

Product Overview

1200 V, 13 A at 70 kHz Power MOS 7 punch-through (PT) IGBT with co-packaged anti-parallel DQ diode, TO-247

G—Gate C—Collector E—Emitter

Features

- Low conduction loss and saturation voltage
- Low gate charge
- Ultrafast tail current shutoff
- Soft recovery
- High operating frequency
- Reverse-bias safe operating area (RBSOA) rated
- RoHS compliant

1. Device Specifications: IGBT

This section shows the specifications of this device.

1.1 Absolute Maximum Ratings

The following table shows the absolute maximum ratings of this device.

Tuble 1 1. Absolute Maximum Ratings						
Symbol	Parameter	Ratings	Unit			
V _{CES}	Collector-emitter voltage	1200	V			
V _{GE}	Gate-emitter voltage	±20				
I _{C1}	Continuous collector current at T_C = 25 °C	41	А			
I _{C2}	Continuous collector current at T _C = 100 °C	20				
I _{CM}	Pulsed collector current ¹ at T _C = 150 °C	50				
RBSOA	Reverse-bias safe operating area at $T_{\rm J}$ = 150 °C and 960 V	50	А			
P _D	Total power dissipation $T_C = 25 \degree C$	250	W			

Table 1-1. Absolute Maximum Ratings

Note:

1. Repetitive rating: Pulse width and case temperature are limited by maximum junction temperature.

The following table shows the thermal and mechanical characteristics of this device.

Symbol	Characteristic	Min.	Тур.	Max.	Unit
R _{ØJC}	Junction-to-case thermal resistance (IGBT)		0.35	0.50	°C/W
$R_{\Theta JC}$	Junction-to-case thermal resistance (diode)		0.80	1.18	
T _J , T _{STG}	Operating and storage junction temperature range	-55		150	°C
TL	Lead temperature for 10 seconds			300	
	Mounting torque, M3 screw			10	lbf∙in
				1.1	N∙m
Wt	Package weight		0.22		oz
			6.2		g

Table 1-2. Thermal and Mechanical Characteristics

1.2 Electrical Performance

The following table shows the static characteristics of this device. T_J = 25 °C unless otherwise specified.

Symbol	Characteristic	Test Conditions	Min.	Тур.	Max.	Unit
V _{(BR)CES}	Collector-emitter breakdown voltage	V_{GE} = 0 V, I _G = 500 µA	1200			V
V _{GE(th)}	Gate threshold voltage	$V_{CE} = V_{GE}$, $I_C = 1 \text{ mA}$	3	4.5	6	
V _{CE(ON)}	Collector-emitter on voltage	V_{GE} = 15 V, I _C = 13 A		3.3	3.9	
		V_{GE} = 15 V, I _C = 13 A, T _J = 125 °C		3.0		
I _{CES}	Collector cut-off current ¹	V_{CE} = 1200 V, V_{GE} = 0 V		0.3	500	μA
		V _{CE} = 1200 V, V _{GE} = 0 V, T _J = 125 °C			3500	
I _{GES}	Gate-emitter leakage current	$V_{GE} = \pm 20 V$			±100	nA

Note:

1. I_{CES} includes both IGBT and FRED leakages.

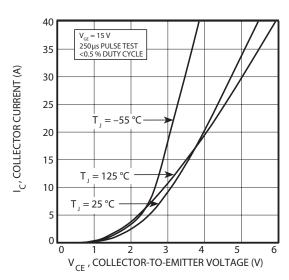
The following table shows the dynamic characteristics of this device. T_J = 25 °C unless otherwise specified.

