
# STB27NM60ND, STW27NM60ND

Automotive-grade N-channel 600 V, 0.13 Ω, 21 A FDmesh<sup>™</sup> II Power MOSFETs (with fast diode) in D<sup>2</sup>PAK and TO-247 packages





### Figure 1. Internal schematic diagram



### Features

| Order codes | V <sub>DS</sub> @ T <sub>jmax</sub> | R <sub>DS(on)</sub> max | Ι <sub>D</sub> |
|-------------|-------------------------------------|-------------------------|----------------|
| STB27NM60ND | 650 V                               | 0.16 Q                  | 21 A           |
| STW27NM60ND | 000 V                               | 0.16 12                 | 21 A           |

- Designed for automotive applications and AEC-Q101 qualified
- The worldwide best R<sub>DS(on)</sub>\*area amongst the fast recovery diode devices
- 100% avalanche tested
- Low input capacitance and gate charge
- Low gate input resistance
- Extremely high dv/dt and avalanche capabilities

### Applications

• Switching applications

### Description

These FDmesh<sup>™</sup> II Power MOSFETs with intrinsic fast-recovery body diode are produced using the second generation of MDmesh<sup>™</sup> technology. Utilizing a new strip-layout vertical structure, these revolutionary devices feature extremely low on-resistance and superior switching performance. They are ideal for bridge topologies and ZVS phase-shift converters.

#### Table 1. Device summary

| Order codes | Marking  | Packages           | Packaging     |
|-------------|----------|--------------------|---------------|
| STB27NM60ND | 27NM60ND | D <sup>2</sup> PAK | Tape and reel |
| STW27NM60ND | 27NM60ND | TO-247             | Tube          |

#### October 2013

DocID15406 Rev 4

This is information on a product in full production.

## Contents

| 1 | Electrical ratings                      |
|---|-----------------------------------------|
| 2 | Electrical characteristics              |
|   | 2.1 Electrical characteristics (curves) |
| 3 | Test circuits                           |
| 4 | Package mechanical data 11              |
| 5 | Packing mechanical data16               |
| 6 | Revision history                        |



## 1 Electrical ratings

| Symbol                         | Parameter                                             | Value      | Unit |
|--------------------------------|-------------------------------------------------------|------------|------|
| $V_{DS}$                       | Drain-source voltage                                  | 600        | V    |
| $V_{GS}$                       | Gate-source voltage                                   | ±25        | V    |
| ۱ <sub>D</sub>                 | Drain current (continuous) at $T_C = 25 \ ^{\circ}C$  | 21         | Α    |
| ۱ <sub>D</sub>                 | Drain current (continuous) at T <sub>C</sub> = 100 °C | 13         | Α    |
| I <sub>DM</sub> <sup>(1)</sup> | Drain current (pulsed)                                | 84         | Α    |
| P <sub>TOT</sub>               | Total dissipation at $T_C = 25 \ ^{\circ}C$           | 160        | w    |
| dv/dt <sup>(2)</sup>           | Peak diode recovery voltage slope                     | 40         | V/ns |
| T <sub>stg</sub>               | Storage temperature                                   | -55 to 150 | °C   |
| Т <sub>Ј</sub>                 | Max. operating junction temperature                   | 150        | °C   |

### Table 2. Absolute maximum ratings

1. Pulse width limited by safe operating area

2. I\_{SD}  $\,\leq\,$  21 A, di/dt  $\,\leq\,$  600 A/µs, V\_{DD} = 80% V\_(BR)DSS

### Table 3. Thermal data

| Symbol                              | nbol Parameter                          |    | TO-247 | Unit |
|-------------------------------------|-----------------------------------------|----|--------|------|
| R <sub>thj-case</sub>               | Thermal resistance junction-case max    | 0  | .78    | °C/W |
| R <sub>thj-amb</sub>                | Thermal resistance junction-ambient max |    | 50     | °C/W |
| R <sub>thj-pcb</sub> <sup>(1)</sup> | Thermal resistance junction-ambient max | 30 |        | °C/W |

1. When mounted on 1inch<sup>2</sup> FR-4 board, 2 oz Cu

### Table 4. Avalanche characteristics

| Symbol          | Parameter                                                                                                  | Max value | Unit |
|-----------------|------------------------------------------------------------------------------------------------------------|-----------|------|
| I <sub>AS</sub> | Avalanche current, repetitive or not-repetitive (pulse width limited by $T_J$ max)                         | 10        | А    |
| E <sub>AS</sub> | Single pulse avalanche energy (starting $T_J = 25 \text{ °C}$ , $I_D = I_{AS}$ , $V_{DD} = 50 \text{ V}$ ) | 850       | mJ   |



