

1.5 A, very low drop voltage regulators

Datasheet - production data

Features

- Very low dropout voltage (typ. 0.4 at 1.5 A)
- Guaranteed output current up to 1.5 A
- Fixed and adjustable output voltage (± 1% at 25 °C)
- Internal current and thermal limit
- Logic controlled electronic shutdown available in PPAK

Description

The LD29150 is a high current, high accuracy, low-dropout voltage regulator series. These regulators feature 400 mV dropout voltage and very low ground current. Designed for high current loads, these devices are also used in lower current, extremely low dropout-critical systems, where their tiny dropout voltage and ground current values are important attributes. Typical applications are in power supply switching post regulation, series power supply for monitors, series power supply for VCRs and TVs, computer systems and battery powered systems.

Table 1. Device summary

Orde	Order codes		
DPAK	PPAK	— Output voltages	
LD29150DT18R		1.8 V	
LD29150DT25R		2.5 V	
LD29150DT33R		3.3 V	
LD29150DT50R	LD29150PT50R	5.0 V	
	LD29150PTR	ADJ	

Contents LD29150

Contents

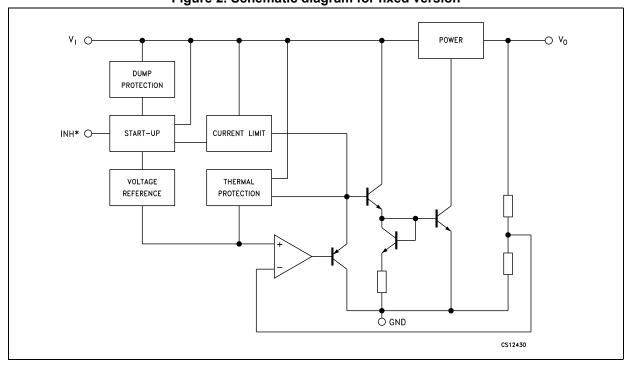
1	Diagram	. 3
2	Pin configuration	. 4
3	Typical application	. 5
4	Maximum ratings	. 6
5	Electrical characteristics	. 7
6	Typical characteristics	. 12
7	Package information	. 15
	7.1 DPAK package information	. 15
	7.2 PPAK package information	. 18
8	Packaging information	20
	8.1 PPAK and DPAK packaging information	20
9	Revision history	22

LD29150 Diagram

1 Diagram

VI DUMP
PROTECTION

VOLTAGE
REFERENCE

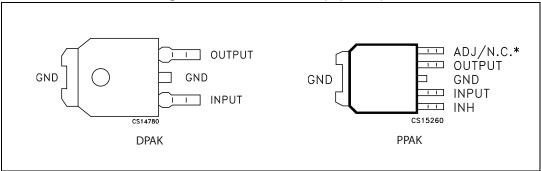

THERMAL
PROTECTION

GND

CS15250

Figure 1. Schematic diagram for adjustable version

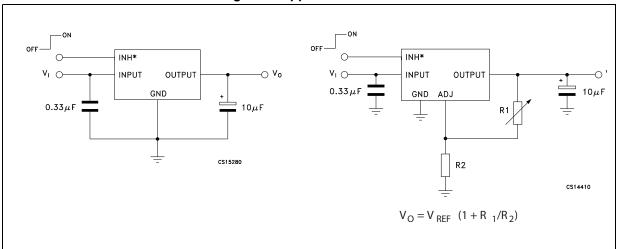
Figure 2. Schematic diagram for fixed version


^{*} Only for version with inhibit function.

Pin configuration LD29150

2 Pin configuration

Figure 3. Pin connections (top view)


^{*} Not connected for fixed version.

LD29150 Typical application

3 Typical application

Figure 4. Application circuit

^{*} Only for version with inhibit function.

