$\angle \mathcal{C I M E R}$

feATURES

- Ideal for Battery-Powered Applications
- Low Voltage: 1.8V to 16V Operation
- Low Current: 16uA/Amplifier Max
- Small Packages: DFN, MSOP, SSOP
- Shutdown to 1.5uA Max (LT6000, LT6001DD)
- Low Offset Voltage: $600 \mu \mathrm{~V}$ Max
- Rail-to-Rail Input and Output
- Fully Specified on 1.8 V and 5 V Supplies
- Operating Temperature Range: $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
- Single Available in DFN

Dual Available in MSOP and DFN
Quad Available in SSOP and DFN

APPLICATIONS

- Gas Sensing
- Portable Instrumentation
- Battery- or Solar-Powered Systems
- Low Voltage Signal Processing
- Micropower Active Filters

DESCRIPTIOn

The $\mathrm{LT}{ }^{\oplus} 6000 / \mathrm{LT} 6001 / \mathrm{LT} 6002$ are single, dual and quad precision rail-to-rail input and output operational amplifiers. Designed to maximize battery life in always-on applications, the devices will operate on supplies down to 1.8 V while drawing only $13 \mu \mathrm{~A}$ quiescient current. The low supply current and low voltage operation is combined with precision specifications; input offset is guaranteed less than $600 \mu \mathrm{~V}$. The performance on 1.8 V supplies is fully specified and guaranteed over temperature. A shutdown feature available in the LT6000 and the 10 -lead dual LT6001 version can be used to extend battery life by allowing the amplifiers to be switched off during periods of inactivity.

The LT6000 is available in a tiny, dual fine pitch leadless DFN package. The LT6001 is available in the 8-pin MSOP package; a 10-lead version with the shutdown feature is available in DFN package. The quad LT6002 is available in the 16-pin SSOP package and the 16-pin DFN package. These devices are specified over the commercial and industrial temperature range.
$\overline{\mathbf{G Y}}$, LTC and LT are registered trademarks of Linear Technology Corporation. All other trademarks are the property of their respective owners.

TYPICAL APPLICATION

Micropower Oxygen Sensor

Start-Up Characteristics Supply Current vs Supply Voltage

LT6000/LT6001/LT6002

ABSOLUTG MAXIMUM RATINGS (Note1)

Total Supply Voltage (V^{+}to V^{-}) 18 V	Junction Temperature (DFN Packages) $125^{\circ} \mathrm{C}$
Input Current .. $\pm 10 \mathrm{~mA}$	Storage Temperature Range $65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
SHDN Pin Voltage (Note 7) V^{-}to V^{+}	Storage Temperature Range
Output Short Current Duration (Note 2) Indefinite	DFN Packages $-65^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
Operating Temperature Range (Note 3) ... $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	Lead Temperature (Soldering, 10 sec)
Specified Temperature Range (Note 4) $40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	MSOP, SSOP Packages300 C

PACKAGE/ORDER InFORMATION

*Temperature grades are identified on the shipping container. Consult LTC Marketing for parts specified with wider operating temperature ranges.

ELECTRICAL CHARACTERISTICS The • denotes specifications which apply over the full specified temperature

