500 mA, Very Low Dropout Bias Rail CMOS Voltage Regulator

The NCP133 is a 500 mA VLDO equipped with NMOS pass transistor and a separate bias supply voltage (V_{BIAS}). The device provides very stable, accurate output voltage with low noise suitable for space constrained, noise sensitive applications. In order to optimize performance for battery operated portable applications, the NCP133 features low I_Q consumption. The XDFN6 1.2 mm x 1.2 mm package is optimized for use in space constrained applications.

Features

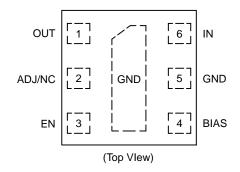
- Input Voltage Range: 0.8 V to 5.5 V
 Bias Voltage Range: 2.4 V to 5.5 V
- Adjustable and Fixed Voltage Versions Available
- Output Voltage Range: 0.8 V to 2.1 V (Fixed) and 0.8 V to 3.6 V (Adjustable)
- ±1.5% Accuracy over Temperature, 0.5% V_{OUT} @ 25°C
- Ultra-Low Dropout: Typ. 140 mV at 500 mA
- Very Low Bias Input Current of Typ. 80 μA
- Very Low Bias Input Current in Disable Mode: Typ. 0.5 μA
- Logic Level Enable Input for ON/OFF Control
- Output Active Discharge Option Available
- Stable with a 2.2 μF Ceramic Capacitor
- Available in XDFN6 1.2 mm x 1.2 mm x 0.4 mm Package
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

Typical Applications

- Battery-powered Equipment
- Smartphones, Tablets
- Cameras, DVRs, STB and Camcorders

ON Semiconductor™

www.onsemi.com


XDFN6 CASE 711AT

XX M

XX = Specific Device CodeM = Date Code

PIN CONNECTIONS

ORDERING INFORMATION

See detailed ordering and shipping information on page 8 of this data sheet.

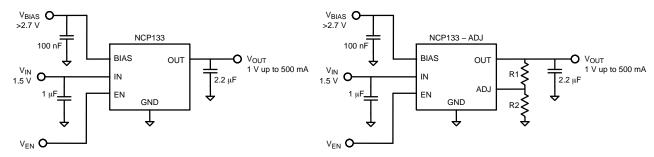
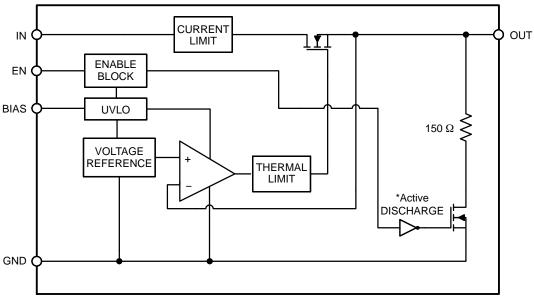



Figure 1. Typical Application Schematics

^{*}Active output discharge function is present only in NCP133AMXyyyTCG devices. yyy denotes the particular output voltage option.

Figure 2. Simplified Schematic Block Diagram – Fixed Version

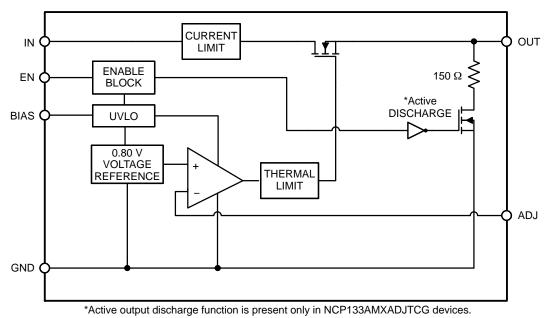


Figure 3. Simplified Schematic Block Diagram - Adjustable Version

PIN FUNCTION DESCRIPTION

Pin No. XDFN6	Pin Name	Description
1	OUT	Regulated Output Voltage pin
2 (Fixed)	N/C	Not internally connected (Note 1)
2 (Adj)	ADJ	Adjustable Regulator Feedback Input. Connect to output voltage resistor divider central node.
3	EN	Enable pin. Driving this pin high enables the regulator. Driving this pin low puts the regulator into shutdown mode.
4	BIAS	Bias voltage supply for internal control circuits. This pin is monitored by internal Under-Voltage Lockout Circuit.
5	GND	Ground
6	IN	Input Voltage Supply pin
Pad		Should be soldered to the ground plane for increased thermal performance.