Maximum ratings LD29150

4 Maximum ratings

Table 2. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _I	DC input voltage	30 ⁽¹⁾	V
V _O	DC output voltage	-0.3 to 20	V
V _{INH}	Inhibit input voltage	-0.3 to 20	V
I _O	Output current	Internally limited	mA
P _D	Power dissipation	Internally limited	mW
T _{STG}	Storage temperature range	-55 to 150	°C
T _{OP}	Operating junction temperature range	-40 to 125	°C

^{1.} Above 14 V the device is automatically in shut-down.

Note:

Absolute maximum ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied.

Table 3. Thermal data

Symbol	Parameter	DPAK	PPAK	Unit
R _{thJA}	Thermal resistance junction-ambient	100	100	°C/W
R _{thJC}	Thermal resistance junction-case	8	8	°C/W

5 Electrical characteristics

 I_O = 10 mA, T_J = 25 °C, V_I = 3.8 V, V_{INH} = 2 V (*Note 3*), C_I = 330 nF, C_O = 10 μ F, unless otherwise specified.

Table 4. Electrical characteristics of LD29150#18

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit	
Vo	Output voltage	I _O = 10 mA to 1.5 A, V _I = 3 to 7.3 V	1.782	1.8	1.818	V	
٧٥	Output voltage	T _J = - 40 to 125 °C	1.764		1.836	V	
ΔV_{O}	Load regulation	I _O = 10 mA to 1.5 A		0.2	1.0	%	
ΔV _O	Line regulation	V _I = 3 to 13 V		0.06	0.5	%	
SVR	Supply voltage rejection	$f = 120 \text{ Hz}, V_I = 3.8 \pm 1 \text{ V}, I_O = 0.75 \text{ A}$ (Note 1)	62	72		dB	
		I _O = 250 mA, T _J = - 40 to 125 °C (<i>Note 2</i>)		0.1			
V _{DROP}	Dropout voltage	I _O = 0.75 A, T _J = -40 to 125 °C (<i>Note 2</i>)		0.2		V	
		I _O = 1.5 A, T _J = - 40 to 125 °C (<i>Note 2</i>)		0.4	0.7	1	
		I _O = 0.75 A, T _J = -40 to 125 °C		15	40	mA	
Iq	Quiescent current	I _O = 1.5 A, T _J = - 40 to 125 °C		30	80	IIIA	
		$V_I = 13 \text{ V}, V_{INH} = \text{GND}, T_J = -40 \text{ to } 125^{\circ}\text{C}$		130	180	μA	
I _{sc}	Short circuit current	$V_{I} - V_{O} = 5.5 \text{ V}$		2.2		Α	
V _{IL}	Control input logic low	OFF MODE, (<i>Note 3</i>), T _J = -40 to 125°C			0.8	V	
V _{IH}	Control input logic high	ON MODE, (<i>Note 3</i>), T _J = - 40 to 125 °C	2			V	
I _{INH}	Control input current	T _J = - 40 to 125 °C, V _{INH} = 13 V		5	10	μA	
eN	Output noise voltage	B _P = 10 Hz to 100 kHz, I _O = 100 mA (<i>Note 1</i>)		72		μV _{RMS}	
T _{SHDN}	Thermal shutdown			150		°C	

Note: 1 Guaranteed by design.

- 2 Dropout voltage is defined as the input-to-output differential when the output voltage drops to 99 % of its nominal value with $V_O + 1$ V applied to V_I .
- 3 Only for version with Inhibit function.

Electrical characteristics LD29150

 $\rm I_O$ = 10 mA, $\rm T_J$ = 25 °C, $\rm V_I$ = 4.5 V, $\rm V_{INH}$ = 2 V (*Note 3*), $\rm C_I$ = 330 nF, $\rm C_O$ = 10 $\rm \mu F,$ unless otherwise specified.

