

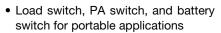
N-Channel 30 V (D-S) MOSFET

PowerPAK® ChipFET® Single

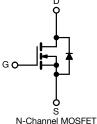
Bottom View

Marking code: Al

PRODUCT SUMMARY						
V _{DS} (V)	30					
$R_{DS(on)}$ max. (Ω) at $V_{GS} = 10 \text{ V}$	0.0145					
$R_{DS(on)}$ max. (Ω) at $V_{GS} = 4.5 \text{ V}$	0.0185					
Q _g typ. (nC)	9.5					
I _D (A) ^a	12					
Configuration	Single					


FEATURES

- TrenchFET® power MOSFET
- Thermally enhanced PowerPAK[®] ChipFET package


- Low on-resistance
- Thin 0.8 mm profile
- Material categorization: for definitions of compliance please see <u>www.vishay.com/doc?99912</u>

APPLICATIONS

ORDERING INFORMATION	
Package	PowerPAK ChipFET
Lead (Pb)-free and halogen-free	Si5418DU-T1-GE3

PARAMETER		SYMBOL	LIMIT	UNIT	
Drain-source voltage		V _{DS}	30		
Gate-source voltage		V _{GS}	± 20	V	
Continuous drain current (T _J = 150 °C)	T _C = 25 °C		12 ^a		
	T _C = 70 °C		12 ^a		
	T _A = 25 °C	I _D	11.6 ^{b, c}		
	T _A = 70 °C		9.3 b, c	A	
Pulsed drain current		I _{DM}	40		
	T _C = 25 °C		12 ^a		
Continuous source-drain diode current	T _A = 25 °C	I _S	2.6 ^{b, c}		
	T _C = 25 °C		31		
Maximum power dissipation	T _C = 70 °C		20	14/	
	T _A = 25 °C	P _D	3.1 ^{b, c}	W	
	T _A = 70 °C	1	2 b, c		
Operating junction and storage temperature range		T _J , T _{stg}	T _J , T _{stq} -55 to +150		
Soldering recommendations (peak temperature) d, e			260	°C	

THERMAL RESISTANCE RATING	GS				
PARAMETER		SYMBOL	TYPICAL	MAXIMUM	UNIT
Maximum junction-to-ambient b, f	t ≤ 5 s	R _{thJA}	34	40	°C/W
Maximum junction-to-case (drain)	Steady state	R _{thJC}	3	4	C/VV

Notes

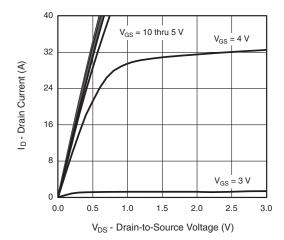
a. Package limited

S-81448-Rev. B, 23-Jun-08

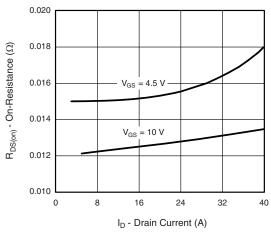
- b. Surface mounted on 1" x 1" FR4 board
- c. t = 5 s
- d. See solder profile (<u>www.vishay.com/doc?73257</u>). The PowerPAK ChipFET is a leadless package. The end of the lead terminal is exposed copper (not plated) as a result of the singulation process in manufacturing. A solder fillet at the exposed copper tip cannot be guaranteed and is not required to ensure adequate bottom side solder interconnection
- e. Rework conditions: manual soldering with a soldering iron is not recommended for leadless components
- f. Maximum under steady state conditions is 90 °C/W