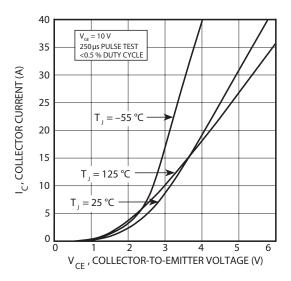
Symbol	Characteristic	Test Conditions	Min.	Тур.	Max.	Unit
C _{ies}	Input capacitance	V _{GE} = 0 V		1145		рF
C _{res}	Reverse transfer capacitance	V _{CE} = 25 V		15		
C _{oes}	Output capacitance	f = 1 MHz		90		
V _{GEP}	Gate-to-emitter plateau voltage	Gate charge		7.5		V
Q _G	Total gate charge ¹	V _{GE} = 15 V		55		nC
Q _{GE}	Gate-emitter charge	V _{CE} = 600 V		8		
Q _{GC}	Gate-collector ("Miller") charge	I _C = 13 A		26		
RBSOA	Reverse bias safe operating area	T _J = 150 °C R _G = 5 Ω V _{GE} = 15 V V _{CE} = 960 V L = 100 μH	50			A
t _{d(on)}	Turn-on delay time	V _{CC} = 600 V		9		ns
t _r	Current rise time	V _{GE} =15 V		12		
t _{d(off)}	Turn-off delay time	I _C = 13 A		28		
t _f	Current fall time	$R_{G} = 5 \Omega$		34		
E _{on1}	Turn-on switching energy ²	T _J = 25 °C		115		μJ
E _{on2}	Turn-on switching energy (diode) ³			330		
E _{off}	Turn-off switching energy ⁴			165		
t _{d(on)}	Turn-on delay time	V _{CC} = 600 V		9		ns
t _r	Current rise time	V _{GE} = 15 V		12		
t _{d(off)}	Turn-off delay time	I _C = 13 A		70		
t _f	Current fall time	$R_G = 5 \Omega$		200		
E _{on1}	Turn-on switching energy ²	T _J = 125 °C		225		μJ
E _{on2}	Turn-on switching energy (diode) ³			710		
E _{off}	Turn-off switching energy ⁴			840		

Table 1-4. Dynamic Characteristics

Notes:

- 1. See MIL-STD-750 Method 3471.
- 2. E_{on1} is the clamped inductive turn-on-energy of the IGBT only, without the effect of a commutating diode reverse recovery current adding to the IGBT turn-on loss. (See Figure 1-25.)
- 3. E_{on2} is the clamped inductive turn-on energy that includes a commutating diode reverse recovery current in the IGBT turn-on switching loss. (See Figures 1-22, 1-23.)
- 4. E_{off} is the clamped inductive turn-off energy measured in accordance with JEDEC standard JESD24-1. (See Figures 1-22, 1-24.)

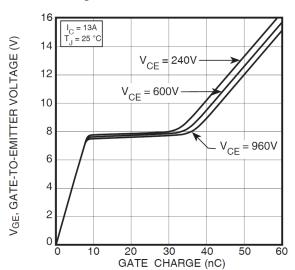


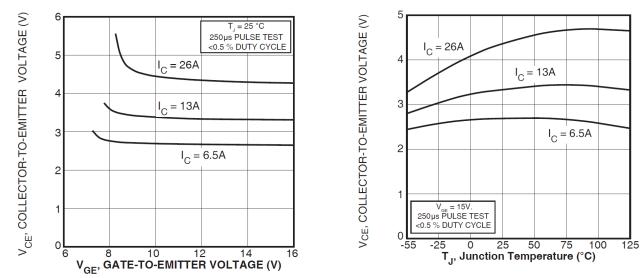

1.3 Typical Performance Curves

Data for performance curves are characterized, not 100% tested.

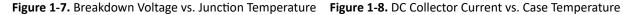
Figure 1-1. Output Characteristics

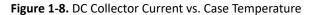
Figure 1-2. Output Characteristics

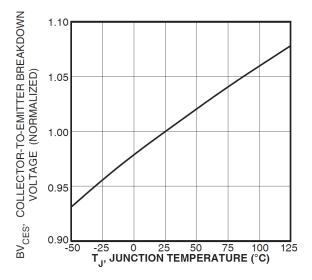



Figure 1-3. Transfer Characteristics

40 250 μs PULSE TEST <0.5 % DUTY CYCLE 35 30 I_C, COLLECTOR CURRENT (A) 25 20 T = -55 °C 15 T = 25 °C 10 T₁ = 125 °C 5 0 **L** 4 5 8 2 3 6 7 V_{GE}, GATE-TO-EMITTER VOLTAGE (V)


Figure 1-4. Gate Charge





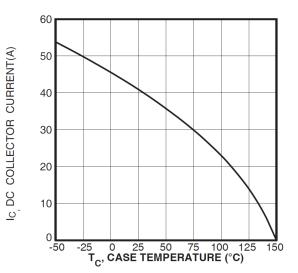


Figure 1-5. On-State Voltage vs. Gate-to- Emitter Voltage Figure 1-6. On-State Voltage vs. Junction Temperature