## 2 Electrical characteristics

(T<sub>CASE</sub>=25 °C unless otherwise specified).

| Cumhal               | Devemeter                                          | Test conditions                                                           | Value |      |      |      |
|----------------------|----------------------------------------------------|---------------------------------------------------------------------------|-------|------|------|------|
| Symbol               | Parameter                                          | Test conditions                                                           | Min.  | Тур. | Max. | Unit |
| V <sub>(BR)DSS</sub> | Drain-source<br>breakdown voltage                  | $I_{D} = 1 \text{ mA}, V_{GS} = 0$                                        | 600   |      |      | V    |
| dv/dt <sup>(1)</sup> | Drain source voltage slope                         | V <sub>DD</sub> = 480 V, I <sub>D</sub> = 21 A,<br>V <sub>GS</sub> = 10 V |       | 48   |      | V/ns |
| 1                    | Zero gate voltage                                  | V <sub>DS</sub> = 600 V                                                   |       |      | 1    | μA   |
| I <sub>DSS</sub>     | drain current (V <sub>GS</sub> = 0)                | V <sub>DS</sub> = 600 V @T <sub>C</sub> = 125 °C                          |       |      | 100  | μA   |
| I <sub>GSS</sub>     | Gate-body leakage<br>current (V <sub>DS</sub> = 0) | V <sub>GS</sub> = ± 20 V                                                  |       |      | ±100 | nA   |
| V <sub>GS(th)</sub>  | Gate threshold voltage                             | $V_{DS} = V_{GS}, I_D = 250 \ \mu A$                                      | 3     | 4    | 5    | V    |
| R <sub>DS(on)</sub>  | Static drain-source<br>on- resistance              | V <sub>GS</sub> = 10 V, I <sub>D</sub> = 10.5 A                           |       | 0.13 | 0.16 | Ω    |

| Table \$ | 5. On/off | states |
|----------|-----------|--------|
|----------|-----------|--------|

1. Characteristic value at turn off on inductive load.

| Symbol                         | Parameter                       | Test conditions                                  | Min. | Тур. | Max. | Unit |
|--------------------------------|---------------------------------|--------------------------------------------------|------|------|------|------|
| 9 <sub>fs</sub> <sup>(1)</sup> | Forward transconductance        | $V_{DS} = 15 V_{,} I_{D} = 10.5 A$               | -    | 17   | -    | S    |
| C <sub>iss</sub>               | Input capacitance               |                                                  | -    | 2400 | -    | pF   |
| C <sub>oss</sub>               | Output capacitance              | V <sub>DS</sub> = 50 V, f = 1 MHz,               | -    | 150  | -    | pF   |
| C <sub>rss</sub>               | Reverse transfer<br>capacitance | $V_{GS} = 0$                                     | -    | 15   | -    | pF   |
| C <sub>oss</sub><br>eq.        | Equivalent output capacitance   | $V_{GS} = 0, V_{DS} = 0$ to 480 V                | -    | 320  | -    | pF   |
| t <sub>d(on)</sub>             | Turn-on delay time              | V <sub>DD</sub> = 300 V, I <sub>D</sub> = 10.5 A | -    | 60   | -    | ns   |
| t <sub>r</sub>                 | Rise time                       | $R_{G} = 4.7 \Omega V_{GS} = 10 V$               | -    | 30   | -    | ns   |
| t <sub>d(off)</sub>            | Turn-off delay time             | (see Figure 21),                                 | -    | 50   | -    | ns   |
| t <sub>f</sub>                 | Fall time                       | (see Figure 16)                                  | -    | 40   | -    | ns   |
|                                |                                 |                                                  |      |      |      |      |