Table 5. Electrical characteristics of LD29150#25

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit	
V	Output voltage	I _O = 10 mA to 1.5 A, V _I = 3.5 to 8 V	2.475	2.5	2.525	V	
Vo	Output voltage	$T_{\rm J}$ = - 40 to 125 °C	2.45		2.55	V	
ΔV_{O}	Load regulation	I _O = 10 mA to 1.5 A		0.2	1.0	%	
ΔV _O	Line regulation	V _I = 3.5 to 13 V		0.06	0.5	%	
SVR	Supply voltage rejection	$f = 120 \text{ Hz}, V_I = 4.5 \pm 1 \text{ V}, I_O = 0.75 \text{ A}$ (<i>Note 1</i>)	55	70		dB	
		I_{O} = 250 mA, T_{J} = -40 to 125 °C (<i>Note 2</i>)		0.1			
V_{DROP}	Dropout voltage	I _O = 0.75 A, T _J = -40 to 125 °C (<i>Note 2</i>)		0.2		V	
		I _O = 1.5 A, T _J = -40 to 125 °C (<i>Note 2</i>)		0.4	0.7		
		I _O = 0.75 A, T _J = -40 to 125 °C		15	40	mA	
Iq	Quiescent current	I _O = 1.5 A, T _J = - 40 to 125 °C		30	80	111/4	
		$V_I = 13 \text{ V}, V_{INH} = \text{GND}, T_J = -40 \text{ to } 125^{\circ}\text{C}$		130	180	μA	
I _{sc}	Short circuit current	$V_{I} - V_{O} = 5.5 \text{ V}$		2.2		Α	
V _{IL}	Control input logic low	OFF MODE, (<i>Note 3</i>), $T_J = -40$ to 125 °C			0.8	V	
V_{IH}	Control input logic high	ON MODE, (<i>Note 3</i>), $T_J = -40$ to 125 °C	2			V	
I _{INH}	Control input current	T _J = - 40 to 125 °C, V _{INH} = 13 V		5	10	μA	
eN	Output noise voltage	$B_P = 10 \text{ Hz to } 100 \text{ kHz}, I_O = 100 \text{ mA}$ (<i>Note 1</i>)		100		μV _{RMS}	
T _{SHDN}	Thermal shutdown			150		°C	

Note: 1 Guaranteed by design.

- 2 Dropout voltage is defined as the input-to-output differential when the output voltage drops to 9 9% of its nominal value with $V_{\rm O}$ + 1 V applied to $V_{\rm I}$.
- 3 Only for version with Inhibit function.

8/23 DocID9614 Rev 20

 I_O = 10 mA, T_J = 25 °C, V_I = 5.3 V, V_{INH} = 2 V (*Note 3*), C_I = 330 nF, C_O = 10 μF , unless otherwise specified.

Table 6. Electrical characteristics of LD29150#33

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit	
V	$I_{O} = 10 \text{ mA to } 1.5 \text{ A}, V_{I} = 4.3 \text{ to } 8.8 \text{ V}$		3.267	3.3	3.333	V	
Vo	Output voltage	T _J = - 40 to 125 °C	3.234		3.366	\ \ \	
ΔV_{O}	Load regulation	I _O = 10 mA to 1.5 A		0.2	1.0	%	
ΔV _O	Line regulation	V _I = 4.3 to 13 V		0.06	0.5	%	
SVR	Supply voltage rejection	$f = 120 \text{ Hz}, V_I = 5.3 \pm 1 \text{ V}, I_O = 0.75 \text{ A}$ (<i>Note 1</i>)	52	67		dB	
		$I_{\rm O}$ = 250 mA, $T_{\rm J}$ = -40 to 125 °C (<i>Note 2</i>)		0.1			
V_{DROP}	Dropout voltage	I _O = 0.75 A, T _J = -40 to 125 °C (<i>Note 2</i>)		0.2		V	
		I _O = 1.5 A, T _J = -40 to 125 °C (<i>Note 2</i>)		0.4	0.7		
		I _O = 0.75 A, T _J = -40 to 125 °C		15	40	mA	
Iq	Quiescent current	I _O = 1.5 A, T _J = -40 to 125 °C		30	80	IIIA	
		$V_I = 13 \text{ V}, V_{INH} = \text{GND}, T_J = -40 \text{ to } 125^{\circ}\text{C}$		130	180	μA	
I _{sc}	Short circuit current	V _I - V _O = 5.5 V		2.2		Α	
V _{IL}	Control input logic low	OFF MODE, (<i>Note 3</i>), $T_J = -40$ to 125 °C			0.8	V	
V _{IH}	Control input logic high	ON MODE, (<i>Note 3</i>), T _J = - 40 to 125 °C	2			V	
I _{INH}	Control input current	T _J = - 40 to 125 °C, V _{INH} = 13 V		5	10	μΑ	
eN	Output noise voltage	B _P = 10 Hz to 100 kHz, I _O = 100 mA (<i>Note 1</i>)		132		μV _{RMS}	
T _{SHDN}	Thermal shutdown			150		°C	

