500 mA Negative Voltage Regulators

The MC79M00 series of fixed output negative voltage regulators are intended as complements to the popular MC78M00 series devices.

Available in fixed output voltage options of -5.0 V, -8.0 V, -12 V and -15 V, these regulators employ current limiting, thermal shutdown, and safe-area compensation, making them remarkably rugged under most operating conditions. With adequate heatsinking they can deliver output currents in excess of 0.5 A.

Features

- No External Components Required
- Internal Thermal Overload Protection
- Internal Short Circuit Current Limiting
- Output Transistor Safe-Area Compensation
- Also Available in Surface Mount DPAK (DT) Package
- Pb-Free Packages are Available

DEVICE TYPE/NOMINAL OUTPUT VOLTAGE

Device	Nominal Output Voltage
MC79M05	–5.0 V
MC79M08	–8.0 V
MC79M12	–12 V
MC79M15	–15 V

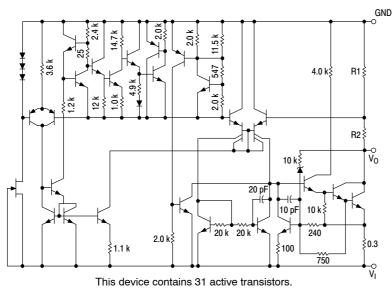
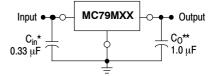
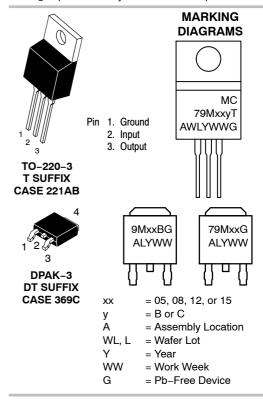


Figure 1. Representative Schematic Diagram



ON Semiconductor®

http://onsemi.com


THREE-TERMINAL NEGATIVE FIXED VOLTAGE REGULATORS

STANDARD APPLICATION

A common ground is required between the input and the output voltages. The input voltage must remain typically 1.1 V more negative even during the high point of the input ripple voltage. XX These two digits of the type number indicate nominal voltage.

 C_{in} is required if regulator is located an appreciable distance from power supply filter.
C_O improve stability and transient response.

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 6 of this data sheet.

MAXIMUM RATINGS (T_A = 25°C, unless otherwise noted.)

Rating	Symbol	Value	Unit
Input Voltage	VI	-35	Vdc
Power Dissipation			
Case 221A (TO-220-3)			
$T_A = 25^{\circ}C$	PD	Internally Limited	W
Thermal Resistance, Junction-to-Ambient	θ_{JA}	65	°C/W
Thermal Resistance, Junction-to-Case	θ _{JC}	5.0	°C/W
Case 369C (DPAK-3)			
$T_A = 25^{\circ}C$	PD	Internally Limited	W
Thermal Resistance, Junction-to-Ambient	θ_{JA}	92	°C/W
Thermal Resistance, Junction-to-Case	θ _{JC}	6.0	°C/W
Storage Junction Temperature	T _{stg}	-65 to +150	°C
Operating Junction Temperature Range	ТJ	-40 to +150	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

*This device series contains ESD protection and exceeds the following tests: Human Body Model 2000 V per MIL_STD_883, Method 3015

Machine Model Method 200 V

MC79M05B, C ELECTRICAL CHARACTERISTICS (V_I = -10 V, I_O = 350 mA, T_{low} to T_{high} (Note 2), unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
Output Voltage ($T_J = 25^{\circ}C$)	Vo	-4.8	-5.0	-5.2	Vdc
$ \begin{array}{l} \mbox{Line Regulation, } T_J = 25^\circ C \ (\mbox{Note 1}) \\ -7.0 \ \mbox{Vdc} \geq \mbox{V}_l \geq -25 \ \mbox{Vdc} \\ -8.0 \ \mbox{Vdc} \geq \mbox{V}_l \geq -18 \ \mbox{Vdc} \end{array} $	Reg _{line}		7.0 2.0	50 30	mV
Load Regulation, T_J = 25°C (Note 1) 5.0 mA $\leq I_O \leq$ 500 mA	Reg _{load}	_	30	100	mV
Output Voltage -7.0 Vdc \geq VI \geq -25 Vdc, 5.0 mA \leq IO \leq 350 mA	V _O	-4.75	-	-5.25	Vdc
Input Bias Current ($T_J = 25^{\circ}C$)	I _{IB}	-	4.3	8.0	mA
Input Bias Current Change -8.0 Vdc \geq V_l \geq -25 Vdc, I_O = 350 mA 5.0 mA \leq I_O \leq 350 mA, V_l = -10 V	ΔI _{IB}			0.4 0.4	mA
Output Noise Voltage, T_A = 25°C, 10 Hz \leq f \leq 100 kHz	V _n	-	40	-	μV
Ripple Rejection (f = 120 Hz)	RR	54	66	-	dB
Dropout Voltage $I_O = 500 \text{ mA}, T_J = 25^{\circ}\text{C}$	V _I –V _O	_	1.1	_	Vdc
Average Temperature Coefficient of Output Voltage I_{O} = 5.0 mA, 0°C \leq T_{J} \leq 125°C	$\Delta V_{O} / \Delta T$	_	0.2	_	mV/°C