^{1.} True no connect. Printed circuit board traces are allowable

ABSOLUTE MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Input Voltage (Note 2)	V _{IN}	-0.3 to 6	V
Output Voltage	V _{OUT}	-0.3 to $(V_{IN}+0.3) \le 6$	V
Chip Enable, Bias and Adj Input	V _{EN,} V _{BIAS,} V _{ADJ}	-0.3 to 6	V
Output Short Circuit Duration	t _{SC}	unlimited	s
Maximum Junction Temperature	T _J	150	°C
Storage Temperature	T _{STG}	-55 to 150	°C
ESD Capability, Human Body Model (Note 3)	ESD _{HBM}	2000	V
ESD Capability, Machine Model (Note 3)	ESD _{MM}	200	V

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

Refer to ELECTRICAL CHARACTERISTICS and APPLICATION INFORMATION for Safe Operating Area.

This device series incorporates ESD protection (except OUT pin) and is tested by the following methods:

ESD Human Body Model tested per EIA/JESD22–A114

- - ESD Machine Model tested per EIA/JESD22-A115
 - Latchup Current Maximum Rating tested per JEDEC standard: JESD78.

THERMAL CHARACTERISTICS

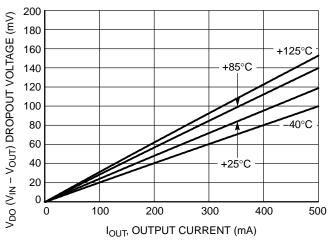
Rating	Symbol	Value	Unit
Thermal Characteristics, XDFN6 1.2 mm x 1.2 mm Thermal Resistance, Junction–to–Air	$R_{\theta JA}$	170	°C/W

ELECTRICAL CHARACTERISTICS $-40^{\circ}C \le T_J \le 85^{\circ}C$; $V_{BIAS} = 2.7 \text{ V or } (V_{OUT} + 1.6 \text{ V})$, whichever is greater, $V_{IN} = V_{OUT(NOM)} + 0.3 \text{ V}$, $I_{OUT} = 1 \text{ mA}$, $V_{EN} = 1 \text{ V}$, unless otherwise noted. $I_{EN} = 1 \text{ M}$, $I_{EN} = 1 \text{ V}$, unless otherwise noted. (Note 5)

