CMOS Low Power Dual 2:1 Mux/Demux USB 2.0 (480 Mbps)/USB 1.1 (12 Mbps)

Data Sheet

FEATURES

USB 2.0 (480 Mbps) and USB 1.1 (12 Mbps) signal switching compliant
Tiny 10-lead $1.3 \mathrm{~mm} \times 1.6 \mathrm{~mm}$ mini LFCSP package and 12-lead $3 \mathrm{~mm} \times 3 \mathrm{~mm}$ LFCSP package
2.7 V to 3.6 V single-supply operation

Typical power consumption: <0.1 $\mu \mathrm{W}$
RoHS compliant

APPLICATIONS

USB 2.0 signal switching circuits
Cellular phones
PDAs
MP3 players
Battery-powered systems
Headphone switching
Audio and video signal routing

Communications systems

GENERAL DESCRIPTION

The ADG772 is a low voltage CMOS device that contains two independently selectable single-pole, double throw (SPDT) switches. It is designed as a general-purpose switch and can be used for routing both USB 1.1 and USB 2.0 signals.
This device offers a data rate of 1260 Mbps , making the device suitable for high frequency data switching. Each switch conducts equally well in both directions when on and has an input signal range that extends to the supplies. The ADG772 exhibits break-before-make switching action.

The ADG772 is available in a 12 -lead LFCSP and a 10 -lead mini LFCSP. These packages make the ADG772 the ideal solution for space-constrained applications.

FUNCTIONAL BLOCK DIAGRAM

SWITCHES SHOWN FOR A LOGIC 0 INPUT
Figure 1.

PRODUCT HIGHLIGHTS

1. $1.6 \mathrm{~mm} \times 1.3 \mathrm{~mm}$ mini LFCSP package.
2. USB 1.1 (12 Mbps) and USB $2.0(480 \mathrm{Mbps})$ compliant.
3. Single 2.7 V to 3.6 V operation.
4. 1.8 V logic compatible.
5. RoHS compliant.

Rev. C

TABLE OF CONTENTS

Features 1
Applications 1
Functional Block Diagram 1
General Description 1
Product Highlights 1
Revision History 2
Specifications 3
Absolute Maximum Ratings 4
REVISION HISTORY
5/16-Rev. B to Rev. C
Changes to Figure 3 5
Updated Outline Dimensions 12
Changes to Ordering Guide 12
4/13-Rev. A to Rev. B
Added EPAD Notation 5
Changes to Figure 10 7
Updated Outline Dimensions 12
Changes to Ordering Guide 12
6/08-Rev. 0 to Rev. A
Changes to Product Highlights. 1
Changes to Input High Voltage, V ${ }_{\text {INH }}$, Parameter 3
ESD Caution 4
Pin Configuration and Function Descriptions 5
Truth Table 5
Typical Performance Characteristics 6
Test Circuits 9
Terminology 11
Outline Dimensions 12
Ordering Guide 12

Specifications

$\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}$ to 3.6 V, GND $=0 \mathrm{~V}$, unless otherwise noted.
Table 1.