 range, otherwise specifications are $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} . \mathrm{V}_{\mathrm{S}}=1.8 \mathrm{~V}, 0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}$. For the LT6000 and the LT6001DD, $\overline{\mathrm{V}_{\text {SHON }}}=\mathrm{V}^{+}$, unless otherwise noted.| SYMBOL | PARAMETER | CONDITIONS | | MIN | TYP | MAX | UNITS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\text {OS }}$ | Input Offset Voltage | $\begin{aligned} & \mathrm{LT6001MS8} \\ & 0^{\circ} \mathrm{C} \leq \mathrm{T}_{A} \leq 70^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{C} \leq \mathrm{T}_{A} \leq 85^{\circ} \mathrm{C} \end{aligned}$ | \bullet | | 200 | $\begin{aligned} & 600 \\ & 800 \\ & 950 \end{aligned}$ | $\mu \mathrm{V}$ $\mu \mathrm{V}$ $\mu \mathrm{V}$ |
| | | $\begin{aligned} & \text { LT6000DCB, LT6001DD, LT6002GN } \\ & 0^{\circ} \mathrm{C} \leq \mathrm{T}_{A} \leq 70^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{C} \leq T_{A} \leq 85^{\circ} \mathrm{C} \end{aligned}$ | \bullet | | 250 | $\begin{gathered} 750 \\ 1000 \\ 1200 \end{gathered}$ | $\mu \mathrm{V}$ $\mu \mathrm{V}$ $\mu \mathrm{V}$ |
| | | $\begin{aligned} & \text { LT6002DHC } \\ & 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C} \end{aligned}$ | \bullet | | 300 | $\begin{gathered} \hline 900 \\ 1100 \\ 1300 \end{gathered}$ | $\mu \mathrm{V}$ $\mu \mathrm{V}$ $\mu \mathrm{V}$ |
| | | $\begin{aligned} & \mathrm{V}_{\mathrm{CM}}=\mathrm{V}^{+} \\ & \text {LT6001MS8 } \end{aligned}$ | \bullet | | 400 | $\begin{aligned} & 1000 \\ & 1300 \end{aligned}$ | $\mu \mathrm{V}$ $\mu \mathrm{V}$ |
| | | $\begin{aligned} & \mathrm{V}_{C M}=\mathrm{V}^{+} \\ & \text {LT6000DCB, LT6001DD, LT6002GN } \end{aligned}$ | \bullet | | 500 | $\begin{aligned} & 1200 \\ & 1550 \end{aligned}$ | $\mu \mathrm{V}$ $\mu \mathrm{V}$ |
| | | $\begin{aligned} & \mathrm{V}_{\mathrm{CM}}=\mathrm{V}^{+} \\ & \text {LT6002DHC } \end{aligned}$ | \bullet | | 500 | $\begin{aligned} & 1300 \\ & 1700 \end{aligned}$ | $\mu \mathrm{V}$ $\mu \mathrm{V}$ |
| $\underline{\Delta \mathrm{V}_{\text {OS }} / \Delta \mathrm{T}}$ | Input Offset Voltage Drift (Note 5) | $\mathrm{V}_{\text {CM }}=0.5 \mathrm{~V}$ | \bullet | | 2 | 5 | $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ |
| I_{B} | Input Bias Current | $\begin{aligned} & V_{C M}=0.5 \mathrm{~V} \\ & V_{C M}=V^{-} \\ & V_{C M}=V^{+} \end{aligned}$ | \bullet | -5 -5 | $\begin{array}{r} -2 \\ -2 \\ 4 \end{array}$ | 10 | nA $n A$ $n A$ |
| IOS | Input Offset Current | $\begin{aligned} & V_{C M}=0.5 \mathrm{~V} \\ & V_{C M}=V^{-} \\ & V_{C M}=V^{+} \\ & \hline \end{aligned}$ | $\stackrel{\bullet}{\bullet}$ | | $\begin{aligned} & \hline 0.2 \\ & 0.2 \\ & 0.4 \end{aligned}$ | $\begin{aligned} & 1 \\ & 1 \\ & 2 \end{aligned}$ | nA nA nA |