	Symbol	Min	Тур	Max	Unit
	V _{IN}	V _{OUT} + V _{DO}		5.5	V
	V _{BIAS}	(V _{OUT} + 1.40) ≥ 2.4		5.5	V
V _{BIAS} Rising Hysteresis	UVLO		1.6 0.2		V
$T_J = +25^{\circ}C$	V_{REF}		0.800		V
(Note 4)	V _{OUT}		±0.5		%
$\begin{array}{l} -40^{\circ}C \leq T_{J} \leq 85^{\circ}C, \ V_{OUT(NOM)} + 0.3 \ V \leq V_{IN} \leq \\ V_{OUT(NOM)} + 1.0 \ V, 2.7 \ V \ or \ (V_{OUT(NOM)} + \\ 1.6 \ V), \ whichever \ is \ greater < V_{BIAS} < 5.5 \ V, \\ 1 \ mA < I_{OUT} < 500 \ mA \end{array}$	V _{OUT}	-1.5		+1.5	%
$V_{OUT(NOM)} + 0.3 \text{ V} \le V_{IN} \le 5.0 \text{ V}$	Line _{Reg}		0.01		%/V
2.7 V or (V $_{\rm OUT(NOM)}$ + 1.6 V), whichever is greater < V $_{\rm BIAS}$ < 5.5 V	Line _{Reg}		0.01		%/V
I _{OUT} = 1 mA to 500 mA	Load _{Reg}		1.5		mV
I _{OUT} = 150 mA (Note 6)	V _{DO}		37	75	mV
I _{OUT} = 500 mA (Note 6)	V _{DO}		140	250	
I _{OUT} = 500 mA, V _{IN} = V _{BIAS} (Notes 6, 7)	V _{DO}		1.1	1.5	V
V _{OUT} = 90% V _{OUT(NOM)}	I _{CL}	550	800	1000	mA
	I _{ADJ}		0.1	0.5	μΑ
V _{BIAS} = 2.7 V	I _{BIAS}		80	110	μΑ
V _{EN} ≤ 0.4 V	I _{BIAS(DIS)}		0.5	1	μΑ
$V_{EN} \le 0.4 \text{ V}$	I _{VIN(DIS)}		0.5	1	μΑ
EN Input Voltage "H"	V _{EN(H)}	0.9			V
EN Input Voltage "L"				0.4	
V _{EN} = 5.5 V	I _{EN}		0.3	1	μΑ
From assertion of V_{EN} to V_{OUT} = 98% $V_{OUT(NOM)}$. $V_{OUT(NOM)}$ = 1.0 V	t _{ON}		150		μs
V_{IN} to V_{OUT} , f = 1 kHz, I_{OUT} = 150 mA, $V_{IN} \ge V_{OUT}$ +0.5 V	PSRR(V _{IN})		70		dB
V_{BIAS} to V_{OUT} , f = 1 kHz, I_{OUT} = 150 mA, $V_{IN} \ge V_{OUT}$ +0.5 V	PSRR(V _{BIAS})		80		dB
$V_{IN} = V_{OUT} + 0.5 \text{ V}, V_{OUT(NOM)} = 1 \text{ V},$ f = 10 Hz to 100 kHz	V _N		40		μV _{RMS}
$V_{IN} = V_{OUT} + 0.5 \text{ V}, f = 10 \text{ Hz to } 100 \text{ kHz}$	V _N		50 x V _{OUT}		μV _{RMS}
Temperature increasing			160		°C
Temperature decreasing			140		
$\ensuremath{\text{V}_{\text{EN}}} \leq 0.4 \ \mbox{V}, \ \ensuremath{\text{V}_{\text{OUT}}} = 0.5 \ \mbox{V}, \ \mbox{NCP133A}$ options only	R _{DISCH}		150		Ω
	$\begin{split} &\text{Hysteresis} \\ &T_J = +25^{\circ}\text{C} \\ &(\text{Note 4}) \\ &-40^{\circ}\text{C} \leq T_J \leq 85^{\circ}\text{C}, \ V_{\text{OUT}(\text{NOM})} + 0.3 \ \text{V} \leq \text{V}_{\text{IN}} \leq \text{V}_{\text{OUT}(\text{NOM})} + 1.0 \ \text{V}, \ 2.7 \ \text{V or } (\text{V}_{\text{OUT}(\text{NOM})} + 1.6 \ \text{V}), \ \text{whichever is greater} < V_{\text{BIAS}} < 5.5 \ \text{V}, \\ &1 \ \text{mA} < I_{\text{OUT}} < 500 \ \text{mA} \\ &V_{\text{OUT}(\text{NOM})} + 0.3 \ \text{V} \leq \text{V}_{\text{IN}} \leq 5.0 \ \text{V} \\ &2.7 \ \text{V or } (\text{V}_{\text{OUT}(\text{NOM})} + 1.6 \ \text{V}), \ \text{whichever is} \\ &\text{greater} < \text{V}_{\text{BIAS}} < 5.5 \ \text{V} \\ &I_{\text{OUT}} = 1 \ \text{mA to } 500 \ \text{mA} \\ &I_{\text{OUT}} = 150 \ \text{mA} \ \text{(Note 6)} \\ &I_{\text{OUT}} = 500 \ \text{mA} \ \text{(Note 6)} \\ &I_{\text{OUT}} = 500 \ \text{mA}, \ \text{V}_{\text{IN}} = \text{V}_{\text{BIAS}} \ \text{(Notes 6, 7)} \\ &V_{\text{OUT}} = 90\% \ \text{V}_{\text{OUT}(\text{NOM})} \\ &V_{\text{EN}} \leq 0.4 \ \text{V} \\ &V_{\text{EN}} \leq 0.4 \ \text{V} \\ &V_{\text{EN}} \leq 0.4 \ \text{V} \\ &V_{\text{EN}} = 5.5 \ \text{V} \\ &\text{From assertion of V}_{\text{EN}} \ \text{to V}_{\text{OUT}} = 98\% \ \text{V}_{\text{OUT}(\text{NOM})} \cdot \text{V}_{\text{OUT}(\text{NOM})} = 1.0 \ \text{V} \\ &V_{\text{IN}} \ \text{to V}_{\text{OUT}}, \ f = 1 \ \text{kHz}, \ I_{\text{OUT}} = 150 \ \text{mA}, \\ &V_{\text{IN}} \geq \text{V}_{\text{OUT}} + 0.5 \ \text{V} \\ &V_{\text{IN}} \leq \text{V}_{\text{OUT}} + 0.5 \ \text{V} \\ &V_{\text{IN}} = \text{V}_{\text{OUT}} + 0.5 \ \text{V}, \ \text{V}_{\text{OUT}(\text{NOM})} = 1 \ \text{V}, \\ f = 10 \ \text{Hz} \ \text{to } 100 \ \text{kHz} \\ \\ &V_{\text{IN}} = \text{V}_{\text{OUT}} + 0.5 \ \text{V}, \ \text{f} = 10 \ \text{Hz} \ \text{to } 100 \ \text{kHz} \\ \\ &V_{\text{IN}} = \text{V}_{\text{OUT}} + 0.5 \ \text{V}, \ \text{f} = 10 \ \text{Hz} \ \text{to } 100 \ \text{kHz} \\ \\ &V_{\text{IN}} = \text{V}_{\text{OUT}} + 0.5 \ \text{V}, \ \text{V}_{\text{OUT}} = 0.5 \ \text{V}, \ \text{NCP133A options} \\ \\ &V_{\text{EN}} \leq 0.4 \ \text{V}, \ \text{V}_{\text{OUT}} = 0.5 \ \text{V}, \ \text{NCP133A options} \\ \\ &V_{\text{EN}} \leq 0.4 \ \text{V}, \ \text{V}_{\text{OUT}} = 0.5 \ \text{V}, \ \text{NCP133A options} \\ \\ &V_{\text{EN}} \leq 0.4 \ \text{V}, \ \text{V}_{\text{OUT}} = 0.5 \ \text{V}, \ \text{NCP133A options} \\ \\ &V_{\text{EN}} \leq 0.4 \ \text{V}, \ \text{V}_{\text{OUT}} = 0.5 \ \text{V}, \ \text{NCP133A options} \\ \\ &V_{\text{EN}} \leq 0.4 \ \text{V}, \ \text{V}_{\text{OUT}} = 0.5 \ \text{V}, \ \text{NCP133A options} \\ \\ &V_{\text{EN}} \leq 0.4 \ \text{V}, \ \text{V}_{\text{OUT}} = 0.5 \ \text{V}, \ \text{NCP133A options} \\ \\ &V_{\text{EN}} \leq 0.4 \ \text{V}, \ \text{V}$	$V_{BIAS} Rising \\ Hysteresis \\ IVLO \\ V_{REF} \\ \hline \\ (Note 4) \\ -40^{\circ}C \le T_{J} \le 85^{\circ}C, V_{OUT(NOM)} + 0.3 \ V \le V_{IN} \le V_{OUT} \\ V_{OUT(NOM)} + 1.0 \ V, 2.7 \ V \ or \ (V_{OUT(NOM)} + 1.6 \ V), whichever is greater < V_{BIAS} < 5.5 \ V, \\ I mA < _{OUT} < 500 \ mA \\ V_{OUT(NOM)} + 0.3 \ V \le V_{IN} \le 5.0 \ V \\ 2.7 \ V \ or \ (V_{OUT(NOM)} + 1.6 \ V), whichever is greater < V_{BIAS} < 5.5 \ V \\ I_{OUT} = 1 \ mA \ to 500 \ mA \\ I_{OUT} = 1 \ mA \ to 500 \ mA \\ I_{OUT} = 150 \ mA \ (Note 6) \\ I_{OUT} = 1500 \ mA \ (Note 6) \\ I_{OUT} = 500 \ mA, V_{IN} = V_{BIAS} \ (Notes 6, 7) \\ V_{DO} \\ V_{OUT} = 90\% \ V_{OUT(NOM)} \\ V_{OUT} = 90\% \ V_{OUT(NOM)} \\ I_{CL} \\ V_{BIAS} = 2.7 \ V \\ V_{BIAS} = 2.7 \ V \\ I_{BIAS} \\ V_{EN} \le 0.4 \ V \\ V_{EN} \le 0.4 \ V \\ I_{DID} \\ V_{EN} = 5.5 \ V \\ I_{EN} \\ I_{EN$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