\begin{tabular}{|c|c|c|c|c|}
\hline Parameter \& \(+25^{\circ} \mathrm{C}\) \& \(-40^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\) \& Unit \& Test Conditions/Comments \\
\hline \begin{tabular}{l}
ANALOG SWITCH \\
Analog Signal Range On-Resistance (Ron) \\
On-Resistance Match Between Channels (\(\Delta\) Ron) On Resistance Flatness (Rflat (on))
\end{tabular} \& \begin{tabular}{l}
6.7 \\
0.04 \\
3.3
\end{tabular} \& \begin{tabular}{l}
0 V to \(\mathrm{V}_{\mathrm{DD}}\) \\
8.8 \\
0.2 \\
3.6
\end{tabular} \& \begin{tabular}{l}
V \\
\(\Omega\) typ \\
\(\Omega\) max \\
\(\Omega\) typ \\
\(\Omega\) max \\
\(\Omega\) typ \\
\(\Omega\) max
\end{tabular} \& \[
V_{D D}=2.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD}}, \mathrm{l}_{\mathrm{DS}}=10 \mathrm{~mA} \text {; see Figure } 21
\]
\[
\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=1.5 \mathrm{~V}, \mathrm{lDS}=10 \mathrm{~mA}
\]
\[
V_{D D}=2.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD}}, \mathrm{l}_{\mathrm{DS}}=10 \mathrm{~mA}
\] \\
\hline LEAKAGE CURRENTS Source Off Leakage Is (Off) Channel On Leakage \(\mathrm{I}_{\mathrm{D}}, \mathrm{I}_{\mathrm{s}}(\mathrm{On})\) \& \[
\begin{aligned}
\& \pm 0.2 \\
\& \pm 0.2
\end{aligned}
\] \& \& \begin{tabular}{l}
nA typ \\
nA typ
\end{tabular} \& \[
\begin{aligned}
\& \hline V_{D D}=3.6 \mathrm{~V} \\
\& \mathrm{~V}_{\mathrm{S}}=0.6 \mathrm{~V} / 3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=3.3 \mathrm{~V} / 0.6 \mathrm{~V} \text {; see Figure } 22 \\
\& \mathrm{~V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}=0.6 \mathrm{~V} \text { or } 3.3 \mathrm{~V} \text {; see Figure } 23 \\
\& \hline
\end{aligned}
\] \\
\hline DIGITAL INPUTS Input High Voltage, VINH Input Low Voltage, VINL Input Current, Inı or linh Digital Input Capacitance, \(\mathrm{C}_{\mathrm{IN}}\) \& \[
\begin{aligned}
\& 0.005 \\
\& 2
\end{aligned}
\] \& \[
\begin{aligned}
\& 1.35 \\
\& 0.8 \\
\& \pm 0.1
\end{aligned}
\] \& \begin{tabular}{l}
\(\vee\) min \\
\(V\) max \\
\(\mu \mathrm{A}\) typ \\
\(\mu \mathrm{A}\) max \\
pF typ
\end{tabular} \& \[
\begin{aligned}
\& V_{\text {IN }}=V_{\text {INL or }} V_{\text {INH }} \\
\& V_{\text {IN }}=V_{\text {INL }} \text { or } V_{\text {INH }}
\end{aligned}
\] \\
\hline \begin{tabular}{l}
DYNAMIC CHARACTERISTICS \({ }^{1}\) \\
ton \\
toff \\
Propagation Delay \\
Propagation Delay Skew, tskew \\
Break-Before-Make Time Delay (tввм) \\
Charge Injection \\
Off Isolation \\
Channel-to-Channel Crosstalk \\
-3 dB Bandwidth \\
Data Rate \\
\(\mathrm{C}_{\mathrm{s}}\) (Off) \\
\(\mathrm{C}_{\mathrm{d}}, \mathrm{C}_{\mathrm{s}}(\mathrm{On})\)
\end{tabular} \& 9
12.5
6
9.5
250
20
5
3.4
0.5
73
-90
-80
630
1260
2.4
6.9 \& 13.5
10

2.9 \& | ns typ |
| :--- |
| ns max |
| ns typ |
| ns max |
| ps typ |
| ps typ |
| ns typ |
| ns min |
| pC typ |
| dB typ |
| dB typ |
| dB typ |
| MHz typ |
| Mbps typ |
| pF typ |
| pF typ | \&

\hline POWER REQUIREMENTS ID \& 0.006 \& 1 \& $\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max \& $$
\begin{aligned}
& \hline \mathrm{V}_{\mathrm{DD}}=3.6 \mathrm{~V} \\
& \text { Digital inputs }=0 \mathrm{~V} \text { or } 3.6 \mathrm{~V}
\end{aligned}
$$

\hline
\end{tabular}

[^0]
ABSOLUTE MAXIMUM RATINGS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.
Table 2.