Table 6. Dynamic



| Symbol          | Parameter             | Test conditions                                                            | Min. | Тур. | Max. | Unit |
|-----------------|-----------------------|----------------------------------------------------------------------------|------|------|------|------|
| Qg              | Total gate charge     | V <sub>DD</sub> = 480 V, I <sub>D</sub> = 21 A,                            | -    | 80   | -    | nC   |
| Q <sub>gs</sub> | Gate-source charge    | V <sub>GS</sub> = 10 V,                                                    | -    | 15   | -    | nC   |
| Q <sub>gd</sub> | Gate-drain charge     | (see Figure 17)                                                            | -    | 40   | -    | nC   |
| R <sub>g</sub>  | Gate input resistance | f = 1 MHz, gate DC<br>Bias = 0,<br>test signal level = 20 mV,<br>$I_D = 0$ | -    | 1.6  | -    | Ω    |

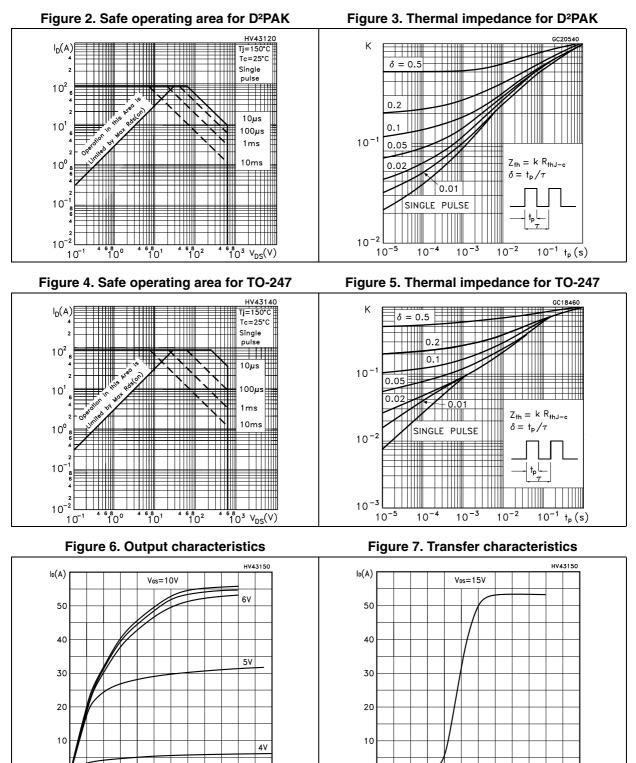
Table 6. Dynamic (continued)

1. Pulsed: pulse duration=300µs, duty cycle 1.5%

2.  $C_{oss\ eq}$  is defined as a constant equivalent capacitance giving the same charging time as  $C_{oss}$  when  $V_{DS}$  increases from 0 to 80%  $V_{DSS}$ 



| Symbol                          | Parameter                     | Test conditions                                | Min. | Тур. | Max. | Unit |
|---------------------------------|-------------------------------|------------------------------------------------|------|------|------|------|
| I <sub>SD</sub>                 | Source-drain current          |                                                | -    |      | 21   | А    |
| I <sub>SDM</sub> <sup>(1)</sup> | Source-drain current (pulsed) |                                                | -    |      | 84   | А    |
| $V_{SD}$ <sup>(2)</sup>         | Forward on voltage            | I <sub>SD</sub> = 21 A, V <sub>GS</sub> = 0    | -    |      | 1.3  | V    |
| t <sub>rr</sub>                 | Reverse recovery time         | I <sub>SD</sub> = 21 A, V <sub>DD</sub> = 60 V | -    | 160  |      | ns   |
| Q <sub>rr</sub>                 | Reverse recovery charge       | di/dt=100 A/µs                                 | -    | 1    |      | μC   |
| I <sub>RRM</sub>                | Reverse recovery current      | (see Figure 18)                                | -    | 15   |      | А    |
| t <sub>rr</sub>                 | Reverse recovery time         | $I_{SD} = 21 \text{ A}, V_{DD} = 60 \text{ V}$ | -    | 230  |      | ns   |
| Q <sub>rr</sub>                 | Reverse recovery charge       | di/dt=100 A/μs,<br>T <sub>.1</sub> = 150 °C    | -    | 2    |      | μC   |
| I <sub>RRM</sub>                | Reverse recovery current      | (see Figure 18)                                | -    | 19   |      | Α    |


