D2TO20

Surface Mount Power Resistor Thick Film Technology

DESIGN SUPPORT TOOLS AVAILABLE

3D Models

FEATURES

- AEC-Q200 qualified
- 20 W at $25^{\circ} \mathrm{C}$ case temperature
- Surface mounted resistor - TO-263 (D2PAK) style package
- Wide resistance range from 0.01Ω to $550 \mathrm{k} \Omega$
- Non inductive
- Resistor isolated from metal tab
- Solder reflow secure at $270{ }^{\circ} \mathrm{C} / 10 \mathrm{~s}$
- Material categorization: for definitions of compliance please see www.vishay.com/doc?99912

DIMENSIONS in millimeters

Tolerance: $\pm \mathbf{0 . 3} \mathbf{~ m m}$

Notes

- For the assembly on board, we recommend the lead (Pb)-free thermal profile as per J-STD-020C
- Power dissipation is 3.1 W at an ambient temperature of $25^{\circ} \mathrm{C}$ when mounted on a double sided copper board using FR4 HTG, $70 \mu \mathrm{~m}$ of copper, $39 \mathrm{~mm} \times 30 \mathrm{~mm} \times 1.6 \mathrm{~mm}$, with thermal vias

STANDARD ELECTRICAL SPECIFICATIONS

MODEL	SIZE	RESISTANCE RANGE Ω	RATED POWER $\boldsymbol{P}_{\mathbf{2 5}}{ }^{\circ} \mathbf{C}$ \mathbf{W}	LIMITING ELEMENT VOLTAGE $\boldsymbol{U}_{\mathbf{L}}$ \mathbf{V}	TOLERANCE $\mathbf{\pm} \%$	TEMPERATURE COEFFICIENT \pm ppm $/{ }^{\circ} \mathbf{C}$	CRITICAL RESISTANCE Ω
D2TO20	TO-263	0.01 to 550 K	20	500	$1,2,5,10$	$150,250,700,1100$	12.5 K

MECHANICAL SPECIFICATIONS	
Mechanical Protection	Molded
Resistive Element	Thick film
Substrate	Alumina
Connections	Tinned copper
Weight	2.2 g max.

ENVIRONMENTAL SPECIFICATIONS	
Temperature Range	$-55^{\circ} \mathrm{C}$ to $155{ }^{\circ} \mathrm{C}$
Flammability	IEC $60695-11-5$
	2 applications 30 s separated by 60 s

TECHNICAL SPECIFICATIONS

Power Rating and Thermal Resistance of the Component	$\begin{gathered} 20 \mathrm{~W} \text { at } 25^{\circ} \mathrm{C} \text { (case } \\ \text { temperature) } \\ \mathrm{R}_{\mathrm{TH}(\mathrm{j}-\mathrm{c})}: 6.5^{\circ} \mathrm{C} / \mathrm{W} \end{gathered}$
Temperature Coefficient Standard	$\begin{gathered} \text { See Special Feature table } \\ \pm 150 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ \hline \end{gathered}$
Dielectric Strength IEC 60115-1	$2000 \mathrm{~V}_{\mathrm{RMS}}-1 \mathrm{~min}-10 \mathrm{~mA}$ max. (between terminals and board)
Insulation Resistance	$\geq 10^{6} \mathrm{M} \Omega$
Inductance	$\leq 0.1 \mu \mathrm{H}$

DIMENSIONS	
Standard Package	TO-263 style (D2PAK)

D2TO20

SPECIAL FEATURES						
Resistance Values	≥ 0.010	≥ 0.045	≥ 0.1	≥ 0.5		
Tolerances	$\pm 1 \%$ at $\pm 10 \%$					
Requirement Temperature Coefficient (TCR) $\left(-55{ }^{\circ} \mathrm{C}+150{ }^{\circ} \mathrm{C}\right)$ IEC $60115-1$	$\pm 1100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$\pm 700 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$\pm 250 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$\pm 150 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$		