Parameter	Rating
VDD to GND	-0.3 V to +4.6 V
Analog Inputs, ${ }^{1}$ Digital Inputs	-0.3 V to VDD +0.3 V or
	10 mA, whichever occurs first
Peak Current, Pin S1A, Pin S2A,	100 mA (pulsed at $1 \mathrm{~ms}, 10 \%$
duty cycle max)	
Pin D1, or Pin D2	30 mA
Continuous Current, Pin S1A,	
\quad Pin S2A, Pin D1, or Pin D2	
Operating Temperature Industrial Range (B Version)	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature	$150^{\circ} \mathrm{C}$
OJA Thermal Impedance $_{\text {(4-Layer Board) }}$	
10-Lead Mini LFCSP	$131.6^{\circ} \mathrm{C} / \mathrm{W}$
12-Lead LFCSP	$61^{\circ} \mathrm{C} / \mathrm{W}$
Pb-Free Temperature,	
Soldering, IR Reflow	$260(+0 /-5)^{\circ} \mathrm{C}$
Peak Temperature	10 sec to 40 sec
Time at Peak Temperature	

[^1]Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

Only one absolute maximum rating can be applied at any one time.

ESD CAUTION

	ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Figure 2. 10-Lead Mini LFCSP Pin Configuration

Table 3. Pin Function Descriptions

Pin No.			
10-Lead Mini LFCSP	12-Lead LFCSP	Mnemonic	Description
1	12	S1A	Source Terminal. Can be an input or an output.
2	1	D1	Drain Terminal. Can be an input or an output.
3	2	S1B	Source Terminal. Can be an input or an output.
4	4	IN1	Logic Control Input. This pin controls Switch S1A and Switch S1B to D1.
5	5	IN2	Login Control Input. This pin controls Switch S2A and Switch S2B to D2.
6	6	VDD	Most Positive Power Supply Potential.
7	8	S2B	Source Terminal. Can be an input or an output.
8	9	D2	Drain Terminal. Can be an input or an output.
9	10	S2A	Source Terminal. Can be an input or an output.
10	11	GND	Ground (0 V) Reference.
Not applicable	3,7	NC	No Connect.
Not applicable	13		Exposed Pad. The exposed pad is connected internally. For increased

TRUTH TABLE

Table 4.

Logic (IN1 or IN2)	Switch A (S1A or S2A)	Switch B (S1B or S2B)
0	Off	On
1	On	Off

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 4. On Resistance vs. $V_{D}, V_{S} ; V_{D D}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$

Figure 5. On Resistance vs. $V_{D}, V_{S} ; V_{D D}=2.5 \mathrm{~V} \pm 0.2 \mathrm{~V}$

Figure 6. On Resistance vs. $V_{D}, V_{S} ; V_{D D}=1.8 \mathrm{~V} \pm 0.15 \mathrm{~V}$

Figure 7. On Resistance vs. V_{D}, V_{S} for Different Temperatures; $V_{D D}=3.3 \mathrm{~V}$

Figure 8. On Resistance vs. V_{D}, V_{S} for Different Temperatures; $V_{D D}=2.7 \mathrm{~V}$

Figure 9. On Resistance vs. V_{D}, V_{S} for Different Temperatures; $V_{D D}=1.8 \mathrm{~V}$

Figure 10. Leakage Current vs. Temperature; VDD $=3.3 \mathrm{~V}$

Figure 11. Leakage Current vs. Temperature; $V_{D D}=2.5 \mathrm{~V}$

Figure 12. Leakage Current vs. Temperature; $V_{D D}=1.8 \mathrm{~V}$

Figure 13. Charge Injection vs. Source Voltage

Figure 14. $t_{\mathrm{oN}} / t_{\text {off }}$ Times vs. Temperature

Figure 15. Bandwidth

Figure 16. Off Isolation vs. Frequency

Figure 17. Crosstalk vs. Frequency

Figure 18. PSRR vs. Frequency

Figure 19. USB 1.1 Eye Diagram

Figure 20. USB 2.0 Eye Diagram

TEST CIRCUITS

Figure 24. Switching Times, ton, toff

Figure 25. Break-Before-Make Time Delay, $t_{\text {BBM }}$

Figure 26. Charge Injection

OFF ISOLATION $=20 \log \frac{v_{\text {OUT }}}{v_{S}}$
Figure 27. Off Isolation

CHANNEL-TO-CHANNEL CROSSTALK $=20 \log \frac{\mathrm{~V}_{\text {OUT }}}{\mathrm{V}_{\mathrm{S}}}$
Figure 28. Channel-to-Channel Crosstalk (S1A to S2A)

$$
\text { INSERTION LOSS }=20 \log \frac{V_{\text {OUT WITH SWITCH }}}{V_{\text {OUT }} \text { WITHOUT SWITCH }}
$$