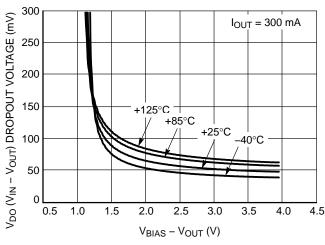
^{4.} Adjustable devices tested at 0.8 V; external resistor tolerance is not taken into account.


Performance guaranteed over the indicated operating temperature range by design and/or characterization. Production tested at T_A = 25°C. Low duty cycle pulse techniques are used during the testing to maintain the junction temperature as close to ambient as possible.

 ^{6.} Dropout voltage is characterized when V_{OUT} falls 3% below V_{OUT(NOM)}.
 7. For output voltages below 0.9 V, V_{BIAS} dropout voltage does not apply due to a minimum Bias operating voltage of 2.4 V.

TYPICAL CHARACTERISTICS

At T_J = +25°C, V_{IN} = V_{OUT(TYP)} + 0.3 V, V_{BIAS} = 2.7 V, V_{EN} = V_{BIAS}, V_{OUT(NOM)} = 1.0 V, I_{OUT} = 500 mA, C_{IN} = 1 μ F, C_{BIAS} = 0.1 μ F, and C_{OUT} = 2.2 μ F (effective capacitance), unless otherwise noted.


200

V_{DO} (V_{IN} – V_{OUT}) DROPOUT VOLTAGE (mV) $I_{OUT} = 100 \text{ mA}$ 180 160 140 120 100 80 +125°C 60 +25°C –40°C 40 20 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 V_{BIAS} - V_{OUT} (V)

Figure 4. V_{IN} Dropout Voltage vs. I_{OUT} and Temperature T_J

Figure 5. V_{IN} Dropout Voltage vs. (V_{BIAS} -V_{OUT}) and Temperature T_J

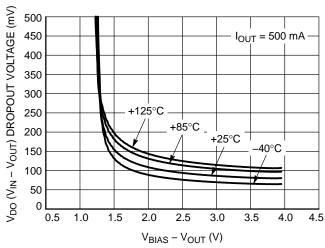
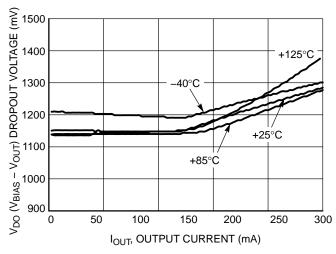



Figure 6. V_{IN} Dropout Voltage vs. (V_{BIAS} -V_{OUT}) and Temperature T_J

Figure 7. V_{IN} Dropout Voltage vs. (V_{BIAS} -V_{OUT}) and Temperature T_J

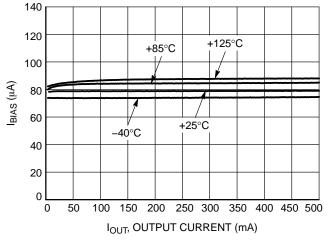
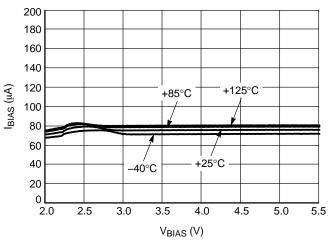



Figure 8. $V_{\mbox{\footnotesize BIAS}}$ Dropout Voltage vs. $I_{\mbox{\footnotesize OUT}}$ and Temperature T_J

Figure 9. BIAS Pin Current vs. IOUT and Temperature T_{.1}

TYPICAL CHARACTERISTICS

At T_J = +25°C, V_{IN} = V_{OUT(TYP)} + 0.3 V, V_{BIAS} = 2.7 V, V_{EN} = V_{BIAS}, V_{OUT(NOM)} = 1.0 V, I_{OUT} = 500 mA, C_{IN} = 1 μ F, C_{BIAS} = 0.1 μ F, and C_{OUT} = 2.2 μ F (effective capacitance), unless otherwise noted.