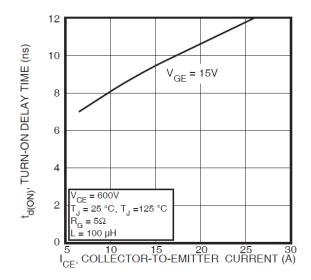


Figure 1-9. Turn-On Delay Time vs. Collector Current

Figure 1-11. Current Rise Time vs. Collector Current

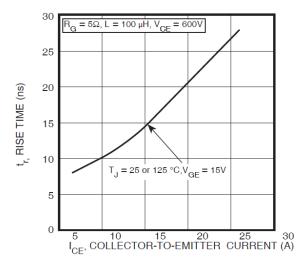


Figure 1-10. Turn-Off Delay Time vs. Collector Current

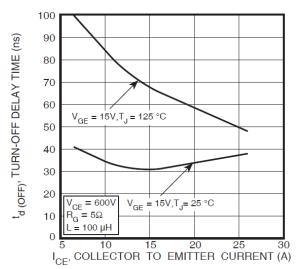
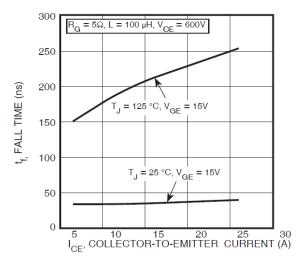



Figure 1-12. Current Rise Time vs. Collector Current

Figure 1-13. Turn-On Energy Loss vs. Collector Current

Figure 1-14. Turn-Off Energy Loss vs. Collector Current

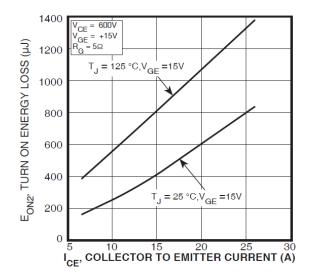
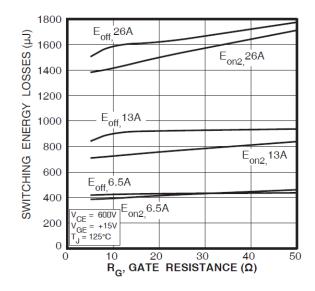
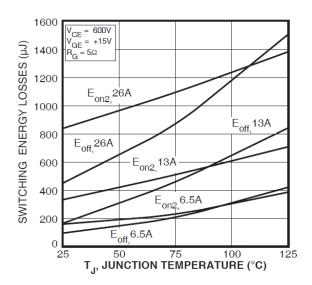
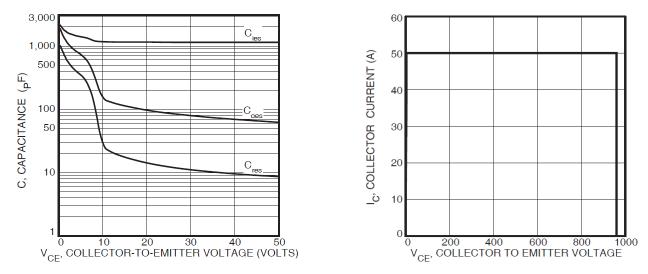




Figure 1-15. Switching Energy Losses vs. Gate Resistance



1600 CE = 600VEOFF, TURN OFF ENERGY LOSS (µJ) = +15V GE 1400 : = **5**Ω R_G T_J = 125 °C, V_{GE} = 15V 1200 1000 800 600 400 200 Τ. = 25 °C, V_{GE} = 15V 0 10 15 20 25 30 COLLECTOR TO EMITTER CURRENT (A) 30 5 I_{CE},

Figure 1-16. Switching Energy Losses vs. Junction Temperature

Figure 1-17. Capacitance vs. Collector-To-Emitter Voltage Figure 1-18. Reverse Bias Safe Operating Area

