USB Current-Limited Switch in Pin-Compatible Package

Abstract

General Description The MAX1607 is a current-limited $60 \mathrm{~m} \Omega$ switch with built-in fault blanking. Its accurate, preset 0.7A to 1.0A current limit makes it ideal for USB applications. Its low quiescent supply current $(14 \mu \mathrm{~A})$ and standby current $(1 \mu \mathrm{~A})$ conserve battery power in portable applications. The MAX1607 operates with inputs from +2.7 V to +5.5 V , making it ideal for both 3 V and 5 V systems. An overcurrent signal $(\overline{\mathrm{OC}})$ notifies the microprocessor that the internal current limit has been reached. A 10 ms overcurrent-blanking feature allows momentary faults (such as those caused when hot-swapping into a capacitive load) to be ignored, thus preventing false alarms to the host system. This blanking also prevents an $\overline{O C}$ signal from being issued when the device is powering up. The MAX1607 has several safety features to ensure that the USB port is protected. Built-in thermal-overload protection limits power dissipation and junction temperature. The device also has accurate internal current-limiting circuitry to protect the input supply against overload. The MAX1607 is a pin-compatible upgrade to Texas Instruments' TPS2014, TPS2015, and TPS2041 for USB applications. The same die is available in a space-saving 10-pin $\mu \mathrm{MAX}{ }^{\circledR}$ package (MAX1693) and can be used for next-generation designs. The MAX1694 is similar to the MAX1693, but it has a built-in latch that turns off the power switch in case of a long-term shortcircuit condition. The MAX1607 is also offered in a 10-pin TDFN package (not pin compatible with Texas Instruments TPS2014, TPS2015, and TPS2041 for USB applications).

Applications

Notebook Computers USB Ports

USB Hubs
Docking Stations

Pin Configurations

$\mu M A X$ is a registered trademark of Maxim Integrated Products, Inc.

- SO Package is Pin Compatible with TPS2014, TPS2015, and TPS2041
- Accurate Current Limit (0.7A min, 1.0A max)
- Guaranteed 0.75A Short-Circuit Protection
- 10ms Internal $\overline{\text { OC }}$ Blanking Timeout
- No Overcurrent ($\overline{\mathrm{OC}})$ Signal During Power-Up
- 125m Ω max High-Side MOSFET
- 500mA Continuous Current
- Short-Circuit and Thermal Protection with Overcurrent Logic Output
- 1ms Start-Up Time
- Undervoltage Lockout
- $14 \mu \mathrm{~A}$ Quiescent Supply Current
- 1 $\mu \mathrm{A}$ max Standby Supply Current
- +2.7V to +5.5V Supply Range
- UL Recognized \#E211935

Ordering Information

PART	TEMP RANGE	PIN- PACKAGE	PKG CODE
MAX1607ESA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 SO	S8-5
MAX1607ETB +	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	10 TDFN-EP*	T1033-1

*EP = Exposed paddle.
+Denotes a lead-free package.
Typical Operating Circuit

USB Current-Limited Switch in Pin-Compatible Package

ABSOLUTE MAXIMUM RATINGS

IN, $\overline{E N}, \overline{O C}$ to GND \qquad-0.3 to +6 V
-0.3 V to $(\mathrm{V}$ IN $+0.3 \mathrm{~V})$
Maximum Switch Current.........................1.2A (internally limited)
OUT Short-Circuit to GND
Continuous
Continuous Power Dissipation $\left(\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}\right)$
8 -Pin SO (derate $5.88 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)
.471 mW 10-Pin TDFN (derate $18.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)...... .1481 mW Operating Temperature Range (extended)......... $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ Storage Temperature Range $65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Lead Temperature (soldering, 10s) \qquad