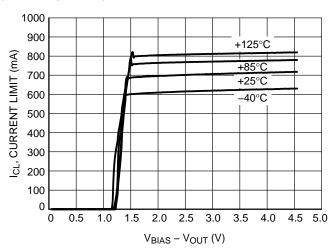


Figure 10. BIAS Pin Current vs. $V_{\mbox{\footnotesize BIAS}}$ and Temperature $T_{\mbox{\footnotesize J}}$

Figure 11. Current Limit vs. (V_{BIAS} - V_{OUT})

APPLICATIONS INFORMATION

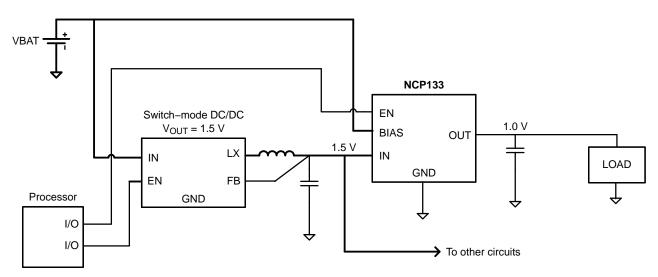


Figure 12. Typical Application: Low-Voltage DC/DC Post-Regulator with ON/OFF Functionality

The NCP133 dual–rail very low dropout voltage regulator is using NMOS pass transistor for output voltage regulation from $V_{\rm IN}$ voltage. All the low current internal control circuitry is powered from the $V_{\rm BIAS}$ voltage.

The use of an NMOS pass transistor offers several advantages in applications. Unlike PMOS topology devices, the output capacitor has reduced impact on loop stability. Vin to Vout operating voltage difference can be very low compared with standard PMOS regulators in very low Vin applications.

The NCP133 offers smooth monotonic start-up. The controlled voltage rising limits the inrush current.

The Enable (EN) input is equipped with internal hysteresis. NCP133 Voltage linear regulator Fixed and Adjustable version is available.

Output Voltage Adjust

The required output voltage of Adjustable devices can be adjusted from 0.8 V to 3.6 V using two external resistors.

Typical application schematics is shown in Figure 13.

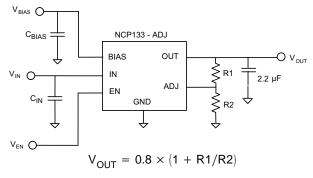


Figure 13. Typical Application Schematics

It is recommended to keep the total serial resistance of resistors (R1 + R2) no greater than $100 \text{ k}\Omega$.

Recommended resistor values for programming the frequently used voltages can be found in the Table 1.

Dropout Voltage

Because of two power supply inputs V_{IN} and V_{BIAS} and one V_{OUT} regulator output, there are two Dropout voltages specified.

The first, the V_{IN} Dropout voltage is the voltage difference ($V_{IN}-V_{OUT}$) when V_{OUT} starts to decrease by percent specified in the Electrical Characteristics table. V_{BIAS} is high enough; specific value is published in the Electrical Characteristics table.

The second, V_{BIAS} dropout voltage is the voltage difference ($V_{BIAS} - V_{OUT}$) when V_{IN} and V_{BIAS} pins are joined together and V_{OUT} starts to decrease.

Input and Output Capacitors

The device is designed to be stable for ceramic output capacitors with Effective capacitance in the range from 2.2 μF to 10 μF . The device is also stable with multiple capacitors in parallel, having the total effective capacitance in the specified range.

In applications where no low input supplies impedance available (PCB inductance in V_{IN} and/or V_{BIAS} inputs as example), the recommended $C_{IN}=1\,\mu\text{F}$ and $C_{BIAS}=0.1\,\mu\text{F}$ or greater. Ceramic capacitors are recommended. For the best performance all the capacitors should be connected to the NCP133 respective pins directly in the device PCB copper layer, not through vias having not negligible impedance.

When using small ceramic capacitor, their capacitance is not constant but varies with applied DC biasing voltage, temperature and tolerance. The effective capacitance can be much lower than their nominal capacitance value, most importantly in negative temperatures and higher LDO output voltages. That is why the recommended Output capacitor capacitance value is specified as Effective value in the specific application conditions.

Enable Operation

The enable pin will turn the regulator on or off. The threshold limits are covered in the electrical characteristics table in this data sheet. If the enable function is not to be used then the pin should be connected to $V_{\rm IN}$ or $V_{\rm BIAS}$.

Current Limitation

The internal Current Limitation circuitry allows the device to supply the full nominal current and surges but protects the device against Current Overload or Short.