Figure 1-19. Maximum Transient Thermal Impedance

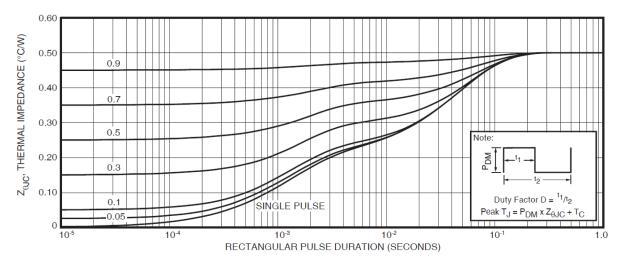


Figure 1-20. Transient Thermal Impedance Model

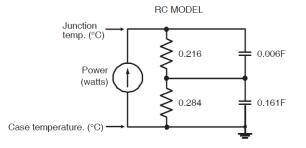


Figure 1-21. Operating Frequency vs. Collector Current

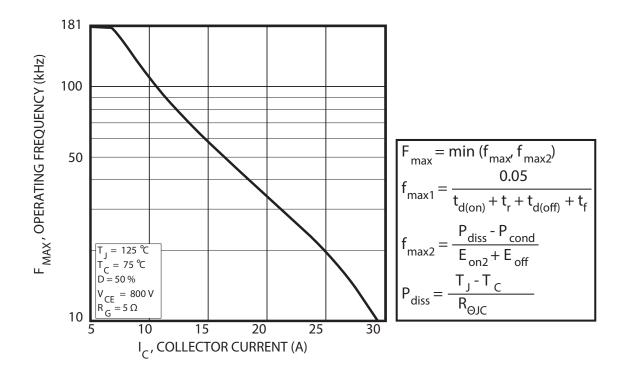


Figure 1-22. Inductive Switching Test Circuit

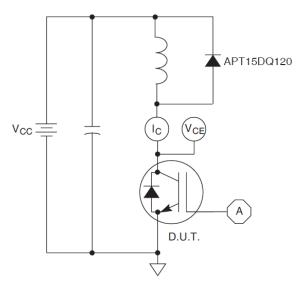
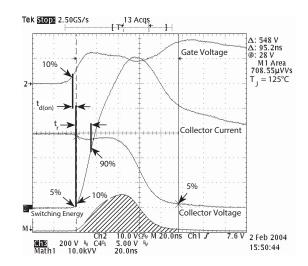



Figure 1-23. Turn-on Switching Waveforms and Definitions

Figure 1-24. Turn-off Switching Waveforms and Definitions

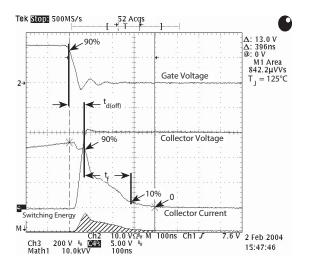
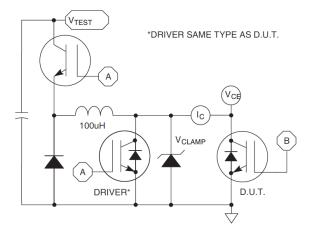



Figure 1-25. E_{on1} Test Circuit

2. Device Specifications: Ultrafast Soft Recovery Anti-Parallel Diode

This section shows the specifications of the Ultrafast Soft Recovery Anti-Parallel Diode.

2.1 Absolute Maximum Ratings

The following table shows the absolute maximum ratings of the anti-parallel diode.

Table 2-1. Absolute Maximum Ratings

Symbol	Parameter	Ratings	Unit
I _F (AV)	Maximum average forward current (T _C = 127 °C, Duty Cycle = 0.5)	15	A
I _F (RMS)	RMS forward current (square wave, 50% duty)	29	
I _{FSM}	Non-repetitive forward surge current (T_J = 45 °C, 8.3 ms)	110	

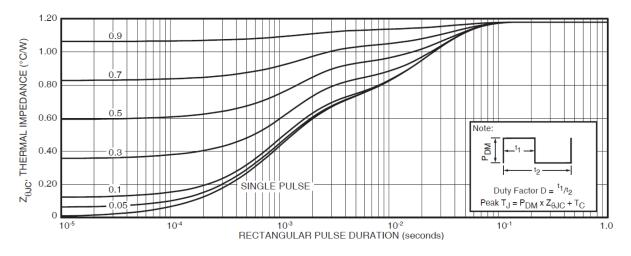
2.2 Electrical Performance

The following table shows the static characteristics of the anti-parallel diode. $T_J = 25$ °C unless otherwise specified.

Table 2-2. Static Characteristics

Symbol	Characteristic	Test Conditions	Min.	Тур.	Max.	Unit
V _F Fc	Forward voltage	I _F = 13 A		2.7		V
		I _F = 26 A		3.3		
		I _F = 13 A, T _J = 125 °C		2.3		

The following table shows the dynamic characteristics of the anti-parallel diode. $T_J = 25$ °C unless otherwise specified.