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

$\left(V_{I N}=+5 \mathrm{~V}, \mathbf{T}_{\mathbf{A}}=\mathbf{0}^{\circ} \mathbf{C}\right.$ to $+\mathbf{8 5}{ }^{\circ} \mathbf{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
OPERATING CONDITION							
Input Voltage	VIN			2.7		5.5	V
POWER SWITCH							
Switch Static Drain-Source On-State Resistance	RDS(ON)	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	V IN $=4.4 \mathrm{~V}$ to 5.5 V		60	90	$\mathrm{m} \Omega$
		$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\mathrm{V}_{\text {IN }}=4.4 \mathrm{~V}$ to 5.5 V			125	
			V IN $=3 \mathrm{~V}$		72	150	
Switch Turn-On Time	ton	ILOAD $=400 \mathrm{~mA}$			80	200	$\mu \mathrm{s}$
Switch Turn-Off Time	toff	ILOAD $=400 \mathrm{~mA}$		3	6	20	$\mu \mathrm{s}$
ENABLE INPUT (EN)							
$\overline{\mathrm{EN}}$ High-Level Input Voltage	V_{IH}	$\mathrm{V}_{\mathrm{IN}}=2.7 \mathrm{~V}$ to 3.6 V		2.0			V
		V IN $=3.7 \mathrm{~V}$ to 5.5 V		2.4			
$\overline{\text { EN }}$ Low-Level Input Voltage	VIL	$\mathrm{V}_{\mathrm{IN}}=2.7 \mathrm{~V}$ to 5.5 V				0.8	V
$\overline{\mathrm{EN}}$ Input Current		$\mathrm{V}_{\text {EN }}=\mathrm{V}_{\text {IN }}$ or GND		-1		+1	$\mu \mathrm{A}$
Start-Up Time		$\mathrm{V}_{\text {IN }}=5 \mathrm{~V}$, COUT $=150 \mu \mathrm{~F}$ from $\overline{\mathrm{EN}}$ driven low to 50% full VOUT			1		ms
CURRENT LIMIT							
Overload Output Current	limim	Force V ${ }_{\text {OUt }}$ to 4.5 V		700	850	1000	mA
Short-Circuit Output Current	ISC	OUT shorted to GND			500	700	mA
SUPPLY CURRENT							
Supply Current, Low-Level Input		$\mathrm{V}_{\text {EN }}=\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {OUT }}=5.5 \mathrm{~V}$			0.001	1	$\mu \mathrm{A}$
Supply Current, High-Level Input	IQ	$V_{\overline{E N}}=G N D$, IOUT $=0$	Timer not running		14	25	$\mu \mathrm{A}$
			Timer running		35		
Supply Leakage Current		$\begin{aligned} & V_{\mathrm{EN}}=\mathrm{V}_{I N}=5.5 \mathrm{~V}, \\ & \mathrm{~V}_{\text {OUT }}=\mathrm{GND} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		0.01	2	$\mu \mathrm{A}$
			$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			15	
UNDERVOLTAGE LOCKOUT							
Undervoltage Lockout	UVLO	Rising edge, 100mV hysteresis		2.0	2.4	2.6	V
OVERCURRENT ($\overline{\mathbf{O C}})$							
$\overline{\text { OC Output Low Voltage }}$	VOL	$\mathrm{ISINK}=1 \mathrm{~mA}, \mathrm{~V}$ IN $=3 \mathrm{~V}$				0.4	V
$\overline{\text { OC Off-State Current }}$		$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\overline{\mathrm{OC}}}=5 \mathrm{~V}$				1	$\mu \mathrm{A}$
$\overline{\text { OC Blanking Timeout Period }}$	tBL	From overcurrent condition to $\overline{\mathrm{OC}}$ assertion		7	10	13	ms
THERMAL SHUTDOWN							
Thermal Shutdown Threshold					+165		${ }^{\circ} \mathrm{C}$