PERFORMANCE		
TESTS	CONDITIONS	REQUIREMENTS
Momentary Overload	$\begin{gathered} \text { IEC } 60115-1 \S 4.13 \\ 2 \operatorname{Pr} 5 \text { sor } R<2 \Omega \\ 1.5 \operatorname{Pr} 5 \text { s for } R \geq 2 \Omega \\ \text { US }<1.5 \mathrm{UL} \end{gathered}$	$\pm(0.25 \%+0.005 \Omega)$
Load Life	$\begin{gathered} \text { IEC } 60115-1 \\ 1000 \mathrm{~h}, 90 / 30 \mathrm{Pr} \text { at }+25^{\circ} \mathrm{C} \end{gathered}$	$\pm(1 \%+0.005 \Omega)$
High Temperature Exposure	AEC-Q200 REV D conditions: MIL-STD-202 method 108 $1000 \mathrm{~h},+175^{\circ} \mathrm{C}$, unpowered	$\pm(0.25 \%+0.005 \Omega)$
Temperature Cycling	Pre-conditioning 3 reflows according JESTD020D IEC 60068-2-14 test Na 1000 cycles, $-55^{\circ} \mathrm{C} /+175^{\circ} \mathrm{C}$ Dwell time - 15 min	$\pm(0.5 \%+0.005 \Omega)$
Moisture Resistance	AEC-Q200 REV D conditions: MIL-STD-202 method 106 10 cycles, 24 h , unpowered	$\pm(0.5 \%+0.005 \Omega)$
Biased Humidity	AEC-Q200 REV D conditions: MIL-STD-202 method 103 $1000 \mathrm{~h}, 85^{\circ} \mathrm{C}, 85$ \% RH	$\pm(1 \%+0.005 \Omega)$
Operational Life	AEC-Q200 REV D conditions: Pre-conditioning 3 reflows according JESTD020D MIL-STD-202 method 108 $2000 \mathrm{~h}, 90 / 30$, powered, $+125^{\circ} \mathrm{C}$	$\pm(1 \%+0.005 \Omega)$
ESD Human Body Model	AEC-Q200 REV D conditions: AEC-Q200-002 $25 \mathrm{kV}_{\text {AD }}$	$\pm(0.5 \%+0.005 \Omega)$
Vibration	AEC-Q200 REV D conditions: MIL-STD-202 method 204 5 g's for $20 \mathrm{~min}, 12$ cycles test from 10 Hz to 2000 Hz	$\pm(0.5 \%+0.005 \Omega)$
Mechanical Shock	$\begin{aligned} & \text { AEC-Q200 REV D conditions: } \\ & \text { MIL-STD-202 method } 213 \\ & 100 \mathrm{~g} \text { 's, } 6 \mathrm{~ms}, 3.75 \mathrm{~m} / \mathrm{s} \\ & 3 \text { shocks } / \text { direction } \end{aligned}$	$\pm(0.5 \%+0.005 \Omega)$
Board Flex	AEC-Q200 REV D conditions: AEC-Q200-005 Bending $2 \mathrm{~mm} / 60 \mathrm{~s}$	$\pm(0.25 \%+0.01 \Omega)$
Terminal Strength	AEC-Q200 REV D conditions: AEC-Q200-006 $1.8 \mathrm{kgf} / 60 \mathrm{~s}$	$\pm(0.25 \%+0.01 \Omega)$

ASSEMBLY SPECIFICATIONS

For the assembly on board, we recommend the lead (Pb)-free thermal profile as per J-STD-0200

TESTS	CONDITIONS	REQUIREMENTS
Resistance to Soldering Heat	IEC $60115-1$ IEC $60068-2-58$ Solder bath method: $270^{\circ} \mathrm{C} / 10 \mathrm{~s}$	$\pm(0.5 \%+0.005 \Omega)$
Moisture Sensitivity Level (MSL)	IPC/JEDEC $\Theta \mathrm{J}-$ STD-020C $80^{\circ} \mathrm{C} / 85 \% \mathrm{RH} / 168 \mathrm{~h}$	Level: 1 + pass requirements of TCR overload and dielectric strength after MSL

CHOICE OF THE BOARD

The user must choose the board according to the working conditions of the component (power, room temperature). Maximum working temperature must not exceed $175^{\circ} \mathrm{C}$. The dissipated power is simply calculated by the following ratio:

$$
\begin{equation*}
P=\frac{\Delta T}{R_{T H ~(j-c)}+R_{T H}(c-h)+R_{T H(h-a)}} \tag{1}
\end{equation*}
$$

P: \quad Expressed in W
$\Delta \mathrm{T}$: Difference between maximum working temperature and room temperature or fluid cooling temperature
$\mathrm{R}_{\mathrm{TH}(\mathrm{j}-\mathrm{c})}$: Thermal resistance value measured between resistive layer and outer side of the resistor. It is the thermal resistance of the component: $6.5^{\circ} \mathrm{C} / \mathrm{W}$.
$\mathrm{R}_{\mathrm{TH}(\mathrm{c}-\mathrm{h})}$: Thermal resistance value measured between outer side of the resistor and upper side of the board. This is the thermal resistance of the solder layer.
$\mathrm{R}_{\text {TH }}(h-a)$: Thermal resistance of the board.