Note: 1 Guaranteed by design.

- 2 Dropout voltage is defined as the input-to-output differential when the output voltage drops to 99 % of its nominal value with $V_{\rm O}$ + 1 V applied to $V_{\rm I}$.
- 3 Only for version with Inhibit function.

Electrical characteristics LD29150

 $\rm I_O$ = 10 mA, T $_J$ = 25 °C, V $_I$ = 7 V, V $_{INH}$ = 2 V (*Note 3*), C $_I$ = 330 nF, C $_O$ = 10 μF , unless otherwise specified.

Table 7. Electrical characteristics of LD29150#50

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit	
V	Output voltage	I _O = 10 mA to 1.5 A, V _I = 6 to 10.5 V	4.95	5	5.05	V	
V _O	Output voltage	T _J = - 40 to 125 °C	4.9		5.1	V	
ΔV _O	Load regulation	I _O = 10 mA to 1.5 A		0.2	1.0	%	
ΔV _O	Line regulation	V _I = 6 to 13 V		0.06	0.5	%	
SVR	Supply voltage rejection	$f = 120 \text{ Hz}, V_I = 7 \pm 1 \text{ V}, I_O = 0.75 \text{ A}$ (<i>Note 1</i>)	49	64		dB	
		I_{O} = 250 mA, T_{J} = -40 to 125 °C (<i>Note 2</i>)		0.1			
V_{DROP}	Dropout voltage	I _O = 0.75 A, T _J = -40 to 125 °C (<i>Note 2</i>)		0.2		V	
		I _O = 1.5 A, T _J = -40 to 125 °C (<i>Note 2</i>)		0.4	0.7		
		I _O = 0.75 A, T _J = -40 to 125 °C		15	40	mA	
Iq	Quiescent current	I _O = 1.5 A, T _J = - 40 to 125 °C		30	80	IIIA	
		V _I = 13 V, V _{INH} = GND, T _J = -40 to 125°C		130	180	μA	
I _{sc}	Short circuit current	V _I - V _O = 5.5 V		2.2		Α	
V _{IL}	Control input logic low	OFF MODE, (<i>Note 3</i>), $T_J = -40$ to 125 °C			0.8	V	
V _{IH}	Control input logic high	ON MODE, (<i>Note 3</i>), T _J = - 40 to 125 °C	2			V	
I _{INH}	Control input current	T _J = - 40 to 125 °C, V _{INH} = 13 V		5	10	μA	
eN	Output noise voltage	B _P = 10 Hz to 100 kHz, I _O = 100 mA (<i>Note 1</i>)		200		μV _{RMS}	
T _{SHDN}	Thermal shutdown			150		°C	

Note: 1 Guaranteed by design.

- 2 Dropout voltage is defined as the input-to-output differential when the output voltage drops to 99 % of its nominal value with $V_{\rm O}$ + 1 V applied to $V_{\rm I}$.
- 3 Only for version with Inhibit function.

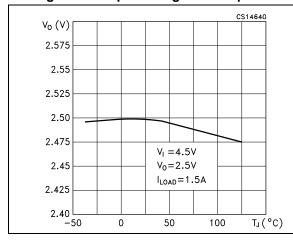
10/23 DocID9614 Rev 20

 I_O = 10 mA, T_J = 25 °C, V_I = 3.23 V, V_{INH} = 2 V (*Note 3*), C_I = 330 nF, C_O = 10 μF adjust pin tied to output pin.