Load and line regulation are specified at constant temperature. Change in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.
B = T_{low} to T_{high}, -40°C < T_J < 125°C C = T_{low} to T_{high}, 0°C < T_J < 125°C.

MC79M08B, C

ELECTRICAL CHARACTERISTICS (VI = -10 V, IO = 350 mA, Tlow to Thigh (Note 4), unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
Output Voltage (T _J = 25° C)	Vo	-7.7	-8.0	-8.3	Vdc
$ \begin{array}{l} \text{Line Regulation, } T_J = 25^\circ C \ (\text{Note 3}) \\ -10.5 \ \text{Vdc} \geq V_I \geq -25 \ \text{Vdc} \\ -11 \ \text{Vdc} \geq V_I \geq -21 \ \text{Vdc} \end{array} $	Reg _{line}	-	5.0 3.0	80 50	mV
Load Regulation, T _J = 25°C (Note 3) 5.0 mA \leq I _O \leq 500 mA	Reg _{load}	_	30	100	mV
Output Voltage -10.5 Vdc \geq V _I \geq -25 Vdc, 5.0 mA \leq I _O \leq 350 mA	Vo	-7.6	-8.0	-8.4	Vdc
Input Bias Current ($T_J = 25^{\circ}C$)	I _{IB}	-	-	8.0	mA
Input Bias Current Change -10.5 Vdc \geq V _I \geq -25 Vdc, I _O = 350 mA 5.0 mA \leq I _O \leq 350 mA, V _I = -10 V	Δl _{IB}	- -		0.4 0.4	mA
Output Noise Voltage, T_A = 25°C, 10 Hz \leq f \leq 100 kHz	V _n	-	60	-	μV
Ripple Rejection (f = 120 Hz)	RR	54	63	-	dB
Dropout Voltage $I_0 = 500 \text{ mA}, T_J = 25^{\circ}\text{C}$	V _I –V _O	_	1.1	_	Vdc
Average Temperature Coefficient of Output Voltage I_{O} = 5.0 mA, 0°C \leq T_{J} \leq 125°C	$\Delta V_O / \Delta T$	_	0.4	_	mV/°C

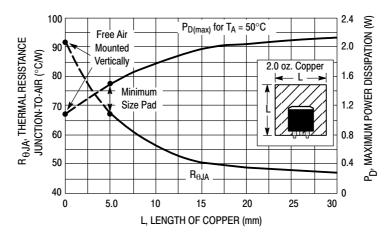
3. Load and line regulation are specified at constant temperature. Change in V_O due to heating effects must be taken into account separately.

Pulse testing with low duty cycle is used. 4. $B = T_{low}$ to T_{high} , $-40^{\circ}C < T_J < 125^{\circ}C$ $C = T_{low}$ to T_{high} , $0^{\circ}C < T_J < 125^{\circ}C$

MC79M12B, C ELECTRICAL CHARACTERISTICS (VI = -19 V, IO = 350 mA, Tlow to Thigh (Note 6), unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
Output Voltage (T _J = 25° C)	V _O	-11.5	-12	-12.5	Vdc
Line Regulation, $T_J = 25^{\circ}C$ (Note 5) -14.5 Vdc $\ge V_I \ge -30$ Vdc -15 Vdc $\ge V_I \ge -25$ Vdc	Reg _{line}		5.0 3.0	80 50	mV
Load Regulation, T_J = 25°C (Note 5) 5.0 mA $\leq I_O \leq$ 500 mA	Reg _{load}	-	30	240	mV
Output Voltage -14.5 Vdc \geq VI \geq -30 Vdc, 5.0 mA \leq IO \leq 350 mA	V _O	-11.4	-	-12.6	Vdc
Input Bias Current (T _J = 25°C)	I _{IB}	-	4.4	8.0	mA
Input Bias Current Change -14.5 Vdc \geq V _I \geq -30 Vdc, I _O = 350 mA 5.0 mA \leq I _O \leq 350 mA, V _I = -19 V	Δl _{lB}		-	0.4 0.4	mA
Output Noise Voltage, T_A = 25°C, 10 Hz \leq f \leq 100 kHz	V _n	-	75	-	μV
Ripple Rejection (f = 120 Hz)	RR	54	60	-	dB
Dropout Voltage $I_O = 500 \text{ mA}, \text{ T}_J = 25^{\circ}\text{C}$	V _I –V _O	-	1.1	-	Vdc
Average Temperature Coefficient of Output Voltage I_{O} = 5.0 mA, 0°C \leq T_{J} \leq 125°C	$\Delta V_O / \Delta T$	-	-0.8	_	mV/°C

