

ARTESYN DS2900

2900 Watts Distributed Power System

XXXX

DATA SHEET

Distributed Power Bulk Front-End

Total Output Power:

2900 Watts +3.3 Vdc Stand-by Output

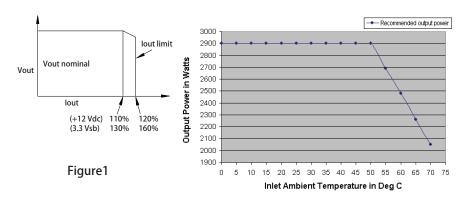
Wide Range Input Voltage:

180 - 264 Vac

SPECIAL FEATURES

- Active power factor correction
- EN61000-3-2 harmonic compliance
- Active AC inrush control
- 2U X 3U form factor
- 24.8 W / in³
- +12 Vdc Output
- +3.3 Vdc stand-by(5 V standby consult factory)
- No minimum load required
- Hot plug operation
- N + 1 redundant
- Internal OR'ing fets
- Active current sharing (10 100% load)
- Built-in cooling fan (40 mm x 40 mm)
- I²C communication interface bus

- PMBus compliant
- EEPROM for FRU data
- 2 LED (Green and Amber)
- Internal fan speed control
- INTEL, SSI Std. logic timing
- INTEL, SSI Std. FRU data format PSMI V2.12
- Full digital control
- Two year warranty
- Compatible with Universal PMBus GUI


SAFETY

- UL/cUL 60950 (UL Recognized)
- NEMKO+ CB Report EN60950
- EN60950
- CE Mark
- China CCC

ELECTRICAL SPECIFICATIONS

Input	
Input range:	180 - 264 (2900 W)
Frequency:	47-63 Hz, single phase AC
Inrush current:	50 Apk maximum inrush current
Efficiency:	> 91% typical at nom line 50% load
Conducted EMI:	FCC Subpart J EN55022 Class A
Radiated EMI:	FCC Subpart J EN55022 Class A. Meets intent of NEBS, Bellcore GR-1089
Power factor:	0.99 typical
Leakage current:	1.40 mA @ 240 VAC
Hold up time:	10 mS minimum
Output	
Main DC voltage:	+12 V @ 240 A (high line)
Stand-By:	+3.3 Vsb @ 3 A
Adjustment range:	\pm 4% on +12V only using I ² C
Regulation:	+12 Vdc; +4% / -4%; +3.3 Vsb; +5% / -5%
Over current:	Constant current type for both the 12 VDC and 3.3V standby. See Figure 1 below
Over voltage:	+12 Vdc; 14.4 - 15.6 Vdc (110 - 130%); +3.3 Vsb; 3.63 V - 4.29 (110 - 130%)
Under voltage:	+12 Vdc; 9 - 10 V nominal (latch off)
Turn-on delay:	2 second max, 5 - 200 mS, monotonic rise
Main output rise time:	5 - 300 mS, monotonic rise

ELECTRICAL SPECIFICATIONS (CONTINUED)

Logic Control

Remote ON/OFF (PSON#)

The PSON* signal is required to remotely turn on/off the power supply. PSON* is an active low signal that turns on the +12 Vdc power rail. When this signal is not pulled low by the system, or left open, the +12 Vdc output turns off. The 3.30 Vsb output remains on. This signal is pulled to a stanby voltage by a pull-up resistor internal to the power supply. The power supply fan(s) shall operate at the lowest speed

Signal Type	Accepts an open collector/drain input from the system. Pulled-up to the 3.30 Vsb located in the power supply				
PSON [#] = Low	ON				
PSON# = Open	OFF				
	MIN	MAX			
Logic level low (power supply ON)	0 V	0.8 V			
Logic level high (power supply OFF)	2.0 V	4.125 V			
Source Current, Vpson = low		4 mA			
Power up delay: T _{pson on delay}	5 msec	400 msec			

Table 1 PSON# Signal Characteristics

Power Good (PWOK#)

PWOK# is a power good signal and will be pulled LOW by the power supply to indicate that both the outputs are above the regulation limits of the power supply. When an output voltage falls below regulation limits or when AC power has been removed for a time sufficiently long so that power supply operation is no longer guaranteed, PWOK will be de-asserted to a HIGH state. The start of the PWOK# delay time shall be inhibited as long as the +12 Vdc output is in current limit or the 3.30 Vsb output is below the regulation limit.