Table 7. Source drain diode

1. Pulse width limited by safe operating area

2. Pulsed: Pulse duration = 300  $\mu$ s, duty cycle 1.5%.

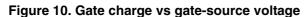


## 2.1 Electrical characteristics (curves)



 $V_{DS}(V)$ 

DocID15406 Rev 4


 $V_{GS}(V)$ 

0.5l 0

5

### 

Figure 8. Transconductance



15

20

25 ID(A)

10

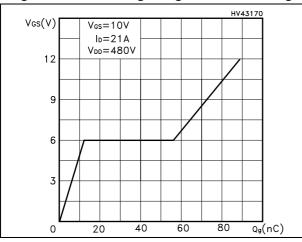



Figure 12. Normalized gate threshold voltage vs temperature

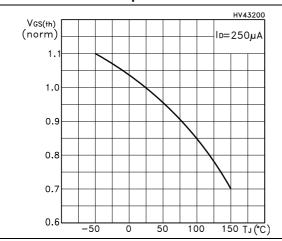



Figure 9. Static drain-source on-resistance

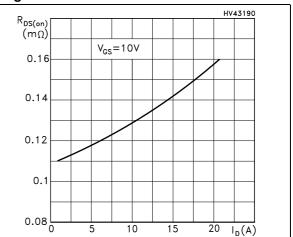



Figure 11. Capacitance variations

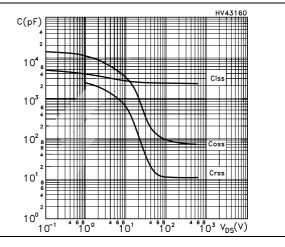
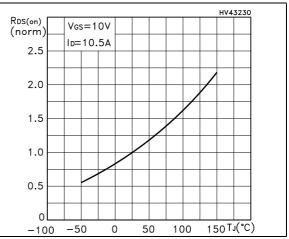




Figure 13. Normalized on-resistance vs temperature





T\_J=-50°C

Vsd(V)

1.00

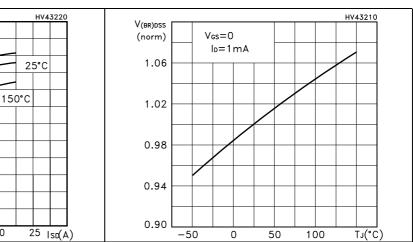
0.90

0.80

0.70

0.60

0.50L


5

10

15

20

Figure 14. Source-drain diode forward characteristics



## rain diode forward Figure 15. Normalized V<sub>(BR)DSS</sub> vs temperature



#### **Test circuits** 3

Figure 16. Switching times test circuit for resistive load

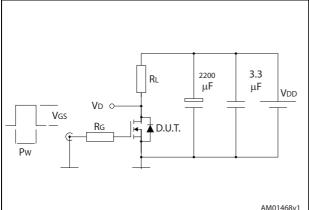
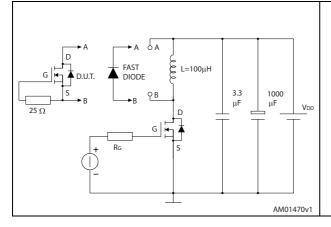
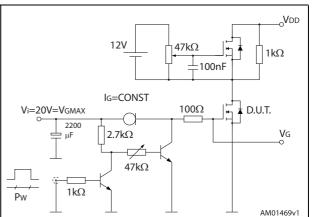
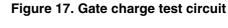


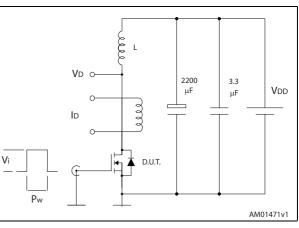

Figure 18. Test circuit for inductive load switching and diode recovery times

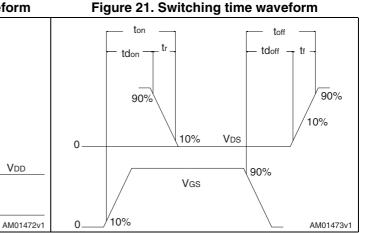




Figure 20. Unclamped inductive waveform


VD

ldм


lр


V(BR)DSS











Vdd

DocID15406 Rev 4

Vdd



## 4 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK<sup>®</sup> packages, depending on their level of environmental compliance. ECOPACK<sup>®</sup> specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK<sup>®</sup> is an ST trademark.