Example:

$\mathrm{R}_{\text {TH }}(\mathrm{c}-\mathrm{h})+\mathrm{R}_{\mathrm{TH}(\mathrm{h}-\mathrm{a})}$ for D2TO20 power rating 2.5 W at ambient temperature $+25^{\circ} \mathrm{C}$.
Thermal resistance $\mathrm{R}_{\mathrm{TH}(\mathrm{j}-\mathrm{c})}: 6.5^{\circ} \mathrm{C} / \mathrm{W}$
Considering equation ${ }^{(1)}$ we have:

$$
\begin{aligned}
& \Delta \mathrm{T}=155^{\circ} \mathrm{C}-25^{\circ} \mathrm{C}=130{ }^{\circ} \mathrm{C} \\
& \mathrm{R}_{\text {TH }(\mathrm{j}-\mathrm{c})}+\mathrm{R}_{\text {TH }(\mathrm{c}-\mathrm{h})}+\mathrm{R}_{\text {TH }(\mathrm{h}-\mathrm{a})}=\Delta \mathrm{T} / \mathrm{P}=130 / 2.5=52{ }^{\circ} \mathrm{C} / \mathrm{W} \\
& \mathrm{R}_{\text {TH }(\mathrm{c}-\mathrm{h})}+\mathrm{R}_{\text {TH }(\mathrm{h}-\mathrm{a})}=52^{\circ} \mathrm{C} / \mathrm{W}-6.5^{\circ} \mathrm{C} / \mathrm{W}=45.5^{\circ} \mathrm{C} / \mathrm{W}
\end{aligned}
$$

Single Pulse:

These informations are for a single pulse on a cold resistor at $25^{\circ} \mathrm{C}$ (not already used for a dissipation) and for pulses of 100 ms maximum duration.

The formula used to calculate E is:

$$
E=P \times t=\frac{U^{2}}{R} \times t
$$

with:
$E(J):$ Pulse energy
$P(\mathrm{~W})$: Pulse power
$t(\mathrm{~s})$: Pulse duration
U (V): Pulse voltage
$R(\mathrm{~W})$: Resistor
The energy calculated must be less than that allowed by the graph.

POWER RATING

The temperature of the case should be maintained within the limits specified.

OVERLOADS

In any case the applied voltage must be lower than the maximum overload voltage of 750 V . The values indicated on the graph below are applicable to resistors in air or mounted onto a board.

ENERGY CURVE

POWER CURVE

D2TO20
Vishay Sfernice
IMPEDANCE CURVE 10Ω to $1 \mathrm{k} \Omega$ from 100 kHz to 300 MHz

PACKAGING

- Reel
- Tube
- Tape dimensions (mm) for reel:

MARKING

Model, style, resistance value (in Ω), tolerance (in \%), manufacturing date, Vishay Sfernice trademark

ORDERING INFORMATION						
D2TO	020	C	$100 \mathrm{~K} \Omega$	± 1 \%	xxx	e3
MODEL	STYLE	CONNECTIONS	RESISTANCE VALUE	tolerance	Custom design	LEAD (Pb)-FREE
				$\begin{gathered} F= \pm 1 \% \\ G= \pm 2 \% \\ J= \pm 5 \% \\ K= \pm 10 \% \end{gathered}$	Optional on request: shape, etc.	

SAP PART NUMBERING GUIDELINES

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery \& Lifecycle Information:

Vishay:			
D2TO020C10R00FTE3	D2TO020C10000FTE3	D2TO020C100R0FTE3	D2TO020C15R00FTE3
D2TO020C1R000FTE3 D2TO020C22R00FTE3 D2TO020C2R200FTE3 D2TO020C47R00FTE3			
D2TO020C4R700FTE3	D2TO020C5R000FTE3	D2TO020CR0100FTE3	D2TO020CR0150FTE3
D2TO020CR0220FTE3	D2TO020CR0470FTE3	D2TO020CR0500FTE3	D2TO020CR0680FTE3
D2TO020CR1000FTE3	D2TO020CR4700FTE3	D2TO020C15000JRE3	D2TO020C10000FRE3
D2TO020C226R0FTE3	D2TO020C34001FRE3	D2TO020C12R00FRE3	D2TO020C4R700JRE3
D2TO020C332R0FTE3	D2TO020C16501FTE3	D2TO020C16001FRE3	D2TO020C3R900FRE3
D2TO020C470R0JTE3 D2TO020C82R00JRE3 D2TO020C82R00JRTA4 D2TO020C34001FRTA4			
D2TO020C16001FRTA4 D2TO020C15000JRTA4			