| | Input Noise Voltage | 0.1 Hz to 10Hz | | | 1.2 | | $\mu \mathrm{V}_{\mathrm{P}-\mathrm{P}}$ |
| e_{n} | Input Voltage Noise Density | $\mathrm{f}=1 \mathrm{kHz}$ | | | 75 | | $\mathrm{nV} / \sqrt{\mathrm{Hz}}$ |
| in_{n} | Input Current Noise Density | $\mathrm{f}=1 \mathrm{kHz}$ | | | 25 | | $\mathrm{fA} / \sqrt{\mathrm{Hz}}$ |
| $\mathrm{R}_{\text {IN }}$ | Input Resistance | Common Mode ($\mathrm{V}_{\mathrm{CM}}=\mathrm{OV}$ to 0.6 V) Differential | | 10 | $\begin{aligned} & 3.5 \\ & 25 \end{aligned}$ | | $G \Omega$ $M \Omega$ |
| $\mathrm{C}_{\text {IN }}$ | Input Capacitance | | | | 5 | | pF |
| CMRR | Common Mode Rejection Ratio | $\begin{aligned} & V_{C M}=0 \mathrm{~V} \text { to } 0.6 \mathrm{~V}, 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{CM}}=0.1 \mathrm{~V} \text { to } 0.6 \mathrm{~V},-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V} \text { to } 1.8 \mathrm{~V} \end{aligned}$ | $\stackrel{\bullet}{\bullet}$ | 82 82 60 | $\begin{aligned} & 96 \\ & 96 \\ & 78 \\ & \hline \end{aligned}$ | | dB dB dB |
| | Input Voltage Range | | \bullet | 0 | | 1.8 | V |
| $\overline{\text { PSRR }}$ | Power Supply Rejection Ratio | $\begin{aligned} & \hline V_{S}=1.8 \mathrm{~V} \text { to } 16 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{0}=0.5 \mathrm{~V} \end{aligned}$ | \bullet | 86 | 100 | | dB |
| | Minimum Supply | $\mathrm{V}_{\mathrm{CM}}=\mathrm{V}_{0}=0.5 \mathrm{~V}$ | \bullet | 1.8 | | | V |
| $\overline{A_{\text {VOL }}}$ | Large-Signal Gain | $\begin{aligned} & \mathrm{V}_{0}=0.25 \mathrm{~V} \text { to } 1.25 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \text { to } \mathrm{GND} \\ & \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \text { to } \mathrm{GND} \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \text { to } \mathrm{GND} \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \text { to } \mathrm{GND} \end{aligned}$ | \bullet | 25 20 40 25 | $\begin{gathered} 65 \\ 125 \end{gathered}$ | | V / mV
 V / mV
 V / mV
 V / mV |
| $\overline{\mathrm{V}} \mathrm{L}$ | Output Swing Low (Note 6) | $\begin{aligned} & \text { Input Overdrive }=30 \mathrm{mV} \\ & \text { No Load } \\ & \mathrm{I}_{\text {SINK }}=100 \mu \mathrm{~A} \end{aligned}$ | \bullet | | $\begin{gathered} 30 \\ 120 \end{gathered}$ | $\begin{gathered} 60 \\ 200 \end{gathered}$ | mV mV |
| $\overline{\mathrm{V} \mathrm{OH}}$ | Output Swing High (Note 6) | $\begin{aligned} & \text { Input Overdrive }=30 \mathrm{mV} \\ & \text { No Load } \\ & I_{\text {SOURCE }}=100 \mu A \\ & R_{L}=10 \mathrm{k} \text { to GND } \end{aligned}$ | \bullet | | $\begin{gathered} 30 \\ 140 \\ 160 \end{gathered}$ | $\begin{gathered} 60 \\ 225 \\ 250 \end{gathered}$ | mV mV mV |