Thermal Protection

Internal thermal shutdown (TSD) circuitry is provided to protect the integrated circuit in the event that the maximum junction temperature is exceeded. When TSD activated , the regulator output turns off. When cooling down under the low temperature threshold, device output is activated again. This TSD feature is provided to prevent failures from accidental overheating.

Activation of the thermal protection circuit indicates excessive power dissipation or inadequate heatsinking. For reliable operation, junction temperature should be limited to $+125^{\circ}$ C maximum.

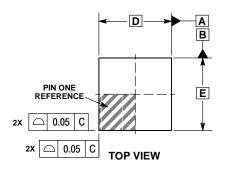
Table 1. RESISTOR VALUES FOR PROGRAMMING THE OUTPUT VOLTAGE

V _{OUT} (V)	R ₁ (kΩ)	R ₂ (kΩ)
0.8	Short	Open
0.9	10.0	80.6
1.0	19.6	78.7
1.05	24.3	78.7
1.1	24.9	66.5
1.2	33.2	66.5
1.5	43.2	49.9
1.8	41.2	33.2
2.5	42.2	20.0
3.3	61.9	20.0

NOTE: $V_{OUT} = 0.8 \text{ x } (1 + R_1/R_2)$

Resistors in the table are standard 1% types

ORDERING INFORMATION


Device	Nominal Output Voltage	Marking	Marking Rotation	Option	Package	Shipping [†]
NCP133AMX090TCG	0.90 V	D	90°			
NCP133AMX100TCG	1.00 V	3	0°			
NCP133AMX105TCG	1.05 V	4	0°			
NCP133AMX110TCG	1.10 V	5	0°			
NCP133AMX115TCG	1.15 V	Т	90°			
NCP133AMX120TCG	1.20 V	6	0°	Output Active Discharge	XDFN6	0000/7 0.5
NCP133AMX125TCG	1.25 V	E	90°	2.0090	(Pb-Free)	3000 / Tape & Reel
NCP133AMX130TCG	1.30 V	F	90°			
NCP133AMX150TCG	1.50 V	J	90°			
NCP133AMX180TCG	1.80 V	Q	90°			
NCP133AMXADJTCG	ADJ	K	90°	1		
NCP133BMXADJTCG	ADJ	Р	90°	Non-Active Discharge		

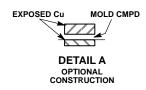
[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

To order other package and voltage variants, please contact your ON Semiconductor sales representative

PACKAGE DIMENSIONS

XDFN6 1.20x1.20, 0.40P CASE 711AT **ISSUE A**

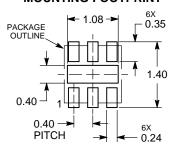
DETAIL A


SIDE VIEW

0.05 С

0.05 C

 \triangle


NOTF 4

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER
 - ASME Y14.5M, 1994.
 CONTROLLING DIMENSION: MILLIMETERS.
- DIMENSION & APPLIES TO PLATED
 TERMINAL AND IS MEASURED BETWEEN 0.15 AND 0.25mm FROM TERMINAL TIPS.
 COPLANARITY APPLIES TO THE PAD AS
- WELL AS THE TERMINALS.

	MILLIMETERS		
DIM	MIN	MAX	
Α	0.30	0.45	
A1	0.00	0.05	
b	0.13	0.23	
D	1.20 BSC		
D2	0.84	1.04	
E	1.20 BSC		
E2	0.20	0.40	
е	0.40 BSC		
Ĺ	0.15	0.25	
L1	0.05 REF		

RECOMMENDED **MOUNTING FOOTPRINT***

DIMENSIONS: MILLIMETERS

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

DETAIL A D2 -6x L1 巾 ex h 0.10 M CAB \oplus **BOTTOM VIEW**

C

ON Semiconductor and in are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center

Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

ON Semiconductor:

<u>NCP133AMX090TCG</u> <u>NCP133AMX120TCG</u> <u>NCP133AMX130TCG</u> <u>NCP133AMX100TCG</u> <u>NCP133AMX110TCG</u> <u>NCP133AMX150TCG</u> <u>NCP133AMX150TCG</u> <u>NCP133AMX150TCG</u> <u>NCP133AMX150TCG</u> <u>NCP133AMX150TCG</u> <u>NCP133AMX180TCG</u> <u>NCP133BMXADJTCG</u>