Table 8. Electrical characteristics of LD29150#ADJ

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _I	Minimum operating input voltage	I_{O} = 10 mA to 1.5 A, T_{J} = - 40 to 125 °C	2.5			V
ΔV _O	Load regulation	I _O = 10 mA to 1.5 A		0.2	1.0	%
ΔV _O	Line regulation	V_{I} = 2.5 V to 13 V, I_{O} = 10 mA		0.06	0.5	%
	Poforonoo voltago	I _O = 10 mA to 1.5 A, V _I = 2.5 to 4.5 V	-1%	1.23	+1%	V
V _{REF}	Reference voltage	T _J = - 40 to 125 °C (<i>Note 2</i>)	-2%		+2%	V
SVR	Supply voltage rejection $\begin{cases} f = 120 \text{ Hz}, V_{I} = 3.23 \pm 1 \text{ V}, I_{O} = 0.75 \text{ A} \\ (Note 1) \end{cases}$		75		dB	
		I _O = 0.75 A, T _J = - 40 to 125 °C		15	40	m A
Iq	Quiescent current	I _O = 1.5 A, T _J = -40 to 125 °C		30	80	mA
		V _I = 13 V, V _{INH} = GND, T _J = -40 to 125°C		130	180	μA
I _{ADJ}	Adjust pin current	T _J = - 40 to 125 °C (<i>Note 1</i>)			1	μA
I _{sc}	Short circuit current	V _I - V _O = 5.5 V		2.2		Α
V _{IL}	Control input logic low	OFF MODE, (<i>Note 3</i>),T _J = - 40 to 125 °C			8.0	V
V _{IH}	Control input logic high	ON MODE, (<i>Note 3</i>), T _J = - 40 to 125 °C	2			V
I _{INH}	Control input current	T _J = - 40 to 125 °C, V _{INH} = 13 V		5	10	μA
eN	Output noise voltage	B _P = 10 Hz to 100 kHz, I _O = 100 mA (<i>Note 1</i>)		50		μV _{RMS}
T _{SHDN}	Thermal shutdown			150		°C

Note: 1 Guaranteed by design.


- 2 Reference voltage is measured between output and GND pin, with ADJ PIN tied to V_{OUT} .
- 3 Only for version with Inhibit function.

Typical characteristics LD29150

6 Typical characteristics

Figure 5. Output voltage vs. temperature

Figure 6. Reference voltage vs. temperature

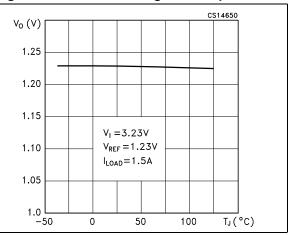
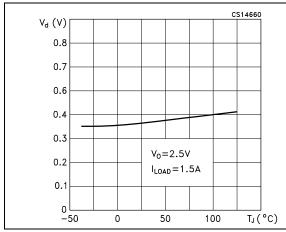



Figure 7. Dropout voltage vs. temperature

Figure 8. Dropout voltage vs. output current

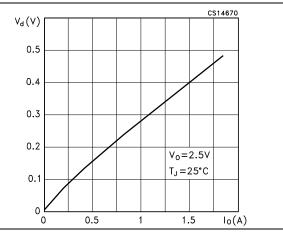
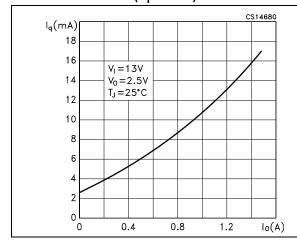
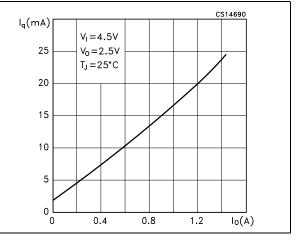