LT6000/LT6001/LT6002

ELECTRICAL CHARACTERISTICS The • denotes specifications which apply over the full specified temperature

 range, otherwise specifications are $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} . \mathrm{V}_{\mathrm{S}}=1.8 \mathrm{~V}, \mathrm{OV}, \mathrm{V}_{\mathrm{CM}}=\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}$. For the LT6000 and the LT6001DD, $\mathrm{V}_{\overline{S H D N}}=\mathrm{V}^{+}$, unless otherwise noted.| SYMBOL | PARAMETER | CONDITIONS | | MIN | TYP | MAX | UNITS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ISC | Short-Circuit Current | Short to GND $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}$ $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}$ | \bullet | $\begin{gathered} 2 \\ 1 \\ 0.4 \end{gathered}$ | 4 | | mA mA mA |
| | | $\begin{aligned} & \text { Short to } \mathrm{V}^{+} \\ & 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{C} \leq T_{A} \leq 85^{\circ} \mathrm{C} \end{aligned}$ | \bullet | $\begin{gathered} 0.7 \\ 0.4 \\ 0.15 \end{gathered}$ | 2 | | mA mA mA |
| I_{S} | Supply Current per Amplifier | $\begin{aligned} & 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C} \end{aligned}$ | \bullet | | 13 | $\begin{aligned} & 16 \\ & 22 \\ & 24 \end{aligned}$ | $\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$ |
| | Total Supply Current in Shutdown (Note 7) | $\mathrm{V}^{\text {SHDN }}=0.3 \mathrm{~V}$ | \bullet | | 0.8 | 1.5 | $\mu \mathrm{A}$ |
| $\overline{\overline{S H D N}}$ | $\overline{\text { SHDN }}$ Pin Current (Note 7) | $\begin{aligned} & V \overline{\text { SHDN }}=1.8 \mathrm{~V} \\ & V \overline{\text { SHDN }}=0 \mathrm{~V} \end{aligned}$ | \bullet | -300 | $\begin{gathered} 0 \\ -200 \end{gathered}$ | 30 | nA nA |
| | Shutdown Output Leakage Current (Note 7) | $\mathrm{V}_{\overline{\text { SHDN }}}=0.3 \mathrm{~V}\left(\mathrm{~V}^{-} \leq \mathrm{V}_{\text {OUT }} \leq \mathrm{V}^{+}\right)$ | \bullet | | 20 | | nA |
| V_{L} | $\overline{\text { SHDN }}$ Pin Input Low Voltage (Note 7) | | \bullet | | | 0.3 | V |
| V_{H} | $\overline{\text { SHDN }}$ Pin Input High Voltage (Note 7) | | \bullet | 1.5V | | | V |
| ton | Turn On Time (Note 7) | $\begin{aligned} & \mathrm{V} \overline{\text { SHDN }=0 \mathrm{~V} \text { to } 1.8 \mathrm{~V},} \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \end{aligned}$ | | | 400 | | $\mu \mathrm{S}$ |
| $\mathrm{t}_{\text {OFF }}$ | Turn Off Time (Note 7) | $\begin{aligned} & V_{\overline{S H D N}}=1.8 \mathrm{~V} \text { to } 0 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \end{aligned}$ | | | 100 | | $\mu \mathrm{s}$ |
| GBW | Gain Bandwidth Product (Note 8) | $\begin{aligned} & \text { Freq }=1 \mathrm{kHz} \\ & 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C} \end{aligned}$ | \bullet | $\begin{aligned} & 32 \\ & 28 \\ & 24 \end{aligned}$ | 50 | | kHz kHz kHz |
| SR | Slew Rate | $\begin{aligned} & \mathrm{A}_{\mathrm{V}}=-1, \mathrm{~V}_{\text {OUT }}=0.25 \mathrm{~V} \text { to } 1.5 \mathrm{~V} \\ & \text { Measure } 0.5 \mathrm{~V} \text { to } 1.25 \mathrm{~V}, 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C} \end{aligned}$ | \bullet | $\begin{aligned} & 9 \\ & 7 \\ & 5 \end{aligned}$ | 15 | | V / ms V / ms V/ms |
| FPBW | Full Power Bandwidth (Note 9) | $\mathrm{V}_{\text {OUT }}=1.25 \mathrm{~V}_{\text {P-P }}$ | | 2.3 | 3.8 | | kHz |