Table 2-3. Dynamic Characteristics

Symbol	Characteristic	Test Conditions	Min.	Тур.	Max.	Unit
t _{rr}	Reverse recovery time	I _F = 1 A di _F /dt = –100 A/μs V _R = 30 V		21		ns
t _{rr}	Reverse recovery time	I _F = 15 A		240		
Q _{rr}	Reverse recovery charge	di _F /dt = –200 A/µs		260		nC
I _{RRM}	Maximum reverse recovery current	V _R = 800 V		3		A
t _{rr}	Reverse recovery time	I _F = 15 A		290		ns
Q _{rr}	Reverse recovery charge	di _F /dt = –200 A/µs		960		nC
I _{RRM}	Maximum reverse recovery current	V _R = 800 V T _C = 125 °C		6		A
t _{rr}	Reverse recovery time	I _F = 15 A		130		ns
Q _{rr}	Reverse recovery charge	di _F /dt = –1000 A/µs		1340		nC
I _{RRM}	Maximum reverse recovery current	V _R = 800 V T _C = 125 °C		19		A

2.3 Typical Performance Curves

Data for performance curves are characterized, not 100% tested.

Figure 2-1. Maximum Transient Thermal Impedance

Figure 2-2. Transient Thermal Impedance Model

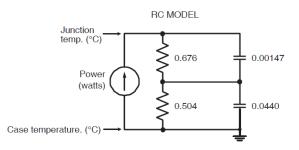


Figure 2-3. Forward Current vs. Forward Voltage

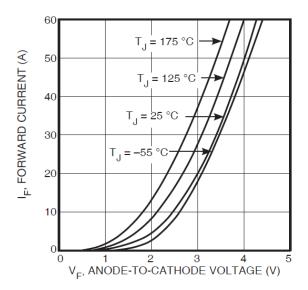
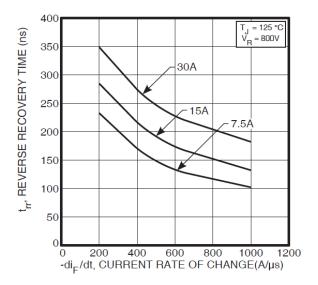
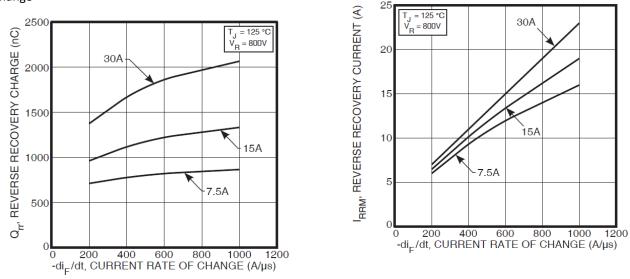
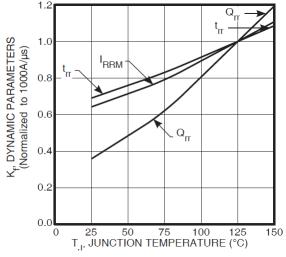




Figure 2-4. Reverse Recovery Time vs. Current Rate of Change



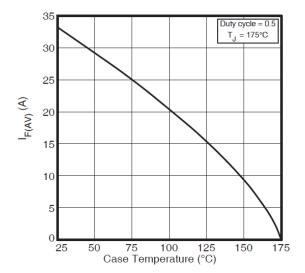


Figure 2-5. Reverse Recovery Charge vs. Current Rate of Change

Figure 2-6. Reverse Recovery Charge vs. Current Rate of Change

Figure 2-7. Dynamic Parameters vs. Junction Temperature Figure 2-8. Maximum Avgerage Forward Current vs. Case Temperature

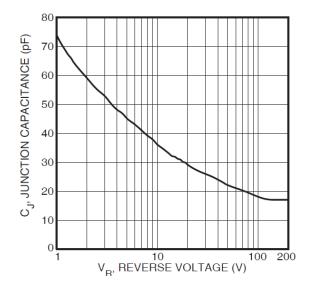
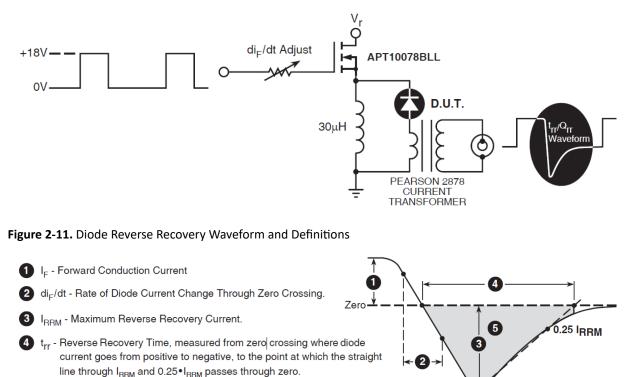
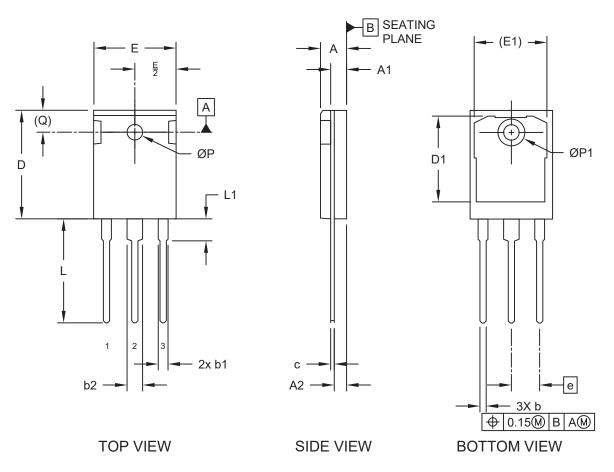



