CT310 December 2021

CT310

XtremeSense® 2D TMR Angular Sensor

Features

- Angular Error less than 0.30° (After Compensation)
 Over Full Temperature Range
- Dual Full-Bridge Resistor Network
- Operating Magnetic Field: 25 mT to 90 mT
- Differential Outputs for SIN and COS Axes
- Supply Voltage: 1.0 V to 5.5 V
- AEC-Q100 Grade 1 (Under Qualification)
- Package Options:
 - 8-lead TSSOP
 - \circ 8-lead DFN, $2.00 \times 2.00 \times 0.45$ mm
 - o KGD (Known Good Die) in Wafer Form

Applications

- Angular Measurements
- Rotary and Angular Sensors
- BLDC Motors

Product Description

The CT310 is a 2D angular sensor in a dual full-bridge configuration from Crocus Technology developed on its patented XtremeSense® 2D TMR technology. The operating magnetic field for this 2D sensor is 25 mT to 90 mT and has an angular error less than 0.30° after compensation over the full operating temperature range. Unlike linear sensors, the CT310 operates in saturation mode and as such the effects from an external magnetic field has minimal impact on its performance. The CT310 has excellent performance which helps it to achieve excellent stability over the full temperature range. It has differential outputs for both sine (SIN) and cosine (COS) axes and operates with a supply voltage range from 1.0 V to 5.5 V.

It is packaged in an 8-lead TSSOP package and for applications where space is critical, a low profile, small form factor 8-lead DFN package that is $2.00\times2.00\times0.45$ mm in size. The CT310 is also made available in die form where it will be shipped as unsawn wafers (wafer map files will be provided to indicate known good die).

Ordering Information

Part Number	Operating Temperature Range	Auto Grade	Angular Error ⁽¹⁾	Output Type	Package	Packing Method	
CT310LS-IT8	-40°C to +85°C	-					
CT310LS-HT8	-40°C to +125°C	-	0.30°	Differential	8-lead TSSOP	Tape &	
CT310LS-AT8	-40 0 10 +123 0	Grade 1	0.30	Dillerential	6.40 x 3.05 x 1.10 mm	Reel	
CT310LS-FT8	-40°C to +150°C	-					
CT310LS-ID8	-40°C to +85°C	-			0 load DEN	T 0	
CT310LS-HD8	-40°C to +125°C	-	0.30°	Differential	8-lead DFN 2.00 x 2.00 x 0.45 mm	Tape & Reel	
CT310LS-FD8	-40°C to +150°C	-			2.00 X 2.00 X 0.43 IIIII	rteer	
CT310LS-KGD	-40°C to +150°C		0.30°	Differential	Wafer Form	Unsawn	
CT310LS-AKGD	-40°C to +125°C	Grade 1	0.30	Dilleterillar	VValei FUIII	Wafer	

(1) After Compensation

Block Diagram

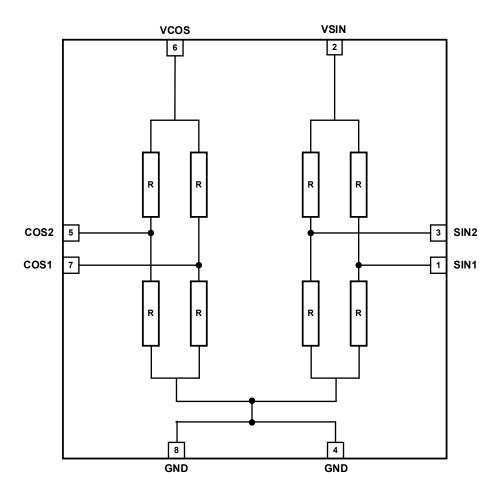
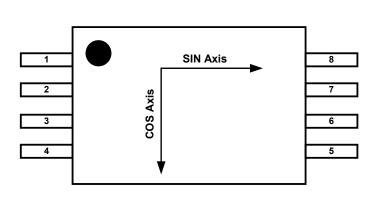
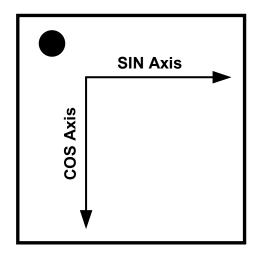
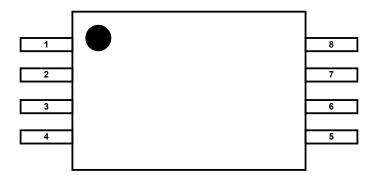



Figure 1. CT310 Functional Block Diagram

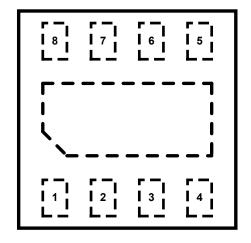
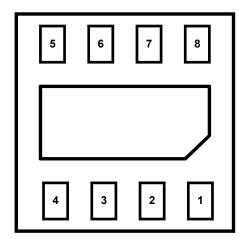