LT6000/LT6001/LT6002

ELECTRICAL CHARACTERISTICS The \bullet denotes specifications which apply over the full specified temperature range, otherwise specifications are $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} . \mathrm{V}_{S}=5 \mathrm{~V}, 0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\text {OUT }}=1 / 2$ Supply. For the LT6000 and the LT6001DD, $\mathrm{V}_{\overline{S H D N}}=\mathrm{V}^{+}$, unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage	$\begin{aligned} & \text { LT6001MS8 } \\ & 0^{\circ} \mathrm{C} \leq \mathrm{T}_{A} \leq 70^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C} \end{aligned}$	\bullet		200	$\begin{aligned} & 600 \\ & 800 \\ & 950 \end{aligned}$	$\mu \mathrm{V}$ $\mu \mathrm{V}$ $\mu \mathrm{V}$
		$\begin{aligned} & \text { LT6000DCB, LT6001DD, LT6002GN } \\ & 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	\bullet		250	$\begin{gathered} 750 \\ 1000 \\ 1200 \end{gathered}$	$\mu \mathrm{V}$ $\mu \mathrm{V}$ $\mu \mathrm{V}$
		$\begin{aligned} & \text { LT6002DHC } \\ & 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C} \end{aligned}$	\bullet		300	$\begin{gathered} 900 \\ 1100 \\ 1300 \end{gathered}$	$\mu \mathrm{V}$ $\mu \mathrm{V}$ $\mu \mathrm{V}$
		$\begin{aligned} & \mathrm{V}_{\mathrm{CM}}=\mathrm{V}^{+} \\ & \text {LT6001MS8 } \end{aligned}$	\bullet		400	$\begin{aligned} & 1000 \\ & 1300 \end{aligned}$	$\mu \mathrm{V}$ $\mu \mathrm{V}$
		$\begin{aligned} & \mathrm{V}_{\mathrm{CM}}=\mathrm{V}^{+} \\ & \text {LT6000DCB, LT6001DD, LT6002GN } \end{aligned}$	\bullet		500	$\begin{aligned} & 1200 \\ & 1550 \end{aligned}$	$\mu \mathrm{V}$ $\mu \mathrm{V}$
		$\begin{aligned} & \mathrm{V}_{\text {CM }}=\mathrm{V}^{+} \\ & \text {LT6002DHC } \end{aligned}$	\bullet		500	$\begin{aligned} & 1300 \\ & 1700 \\ & \hline \end{aligned}$	$\mu \mathrm{V}$ $\mu \mathrm{V}$
$\overline{\Delta V_{\text {OS }} / \Delta T}$	Input Offset Voltage Drift (Note 5)	$V_{\text {CM }}=V_{\text {S }} / 2$	\bullet		2	5	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
I_{B}	Input Bias Current	$\begin{aligned} & V_{C M}=V_{S} / 2 \\ & V_{C M}=V^{-} \\ & V_{C M}=V^{+} \\ & \hline \end{aligned}$	\bullet	$\begin{aligned} & -6 \\ & -6 \end{aligned}$	$\begin{array}{r} -2 \\ -2 \\ 4 \end{array}$	12	nA $n A$ $n A$
IOS	Input Offset Current	$\begin{aligned} & V_{C M}=V_{S} / 2 \\ & V_{C M}=V^{-} \\ & V_{C M}=V^{+} \end{aligned}$	\bullet		$\begin{aligned} & \hline 0.2 \\ & 0.2 \\ & 0.4 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.2 \\ & 1.2 \\ & 2.4 \\ & \hline \end{aligned}$	nA $n A$ $n A$
	Input Noise Voltage	0.1 Hz to 10 Hz			1.2		$\mu \mathrm{V}$ P-P
e_{n}	Input Voltage Noise Density	$\mathrm{f}=1 \mathrm{kHz}$			75		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
i_{n}	Input Current Noise Density	$\mathrm{f}=1 \mathrm{kHz}$			25		$\mathrm{fA} / \sqrt{\mathrm{Hz}}$
$\mathrm{R}_{\text {IN }}$	Input Resistance	Common Mode (VCM $=0 \mathrm{~V}$ to 3.8 V) Differential	\bullet	8.5	$\begin{aligned} & 3.5 \\ & 25 \end{aligned}$		$G \Omega$ $M \Omega$
$\mathrm{C}_{\text {IN }}$	Input Capacitance				5		pF
CMRR	Common Mode Rejection Ratio	$\begin{aligned} & \mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V} \text { to } 3.8 \mathrm{~V}, 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{CM}}=0.1 \mathrm{~V} \text { to } 3.8 \mathrm{~V},-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V} \text { to } 5 \mathrm{~V} \\ & \hline \end{aligned}$	\bullet	$\begin{aligned} & 90 \\ & 90 \\ & 68 \end{aligned}$	$\begin{array}{r} 105 \\ 105 \\ 86 \\ \hline \end{array}$		dB $d B$ $d B$
	Input Voltage Range		\bullet	0		5	V
PSRR	Power Supply Rejection Ratio	$\begin{aligned} & V_{S}=1.8 \mathrm{~V} \text { to } 16 \mathrm{~V} \\ & V_{C M}=V_{0}=0.5 \mathrm{~V} \end{aligned}$	\bullet	86	100		dB
	Minimum Supply		\bullet	1.8			V
AVOL	Large-Signal Gain	$\begin{aligned} & \mathrm{V}_{0}=0.5 \mathrm{~V} \text { to } 4.5 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \text { to } \mathrm{V}_{\mathrm{S}} / 2 \\ & \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \text { to } \mathrm{V}_{\mathrm{S}} / 2 \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \text { to } \mathrm{V}_{\mathrm{S}} / 2 \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \text { to } \mathrm{V}_{\mathrm{S}} / 2 \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \text { to } \mathrm{GND} \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \text { to } \mathrm{GND} \end{aligned}$	-	$\begin{gathered} 30 \\ 25 \\ 16 \\ 10 \\ 160 \\ 80 \end{gathered}$	$\begin{gathered} 60 \\ 25 \\ 1000 \end{gathered}$		V / mV V/mV
$\mathrm{V}_{\text {OL }}$	Output Swing Low (Note 6)	$\begin{array}{\|l} \text { Input Overdrive }=30 \mathrm{mV} \\ \text { No Load } \\ \mathrm{I}_{\text {SINK }}=100 \mu \mathrm{~A} \\ \mathrm{I}_{\text {SINK }}=500 \mu \mathrm{~A} \\ \hline \end{array}$	\bullet		$\begin{gathered} 30 \\ 120 \\ 180 \end{gathered}$	$\begin{gathered} 60 \\ 200 \\ 300 \end{gathered}$	mV mV mV