USB Current-Limited Switch in Pin-Compatible Package

ELECTRICAL CHARACTERISTICS

($\mathrm{V}_{\mathrm{IN}}=+5 \mathrm{~V}, \mathbf{T}_{\mathbf{A}}=\mathbf{- 4 0 ^ { \circ }} \mathbf{C}$ to $+\mathbf{8 5}{ }^{\circ} \mathbf{C}$, unless otherwise noted.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP MAX	UNITS
OPERATING CONDITION					
Input Voltage	VIN		3.0	5.5	V
POWER SWITCH					
Switch Static Drain-Source On-State Resistance	RDS(ON)	V IN $=4.4 \mathrm{~V}$ to 5.5 V		125	$\mathrm{m} \Omega$
		VIN $=3 \mathrm{~V}$		150	
Switch Turn-On Time	ton	ILOAD $=400 \mathrm{~mA}$		200	$\mu \mathrm{s}$
Switch Turn-Off Time	toff	ILOAD $=400 \mathrm{~mA}$	1	20	$\mu \mathrm{s}$
ENABLE INPUT ($\overline{\text { EN }}$)					
EN High-Level Input Voltage	V_{IH}	$\mathrm{V}_{\text {IN }}=3.0 \mathrm{~V}$ to 3.6 V	2.0		V
		V IN $=3.7 \mathrm{~V}$ to 5.5 V	2.4		
$\overline{\mathrm{EN}}$ Low-Level Input Voltage	VIL	V IN $=3.0 \mathrm{~V}$ to 5.5 V		0.8	V
$\overline{\mathrm{EN}}$ Input Current		$\mathrm{V}_{\text {EN }}=$ VIN or GND	-1	+1	$\mu \mathrm{A}$
CURRENT LIMIT					
Overload Output Current	ILIMIT	Force V ${ }_{\text {OUt }}$ to 4.5 V	640	1060	mA
Short-Circuit Output Current	ISC	OUT shorted to GND		750	mA
SUPPLY CURRENT					
Supply Current, Low-Level Input		$\mathrm{V}_{\text {EN }}=\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {OUT }}=5.5 \mathrm{~V}$		2	$\mu \mathrm{A}$
Supply Current, High-Level Input	IQ	$V_{\overline{E N}}=G N D$, IOUT $=0$, timer not running		25	$\mu \mathrm{A}$
Supply Leakage Current		$\mathrm{V}_{\text {EN }}=\mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=\mathrm{GND}$		15	$\mu \mathrm{A}$
UNDERVOLTAGE LOCKOUT					
Undervoltage Lockout	UVLO	Rising edge, 100mV hysteresis	2.0	2.9	V
OVERCURRENT ($\overline{\mathbf{O C}}$)					
$\overline{\text { OC Output Low Voltage }}$	VOL	$\mathrm{ISINK}=1 \mathrm{~mA}, \mathrm{~V}$ IN $=3 \mathrm{~V}$		0.4	V
$\overline{\text { OC Off-State Current }}$		V IN $=\mathrm{V}_{\overline{\mathrm{OC}}}=5 \mathrm{~V}$		1	$\mu \mathrm{A}$
$\overline{\text { OC Blanking Timeout Period }}$	tBL	From overcurrent condition to $\overline{\mathrm{OC}}$ assertion	6	14	ms

Note 1: Specifications to $-40^{\circ} \mathrm{C}$ are guaranteed by design, not production tested
Note 2: TDFN package parts are 100% production tested at $T_{A}=+25^{\circ} \mathrm{C}$. Specifications over operating temperature are guaranteed by design.

USB Current-Limited Switch in Pin-Compatible Package

$\left(\mathrm{V}_{\mathrm{IN}}=+5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted. $)$
Typical Operating Characteristics

OFF SWITCH CURRENT vs. TEMPERATURE

TURN-ON TIME vs. TEMPERATURE

QUIESCENT CURRENT vs. TEMPERATURE

NORMALIZED ON-RESISTANCE vs. TEMPERATURE

TURN-OFF TIME vs. TEMPERATURE

OFF SUPPLY CURRENT

NORMALIZED OUTPUT CURRENT vs. OUTPUT VOLTAGE

FAULT-BLANKING TIMEOUT
vs. TEMPERATURE

USB Current-Limited Switch in Pin-Compatible Package

Typical Operating Characteristics (continued)
$\left(\mathrm{V}_{\mathrm{IN}}=+5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted. $)$

$\mathrm{CH} 1=\mathrm{V}_{\mathrm{IN}}, 200 \mathrm{mV} / \mathrm{div}$, AC-COUPLED
CH2 $=V_{\text {OUT }}, 5 \mathrm{~V} / \mathrm{div}$
$\mathrm{CH} 3=\mathrm{V} \overline{\mathrm{OC}}, 5 \mathrm{~V} / \mathrm{div}$
CH4 $=$ IOUT, $500 \mathrm{~mA} /$ div