|        |      | mm   |       |
|--------|------|------|-------|
| Dim. — | Min. | Тур. | Max.  |
| A      | 4.40 |      | 4.60  |
| A1     | 0.03 |      | 0.23  |
| b      | 0.70 |      | 0.93  |
| b2     | 1.14 |      | 1.70  |
| С      | 0.45 |      | 0.60  |
| c2     | 1.23 |      | 1.36  |
| D      | 8.95 |      | 9.35  |
| D1     | 7.50 |      |       |
| E      | 10   |      | 10.40 |
| E1     | 8.50 |      |       |
| е      |      | 2.54 |       |
| e1     | 4.88 |      | 5.28  |
| Н      | 15   |      | 15.85 |
| J1     | 2.49 |      | 2.69  |
| L      | 2.29 |      | 2.79  |
| L1     | 1.27 |      | 1.40  |
| L2     | 1.30 |      | 1.75  |
| R      |      | 0.4  |       |
| V2     | 0°   |      | 8°    |

Table 8. D<sup>2</sup>PAK (TO-263) mechanical data



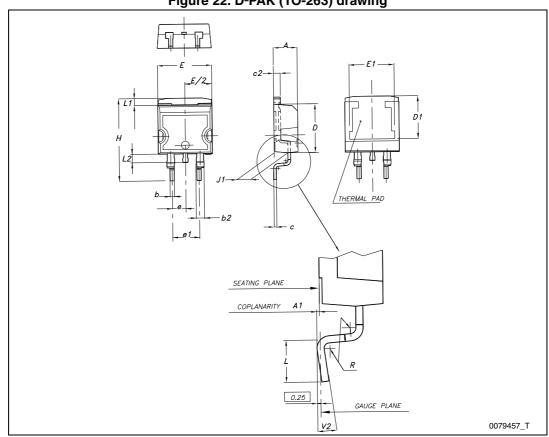
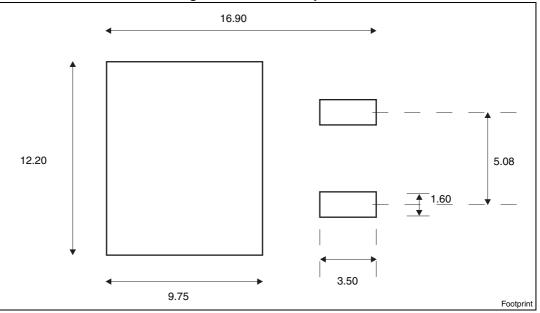




Figure 22. D<sup>2</sup>PAK (TO-263) drawing

Figure 23. D<sup>2</sup>PAK footprint<sup>(a)</sup>



a. All dimension are in millimeters



| Dim. | mm.   |       |       |  |  |  |
|------|-------|-------|-------|--|--|--|
|      | Min.  | Тур.  | Max.  |  |  |  |
| А    | 4.85  |       | 5.15  |  |  |  |
| A1   | 2.20  |       | 2.60  |  |  |  |
| b    | 1.0   |       | 1.40  |  |  |  |
| b1   | 2.0   |       | 2.40  |  |  |  |
| b2   | 3.0   |       | 3.40  |  |  |  |
| С    | 0.40  |       | 0.80  |  |  |  |
| D    | 19.85 |       | 20.15 |  |  |  |
| E    | 15.45 |       | 15.75 |  |  |  |
| е    | 5.30  | 5.45  | 5.60  |  |  |  |
| L    | 14.20 |       | 14.80 |  |  |  |
| L1   | 3.70  |       | 4.30  |  |  |  |
| L2   |       | 18.50 |       |  |  |  |
| ØP   | 3.55  |       | 3.65  |  |  |  |
| ØR   | 4.50  |       | 5.50  |  |  |  |
| S    | 5.30  | 5.50  | 5.70  |  |  |  |