LT6000/LT6001/LT6002

ELECTRICAL CHARACTERISTICS The • denotes specifications which apply over the full specified temperature

 range, otherwise specifications are $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} . \mathrm{V}_{S}=5 \mathrm{~V}, 0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\text {OUT }}=1 / 2$ Supply. For the LT6000 and the LT6001DD, $\mathrm{V}_{\overline{S H D N}}=\mathrm{V}^{+}$, unless otherwise noted.| SYMBOL | PARAMETER | CONDITIONS | | MIN | TYP | MAX | UNITS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| V_{OH} | Output Swing High (Note 6) | $\begin{aligned} & \text { Input Overdrive }=30 \mathrm{mV} \\ & \text { No Load } \\ & \text { I }_{\text {SOURCE }}=100 \mu A \\ & R_{L}=10 \mathrm{k} \text { to GND } \end{aligned}$ | $\stackrel{\bullet}{\bullet}$ | | $\begin{gathered} 30 \\ 140 \\ 160 \end{gathered}$ | $\begin{gathered} 60 \\ 225 \\ 400 \end{gathered}$ | mV mV mV |
| ISC | Short-Circuit Current | $\begin{aligned} & \text { Short to GND } \\ & 0^{\circ} \mathrm{C} \leq T_{A} \leq 70^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{C} \leq T_{A} \leq 85^{\circ} \mathrm{C} \end{aligned}$ | \bullet | $\begin{aligned} & 5 \\ & 4 \\ & 3 \end{aligned}$ | 10 | | mA mA mA |
| | | $\begin{aligned} & \text { Short to } \mathrm{V}^{+} \\ & 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C} \end{aligned}$ | \bullet | $\begin{aligned} & 3.5 \\ & 2.5 \\ & 1.5 \end{aligned}$ | 7.5 | | mA mA mA |
| I_{S} | Supply Current per Amplifier | $\begin{aligned} & 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C} \end{aligned}$ | \bullet | | 15 | $\begin{aligned} & 18 \\ & 24 \\ & 27 \\ & \hline \end{aligned}$ | $\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$ |
| | | $\mathrm{V}_{S}= \pm 8 \mathrm{~V}$ | \bullet | | 20 | $\begin{aligned} & 25 \\ & 34 \end{aligned}$ | $\mu \mathrm{A}$ $\mu \mathrm{A}$ |
| | Total Supply Current in Shutdown (Note 7) | $\mathrm{V}^{\text {SHDN }}=0.3 \mathrm{~V}$ | \bullet | | 3 | 5 | $\mu \mathrm{A}$ |
| ISHDN | $\overline{\text { SHDN }}$ Pin Current (Note 7) | $\begin{aligned} & V \overline{S H D N}=5 \mathrm{~V} \\ & V \overline{S H D N}=0 \mathrm{~V} \end{aligned}$ | \bullet | -1000 | $\begin{gathered} 0 \\ -650 \end{gathered}$ | 30 | nA nA |
| | Shutdown Output Leakage Current (Note 7) | $\mathrm{V} \overline{\text { SHDN }}=0.3 \mathrm{~V}\left(\mathrm{~V}^{-} \leq \mathrm{V}_{\text {OUT }} \leq \mathrm{V}^{+}\right)$ | \bullet | | 20 | | nA |
| $\underline{V_{L}}$ | $\overline{\text { SHDN }}$ Pin Input Low Voltage (Note 7) | | \bullet | | | 0.3 | V |
| V_{H} | $\overline{\text { SHDN }}$ Pin Input High Voltage (Note 7) | | \bullet | 4.7 | | | V |
| t_{ON} | Turn On Time (Note 7) | $V_{\overline{S H D N}}=0 \mathrm{~V}$ to 5V, $\mathrm{R}_{\mathrm{L}}=10 \mathrm{k}$ | | | 400 | | $\mu \mathrm{S}$ |
| $\mathrm{t}_{\text {OFF }}$ | Turn Off Time (Note 7) | $V_{\text {SHDN }}=5 \mathrm{~V}$ to $0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k}$ | | | 100 | | $\mu \mathrm{S}$ |
| GBW | Gain Bandwidth Product | $\begin{aligned} & \text { Freq }=1 \mathrm{kHz} \\ & 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C} \end{aligned}$ | \bullet | $\begin{aligned} & 40 \\ & 35 \\ & 30 \\ & \hline \end{aligned}$ | 60 | | kHz kHz kHz |
| SR | Slew Rate | $\begin{aligned} & \mathrm{A}_{\mathrm{V}}=-1, \mathrm{~V}_{\text {OUT }}=0.5 \mathrm{~V} \text { to } 4.5 \mathrm{~V} \\ & \text { Measure } 1 \mathrm{~V} \text { to } 4 \mathrm{~V}, 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C} \\ & \hline \end{aligned}$ | \bullet | $\begin{gathered} \hline 11 \\ 8 \\ 6 \\ \hline \end{gathered}$ | 18 | | V / ms
 V/ms
 V/ms |
| FPBW | Full Power Bandwidth (Note 9) | $\mathrm{V}_{\text {OUT }}=4 \mathrm{~V}_{\text {P-P }}$ | | 0.87 | 1.4 | | kHz |

Note 1: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime.
Note 2: A heat sink may be required to keep the junction temperature below the absolute maximum. This depends on the power supply voltage and how many amplifiers are shorted. The θ_{JA} specified for the DD and DHC packages is with minimal PCB heat spreading metal. Using expanded metal area on all layers of a board reduces this value.
Note 3: The LT6000C/LT6000I/LT6001C/LT6001I and LT6002C/LT6002I are guaranteed functional over the temperature range of $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
Note 4: The LT6000C/LT6001C/LT6002C is guaranteed to meet specified performance from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$. The LT6000C/LT6001C/LT6002C are designed, characterized and expected to meet specified performance from
$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ but are not tested or QA sampled at these temperatures. The LT6000I/LT6001I/ LT6002I is guaranteed to meet specified performance from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
Note 5: This parameter is not 100% tested.
Note 6: Output voltage swings are measured between the output and power supply rails.
Note 7: Specifications apply to the LT6000 or the LT6001DD with shutdown.
Note 8: Guaranteed by correlation to slew rate at $\mathrm{V}_{\mathrm{S}}=1.8 \mathrm{~V}$ and GBW at $V_{S}=5 \mathrm{~V}$.
Note 9: Full-power bandwidth is calculated from the slew rate: FPBW $=S R / \pi V_{p-p}$.

TYPICAL PERFORMAOCE CHARACTERISTICS

LT6000/LT6001/LT6002

TYPICAL PERFORMAOCE CHARACTERISTICS

60012 G10

0.1 Hz to 10 Hz Output Voltage Noise

60012 G13

Output Short-Circuit Current vs
Total Supply Voltage (Sourcing)

60012 G11

60012 G14
Open-Loop Gain

Output Short-Circuit Current vs Total Supply Voltage (Sinking)

60012 G12
Input Noise Current vs Frequency

60012 G15
Open-Loop Gain

TYPICAL PERFORMAOCE CHARACTERISTICS

LT6000/LT6001/LT6002

TYPICAL PERFORMANCE CHARACTERISTICS

60012 G31

Shutdown Response (LT6000/LT6001DD)

Supply Current vs SHDN Pin Voltage (LT6000)

Supply Current
vs SHDN Pin Voltage (LT6000)

60012 G34

LT6000/LT6001/LT6002

SImPLIFIED SCHEmATIC

Figure 1

APPLICATIONS INFORMATION

Supply Voltage

The positive supply of the LT6000/LT6001/LT6002 should be bypassed with a small capacitor (about 0.01μ F) within an inch of the pin. When driving heavy loads, an additional 4.7 FF electrolytic capacitor should be used. When using split supplies, the same is true for the negative supply pin.