www.vishay.com

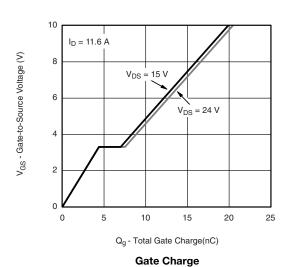
Vishay Siliconix

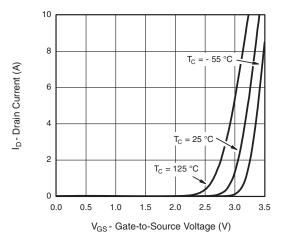

PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNIT
Static						
Drain-source breakdown voltage	V_{DS}	$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$	30	-	-	V
V _{DS} temperature coefficient	$\Delta V_{DS}/T_{J}$	J 050 A	-	40	-	
V _{GS(th)} temperature coefficient	$\Delta V_{GS(th)}/T_J$	$I_D = 250 \ \mu A$	-	-7	-	mV/°C
Gate-source threshold voltage	V _{GS(th)}	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	1.2	-	3	V
Gate-source leakage	I _{GSS}	$V_{DS} = 0 \text{ V}, V_{GS} = \pm 20 \text{ V}$	-	-	± 100	nA
7		$V_{DS} = 30 \text{ V}, V_{GS} = 0 \text{ V}$	-	-	1	
Zero gate voltage drain current	I _{DSS}	$V_{DS} = 30 \text{ V}, V_{GS} = 0 \text{ V}, T_{J} = 55 \text{ °C}$	-	-	10	μA
On-state drain current ^a	I _{D(on)}	$V_{DS} \ge 5 \text{ V}, V_{GS} = 10 \text{ V}$	20	-	-	Α
Drain course on state resistance 3	_	$V_{GS} = 10 \text{ V}, I_D = 7.7 \text{ A}$	-	0.0120	0.0145	_
Drain-source on-state resistance a	R _{DS(on)}	$V_{GS} = 4.5 \text{ V}, I_D = 6.9 \text{ A}$	-	0.0150	0.0185	Ω
Forward transconductance ^a	9 _{fs}	$V_{DS} = 15 \text{ V}, I_D = 7.7 \text{ A}$	-	31	-	S
Dynamic ^b			•			
Input capacitance	C _{iss}		-	1350	-	
Output capacitance	C _{oss}	$V_{DS} = 15 \text{ V}, V_{GS} = 0 \text{ V}, f = 1 \text{ MHz}$	-	190	-	pF
Reverse transfer capacitance	C _{rss}		-	80	-	
Total gate charge	Qg	V _{DS} = 15 V, V _{GS} = 10 V, I _D = 11.6 A	-	20	30	
			-	9.5	15	
Gate-source charge	Q _{gs}	$V_{DS} = 15 \text{ V}, V_{GS} = 4.5 \text{ V}, I_D = 11.6 \text{ A}$	-	4.5	-	nC
Gate-drain charge	Q _{gd}		-	2.7	-	1
Gate resistance	R_{g}	f = 1 MHz	-	3.5	-	Ω
Turn-on delay time	t _{d(on)}		-	20	30	
Rise time	t _r	$V_{DD} = 15 \text{ V}, R_L = 1.6 \Omega, I_D \cong 9.3 \text{ A},$	-	10	15	1
Turn-off delay time	t _{d(off)}	$V_{GEN} = 4.5 \text{ V}, R_g = 1 \Omega$	-	20	30	
Fall time	t _f	· · - · · · · · · · · · · · · · · · ·		10	15	
Turn-on delay time	t _{d(on)}		-	10	15	ns
Rise time	t _r	$V_{DD} = 15 \text{ V}, R_{I} = 1.6 \Omega, I_{D} \cong 9.3 \text{ A},$	-	10	15	
Turn-off delay time	t _{d(off)}	$V_{DD} = 15 \text{ V, } R_{L} = 1.6 \Omega, I_{D} \cong 9.3 \text{ A,} \\ V_{GEN} = 4.5 \text{ V, } R_{g} = 1 \Omega$ $V_{DD} = 15 \text{ V, } R_{L} = 1.6 \Omega, I_{D} \cong 9.3 \text{ A,} \\ V_{DD} = 15 \text{ V, } R_{L} = 1.6 \Omega, I_{D} \cong 9.3 \text{ A,} \\ V_{DD} = 15 \text{ V, } R_{L} = 1.6 \Omega, I_{D} \cong 9.3 \text{ A,} \\ V_{DD} = 15 \text{ V, } R_{L} = 1.6 \Omega, I_{D} \cong 9.3 \text{ A,} \\ V_{DD} = 15 \text{ V, } R_{L} = 1.6 \Omega, I_{D} \cong 9.3 \text{ A,} \\ V_{DD} = 15 \text{ V, } R_{L} = 1.6 \Omega, I_{D} \cong 9.3 \text{ A,} \\ V_{DD} = 15 \text{ V, } R_{L} = 1.6 \Omega, I_{D} \cong 9.3 \text{ A,} \\ V_{DD} = 15 \text{ V, } R_{L} = 1.6 \Omega, I_{D} \cong 9.3 \text{ A,} \\ V_{DD} = 15 \text{ V, } R_{D} = 1.6 \Omega, I_{D} \cong 9.3 \text{ A,} \\ V_{DD} = 15 \text{ V, } R_{D} = 1.6 \Omega, I_{D} \cong 9.3 \text{ A,} \\ V_{DD} = 15 \text{ V, } R_{D} = 1.6 \Omega, I_{D} \cong 9.3 \text{ A,} \\ V_{DD} = 15 \text{ V, } R_{D} = 1.6 \Omega, I_{D} \cong 9.3 \text{ A,} \\ V_{DD} = 15 \text{ V, } R_{D} = 1.6 \Omega, I_{D} \cong 9.3 \text{ A,} \\ V_{DD} = 15 \text{ V, } R_{D} = 1.6 \Omega, I_{D} \cong 9.3 \text{ A,} \\ V_{DD} = 15 \text{ V, } R_{D} = 1.6 \Omega, I_{D} \cong 9.3 \text{ A,} \\ V_{DD} = 15 \text{ V, } R_{D} = 1.6 \Omega, I_{D} \cong 9.3 \text{ A,} \\ V_{DD} = 15 \text{ V, } R_{D} = 1.6 \Omega, I_{D} \cong 9.3 \text{ A,} \\ V_{DD} = 1.6 \Omega, I_{D} \cong 9.3 \text{ A,} \\ V_{DD} = 1.6 \Omega, I_{D} \cong 9.3 \text{ A,} \\ V_{DD} = 1.6 \Omega, I_{D} \cong 9.3 \text{ A,} \\ V_{DD} = 1.6 \Omega, I_{D} \cong 9.3 \text{ A,} \\ V_{DD} = 1.6 \Omega, I_{D} \cong 9.3 \text{ A,} \\ V_{DD} = 1.6 \Omega, I_{D} \cong 9.3 \text{ A,} \\ V_{DD} = 1.6 \Omega, I_{D} \cong 9.3 \text{ A,} \\ V_{DD} = 1.6 \Omega, I_{D} \cong 9.3 \text{ A,} \\ V_{DD} = 1.6 \Omega, I_{D} \cong 9.3 \text{ A,} \\ V_{DD} = 1.6 \Omega, I_{D} \cong 9.3 \text{ A,} \\ V_{DD} = 1.6 \Omega, I_{D} \cong 9.3 \text{ A,} \\ V_{DD} = 1.6 \Omega, I_{D} \cong 9.3 \text{ A,} \\ V_{DD} = 1.6 \Omega, I_{D} \cong 9.3 \text{ A,} \\ V_{DD} = 1.6 \Omega, I_{D} \cong 9.3 \text{ A,} \\ V_{DD} = 1.6 \Omega, I_{D} \cong 9.3 \Omega, \\ V_{DD} = 1.6 \Omega, I_{D} \cong 9.3 \Omega, \\ V_{DD} = 1.6 \Omega, I_{D} \cong 9.3 \Omega, \\ V_{DD} = 1.6 \Omega, I_{D} \cong 9.3 \Omega, \\ V_{DD} = 1.6 \Omega, I_{D} \cong 9.3 \Omega, \\ V_{DD} = 1.6 \Omega, I_{D} \cong 9.3 \Omega, \\ V_{DD} = 1.6 \Omega, I_{D} \cong 9.3 \Omega, \\ V_{DD} = 1.6 \Omega, I_{D} \cong 9.3 \Omega, \\ V_{DD} = 1.6 \Omega, I_{D} \cong 9.3 \Omega, \\ V_{DD} = 1.6 \Omega, I_{D} \cong 9.3 \Omega, \\ V_{DD} = 1.6 \Omega, I_{D} \cong 9.3 \Omega, \\ V_{DD} = 1.6 \Omega, I_{D} \cong 9.3 \Omega, \\ V_{DD} = 1.6 \Omega, I_{D} \cong 9.3 \Omega, \\ V_{DD} = 1.6 \Omega, I_{D} \cong 9.3 \Omega, \\ V_{DD} = 1.6 \Omega, I_{D$		20	30	1
Fall time	t _f		-	10	15	1
Drain-Source Body Diode Characteristi	cs		•	•		
Continuous source-drain diode current	Is	T _C = 25 °C	-	-	12	
Pulse diode forward current	I _{SM}		-	-	40	A
Body diode voltage	V _{SD}	I _S = 9.3 A, V _{GS} = 0 V	-	0.8	1.2	V
Body diode reverse recovery time	t _{rr}		-	25	40	ns
Body diode reverse recovery charge	Q _{rr}	$I_E = 9.3 \text{ A. di/dt} = 100 \text{ A/us}.$	-	19	30	nC
<u> </u>		I _F = 9.3 A, di/dt = 100 A/μs, - T _J = 25 °C -		14		
Reverse recovery fall time	t _a	1,1 = 20 0	_	14	_	