Table 9. TO-247 mechanical data

14/19



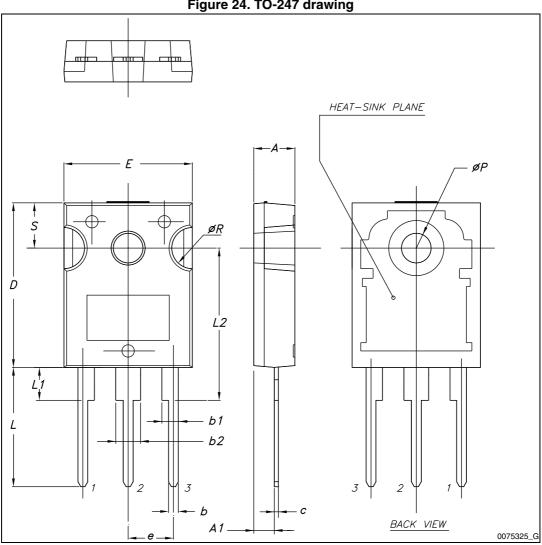



Figure 24. TO-247 drawing



# 5 Packing mechanical data

|      | Таре | . ,  |        | Reel          |      |  |
|------|------|------|--------|---------------|------|--|
| Dim. | m    | m    |        | mm            |      |  |
|      | Min. | Max. | — Dim. | Min.          | Max. |  |
| A0   | 10.5 | 10.7 | Α      |               | 330  |  |
| B0   | 15.7 | 15.9 | В      | 1.5           |      |  |
| D    | 1.5  | 1.6  | С      | 12.8          | 13.2 |  |
| D1   | 1.59 | 1.61 | D      | 20.2          |      |  |
| Е    | 1.65 | 1.85 | G      | 24.4          | 26.4 |  |
| F    | 11.4 | 11.6 | N      | 100           |      |  |
| K0   | 4.8  | 5.0  | Т      |               | 30.4 |  |
| P0   | 3.9  | 4.1  |        |               |      |  |
| P1   | 11.9 | 12.1 |        | Base qty 1000 |      |  |
| P2   | 1.9  | 2.1  |        | Bulk qty 1000 |      |  |
| R    | 50   |      |        |               |      |  |
| Т    | 0.25 | 0.35 |        |               |      |  |
| W    | 23.7 | 24.3 |        |               |      |  |

#### Table 10. D<sup>2</sup>PAK (TO-263) tape and reel mechanical data

16/19



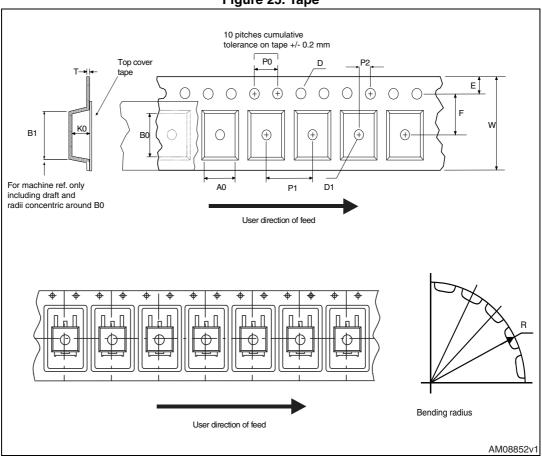
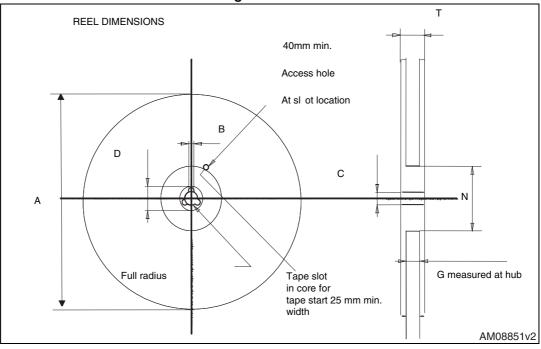




Figure 25. Tape

Figure 26. Reel





# 6 Revision history

| Date        | Revision | Changes                                                                                                                                                                                                                                                                                           |  |
|-------------|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 02-Mar-2009 | 1        | First release.                                                                                                                                                                                                                                                                                    |  |
| 08-Mar-2011 | 2        | Document status promoted from preliminary data to datasheet.                                                                                                                                                                                                                                      |  |
| 28-Nov-2011 | 3        | Inserted new device in D <sup>2</sup> PAK.<br>Updated <i>Table 1: Device summary</i> , <i>Table 3: Thermal data</i> ,<br><i>Section 3: Test circuits</i> and <i>Section 4: Package mechanical</i><br><i>data</i><br>Inserted <i>Section 5: Packing mechanical data</i> .<br>– Minor text changes. |  |
| 31-Oct-2013 | 4        | <ul> <li>Updated: title and features in cover page</li> <li>Updated: Section 4: Package mechanical data and Section 5:<br/>Packing mechanical data</li> <li>Minor text changes</li> </ul>                                                                                                         |  |

| Table 11. Document re | vision historv |
|-----------------------|----------------|
|-----------------------|----------------|



#### Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER'S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR "AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL" INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2013 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