Rail-to-Rail Characteristics

The LT6000/LT6001/LT6002 are fully functional for an input signal range from the negative supply to the positive supply. Figure 1 shows a simplified schematic of the amplifier. The input stage consists of two differential amplifiers, a PNP stage Q3/Q6 and an NPN stage Q4/Q5 that are active over different ranges of the input common mode voltage. The PNP stage is active for common mode voltages, V_{CM}, between the negative supply to approximately 1 V below the positive supply. As V_{Cm} moves closer towards the positive supply, the transistor $Q 7$ will steer Q2's tail currentto the current mirror Q8/Q9, activating the NPN differential pair. The PNP pair becomes inactive for
the rest of the input common mode range up to the positive supply.
The second stage is a folded cascode and current mirror that converts the input stage differential signals into a single ended output. Capacitor $\mathrm{C1}$ reduces the unity cross frequency and improves the frequency stability without degrading the gain bandwidth of the amplifier. The complementary drive generator supplies current to the output transistors that swing from rail to rail.

Input

The input bias current depends on which stage is active. The input bias current polarity depends on the input common mode voltage. When the PNP stage is active, the input bias currents flow out of the input pins. They flow in the opposite direction when the NPN stage is active. The offset error due to the input bias currents can be minimized by equalizing the noninverting and inverting source impedance.

LT6000/LT6001/LT6002

APPLICATIONS InFORMATION

The input offset voltage changes depending on which input stage is active; input offset voltage is trimmed on both input stages, and is guaranteed to be $600 \mu \mathrm{~V}$ max in the PNP stage. By trimming the input offset voltage of both input stages, the input offset voltage over the entire common mode range (CMRR) is typically $400 \mu \mathrm{~V}$, maintaining the precision characteristics of the amplifier.
The input stage of the LT6000/LT6001/LT6002 incorporates phase reversal protection to prevent wrong polarity outputs from occurring when the inputs are driven up to 2 V below the negative rail. 30k protective resistors are included in the input leads so that current does not become excessive when the inputs are forced below V^{-}or when a large differential signal is applied. Input current should be limited to 10 mA when the inputs are driven above the positive rail.

Output

The output of the LT6000/LT6001/LT6002 can swing to within 30 mV of the positive rail with no load and within 30 mV of the negative rail with no load. When monitoring input voltages within 30 mV of the positive rail or within 30 mV of the negative rail, gain should be taken to keep the output from clipping. The LT6000/LT6001/LT6002 can typically source 10 mA on a single 5 V supply, sourcing current is reduced to 4 mA on a single 1.8 V supply as noted in the electrical characteristics.

The normally reverse-biased substrate diode from the output to V^{-}will cause unlimited currents to flow when the output is forced below V^{-}. If the current is transient and limited to 100 mA , no damage will occur.

Start-Up and Output Saturation Characteristics

Micropower op amps are often not micropower during start-up characteristics or during output saturation. This can wreak havoc on limited current supplies, in the worst case there may not be enough supply current available to take the system up to nominal voltages. Also, when the output saturates, the part may draw excessive current and pull down the supplies, compromising rail-to-rail performance. Figure 1 shows the start-up characteristics of the LT6000/LT6001/LT6002 for three limiting cases. The circuits are shown in Figure 2. One circuit creates a positive offset forcing the output to come up saturated high. Another circuit creates a negative offset forcing the output to come up saturated low, while the last circuit brings the output up at $1 / 2$ supply. In all cases, the supply current is well controlled and is not excessive when the output is on either rail.

Figure 1. Start-Up Characteristics

Output High

Output Low

Output at $\mathrm{V}_{\mathrm{S}} / 2$

Figure 2. Circuits for Start-Up Characteristics

APPLICATIONS INFORMATION

The LT6000/LT6001/LT6002 outputs can swing to within a respectable 30 mV of each rail and draw virtually no excessive supply current. Figure 3 compares the dual LT6001 to a competitive part. Both op amps are in unity gain and their outputs are driven into each rail. The supply current is shown when the op amps are in linear operation and when they are driven into each rail. As can be seen from Figure 3, the supply current of the competitive part increases 3 -fold or 5 -fold depending on which rail the output goes to whereas the LT6001 draws virtually no excessive current.

60012 F03
Figure 3. VOUT and ICC vs Input Voltage

Gain

The open-loop gain is almost independent of load when the output is sourcing current. This optimizes performance in single supply applications where the load is returned to ground. The typical performance curve of Open-Loop Gain for various loads shows the details.