Figure 2-9. Junction Capacitance vs. Reverse Voltage

The following figure shows the diode test circuit of this device.

Figure 2-10. Diode Test Circuit

5 Q_{rr} - Area Under the Curve Defined by I_{RRM} and t_{rr}.


3. Package Specification

This section shows the package specification of this device.

3.1 Package Outline Drawing

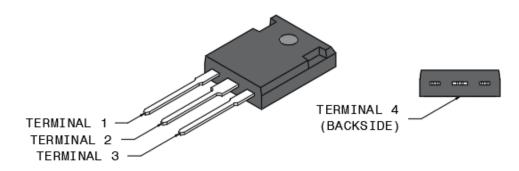
The following figure illustrates the TO-247 package outline of this device.

Figure 3-1. Package Outline Drawing

The following table shows the TO-247 dimensions and should be used in conjunction with the package outline drawing.

Dimension Limits		Dimensions (inches)				
		Min.	Nom.	Max.		
Number of leads	Ν		3			
Pitch	е	0.215 BSC				
Overall height	A	0.185	0.197	0.209		
Tab height	A1	0.059	0.0785	0.098		
Seating plane to lead	A2	0.087	0.0945	0.102		
Lead width	b	0.040	0.0475	0.055		
Lead shoulder width (×2)	b1	0.065	0.0745	0.084		

continued							
Dimension Limits		Dimensions (inches)					
		Min.	Nom.	Max.			
Lead shoulder width	b2	0.113	0.118	0.123			
Lead thickness	С	0.016	0.0235	0.031			
Lead length	L	0.780	0.790	0.800			
Lead shoulder length	L1	0.157	0.167	0.177			
Molded body length	D	0.819	0.832	0.845			
Thermal pad length	D1	0.650	0.6695	0.689			
Total width	E	0.610	0.625	0.640			
Thermal pad width	E1	0.531	0.551	0.571			
Hole center to tab edge Q		0.242 REF					
Hole diameter	ØP	0.138	0.144	0.150			
Thermal pad hole diameter	ØP1	0.280	0.2875	0.295			


Notes: Dimensioning and tolerancing per ASME Y14.5M

- BSC: Basic dimension—Theoretically exact value shown without tolerances.
- REF: Reference dimension—Usually without tolerance, for information purposes only.

3.2 Terminal Pinout

The following figure illustrates the terminal pinout of this device.

Figure 3-2. Terminal Pinout

The following table shows the electrical signal terminal pinout of this device.

Table 3-2.	Electrical	Signal	Terminal	Pinout
	LICCUICUI	Signar	i Ci i i i i i u i	iniout

Terminal	Definition
TERMINAL 1	Gate
TERMINAL 2	Collector, Diode Cathode
TERMINAL 3	Emitter, Diode Anode
TERMINAL 4	Collector, Diode Cathode

4. **Revision History**

The revision history describes the changes that were implemented in the document. The changes are listed by revision, starting with the most current publication.

Table 4-1. Revision History

Revision	Date	Description
A	02/2024	Document migrated from Microsemi template to Microchip template; Assigned Microchip literature number DS-00005261A, which replaces the previous Microsemi literature number 050-7446.
Initial releases (Microsemi Revisions A and B)	05/2005 - 06/2005	Initial releases.

Microchip Information

The Microchip Website

Microchip provides online support via our website at www.microchip.com/. This website is used to make files and information easily available to customers. Some of the content available includes:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- **General Technical Support** Frequently Asked Questions (FAQs), technical support requests, online discussion groups, Microchip design partner program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

Product Change Notification Service

Microchip's product change notification service helps keep customers current on Microchip products. Subscribers will receive email notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, go to www.microchip.com/pcn and follow the registration instructions.

Customer Support

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Embedded Solutions Engineer (ESE)
- Technical Support

Customers should contact their distributor, representative or ESE for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in this document.