Signal Type:	Open collector/drain output from power supply. Pull-up to 3.30Vsb external to the power supply				
PWOK = High	Power not good				
PWOK = Low	Power Good				
	MIN	MAX			
Logic level low voltage, Isink = 4 mA	0 V	0.8 V			
Logic level high voltage, Isource = 200 A	2.0 V	4.125 V			
Sink current, PWOK = low	4 mA				
Source current, PWOK = high		2 mA			
WOK delay: T _{pwok on} 100 ms		1000 ms			
PWOK rise and fall time		100 sec			
Power down delay: T _{pwok off}	1 ms 1000 msec				

Table 2 PWOK# Signal Characteristics

ELECTRICAL SPECIFICATIONS (CONTINUED)

Power Supply Present Indicator (PRESENT*)

The PRESENT* signal is primarily used to provide a mechanism by which the host system can sense the number of power supplies physically present (operational or not). This pin is connected to ground in the power supply.

AC Input Present Indicator (ACOK*)

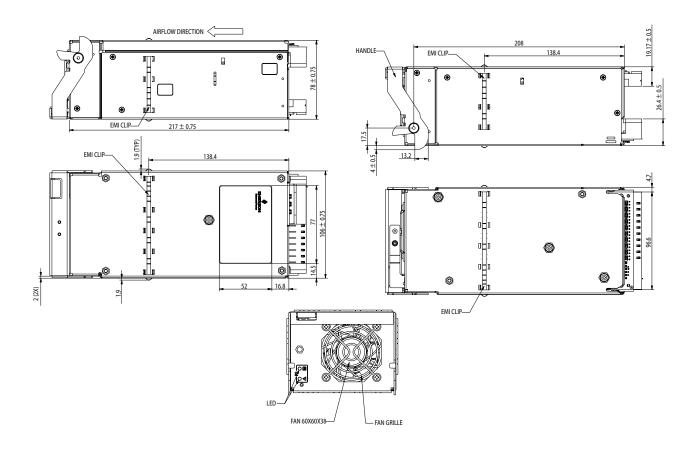
The AC OK* signal is used to indicate presence of AC input to the power supply. This signal shall be connected to 3.3 Vsb through a resistor on the host system side. A logic "Low" level on this signal shall indicate AC input to the power supply is present. A Logic "High" on this signal shall indicate a loss of AC input to the power supply.

Signal Type	Pull-up to 3.30 Vsb through a resitor in the host system		
PRESENT [#] = Low	Present		
PRESENT [#] = High	Not Present		

Table 3 ACOK# Signal Characteristics

ENVIRONMENTAL SPECIFICATIONS

Operating temperature:	0° to 50 °C (70 °C derated power)
Storage temperature:	-40 °C to +85 °C
Altitude, operating:	10,000 ft
Electromagnetic susceptibility / Input transients:	-EN61000-3-2, -3-3 -EN61000-4-2, 4-3, 4-4, -4-5, 4-11 -EN55024:1998
RoHS & lead-free compliant:	No tantalum caps.
Humidity:	20 to 90% RH, non-condensing
Shock and vibration specifications:	Complies with Astec Std. Specifications, QP3205
MTBF (Calculated):	300K Hrs Bellcore TR-332, Issue 6 @ 25 °C and 40 °C full load
MTBF (Demonstrated):	> 500k Hrs


ORDERING INFORMATION

Model Number	Nominal Output Voltage Set Point	Set Point Tolerance	Total Regulation	Minimum Current	Maximum Current	Output Ripple P/P	Over Current	Stand-by	Air Flow
DS2900-3	12.0 Vdc	± 0.2%	± 4%	0 A	240 A	120 mV	276 A nominal	3.3 V @ 3 A	Standard
DS2900-3-002	12.0 Vdc	± 0.2%	± 4%	0 A	240 A	120 mV	276 A nominal	5.0 V @ 2 A	Standard
DS2900-3-003	12.0 Vdc	± 0.2%	± 4%	0 A	240 A	120 mV	276 A nominal	5.0 V @ 2 A	Reversed
DS2900-3-004	12.0 Vdc	± 0.2%	± 4%	0 A	240 A	120 mV	276 A nominal	3.3 V @ 3 A	Reversed