Figure 9. Quiescent current vs. output current $(V_1 = 13 \text{ V})$ Figure 10. Quiescent current vs. output current $(V_1 = 4.5 \text{ V})$

12/23 DocID9614 Rev 20

Figure 11. Quiescent current vs. supply voltage Figure 12. Quiescent current vs. temperature $(I_O = 10 \text{ mA})$

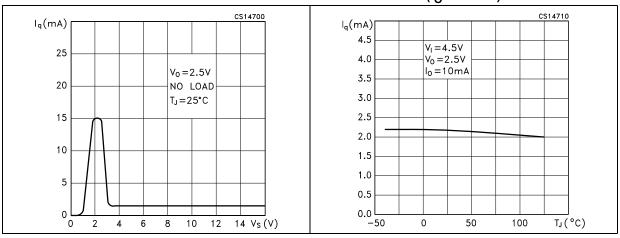


Figure 13. Quiescent current vs. temperature $(I_O = 1.5 \text{ A})$

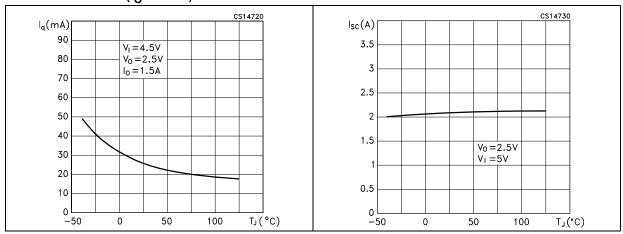
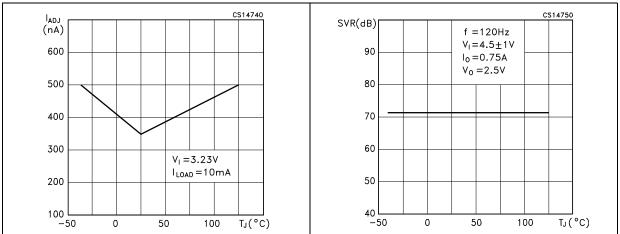



Figure 15. Adjust pin current vs. temperature

Figure 16. Supply voltage rejection vs. temperature

577

DocID9614 Rev 20

13/23

Figure 17. Output voltage vs. input voltage

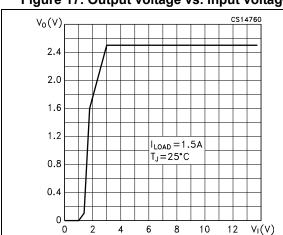


Figure 18. Stability vs. C_O

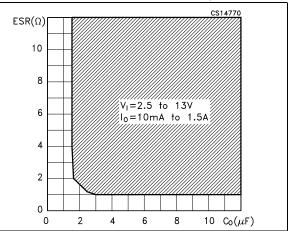


Figure 19. Line transient

V₁ V₂ 10.0mV M 10.0μs Ch4 4.88 V V₁=3.5 to 5.5V, I_O=10mA, V_O=2.5V, C_O=10μF

Figure 20. Load transient

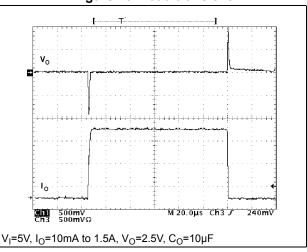


Figure 21. Start-up time 10 mA

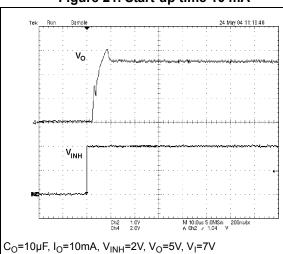
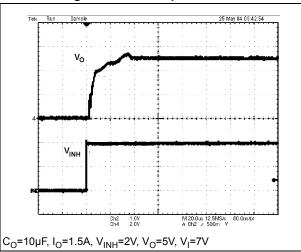



Figure 22. Start-up time 1.5 A

57

LD29150 Package information

7 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: www.st.com. ECOPACK[®] is an ST trademark.