Notes

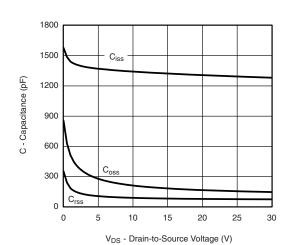

- a. Pulse test; pulse width \leq 300 µs, duty cycle \leq 2 %
- b. Guaranteed by design, not subject to production testing

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

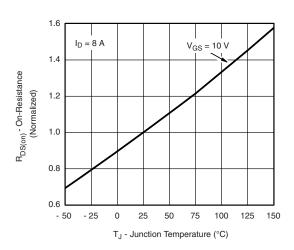




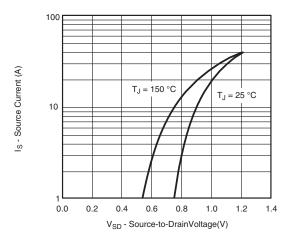
Output Characteristics



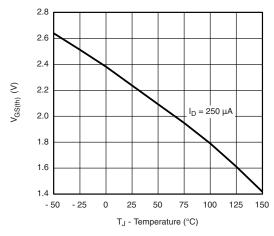
On-Resistance vs. Drain Current and Gate Voltage



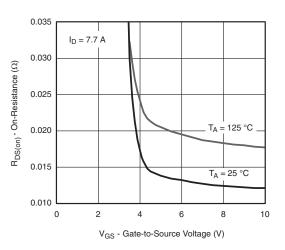
Transfer Characteristics

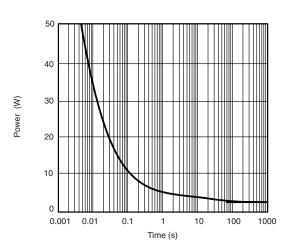


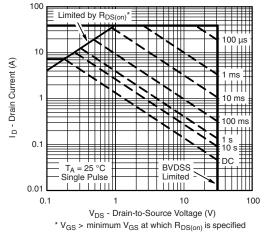
Capacitance



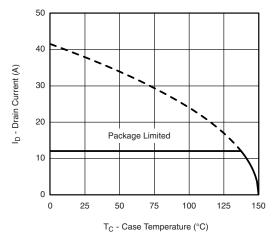
On-Resistance vs. Junction Temperature

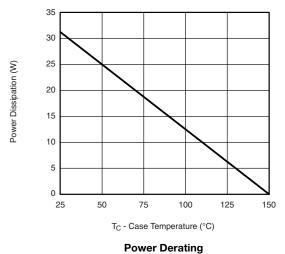



Source-Drain Diode Forward Voltage

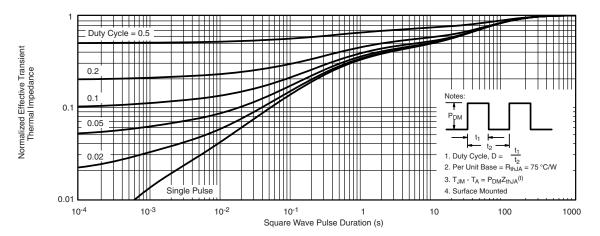

Threshold Voltage

On-Resistance vs. Gate-to-Source Voltage

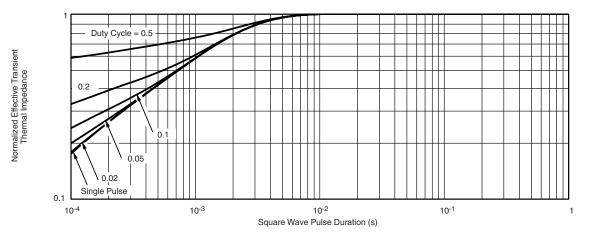



Single Pulse Power, Junction-to-Ambient

Safe Operating Area, Junction-to-Ambient

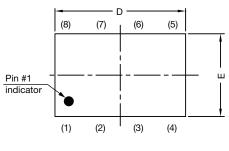


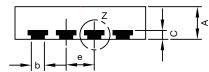
Current Derating ^a

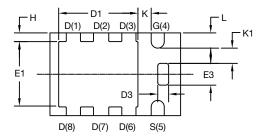

Note

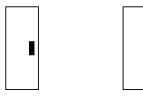
a. The power dissipation P_D is based on T_J max. = 150 °C, using junction-to-case thermal resistance, and is more useful in settling the upper dissipation limit for cases where additional heatsinking is used. It is used to determine the current rating, when this rating falls below the package limit

