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
    2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

    The dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X, and PIC24EPXXXGP/MC20X oscillator system provides:

    - On-chip Phase-Locked Loop (PLL) to boost internal operating frequency on select internal and external oscillator sources
    - On-the-fly clock switching between various clock sources
    - Doze mode for system power savings
    - Fail-Safe Clock Monitor (FSCM) that detects clock failure and permits safe application recovery or shutdown
    - Configuration bits for clock source selection

    A simplified diagram of the oscillator system is shown in Figure 9-1.

    FIGURE 9-1: OSCILLATOR SYSTEM DIAGRAM
    

    Note 1: See Figure 9-2 for PLL and Fvco details.
    If the Oscillator is used with XT or HS modes, an external parallel resistor with the value of $1 \mathrm{M} \Omega$ must be connected.
    3: The term FP refers to the clock source for all peripherals, while FcY refers to the clock source for the CPU. Throughout this document, FCY and FP are used interchangeably, except in the case of DOZE mode. FP and Fcy will be different when DOZE mode is used with a doze ratio of 1:2 or lower.

    ### 9.1 CPU Clocking System

    The dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X, and PIC24EPXXXGP/MC20X family of devices provide seven system clock options:

    - Fast RC (FRC) Oscillator
    - FRC Oscillator with Phase-Locked Loop (PLL)
    - FRC Oscillator with postscaler
    - Primary (XT, HS or EC) Oscillator
    - Primary Oscillator with PLL
    - Low-Power RC (LPRC) Oscillator

    Instruction execution speed or device operating frequency, Fcy, is given by Equation 9-1.

    ## EQUATION 9-1: DEVICE OPERATING FREQUENCY

    | FCY $=$ Fosc/2 |
    | :---: |

    Figure 9-2 is a block diagram of the PLL module.
    Equation 9-2 provides the relation between input frequency (FIN) and output frequency (FOSC).
    Equation 9-3 provides the relation between input frequency (FIN) and VCO frequency (FVCO).

    FIGURE 9-2: PLL BLOCK DIAGRAM
    

    ## EQUATION 9-2: Fosc CALCULATION

    $$
    F O S C=F I N \times\left(\frac{M}{N 1 \times N 2}\right)=F I N \times\left(\frac{(P L L D I V+2)}{(P L L P R E+2) \times 2(P L L P O S T+1)}\right)
    $$

    Where,

    $$
    \begin{aligned}
    & N 1=P L L P R E+2 \\
    & N 2=2 \times(P L L P O S T+1) \\
    & M=P L L D I V+2
    \end{aligned}
    $$

    ## EQUATION 9-3: Fvco CALCULATION

    $F V C O=F_{I N} \times\left(\frac{M}{N 1}\right)=F_{I N} \times\left(\frac{(P L L D I V+2)}{(P L L P R E+2)}\right)$

    TABLE 9-1: CONFIGURATION BIT VALUES FOR CLOCK SELECTION

    | Oscillator Mode | Oscillator Source | POSCMD<1:0> | FNOSC<2:0> | See <br> Note |
    | :--- | :---: | :---: | :---: | :---: |
    | Fast RC Oscillator with Divide-by-N (FRCDIVN) | Internal | xx | 111 | $\mathbf{1 , 2}$ |
    | Low-Power RC Oscillator (LPRC) | Internal | xx | 101 | $\mathbf{1}$ |
    | Primary Oscillator (HS) with PLL (HSPLL) | Primary | 10 | 011 | - |
    | Primary Oscillator (XT) with PLL (XTPLL) | Primary | 01 | 011 | - |
    | Primary Oscillator (EC) with PLL (ECPLL) | Primary | 00 | 011 | $\mathbf{1}$ |
    | Primary Oscillator (HS) | Primary | 10 | 010 | - |
    | Primary Oscillator (XT) | Primary | 01 | 010 | - |
    | Primary Oscillator (EC) | Primary | 00 | 010 | $\mathbf{1}$ |
    | Fast RC Oscillator (FRC) with divide-by-N and <br> PLL (FRCPLL) | Internal | xx | 001 | $\mathbf{1}$ |
    | Fast RC Oscillator (FRC) | Internal | xx | 000 | $\mathbf{1}$ |

    Note 1: OSC2 pin function is determined by the OSCIOFNC Configuration bit.
    2: This is the default oscillator mode for an unprogrammed (erased) device.

    REGISTER 9-1: OSCCON: OSCILLATOR CONTROL REGISTER ${ }^{(1,3)}$

    | U-0 | R-0 | R-0 | R-0 | U-0 | R/W-y | R/W-y | R/W-y |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | - |  | COSC<2:0> | - |  | NOSC<2:0>(2) |  |  |
    | bit 15 |  |  |  | bit 8 |  |  |  |

    

    ```
 bit 15 Unimplemented: Read as '0'
 bit 14-12 COSC<2:0>: Current Oscillator Selection bits (read-only)
 111 = Fast RC Oscillator (FRC) with Divide-by-n
 110 = Fast RC Oscillator (FRC) with Divide-by-16
 101 = Low-Power RC Oscillator (LPRC)
 100 = Reserved
 011 = Primary Oscillator (XT, HS, EC) with PLL
 010 = Primary Oscillator (XT, HS, EC)
 001 = Fast RC Oscillator (FRC) with divide-by-N and PLL (FRCPLL)
 000 = Fast RC Oscillator (FRC)
 bit 11 Unimplemented: Read as '0'
 bit 10-8 NOSC<2:0>: New Oscillator Selection bits ```