Shutdown

The single LT6000 and the 10-lead dual LT6001 include a shutdown feature that disables the part reducing quiescent current and makes the output high impedance. The devices can be shut down by bringing the SHDN pin within 0.3 V of V^{-}. The amplifiers are guaranteed to shut down if the $\overline{\text { SHDN }}$ pin is brought within 0.3 V of V^{-}. The exact switchover point will be a function of the supply voltage. See the Typical Performance Characteristics curves Supply Current vs Shutdown Pin Voltage. When shut down the total supply current is about $0.8 \mu \mathrm{~A}$ and the output leakage current is $20 n A\left(V^{-} \leq V_{\text {OUT }} \leq \mathrm{V}^{+}\right)$. For normal operation the SHDN pin should be tied to V^{+}. It can be left floating, however, parasitic leakage currents over $1 \mu \mathrm{~A}$ at the SHDN pin may inadvertently place the part into shutdown.

LT6000/LT6001/LT6002

TYPICAL APPLICATION
Gain of 100 Amplifier
(400kHz GBW on 30 $\mu \mathrm{A}$ Supply)

60012 TA02b

PACKAGE DESCRIPTION
DCB Package
6-Lead Plastic DFN ($2 \mathrm{~mm} \times 3 \mathrm{~mm}$)
(Reference LTC DWG \# 05-08-1715)

RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS

PACKAGE DESCRIPTIO

PACKAGE DESCRIPTION
DD Package
10 -Lead ($3 \mathrm{~mm} \times 3 \mathrm{~mm}$) Plastic DFN
(Reference LTC DWG \# 05-08-1699)

RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS

NOTE:

1. DRAWING TO BE MADE A JEDEC PACKAGE OUTLINE MO-229 VARIATION OF (WEED-2). CHECK THE LTC WEBSITE DATA SHEET FOR CURRENT STATUS OF VARIATION ASSIGNMENT 2. DRAWING NOT TO SCALE
2. ALL DIMENSIONS ARE IN MILLIMETERS
3. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15 mm ON ANY SIDE
4. EXPOSED PAD SHALL BE SOLDER PLATED
5. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON THE TOP AND BOTTOM OF PACKAGE

LT6000/LT6001/LT6002

PACKAGE DESCRIPTION

GN Package

16-Lead Narrow Plastic SSOP
(Reference LTC DWG \# 05-08-1641)

$\xrightarrow[(0.178-0.249)]{\sim}$
NOTE:

1. CONTROLLING DIMENSION: INCHES
2. DIMENSIONS ARE IN INCHES
3. DRAWING NOT TO SCALE
*DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH
SHALL NOT EXCEED 0.006 " $(0.152 \mathrm{~mm}$) PER SIDE
**DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD
FLASH SHALL NOT EXCEED 0.010 " $(0.254 \mathrm{~mm})$ PER SIDE

LT6000/LT6001/LT6002

PACKAGE DESCRIPTION
DHC Package
16-Lead ($5 \mathrm{~mm} \times 5 \mathrm{~mm}$) Plastic DFN
(Reference LTC DWG \# 05-08-1706)

RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS

LT6000/LT6001/LT6002

TYPICAL APPLICATION
Low Power V-to-F Converter

MUX Amplifier

MUX Amplifier Waveforms

reLated parts

PART NUMBER	DESCRIPTION	COMMENTS
LT2178/LT2179	17 μ A Dual/Quad Single Supply Op Amps	$120 \mu \mathrm{~V} \mathrm{~V}_{\text {OS(MAX) }}$, Gain Bandwidth $=60 \mathrm{kHz}$
LT1490A/LT1491A	$50 \mu \mathrm{~A}$ Dual/Quad Over-The-Top ${ }^{\text {® }}$ Rail-to-Rail Input and Output Op Amps	$950 \mu \mathrm{~V} \mathrm{~V}_{\text {OS(MAX) }}$, Gain Bandwidth $=200 \mathrm{kHz}$
LT1494/LT1495/LT1496	1.5 $\mu \mathrm{A}$ Max Single/Dual/Quad Over-The-Top Precision Rail-to-Rail Input and Output Op Amps	$375 \mu \mathrm{~V} \mathrm{~V}_{\text {OS(MAX) }}$, Gain Bandwidth $=2.7 \mathrm{kHz}$
LT1672/LT1673/LT1674	$2 \mu \mathrm{~A}$ Max, $A V \geq 5$, Single/Dual/Quad Over-The-Top Precision Rail-to-Rail Input and Output Op Amps	Gain of 5 Stable, Gain Bandwidth $=12 \mathrm{kHz}$
LT1782	Micropower, Over-The-Top SOT-23 Rail-to-Rail Input and Output Op Amps	$\begin{aligned} & \text { SOT-23, } 800 \mu \mathrm{~V} \mathrm{~V}_{0 S}(\mathrm{mAX}) \text {, } \mathrm{I}_{\mathrm{S}}=55 \mu \mathrm{~A}(\mathrm{Max}) \text {, } \\ & \text { Gain Bandwidth }=200 \mathrm{kHz} \text {, Shutdown Pin } \end{aligned}$

Over-The-Top is a registered trademark of Linear Technology Corporation.