^{*}Overcurrent latches off if overcurrent lasts over 2 seconds

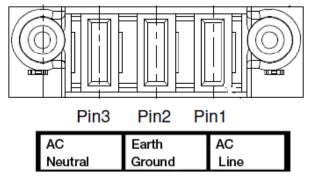
MECHANICAL DRAWING

Condition	LED Status
Stand-by - ON; Main output - OFF; AC PRESENT	Blinking green
Stand-by - ON; Main output - ON;	Solid green
Main output OCP, UVP, OVP	Blinking Amber
FAN_FAULT; OTP; Stand-by OCP/UVP	Amber

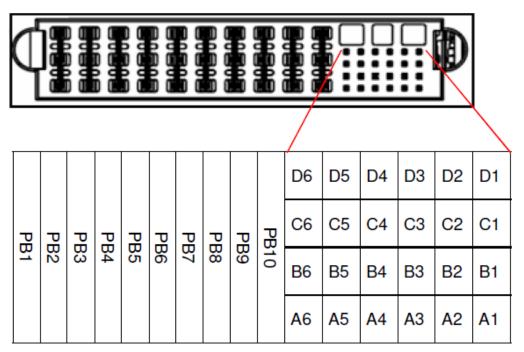
OUTPUT CONNECTOR PIN CONFIGURATION

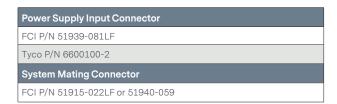
DC Output Connector

FCI HCI Series Plug (10 Blades, 24 Signal pins). Power Supply; FCI P/N; SK10065864-003LF


FCI HCI Series Receptacle (10 Blades, 24 Signal pins). Mating; FCI P/N; SK10065866-003LF

P1 - System	Pin	Signal Name	Amps per pin1
Internal to power supply	PB1	+ Vout	100
	PB2	+ Vout	100
FCI HCI Series Connector	PB3	+ Vout	100
10 Power Blades	PB4	+ Vout	100
24 Signal pins P/N SK10085236-003LF	PB5	+ Vout	100
P/N 5K10085236-003LF	PB6	+ Vout Return	100
	PB7	+ Vout Return	100
	PB8	+ Vout Return	100
	PB9	+ Vout Return	100
FCI HCI Series Connector	PB10	+ Vout Return	100
Molex Power Dock Senior 10 Power Blades	A1	PS_KILL	1.5
24 Signal pins	A2	+PS_ON	1.5
P/N SK10065866-003LF	A3	+Voutl_Share	N/A
	A4	S_INT	N/A
	A5	+STBY	N/A
	A6	+STBY Return	N/A
	B1	PS_SEATED	1.5
	B2	ACOK	1.5
	B3	PWR_GOOD	N/A
	B4	A2	N/A
	B5	+STBY	N/A
	В6	+STBY Return	N/A
	C1	SDA	1.5
	C2	SCL*	1.5
	C3	A1	N/A
	C4	A0	N/A
	C5	+STBY	N/A
	C6	+STBY Return	N/A
	D1	Reserve	1.5
	D2	WP	1.5
	D3	+Vout_RS	N/A
	D4	+Vout_RS_RETURN	N/A
	D5	+STBY	N/A
	D6	+STBY Return	N/A


^{*}Supports I^2C standard mode (100 kHz) only


CONNECTOR DEFINITION

View from power supply AC connector end

View from power supply output connector end

ABOUT ADVANCED ENERGY

Advanced Energy (AE) has devoted more than three decades to perfecting power for its global customers. AE designs and manufactures highly engineered, precision power conversion, measurement and control solutions for mission-critical applications and processes.

Our products enable customer innovation in complex applications for a wide range of industries including semiconductor equipment, industrial, manufacturing, telecommunications, data center computing, and medical. With deep applications know-how and responsive service and support across the globe, we build collaborative partnerships to meet rapid technological developments, propel growth for our customers, and innovate the future of power.

PRECISION | POWER | PERFORMANCE

Specifications are subject to change without notice. Not responsible for errors or omissions. ©2020 Advanced Energy Industries, Inc. All rights reserved. Advanced Energy®, AE® and Artesyn™ are U.S. trademarks of Advanced Energy Industries, Inc.

For international contact information, visit advancedenergy.com.

powersales@aei.com (Sales Support) productsupport.ep@aei.com (Technical Support) +1 888 412 7832