CURRENT-LIMIT RESPONSE

$\mathrm{CH} 1=\mathrm{V}_{\mathrm{IN}}, 200 \mathrm{mV} / \mathrm{div}, \mathrm{AC}-\mathrm{COUPLED}$
CH2 $=\mathrm{V}_{\text {OUT, }}$, $5 \mathrm{~V} /$ div
$\mathrm{CH} 3=\mathrm{V} \overline{\mathrm{OC}}, 5 \mathrm{~V} / \mathrm{div}$
CH4 $=$ IOUT, $1 \mathrm{~A} / \mathrm{div}$

CH1 $=V_{\text {OUT }}$, $5 \mathrm{~V} /$ div
$\mathrm{CH} 2=\mathrm{V}_{\mathrm{EN}}, 5 \mathrm{~V} /$ div
$\mathrm{CH} 3=\mathrm{V} \overline{\mathrm{OC}}, 5 \mathrm{~V} / \mathrm{div}$
$\mathrm{CH} 4=\mathrm{IOUT}, 200 \mathrm{~mA} / \mathrm{div}$

$\mathrm{CH} 1=\mathrm{V}_{\text {OUT }}$, $5 \mathrm{~V} /$ div
CH2 $=\mathrm{V}_{\mathrm{EN}}, 5 \mathrm{~V} / \mathrm{div}$
$\mathrm{CH} 3=\mathrm{V} \overline{\mathrm{OC}}, 5 \mathrm{~V} / \mathrm{div}$
CH4 = Iout, 200mA/div

START-UP TIME (TYPICAL USB APPLICATION)

$V_{I N}=5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=15 \Omega, \mathrm{C}_{\mathrm{L}}=150 \mu \mathrm{~F}$
$\mathrm{CH} 1=\mathrm{V}_{\text {OUT }}$, 5V/div
$\mathrm{CH} 2=\mathrm{V}_{\mathrm{EN}}, 5 \mathrm{~V} / \mathrm{div}$
CH3 $=l_{1}, 500 \mathrm{~mA} / \mathrm{div}$
$\mathrm{CH} 4=\mathrm{V}_{\overline{\mathrm{OC}}}, 5 \mathrm{~V} / \mathrm{div}$

USB Current-Limited Switch in Pin-Compatible Package

PIN			NAME
SO	TDFN	FUNCTION	
1	6	GND	Ground
2,3	$1,3,9$	IN	Input. P-channel MOSFET source. Connect all IN pins together and bypass with a 1 1 FF capacitor to ground.
4	5	$\overline{E N}$	Active-Low Switch Enable Input. A logic-low turns on the switch.
5	7	$\overline{O C}$	Overcurrent Indicator Output. This open-drain output goes low when the device is in thermal shutdown or undervoltage lockout, or during a sustained (> 10ms) current-limit condition.
$6,7,8$	2,4, 8,10	OUT	Switch Output. P-channel MOSFET drain. Connect all OUT pins together and bypass with a 0.1 $\mu \mathrm{FF}$ capacitor to ground.
-	-	EP	Exposed Paddle (TDFN Package Only). Internally connected to GND. Connect to a large ground plane to maximize thermal performance. Not intended as an electrical connection point.

Figure 1. Functional Diagram

Detailed Description

The MAX1607 P-channel MOSFET power switch limits output current to 0.7A min and 1.0A max. When the output current is increased beyond the current limit (ILIMIT), the current also increases through the replica switch (IOUT / 6500). The current-limit error amplifier compares the voltage to the internal 1.24 V reference and regulates the current back to the l LIMIT (Figure 1).

These switches are not bidirectional; therefore, the input voltage must be higher than the output voltage.

Continuous Short-Circuit Protection

The MAX1607 is a short-circuit-protected switch. In the event of an output short-circuit condition, the current through the switch is foldback-current-limited to 500 mA continuous.