Figure 29. Channel-to-Channel Crosstalk (S1A to S1B)

CHANNEL-TO-CHANNEL CROSSTALK $=20 \log \frac{\mathrm{~V}_{\text {OUT }}}{\mathrm{V}_{\mathrm{S}}}$
․․
啚
Figure 30. Bandwidth

TERMINOLOGY

$I_{D D}$
Positive supply current.
$\mathbf{V}_{\mathrm{D}}, \mathrm{V}_{\mathrm{s}}$
Analog voltage on Terminal D and Terminal S.
$\mathrm{R}_{\text {ON }}$
Ohmic resistance between Terminal D and Terminal S.
$\mathbf{R}_{\text {flat }}$ (On)
The difference between the maximum and minimum values of on resistance as measured on the switch.
$\Delta R_{\text {ON }}$
On resistance match between any two channels.

IS (Off)

Source leakage current with the switch off.

$I_{D}(\mathbf{O f f})$

Drain leakage current with the switch off.
$\mathrm{I}_{\mathrm{D}}, \mathrm{I}_{\mathrm{S}}$ (On)
Channel leakage current with the switch on.
$V_{\text {INL }}$
Maximum input voltage for Logic 0 .
$\mathbf{V}_{\text {INH }}$
Minimum input voltage for Logic 1.
$\mathbf{I}_{\text {INL }}, \mathbf{I}_{\text {INH }}$
Input current of the digital input.

Cs (Off)

Off switch source capacitance. Measured with reference to ground.
C_{D} (Off)
Off switch drain capacitance. Measured with reference to ground.
$\mathrm{C}_{\mathrm{D}}, \mathrm{C}_{\mathrm{s}}$ (On)
On switch capacitance. Measured with reference to ground.

$\mathrm{C}_{\text {IN }}$

Digital input capacitance.
ton
Delay time between the 50% and 90% points of the digital input and switch on condition.
toff
Delay time between the 50% and 90% points of the digital input and switch off condition.
$\boldsymbol{t}_{\text {bвм }}$
On or off time measured between the 80% points of both switches when switching from one to another.

Charge Injection

Measure of the glitch impulse transferred from the digital input to the analog output during on/off switching.

Off Isolation

Measure of unwanted signal coupling through an off switch.

Crosstalk

Measure of unwanted signal that is coupled from one channel to another as a result of parasitic capacitance.
-3 dB Bandwidth
Frequency at which the output is attenuated by 3 dB .

On Response

Frequency response of the on switch.

Insertion Loss

The loss due to the on resistance of the switch.
THD + N
Ratio of the harmonics amplitude plus noise of a signal to the fundamental.
$\mathrm{T}_{\text {SKEW }}$
The measure of the variation in propagation delay between each channel.

OUTLINE DIMENSIONS

Figure 31. 10-Lead Mini Lead Frame Chip Scale Package [LFCSP] $1.30 \mathrm{~mm} \times 1.60 \mathrm{~mm}$ Body and 0.55 mm Package Height (CP-10-10)
Dimensions shown in millimeters

COMPLIANT TO JEDEC STANDARDS MO-220-WEED.
區
Figure 32. 12-Lead Lead Frame Chip Scale Package [LFCSP]
$3 \mathrm{~mm} \times 3 \mathrm{~mm}$ Body and 0.75 mm Package Height
(CP-12-4)
Dimensions shown in millimeters

ORDERING GUIDE

Model 1	Temperature Range	Package Description	Package Option	Branding
ADG772BCPZ-1REEL	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	12-Lead Lead Frame Chip Scale Package [LFCSP]	CP-12-4	S2P
ADG772BCPZ-REEL7	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	10-Lead Mini Lead Frame Chip Scale Package [LFCSP]	CP-10-10	B
EVAL-ADG772EBZ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Evaluation Board		

[^2]
[^0]: ${ }^{1}$ Guaranteed by design, not subject to production test.

[^1]: ${ }^{1}$ Overvoltages at the IN1, IN2, S1A, S2A, D1, or D2 pin are clamped by internal diodes. Current must be limited to the maximum ratings given.

[^2]: ${ }^{1} \mathrm{Z}=$ RoHS Compliant Part.