Load and line regulation are specified at constant temperature. Change in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.
B = T_{low} to T_{high}, -40°C < T_J < 125°C C = T_{low} to T_{high}, 0°C < T_J < 125°C


MC79M15B, C

ELECTRICAL CHARACTERISTICS ($V_1 = -23 V$, $I_0 = 350 mA$, T_{low} to T_{high} (Note 8), unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
Output Voltage (T _J = 25° C)	Vo	-14.4	-15	-15.6	Vdc
$ \begin{array}{l} \mbox{Line Regulation, } T_J = 25^\circ C \ (\mbox{Note 7}) \\ -17.5 \ \mbox{Vdc} \geq V_I \geq -30 \ \ \mbox{Vdc} \\ -18 \ \ \mbox{Vdc} \geq V_I \geq -28 \ \ \mbox{Vdc} \\ \end{array} $	Reg _{line}		5.0 3.0	80 50	mV
Load Regulation, T _J = 25°C (Note 7) 5.0 mA \leq I _O \leq 500 mA	Reg _{load}	_	30	240	mV
Output Voltage _17.5 Vdc \geq VI \geq –30 Vdc, 5.0 mA \leq I_O \leq 350 mA	V _O	-14.25	-	-15.75	Vdc
Input Bias Current (T _J = 25°C)	I _{IB}	-	4.4	8.0	mA
Input Bias Current Change -17.5 Vdc \geq V _I \geq -30 Vdc, I _O = 350 mA 5.0 mA \leq I _O \leq 350 mA, V _I = -23 V	ΔI _{IB}			0.4 0.4	mA
Output Noise Voltage, T_A = 25°C, 10 Hz \leq f \leq 100 kHz	V _n	-	90	-	μV
Ripple Rejection (f = 120 Hz)	RR	54	60	-	dB
Dropout Voltage $I_0 = 500 \text{ mA}, T_J = 25^{\circ}\text{C}$	V _I –V _O	_	1.1	_	Vdc
Average Temperature Coefficient of Output Voltage I_{O} = 5.0 mA, 0°C \leq T_{J} \leq 125°C	$\Delta V_{O} / \Delta T$	_	-1.0	_	mV/°C

 Load and line regulation are specified at constant temperature. Change in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

Pulse testing with low duty cycle is used. 8. B = T_{low} to T_{high}, -40°C < T_J < 125°C C = T_{low} to T_{high}, 0°C < T_J < 125°C

Protection Diodes

When external capacitors are used with MC79M00 series regulator it is sometimes necessary to add protection diodes to prevent the capacitors from discharging through low current points into the regulator or from output polarity reversals. Generally, no protection diode is required for values of output capacitance less then 10μ F. Figure 2 shows the MC79M15 with the recommended protection diodes.

• Opposite Polarity Protection

Diode D1 protects the regulator from output polarity reversals during startup, power off and short-circuit operation.

• Reverse-bias Protection

Diode D2 prevents output capacitor from discharging thru the MC79M15 during an input short circuit or fast switch off of power supply.