Technical support is available through the website at: www.microchip.com/support

Microchip Devices Code Protection Feature

Note the following details of the code protection feature on Microchip products:

- Microchip products meet the specifications contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is secure when used in the intended manner, within operating specifications, and under normal conditions.
- Microchip values and aggressively protects its intellectual property rights. Attempts to breach the code protection features of Microchip product is strictly prohibited and may violate the Digital Millennium Copyright Act.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of its code. Code protection does not mean that we are guaranteeing the product is "unbreakable". Code protection is constantly evolving. Microchip is committed to continuously improving the code protection features of our products.

Legal Notice

This publication and the information herein may be used only with Microchip products, including to design, test, and integrate Microchip products with your application. Use of this information in any other manner violates these terms. Information regarding device applications is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure

that your application meets with your specifications. Contact your local Microchip sales office for additional support or, obtain additional support at www.microchip.com/en-us/support/design-help/ client-support-services.

THIS INFORMATION IS PROVIDED BY MICROCHIP "AS IS". MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE, OR WARRANTIES RELATED TO ITS CONDITION, QUALITY, OR PERFORMANCE.

IN NO EVENT WILL MICROCHIP BE LIABLE FOR ANY INDIRECT, SPECIAL, PUNITIVE, INCIDENTAL, OR CONSEQUENTIAL LOSS, DAMAGE, COST, OR EXPENSE OF ANY KIND WHATSOEVER RELATED TO THE INFORMATION OR ITS USE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS BEEN ADVISED OF THE POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE FULLEST EXTENT ALLOWED BY LAW, MICROCHIP'S TOTAL LIABILITY ON ALL CLAIMS IN ANY WAY RELATED TO THE INFORMATION OR ITS USE WILL NOT EXCEED THE AMOUNT OF FEES, IF ANY, THAT YOU HAVE PAID DIRECTLY TO MICROCHIP FOR THE INFORMATION.

Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Trademarks

The Microchip name and logo, the Microchip logo, Adaptec, AVR, AVR logo, AVR Freaks, BesTime, BitCloud, CryptoMemory, CryptoRF, dsPIC, flexPWR, HELDO, IGLOO, JukeBlox, KeeLoq, Kleer, LANCheck, LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi, Microsemi logo, MOST, MOST logo, MPLAB, OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, PolarFire, Prochip Designer, QTouch, SAM-BA, SenGenuity, SpyNIC, SST, SST Logo, SuperFlash, Symmetricom, SyncServer, Tachyon, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

AgileSwitch, ClockWorks, The Embedded Control Solutions Company, EtherSynch, Flashtec, Hyper Speed Control, HyperLight Load, Libero, motorBench, mTouch, Powermite 3, Precision Edge, ProASIC, ProASIC Plus, ProASIC Plus logo, Quiet-Wire, SmartFusion, SyncWorld, TimeCesium, TimeHub, TimePictra, TimeProvider, and ZL are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, Augmented Switching, BlueSky, BodyCom, Clockstudio, CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, Espresso T1S, EtherGREEN, EyeOpen, GridTime, IdealBridge, IGaT, In-Circuit Serial Programming, ICSP, INICnet, Intelligent Paralleling, IntelliMOS, Inter-Chip Connectivity, JitterBlocker, Knob-on-Display, MarginLink, maxCrypto, maxView, memBrain, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, mSiC, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, Power MOS IV, Power MOS 7, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple Blocker, RTAX, RTG4, SAM-ICE, Serial Quad I/O, simpleMAP, SimpliPHY, SmartBuffer, SmartHLS, SMART-I.S., storClad, SQI, SuperSwitcher, SuperSwitcher II, Switchtec, SynchroPHY, Total Endurance, Trusted Time, TSHARC, Turing, USBCheck, VariSense, VectorBlox, VeriPHY, ViewSpan, WiperLock, XpressConnect, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

The Adaptec logo, Frequency on Demand, Silicon Storage Technology, and Symmcom are registered trademarks of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2024, Microchip Technology Incorporated and its subsidiaries. All Rights Reserved.

ISBN: 978-1-6683-3794-3

Quality Management System

For information regarding Microchip's Quality Management Systems, please visit www.microchip.com/quality.

