GaAs MMIC 6 BIT DIGITAL PHASE SHIFTERS, 1.2-1.4 GHz

Typical Applications

The HMC936ALP6E is ideal for:

- EW Receivers
- Weather \& Military Radar
- Satellite Communications
- Beamforming Modules
- Phase Cancellation

Functional Diagram

Features

Low RMS Phase Error: 1.2°
Low Insertion Loss: 5 dB
High Linearity: +45 dBm
Positive Control Logic
360° Coverage, LSB $=5.625^{\circ}$
28 Lead 6x6mm SMT Package: $36 \mathrm{~mm}^{2}$

General Description

The HMC936ALP6E is a 6-bit digital phase shifter which is rated from 1.2 to 1.4 GHz , providing 360 degrees of phase coverage, with a LSB of 5.625 degrees. The HMC936ALP6E features very low RMS phase error of 1.2 degrees and extremely low inser-tion loss variation of $\pm 0.5 \mathrm{~dB}$ across all phase states. This high accuracy phase shifter is controlled with positive control logic of $0 /+5 \mathrm{~V}$ and requires no negative supply voltage. The HMC936ALP6E is housed in a compact $6 \times 6 \mathrm{~mm}$ plastic leadless SMT package and is internally matched to 50 Ohms with no external components.

Electrical Specifications
$T_{A}=+25^{\circ} \mathrm{C}$, Vdd= +5 V , Control Voltage $=0 /+5 \mathrm{~V}$, 50 Ohm System

Parameter	Min.	Typ.	Max.	Units
Frequency Range	1.2		1.4	GHz
Insertion Loss		5	7	dB
Input Return Loss		16		dB
Output Return Loss		17		dB
Phase Error		± 5	± 10	deg
RMS Phase Error		1.2		deg
Amplitude Settling Time ($50 \% \mathrm{cntl}$ to $+/-0.1 \mathrm{~dB}$ margin of final RFout)		225		nS
Phase Settling Time (50\% cntl to +/-1 degree margin of final RFout)		175		nS
Insertion Loss Variation		± 0.5		dB
Input Power for 1 dB Compression		29		dBm
Input Third Order Intercept		45		dBm
Control Voltage Current		35	100	$\mu \mathrm{A}$
Bias Control Current		3	8	mA
Switching Time (50\% Vctl to 90\% RF Amplitude)		250		ns

GaAs MMIC 6 BIT DIGITAL PHASE SHIFTERS, 1.2-1.4 GHz

Insertion Loss, Major States Only

Input Return Loss, Major States Only

Output Return Loss, Major States Only

Normalized Loss, Major States Only

Phase Error, Major States Only

Relative Phase Shift
Major States Including All Bits

GaAs MMIC 6 BIT DIGITAL PHASE SHIFTERS, 1.2-1.4 GHz

Relative Phase Shift, RMS, Average, Max, All States

Input IP2, Major States Only

RMS Phase Error vs. Temperature

Input IP3, Major States Only

Input P1dB, Major States Only

Insertion Loss vs. Temperature, Major States Only

Phase Error vs. State

Bias Voltage \& Current

Vdd	Idd
5.0	3 mA

Control Voltage

State	Bias Condition
Low (0)	0 to 0.2 Vdc
High (1)	$\mathrm{Vdd} \pm 0.2 \mathrm{Vdc} @ 35 \mu \mathrm{~A}$ Typ.

Absolute Maximum Ratings

Input Power (RFIN)	$33 \mathrm{dBm}\left(\mathrm{T}=+85^{\circ} \mathrm{C}\right)$
Bias Voltage Range (Vdd)	-0.2 to +12 V
Channel Temperature (Tc)	$150^{\circ} \mathrm{C}$
Thermal Resistance (channel to ground paddle)	$100^{\circ} \mathrm{C} / \mathrm{W}$
Storage Temperature	-65 to $+150^{\circ} \mathrm{C}$
Operating Temperature	-40 to $+85^{\circ} \mathrm{C}$
ESD Sensitivity (HBM)	Class 1 A

ELECTROSTATIC SENSITIVE DEVICE OBSERVE HANDLING PRECAUTIONS

Truth Table

Control Voltage Input						Phase Shift (Degrees) RFIN - RFOUT
Bit 1	Bit 2	Bit 3	Bit 4	Bit 5	Bit 6	
1	1	1	1	1	1	5.625
0	1	1	1	1	1	11.25
1	0	1	1	1	1	22.5
1	1	0	1	1	1	45.0
1	1	1	0	1	1	90.0
1	1	1	1	0	1	180.0
1	1	1	1	1	0	354.375
0	0	0	0	0	0	

[^0]v03.0117
GaAs MMIC 6 BIT DIGITAL
PHASE SHIFTERS, 1.2-1.4 GHz

Outline Drawing

Package Information

Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking ${ }^{[1]}$
HMC936ALP6E	RoHS-compliant Low Stress Injection Molded Plastic	100% matte Sn	MSL3 $^{[2]}$	$\frac{\mathrm{H} 936}{X X X X}$

[2] Max peak reflow temperature of $260^{\circ} \mathrm{C}$
[1] 4-Digit lot number XXXX

Pin Descriptions

Pin Number	Function	Description	Voltage supply.
1	Vdd	GND	These pins and exposed ground paddle must be connected to RF/DC ground.
3	RFIN	This port is DC coupled and matched to 50 Ohms.	

For price, delivery, and to place orders: Analog Devices, Inc., One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106 Phone: 781-329-4700 • Order online at www.analog.com Application Support: Phone: 1-800-ANALOG-D

Evaluation PCB

List of Materials for Evaluation PCB EV1HMC936ALP6 ${ }^{[1][3]}$

Item	Description
J1- J2	PCB Mount SMA RF Connector
J3	Header 2mm, 16 Pin
C1, C2	1000 pF Capacitor, 0402 Pkg.
U1	HMC936ALP6E 6-Bit Digital Phase Shifter
PCB [2]	117718 Evaluation PCB

[1] Reference this number when ordering complete evaluation PCB
[2] Circuit Board Material: Rogers 4350
[3] Please refer to part's pin description and functional diagram for pin out assignments on evaluation board.

The circuit board used in the application should use RF circuit design techniques. Signal lines should have 50 ohm impedance while the package ground leads and exposed paddle should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation board should be mounted to an appropriate heat sink. The evaluation circuit board shown is available from Analog Devices upon request.

[^0]: Any combination of the above states will provide a phase shift approximately equal to the sum of the bits selected.
 *Reference corresponds to monotonic setting