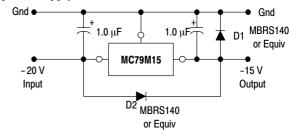
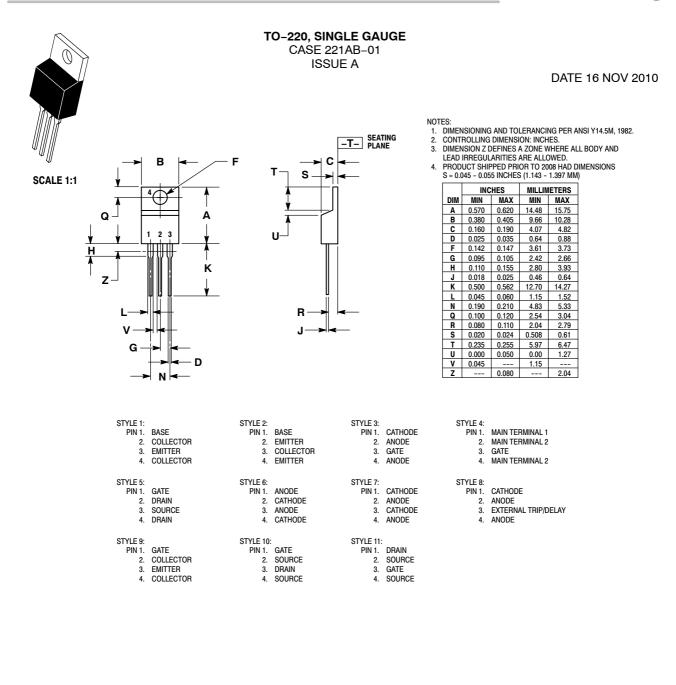


Figure 2. Protection Diodes

ORDERING INFORMATION

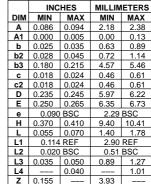
Device	Output Voltage Tolerance	Operating Temperature Range	Package	Shipping [†]
MC79M05BDT			DPAK	75 Units / Rail
MC79M05BDTG			DPAK (Pb-Free)	75 Units / Rail
MC79M05BDTRK			DPAK	2500 Units / Reel
MC79M05BDTRKG		$T_J = -40^{\circ}C$ to $+125^{\circ}C$	DPAK (Pb–Free)	2500 Units / Reel
MC79M05BT			TO-220	50 Units / Rail
MC79M05BTG			TO-220 (Pb-Free)	50 Units / Rail
MC79M05CDT	_		DPAK	75 Units / Rail
MC79M05CDTG			DPAK (Pb-Free)	75 Units / Rail
MC79M05CDTRK			DPAK	2500 Units / Reel
MC79M05CDTRKG		$T_J = 0^{\circ}C$ to +125°C	DPAK (Pb–Free)	2500 Units / Reel
MC79M05CT			TO-220	50 Units / Rail
MC79M05CTG			TO-220 (Pb-Free)	50 Units / Rail
MC79M08BDT			DPAK	75 Units / Rail
MC79M08BDTRK			DPAK	2500 Units / Reel
MC79M08BDTRKG		T _J = −40°C to +125°C	DPAK (Pb–Free)	2500 Units / Reel
MC79M08BT			TO-220	50 Units / Rail
MC79M08BTG			TO-220 (Pb-Free)	50 Units / Rail
MC79M08CDT	4.0%		DPAK	75 Units / Rail
MC79M08CDTG	1.070		DPAK (Pb–Free)	75 Units / Rail
MC79M08CDTRK			DPAK	2500 Units / Reel
MC79M08CDTRKG		$T_J = 0^{\circ}C \text{ to } +125^{\circ}C$	DPAK (Pb–Free)	2500 Units / Reel
MC79M08CT			TO-220	50 Units / Rail
MC79M08CTG			TO-220 (Pb-Free)	50 Units / Rail
MC79M12BDT			DPAK	75 Units / Rail
MC79M12BDTG			DPAK (Pb–Free)	75 Units / Rail
MC79M12BDTRK			DPAK	2500 Units / Reel
MC79M12BDTRKG		$T_J = -40^{\circ}C$ to $+125^{\circ}C$	DPAK (Pb–Free)	2500 Units / Reel
MC79M12BT		ľ	TO-220	50 Units / Rail
MC79M12BTG		l l	TO-220 (Pb-Free)	50 Units / Rail
MC79M12CDT			DPAK	75 Units / Rail
MC79M12CDTG			DPAK (Pb–Free)	75 Units / Rail
MC79M12CDTRK	-	F	DPAK	2500 Units / Reel
MC79M12CDTRKG		$T_J = 0^{\circ}C$ to +125°C	DPAK (Pb-Free)	2500 Units / Reel
MC79M12CT		ľ	TO-220	50 Units / Rail
MC79M12CTG		Ī	TO-220 (Pb-Free)	50 Units / Rail