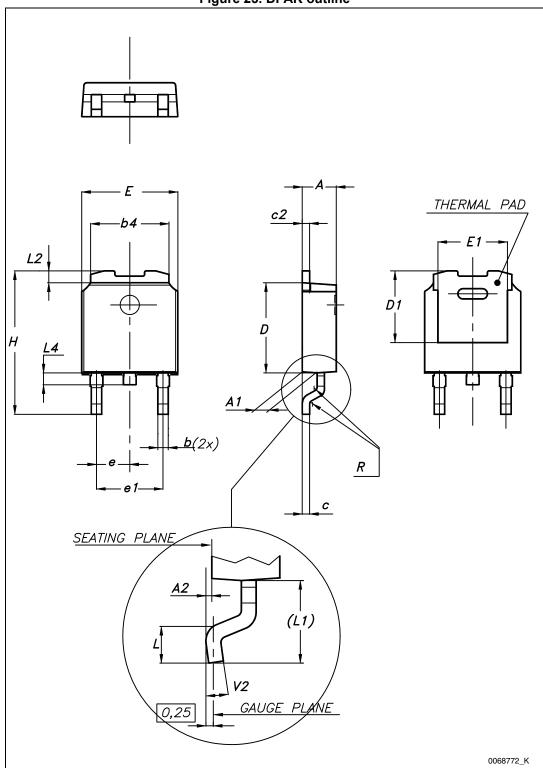

7.1 DPAK package information

Table 9. DPAK mechanical data

Dim.	mm				
Dilli.	Min.	Тур.	Max.		
А	2.20		2.40		
A1	0.90		1.10		
A2	0.03		0.23		
b	0.64		0.90		
b4	5.20		5.40		
С	0.45		0.60		
c2	0.48		0.60		
D	6.00		6.20		
D1		5.10			
E	6.40		6.60		
E1		4.70			
е		2.28			
e1	4.40		4.60		
Н	9.35		10.10		
L	1.00		1.50		
(L1)		2.80			
L2		0.80			
L4	0.60		1.00		
R		0.20			
V2	0°		8°		

Package information LD29150

Figure 23. DPAK outline

LD29150 Package information

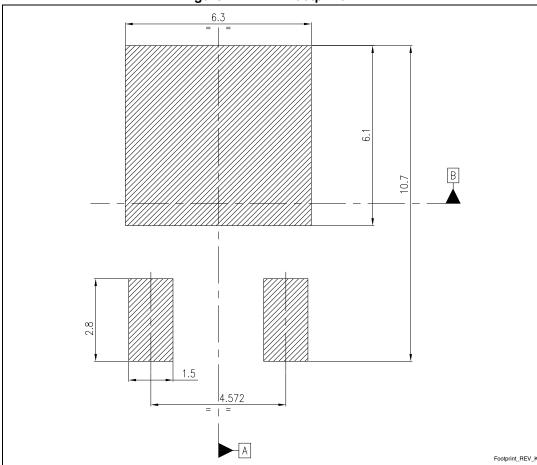


Figure 24. DPAK footprint (a)

a. All dimensions are in millimeters

Package information LD29150

7.2 PPAK package information

Table 10. PPAK mechanical data

Dim.	mm				
Dilli.	Min.	Тур.	Max.		
А	2.2		2.4		
A1	0.9		1.1		
A2	0.03		0.23		
В	0.4		0.6		
B2	5.2		5.4		
С	0.45		0.6		
C2	0.48		0.6		
D	6		6.2		
D1		5.1			
Е	6.4		6.6		
E1		4.7			
е		1.27			
G	4.9		5.25		
G1	2.38		2.7		
Н	9.35		10.1		
L2		0.8	1		
L4	0.6		1		
L5	1				
L6		2.8			
R		0.20			
V2	0°		8°		