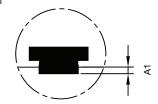
Normalized Thermal Transient Impedance, Junction-to-Ambient

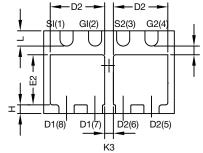



Normalized Thermal Transient Impedance, Junction-to-Case


Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppg?69822.


PowerPAK® ChipFET® Case Outline


Backside view of single pad

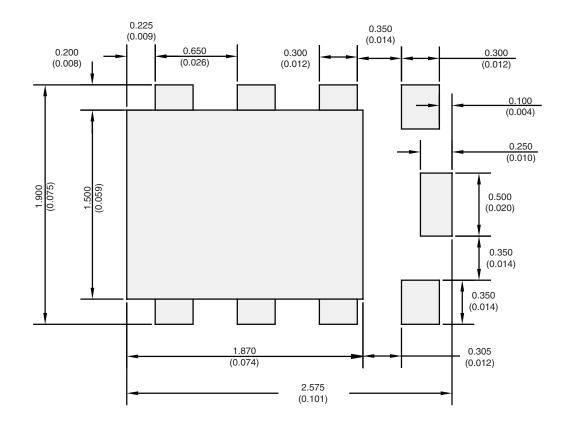

Side view of single

Side view of dual

Detail Z

Backside view of dual pad

DIM.		MILLIMETERS		INCHES			
MIN	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.	
Α	0.70	0.75	0.85	0.028	0.030	0.033	
A1	0	-	0.05	0	-	0.002	
b	0.25	0.30	0.35	0.010	0.012	0.014	
С	0.15	0.20	0.25	0.006	0.008	0.010	
D	2.92	3.00	3.08	0.115	0.118	0.121	
D1	1.75	1.87	2.00	0.069	0.074	0.079	
D2	1.07	1.20	1.32	0.042	0.047	0.052	
D3	0.20	0.25	0.30	0.008	0.010	0.012	
Е	1.82	1.90	1.98	0.072	0.075	0.078	
E1	1.38	1.50	1.63	0.054	0.059	0.064	
E2	0.92	1.05	1.17	0.036	0.041	0.046	
E3	0.45	0.50	0.55	0.018	0.020	0.022	
е		0.65 BSC		0.026 BSC			
Н	0.15	0.20	0.25	0.006	0.008	0.010	
K	0.25	-	-	0.010	-	-	
K1	0.30	-	-	0.012	-	-	
K2	0.20	-	=	0.008	-	-	
K3	0.20	-	-	0.008	-	-	
L	0.30	0.35	0.40	0.012	0.014	0.016	


C14-0630-Rev. E, 21-Jul-14 DWG: 5940

Note

• Millimeters will govern

RECOMMENDED MINIMUM PADS FOR PowerPAK® ChipFET® Single

Recommended Minimum Pads Dimensions in mm/(Inches)

Return to Index

APPLICATION NOTE

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Vishay: SI5418DU-T1-GE3