ON Semiconductor

Is Now

To learn more about onsemi™, please visit our website at www.onsemi.com

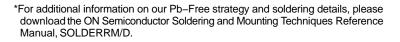
onsemi and Onsemi. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/ or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application,

NPN - 2N6515, 2N6517; PNP - 2N6520

High Voltage Transistors NPN and PNP

Features

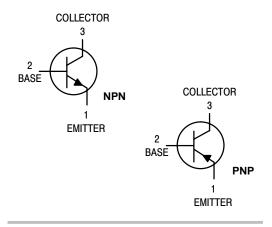
- Voltage and Current are Negative for PNP Transistors
- These are Pb-Free Devices*

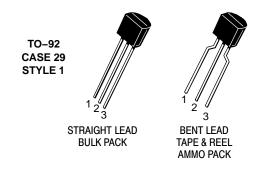

MAXIMUM RATINGS

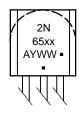
Rating	Symbol	Value	Unit
Collector – Emitter Voltage 2N6515 2N6517, 2N6520	V _{CEO}	250 350	Vdc
Collector – Base Voltage 2N6515 2N6517, 2N6520	V _{CBO}	250 350	Vdc
Emitter – Base Voltage 2N6515, 2N6517 2N6520	V _{EBO}	6.0 5.0	Vdc
Base Current	Ι _Β	250	mAdc
Collector Current – Continuous	I _C	500	mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	P _D	625 5.0	mW mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	P _D	1.5 12	W mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-55 to +150	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction-to-Ambient	$R_{\theta JA}$	200	°C/W
Thermal Resistance, Junction-to-Case	$R_{\theta JC}$	83.3	°C/W


Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.




ON Semiconductor®

http://onsemi.com

MARKING DIAGRAM

xx = 15, 17, or 20

A = Assembly Location

Y = Year

WW = Work Week

■ = Pb–Free Package

(Note: Microdot may be in either location)

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 6 of this data sheet.

March, 2007 - Rev. 5

NPN - 2N6515, 2N6517; PNP - 2N6520

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted)

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS			I	l	1
Collector-Emitter Breakdown Voltage (Note 1) $(I_C = 1.0 \text{ mAdc}, I_B = 0)$	2N6515 2N6517, 2N6520	V _{(BR)CEO}	250 350	_ _	Vdc
Collector-Base Breakdown Voltage ($I_C = 100 \mu Adc$, $I_E = 0$)	2N6515 2N6517, 2N6520	V _{(BR)CBO}	250 350	- -	Vdc
Emitter–Base Breakdown Voltage ($I_E = 10 \mu Adc, I_C = 0$)	2N6515, 2N6517 2N6520	V _{(BR)EBO}	6.0 5.0	_ _	Vdc
Collector Cutoff Current $(V_{CB} = 150 \text{ Vdc}, I_E = 0)$ $(V_{CB} = 250 \text{ Vdc}, I_E = 0)$	2N6515 2N6517, 2N6520	I _{CBO}	- -	50 50	nAdc
Emitter Cutoff Current $(V_{EB} = 5.0 \text{ Vdc}, I_C = 0)$ $(V_{EB} = 4.0 \text{ Vdc}, I_C = 0)$	2N6515, 2N6517 2N6520	I _{EBO}	- -	50 50	nAdc
ON CHARACTERISTICS (Note 1)					
DC Current Gain ($I_C = 1.0 \text{ mAdc}$, $V_{CE} = 10 \text{ Vdc}$)	2N6515 2N6517, 2N6520	h _{FE}	35 20	_ _	-
$(I_C = 10 \text{ mAdc}, V_{CE} = 10 \text{ Vdc})$	2N6515 2N6517, 2N6520		50 30	_ _	
$(I_C = 30 \text{ mAdc}, V_{CE} = 10 \text{ Vdc})$	2N6515 2N6517, 2N6520		50 30	300 200	
$(I_C = 50 \text{ mAdc}, V_{CE} = 10 \text{ Vdc})$	2N6515 2N6517, 2N6520		45 20	220 200	
$(I_C = 100 \text{ mAdc}, V_{CE} = 10 \text{ Vdc})$	2N6515 2N6517, 2N6520		25 15	- -	
		V _{CE(sat)}	- - - -	0.30 0.35 0.50 1.0	Vdc
$\begin{aligned} \text{Base-Emitter Saturation Voltage} \\ & (I_{\text{C}} = 10 \text{ mAdc}, I_{\text{B}} = 1.0 \text{ mAdc}) \\ & (I_{\text{C}} = 20 \text{ mAdc}, I_{\text{B}} = 2.0 \text{ mAdc}) \\ & (I_{\text{C}} = 30 \text{ mAdc}, I_{\text{B}} = 3.0 \text{ mAdc}) \end{aligned}$		V _{BE(sat)}	- - -	0.75 0.85 0.90	Vdc
Base–Emitter On Voltage (I _C = 100 mAdc, V _{CE} = 10 Vdc)		V _{BE(on)}	-	2.0	Vdc
SMALL-SIGNAL CHARACTERISTICS					
Current-Gain – Bandwidth Product (Note 1) (I _C = 10 mAdc, V _{CE} = 20 Vdc, f = 20 MHz)		f _T	40	200	MHz
Collector–Base Capacitance (V _{CB} = 20 Vdc, I _E = 0, f = 1.0 MHz)		C _{cb}	-	6.0	pF
Emitter-Base Capacitance (V _{EB} = 0.5 Vdc, I _C = 0, f = 1.0 MHz)	2N6515, 2N6517 2N6520	C _{eb}	- -	80 100	pF
SWITCHING CHARACTERISTICS					
Turn–On Time $(V_{CC} = 100 \text{ Vdc}, V_{BE(off)} = 2.0 \text{ Vdc}, I_C = 50 \text{ mAdc}, I_{B1} = 10 \text{ mAcc})$	dc)	t _{on}	_	200	μs
Turn–Off Time ($V_{CC} = 100 \text{ Vdc}, I_C = 50 \text{ mAdc}, I_{B1} = I_{B2} = 10 \text{ mAdc}$)		t _{off}	_	3.5	μs