LD29150 Package information

"GATE" Note 6 E -THERMAL PAD B2-E1 L2 D1 D **L4** A1 B (4x) Note 7 R C G -SEATING PLANE Ľ6 L5 GAUGE PLANE 0,25 0078180_F

Figure 25. PPAK outline

8 Packaging information

8.1 PPAK and DPAK packaging information

Table 11. PPAK and DPAK tape and reel mechanical data

Таре				Reel		
Dim.	r	nm	Dim.	mm		
Dilli.	Min.	Max.	Dilli.	Min.	Max.	
A0	6.8	7	Α		330	
В0	10.4	10.6	В	1.5		
B1		12.1	С	12.8	13.2	
D	1.5	1.6	D	20.2		
D1	1.5		G	16.4	18.4	
Е	1.65	1.85	N	50		
F	7.4	7.6	Т		22.4	
K0	2.55	2.75				
P0	3.9	4.1		Base qty.	2500	
P1	7.9	8.1		Bulk qty.	2500	
P2	1.9	2.1				
R	40					
Т	0.25	0.35				
W	15.7	16.3				

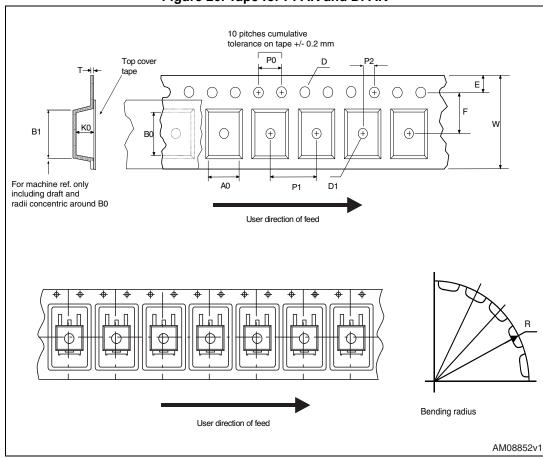
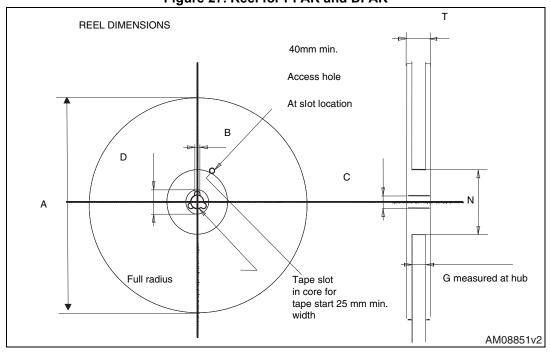



Figure 26. Tape for PPAK and DPAK

DocID9614 Rev 20

Revision history LD29150

9 Revision history

Table 12. Document revision history

Date	Revision	Changes
17-Jun-2004	5	Add figures 20 and 21, PPAK, TO-220 and TO-220FP mechanical data updated.
19-Jul-2004	6	Remove Package TO-220FP4.
08-Nov-2004	7	Mistake Figure 7.
21-Mar-2005	8	Add V _O and V _{INH} on Table 2.
21-Oct-2005	9	Order Codes Has Been Updated.
17-Oct-2006	10	Add new package P²PAK.
13-Nov-2006	11	Add row T _{SHDN} on tables of the electrical characteristics.
11-May-2007	12	Order codes updated.
15-Feb-2008	13	Added: Table 1 on page 1.
28-Jul-2009	14	Modified: Table 1 on page 1.
22-Sep-2010	15	Modified: Table 1 on page 1.
27-Oct-2010	16	Updated: DPAK mechanical data on page 25.
07-May-2012	17	Modified: pin connections for PPAK, P ² PAK and DPAK <i>Figure 3 on page 4</i> .
06-Sep-2012	18	Updated: figure for P²PAK in cover page.
30-Oct-2013	19	Changed the LD29150XX to LD29150. Updated: Description in cover page. Updated Section 5: Electrical characteristics and Section 7: Package mechanical data. Added Section 8: Packaging mechanical data. Minor text changes.
30-Aug-2017	20	Removed P²PAK package option (order code LD29150P2T33R)

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2017 STMicroelectronics – All rights reserved

DocID9614 Rev 20 23/23