Thermal Shutdown
The MAX1607 has a thermal shutdown feature. The switch turns off and the $\overline{\mathrm{OC}}$ output goes low immediately (no overcurrent blanking) when the junction temperature exceeds $+165^{\circ} \mathrm{C}$. When the MAX1607 cools $20^{\circ} \mathrm{C}$, the switch turns back on. If the fault short-circuit condition is not removed, the switch will cycle on and off, resulting in a pulsed output.
$\overline{\mathbf{O C}}$ Indicator
The MAX1607 provides an overcurrent output (OC). A $100 \mathrm{k} \Omega$ pull-up resistor from $\overline{\mathrm{OC}}$ to IN provides a logic control signal. This open-drain output goes low when any of the following conditions occur:

- The input voltage is below the 2.4 V undervoltagelockout (UVLO) threshold.
- The die temperature exceeds the thermal shutdown temperature limit of $+165^{\circ} \mathrm{C}$.
- The device is in current limit for greater than 10 ms .

$\overline{O C}$ Blanking

The MAX1607 features 10 ms overcurrent blanking. Blanking allows brief current-limit faults, including momentary short-circuit faults that occur when hotswapping a capacitive load, and also ensures that no $\overline{O C}$ is issued during power-up. When a load transient causes the device to enter current limit, an internal

USB Current-Limited Switch in Pin-Compatible Package

counter starts. If the load fault persists beyond the 10 ms overcurrent-blanking timeout, the $\overline{\mathrm{OC}}$ output asserts low. Ensure that the MAX1607 input is adequately bypassed to prevent input glitches from triggering spurious $\overline{\mathrm{OC}}$ outputs. Input voltage glitches less than 150 mV will not cause a spurious OC output. Loadtransient faults less than 10 ms (typ) will not cause an $\overline{\mathrm{OC}}$ output assertion.
Only current-limit faults are blanked. Die overtemperature faults and input voltage droops below the UVLO threshold will cause an immediate $\overline{O C}$ output.

Applications Information

Input Capacitor

To limit the input voltage drop during momentary output short-circuit conditions, connect a capacitor from IN to GND. A $1 \mu \mathrm{~F}$ ceramic capacitor will be adequate for most applications; however, higher capacitor values will further reduce the voltage drop at the input (Figure 2).

Output Capacitor

Connect a $0.1 \mu \mathrm{~F}$ capacitor from OUT to GND. This capacitor helps to prevent inductive parasitics from pulling OUT negative during turn-off.

Figure 2. Typical Application Circuit

Abstract

Layout and Thermal Dissipation Important: Optimize the switch response time to output short-circuit conditions by keeping all traces as short as possible to reduce the effect of undesirable parasitic inductance. Place input and output capacitors as close as possible to the device (no more than 5 mm away). All IN and OUT pins must be connected with short traces to the power bus. Wide power-bus planes will provide superior heat dissipation through the MAX1607's IN and OUT pins.

Under normal operating conditions, the package can dissipate and channel heat away. Calculate the maximum power dissipation as follows:

$$
P=(\operatorname{LIIMIT})^{2} \times R O N
$$

where ILIMIT is the preset current limit (1.0A max) and RON is the on-resistance of the switch ($125 \mathrm{~m} \Omega \mathrm{max}$).
When the output is short circuited, foldback-current limiting activates and the voltage drop across the switch equals the input supply. The power dissipated across the switch increases, as does the die temperature. If the fault condition is not removed, the thermal-over-load-protection circuitry activates (see Thermal Shutdown section). Wide power-bus planes connected to IN and OUT and a ground plane in contact with the device will help dissipate additional heat.

Pin Configurations (continued)

TOP VIEW

Chip Information
TRANSISTOR COUNT: 715

USB Current-Limited Switch in Pin-Compatible Package

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

USB Current-Limited Switch in Pin-Compatible Package

Package Information (continued)

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

USB Current-Limited Switch in Pin-Compatible Package

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

Revision History

Pages changed at Rev 2: 1, 2, 3, 6, 7-10

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery \& Lifecycle Information:

Analog Devices Inc.:
$\underline{M A X 1607 E S A+}$ MAX1607ESA+T