^{1.} Pulse Test: Pulse Width ≤ 300 μs, Duty Cycle ≤ 2.0%.

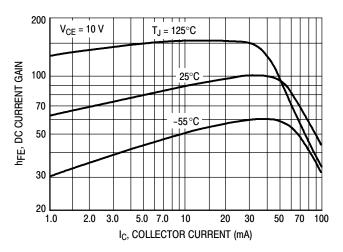


Figure 1. DC Current Gain NPN 2N6515

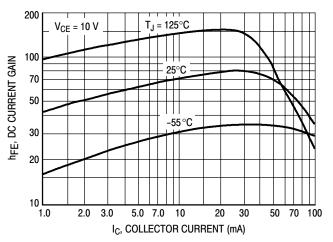


Figure 2. DC Current Gain NPN 2N6517

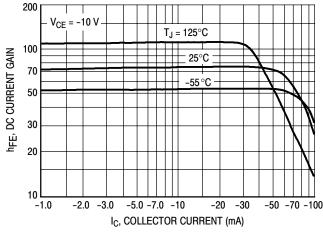


Figure 3. DC Current Gain PNP 2N6520

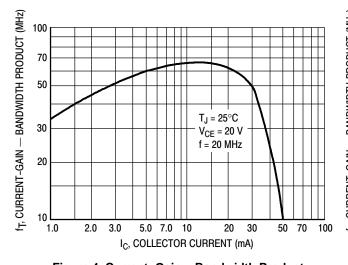


Figure 4. Current-Gain – Bandwidth Product NPN 2N6515, 2N6517

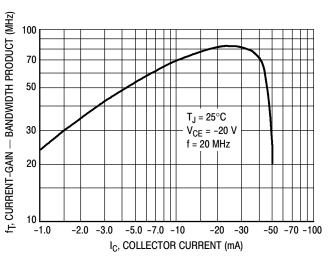


Figure 5. Current–Gain – Bandwidth Product PNP 2N6520

NPN - 2N6515, 2N6517; PNP - 2N6520

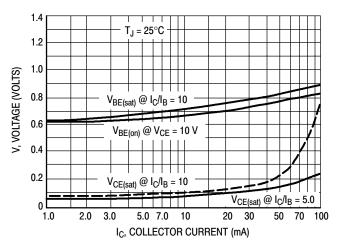


Figure 6. "On" Voltages NPN 2N6515, 2N6517

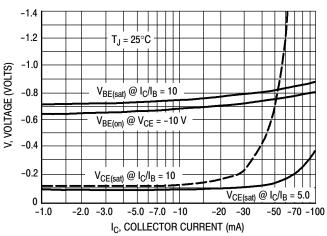


Figure 7. "On" Voltages PNP 2N6520

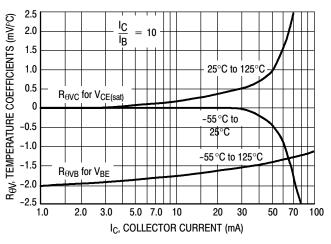


Figure 8. Temperature Coefficients NPN 2N6515, 2N6517

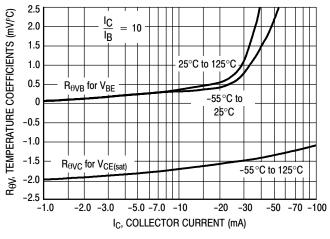


Figure 9. Temperature Coefficients PNP 2N6520

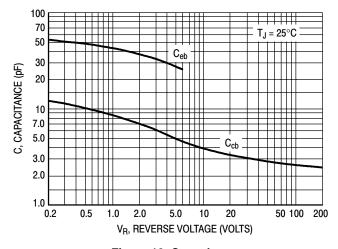


Figure 10. Capacitance NPN 2N6515, 2N6517

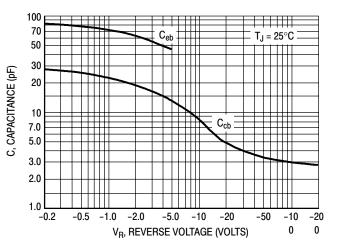
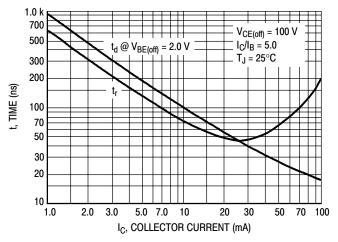
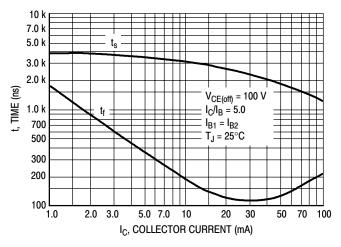



Figure 11. Capacitance PNP 2N6520


NPN - 2N6515, 2N6517; PNP - 2N6520