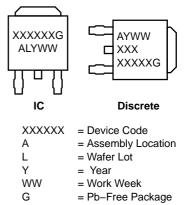

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

ORDERING INFORMATION

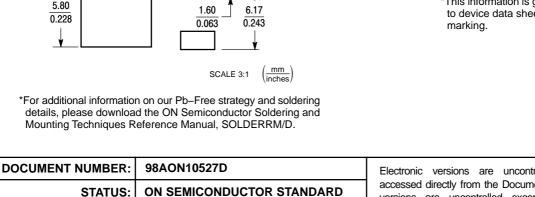
Device	Output Voltage Tolerance	Operating Temperature Range	Package	Shipping†
MC79M15BDT			DPAK	75 Units / Rail
MC79M15BDTG			DPAK (Pb-Free)	75 Units / Rail
MC79M15BDTRK			DPAK	2500 Units / Reel
MC79M15BDTRKG		$T_J = -40^{\circ}C$ to $+125^{\circ}C$	DPAK (Pb-Free)	2500 Units / Reel
MC79M15BT			TO-220	50 Units / Rail
MC79M15BTG			TO-220 (Pb-Free)	50 Units / Rail
MC79M15CDT	4.0%		DPAK	75 Units / Rail
MC79M15CDTG			DPAK (Pb-Free)	75 Units / Rail
MC79M15CDTRK			DPAK	2500 Units / Reel
MC79M15CDTRKG		$T_J = 0^{\circ}C$ to $+125^{\circ}C$	DPAK (Pb-Free)	2500 Units / Reel
MC79M15CT	1		TO-220	50 Units / Rail
MC79M15CTG]		TO-220 (Pb-Free)	50 Units / Rail

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.



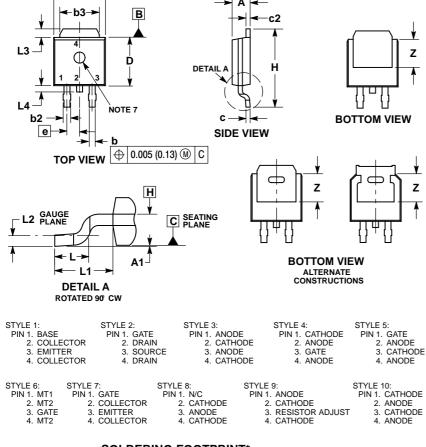

DOCUMENT NUMBER:	98AON23085D	Electronic versions are uncontrolled except when accessed directly from the Document Reposit Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	TO-220, SINGLE GAUGE		PAGE 1 OF 1
the suitability of its products for any pa	articular purpose, nor does ON Semiconducto	stries, LLC dba ON Semiconductor or its subsidiaries in the United States y products herein. ON Semiconductor makes no warranty, representation r assume any liability arising out of the application or use of any product or icidental damages. ON Semiconductor does not convey any license under	r circuit, and specifically

Α

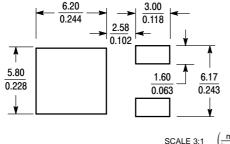

z

GENERIC **MARKING DIAGRAM***

*This information is generic. Please refer to device data sheet for actual part


Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED CORV" in rod

NEW STANDARD:	REF TO JEDEC TO-252	CONTROLLED COPT IN Ted.	
DESCRIPTION:	DPAK SINGLE GAUGE SURFACE MOU	NT	PAGE 1 OF 2


3 SCALE 1:1

4

E

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor

DOCUMENT NUMBER: 98AON10527D

PAGE 2 OF 2

ISSUE	REVISION	DATE
0	RELEASED FOR PRODUCTION. REQ. BY L. GAN	24 SEP 2001
А	ADDED STYLE 8. REQ. BY S. ALLEN.	06 AUG 2008
В	ADDED STYLE 9. REQ. BY D. WARNER.	16 JAN 2009
С	ADDED STYLE 10. REQ. BY S. ALLEN.	09 JUN 2009
D	RELABELED DRAWING TO JEDEC STANDARDS. ADDED SIDE VIEW DETAIL A. CORRECTED MARKING INFORMATION. REQ. BY D. TRUHITTE.	29 JUN 2010
E	ADDED ALTERNATE CONSTRUCTION BOTTOM VIEW. MODIFIED DIMENSIONS b2 AND L1. CORRECTED MARKING DIAGRAM FOR DISCRETE. REQ. BY I. CAM-BALIZA.	06 FEB 2014
F	ADDED SECOND ALTERNATE CONSTRUCTION BOTTOM VIEW. REQ. BY K. MUSTAFA.	21 JUL 2015

ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters which may be rowided for each customer applications by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications in the SCILLC product create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

© Semiconductor Components Industries, LLC, 2015 July, 2015 – Rev. F

Downloaded from Arrow.com.

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer specincations can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com

TECHNICAL SUPPORT

ON Semiconductor Website: www.onsemi.com

North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative

 \Diamond