Worldwide Sales and Service

MERICAS	ASIA/PACIFIC	ASIA/PACIFIC	EUROPE
orporate Office	Australia - Sydney	India - Bangalore	Austria - Wels
355 West Chandler Blvd.	Tel: 61-2-9868-6733	Tel: 91-80-3090-4444	Tel: 43-7242-2244-39
andler, AZ 85224-6199	China - Beijing	India - New Delhi	Fax: 43-7242-2244-393
l: 480-792-7200	Tel: 86-10-8569-7000	Tel: 91-11-4160-8631	Denmark - Copenhagen
ax: 480-792-7277	China - Chengdu	India - Pune	Tel: 45-4485-5910
chnical Support:	Tel: 86-28-8665-5511	Tel: 91-20-4121-0141	Fax: 45-4485-2829
ww.microchip.com/support	China - Chongqing	Japan - Osaka	Finland - Espoo
eb Address:	Tel: 86-23-8980-9588	Tel: 81-6-6152-7160	Tel: 358-9-4520-820
ww.microchip.com	China - Dongguan	Japan - Tokyo	France - Paris
lanta	Tel: 86-769-8702-9880	Tel: 81-3-6880- 3770	Tel: 33-1-69-53-63-20
uluth, GA	China - Guangzhou	Korea - Daegu	Fax: 33-1-69-30-90-79
l: 678-957-9614	Tel: 86-20-8755-8029	Tel: 82-53-744-4301	Germany - Garching
nx: 678-957-1455	China - Hangzhou	Korea - Seoul	Tel: 49-8931-9700
ustin, TX	Tel: 86-571-8792-8115	Tel: 82-2-554-7200	Germany - Haan
l: 512-257-3370	China - Hong Kong SAR	Malaysia - Kuala Lumpur	Tel: 49-2129-3766400
oston	Tel: 852-2943-5100	Tel: 60-3-7651-7906	Germany - Heilbronn
estborough, MA	China - Nanjing	Malaysia - Penang	Tel: 49-7131-72400
el: 774-760-0087	Tel: 86-25-8473-2460	Tel: 60-4-227-8870	Germany - Karlsruhe
ax: 774-760-0088	China - Qingdao	Philippines - Manila	Tel: 49-721-625370
hicago	Tel: 86-532-8502-7355	Tel: 63-2-634-9065	Germany - Munich
asca, IL	China - Shanghai	Singapore	Tel: 49-89-627-144-0
l: 630-285-0071	Tel: 86-21-3326-8000	Tel: 65-6334-8870	Fax: 49-89-627-144-44
ax: 630-285-0075	China - Shenyang	Taiwan - Hsin Chu	Germany - Rosenheim
allas	Tel: 86-24-2334-2829	Tel: 886-3-577-8366	Tel: 49-8031-354-560
ddison, TX	China - Shenzhen	Taiwan - Kaohsiung	Israel - Ra'anana
el: 972-818-7423	Tel: 86-755-8864-2200	Tel: 886-7-213-7830	Tel: 972-9-744-7705
ax: 972-818-2924	China - Suzhou	Taiwan - Taipei	Italy - Milan
etroit	Tel: 86-186-6233-1526	Tel: 886-2-2508-8600	Tel: 39-0331-742611
ovi, MI	China - Wuhan	Thailand - Bangkok	Fax: 39-0331-466781
l: 248-848-4000	Tel: 86-27-5980-5300	Tel: 66-2-694-1351	Italy - Padova
ouston, TX	China - Xian	Vietnam - Ho Chi Minh	Tel: 39-049-7625286
l: 281-894-5983	Tel: 86-29-8833-7252	Tel: 84-28-5448-2100	Netherlands - Drunen
dianapolis	China - Xiamen		Tel: 31-416-690399
oblesville, IN	Tel: 86-592-2388138		Fax: 31-416-690340
l: 317-773-8323	China - Zhuhai		Norway - Trondheim
ax: 317-773-5453	Tel: 86-756-3210040		Tel: 47-72884388
l: 317-536-2380			Poland - Warsaw
os Angeles			Tel: 48-22-3325737
ission Viejo, CA			Romania - Bucharest
: 949-462-9523			Tel: 40-21-407-87-50
ix: 949-462-9608			Spain - Madrid
l: 951-273-7800			Tel: 34-91-708-08-90
aleigh, NC			Fax: 34-91-708-08-91
l: 919-844-7510			Sweden - Gothenberg
ew York, NY			Tel: 46-31-704-60-40
l: 631-435-6000			Sweden - Stockholm
an Jose, CA			Tel: 46-8-5090-4654
el: 408-735-9110			UK - Wokingham
el: 408-436-4270			Tel: 44-118-921-5800
anada - Toronto			Fax: 44-118-921-5820
l: 905-695-1980			