1.0 k 700 $V_{CE(off)} = -100 \text{ V}$ $t_d @ V_{BE(off)} = 2.0 V$ 500 $I_{C}/I_{B} = 5.0$ $T_J=25^{\circ}C$ 300 200 t, TIME (100 70 50 30 20 10 -1.0 -5.0 -7.0 -10 -50 -70 -100 I_C, COLLECTOR CURRENT (mA)

Figure 12. Turn-On Time NPN 2N6515, 2N6517

Figure 13. Turn-On Time PNP 2N6520

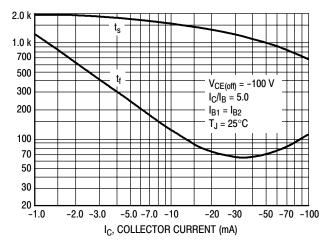


Figure 14. Turn-Off Time NPN 2N6515, 2N6517

Figure 15. Turn-Off Time PNP 2N6520

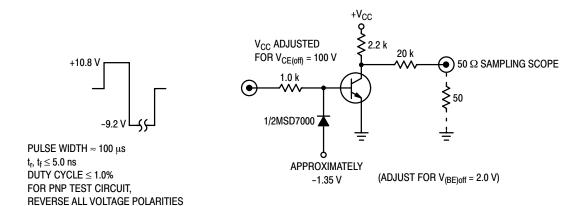


Figure 16. Switching Time Test Circuit

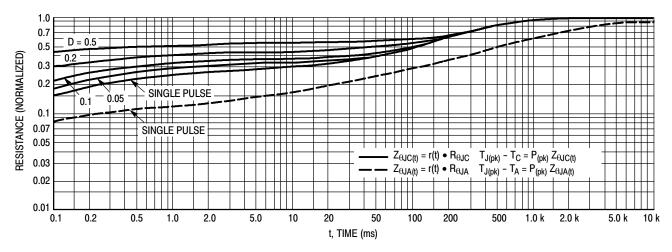


Figure 17. Thermal Response

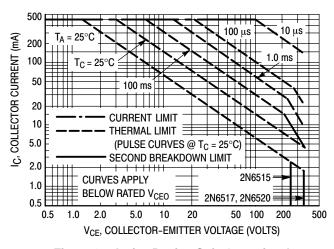
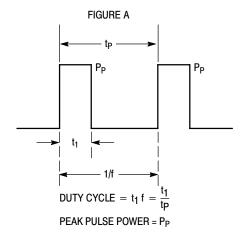
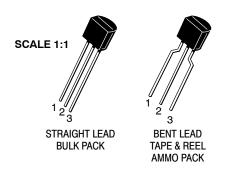
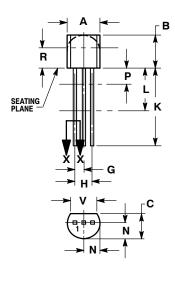



Figure 18. Active Region Safe Operating Area



Design Note: Use of Transient Thermal Resistance Data

ORDERING INFORMATION


Device	Package	Shipping [†]
2N6515RLRMG	TO-92 (Pb-Free)	2000 Ammo Pack
2N6517G	TO-92 (Pb-Free)	5000 Unit / Bulk
2N6517RLRPG	TO-92 (Pb-Free)	2000 Ammo Pack
2N6520RLRAG	TO-92 (Pb-Free)	2000 Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

TO-92 (TO-226) CASE 29-11 **ISSUE AM**

DATE 09 MAR 2007



STRAIGHT LEAD **BULK PACK**

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: INCH.
 3. CONTOUR OF PACKAGE BEYOND DIMENSION R IS UNCONTROLLED.
 4. LEAD DIMENSION IS UNCONTROLLED IN P AND BEYOND DIMENSION K MINIMUM.

	INCHES		MILLIN	IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.175	0.205	4.45	5.20
В	0.170	0.210	4.32	5.33
С	0.125	0.165	3.18	4.19
D	0.016	0.021	0.407	0.533
G	0.045	0.055	1.15	1.39
Н	0.095	0.105	2.42	2.66
J	0.015	0.020	0.39	0.50
K	0.500		12.70	
L	0.250		6.35	
N	0.080	0.105	2.04	2.66
P		0.100		2.54
R	0.115		2.93	
٧	0.135		3.43	

BENT LEAD TAPE & REEL AMMO PACK

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
 2. CONTROLLING DIMENSION: MILLIMETERS.
 3. CONTOUR OF PACKAGE BEYOND DIMENSION R IS UNCONTROLLED.
 4. LEAD DIMENSION IS UNCONTROLLED IN P AND BEYOND DIMENSION K MINIMUM.

	MILLIMETERS			
DIM	MIN	MAX		
Α	4.45	5.20		
В	4.32	5.33		
С	3.18	4.19		
D	0.40	0.54		
G	2.40	2.80		
J	0.39	0.50		
K	12.70			
N	2.04	2.66		
P	1.50	4.00		
R	2.93			
٧	3.43			

STYLES ON PAGE 2

DOCUMENT NUMBER:	98ASB42022B	Electronic versions are uncontrolled except when
STATUS:	ON SEMICONDUCTOR STANDARD	accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped
NEW STANDARD:		"CONTROLLED COPY" in red.
DESCRIPTION:	TO-92 (TO-226)	PAGE 1 OF 3

TO-92 (TO-226) CASE 29-11

ISSUE AM

DATE 09 MAR 2007

STYLE 1: PIN 1. 2. 3.	EMITTER BASE COLLECTOR	PIN 1. 2.	BASE EMITTER COLLECTOR	PIN 1. 2. 3	ANODE ANODE CATHODE	PIN 1. 2.	CATHODE CATHODE ANODE	STYLE 5: PIN 1. 2. 3.	DRAIN
	GATE SOURCE & SUBSTRATE DRAIN	STYLE 7: PIN 1. 2. 3.	SOURCE DRAIN GATE	STYLE 8: PIN 1. 2. 3.	DRAIN GATE SOURCE & SUBSTRATE	STYLE 9: PIN 1. 2. 3.	BASE 1 EMITTER BASE 2	STYLE 10: PIN 1. 2. 3.	
2.	ANODE	STYLE 12: PIN 1. 2. 3.	MAIN TERMINAL 1	PIN 1.		PIN 1.		PIN 1. 2.	ANODE 1
2.		2.	BASE	2.	ANODE CATHODE NOT CONNECTED	2.	ANODE	2.	NOT CONNECTED
PIN 1. 2.	COLLECTOR	PIN 1. 2.	SOURCE GATE DRAIN	DINI 1	GATE SOURCE DRAIN	PIN 1. 2.	EMITTER	PIN 1. 2.	MT 1
	V _{CC}	PIN 1. 2.	MT SUBSTRATE MT	PIN 1. 2.	CATHODE	PIN 1. 2.		PIN 1. 2.	DRAIN
	GATE	PIN 1. 2.	BASE	STYLE 33: PIN 1. 2. 3.	RETURN	PIN 1. 2.	INPUT GROUND LOGIC		

DOCUMENT NUMBER:	98ASB42022B	Electronic versions are uncontrolle		
STATUS:	ON SEMICONDUCTOR STANDARD	accessed directly from the Document versions are uncontrolled except	, ,	
NEW STANDARD:		"CONTROLLED COPY" in red.		
DESCRIPTION:	TO-92 (TO-226)		PAGE 2 OF 3	

ON	Semiconductor [®]
----	----------------------------

DOCUMENT NUMBER: 98ASB42022B

PAGE 3 OF 3

ISSUE	REVISION	DATE
AM	ADDED BENT-LEAD TAPE & REEL VERSION. REQ. BY J. SUPINA.	09 MAR 2007

ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

ON Semiconductor and (III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability. arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthnotized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com **TECHNICAL SUPPORT**

Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910

ON Semiconductor Website: www.onsemi.com

North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

For additional information, please contact your local Sales Representative