Figure 2. CT310 Axes of Sensitivity for TSSOP-8

Figure 3. CT310 Axes of Sensitivity for DFN-8

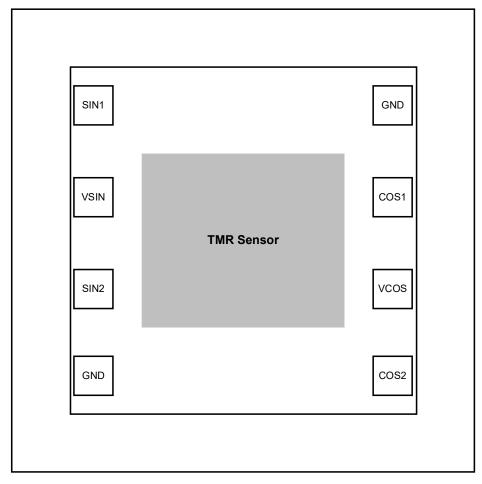

Pin Configurations

TSSOP-8 - Top-Down View

DFN-8 – Top-Down View

DFN-8 – Bottoms Up View

Figure 4. CT310 Pin-out Diagrams


Pin Definitions

TSSOP-8 Pin #	DFN-8 Pin #	Pin Name	Pin Description
1	1	SIN1 ⁽¹⁾	Differential output #1 for sine.
2	2	VSIN	Supply voltage for sine
3	3	SIN2 ⁽¹⁾	Differential output #2 for sine.
4	4	GND	Ground for sine.
5	5	COS2 ⁽²⁾	Differential output #2 for cosine.
6	6	vcos	Supply voltage for cosine
7	7	COS1 ⁽²⁾	Differential output #1 for cosine.
8	8	GND	Ground for cosine.

⁽¹⁾ SIN2 - SIN1 = SIN

⁽²⁾ COS2 - COS1 = COS

Pad Configuration

CT310 Die Layout **Top-Down View**

Figure 5. CT310 Pad Diagram

Pad Definitions

Pad #	Pad Name	Pad Description
1	SIN1 ⁽¹⁾	Differential output #1 for sine.
2	VSIN	Supply voltage for sine
3	SIN2 ⁽¹⁾	Differential output #2 for sine.
4	GND	Ground for sine.
5	COS2 ⁽²⁾	Differential output #2 for cosine.
6	vcos	Supply voltage for cosine
7	COS1 ⁽²⁾	Differential output #1 for cosine.
8	GND	Ground for cosine.

⁽¹⁾ SIN2 – SIN1 = SIN (2) COS2 – COS1 = COS

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the CT310 and may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter	Min.	Max.	Unit	
V _{COS} , V _{SIN}	Supply Voltage		-0.3	6.0	V
Vouт	Analog Output Pins Maximum	Differential Voltage		±1.5	V
FCD	Electrostatic Discharge	Human Body Model (HBM) per JESD22-A114	±4.0		14/
ESD	Protection Level	Charged Device Model (CDM) per JESD22-C101	±1.0		kV
Вмах	Maximum Magnetic Field, ≤ 5	minutes at T _A = +25°C		±200	mT
Вѕнігт	Life-time Shift		TBD	٥	
Tstg	Storage Temperature		-65	+165	°C
TL	Lead Soldering Temperature,	10 Seconds		+260	°C

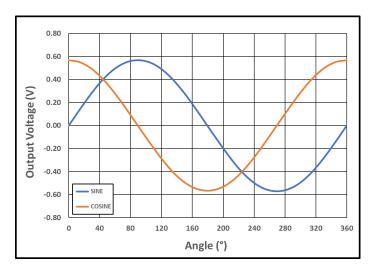
Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual operation of the CT310. Recommended operating conditions are specified to ensure optimal performance to the specifications. Crocus Technology does not recommend exceeding them or designing to absolute maximum ratings.

Symbol	Parameter	Min.	Тур.	Max.	Unit	
Vcos, Vsin	Supply Voltage Range	Supply Voltage Range			5.5	V
V _{COS_D} , V _{SIN_D}	COS and SIN Differential Output Vo	-1.37		+1.37	V	
BOPERATING	Operating Magnetic Field	25		90	mT	
		Industrial	-40	+25	+85	
т.	Operating Ambient Temperature	Extended Industrial	-40	+25	+125	°C
TA		Automotive	-40	+25	+125	
		-40	+25	+150		

Electrical & Magnetic Specifications

Unless otherwise specified: V_{DD} = 1.0 V to 5.5 V, C_{BYP} = 0.1 μF , $B_{OPERATING}$ = 25 mT to 90 mT and T_A = -40°C to +150°C. Typical values are V_{DD} = 3.0 V and T_A = +25°C.


Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units	
Magnetic				•	•	•	
BOPERATING	Operating Magnetic Field		25	60	90	mT	
Electrical						•	
RBRIDGE	Bridge Resistance	T _A = +25°C	3.0	4.5	6.0	kΩ	
TCR	Temperature Coefficient of Resistance (1)			500		ppm/°C	
Differential	Outputs						
$\theta_{\sf ERR}$	Angular Error (2)	After Compensation		0.30	0.60	0	
$ heta$ ERR_20mT	Angular Error @ 20 mT (1), (2)	After Compensation, B _{OPERATING} = 20 mT			0.90	o	
θ_{ERR_HYST}	Angle Error due to Hysteresis		N	No Hysteresis			
V _{SIN_D} , V _{COS_D}	SIN, COS Differential Output Voltage Peak-to-Peak	T _A = +25°C	0.35	0.45	0.50	V/V	
TCV _{OUT}	Temperature Coefficient of Differential Output (1)			-1600		ppm/°C	
Voff_sin, Voff_cos	SIN, COS Voltage Offset			±1	±5	mV/V	
k	SIN, COS Amplitude Synchronism Ratio		97	100	103	%	
TCk	Temperature Coefficient of Amplitude Synchronism (1)			3.0		ppm/°C	
OE _{SIN} , OE _{COS}	SIN, COS Orthogonality Error		88	90	92	٥	
tresponse	SIN, COS Response Time (1)	C _L = 22 pF		1.0		μs	
en	Noise (1)	f _{BW} = 1 Hz to 10 kHz, V _{DD} = 3.0 V		2.4		μV _{RMS} /V	

⁽¹⁾ Guaranteed by design and characterization.

⁽²⁾ Hysteresis error and output noise are included in the Angular Error specification.

Electrical Characteristics

 V_{DD} = 3.0 V and T_A = +25°C

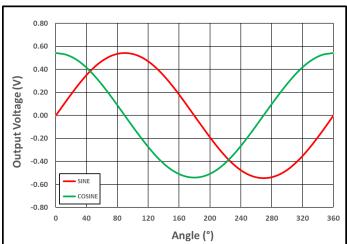
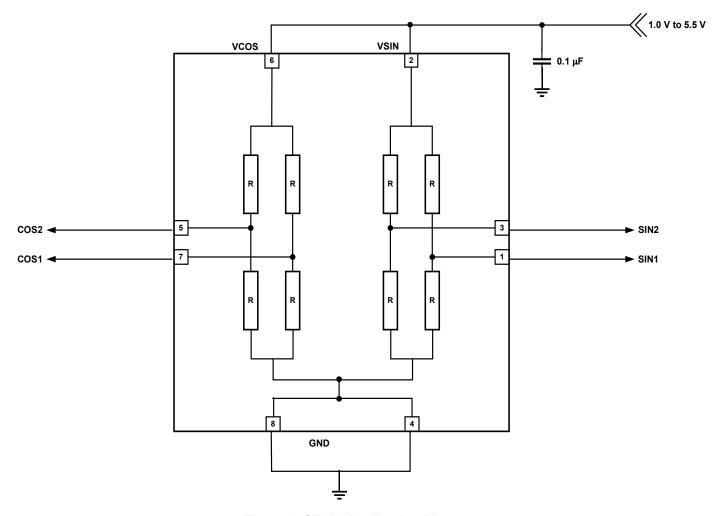


Figure 7. Output Voltage vs. Angle at $B_{OP} = 90 \text{ mT}$

Recommended Application Circuit



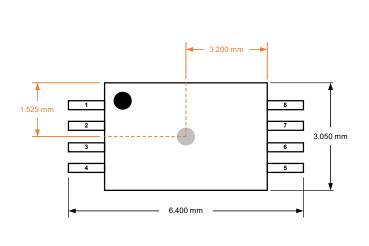
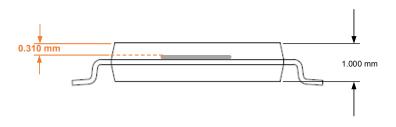

Figure 8. CT310 Application Diagram

Table 1. Recommended External Components

Component	Description	Vendor & Part Number	Parameter	Min.	Тур.	Max.	Unit
Свур	0.1 μF, X7R	Murata GRM033Z71A104KE14	С		0.1		μF
		Others					

Applications Information

The XtremeSense TMR sensor location for the CT310 for the x, y dimensions are shown in Figure 9 and Figure 10 for the TSSOP-8 and DFN-8 packages respectively. Figure 11 and Figure 12 illustrates the location of the CT310's XtremeSense TMR sensor from the z dimension. All dimensions in the figures below are nominal.



1.00 mm

2.00 mm

Figure 9. XtremeSense TMR Sensor Location in x-y Plane for CT310 in TSSOP-8 Package

Figure 10. XtremeSense TMR Sensor Location in x-y Plane for CT310 in DFN-8 Package

0.175 mm 0.450 mm

Figure 11. XtremeSense TMR Sensor Location in z Dimension for CT310 in TSSOP-8 Package

Figure 12. XtremeSense TMR Sensor Location in z Dimension for CT310 in DFN-8 Package

TSSOP-8 Package Drawing and Dimensions

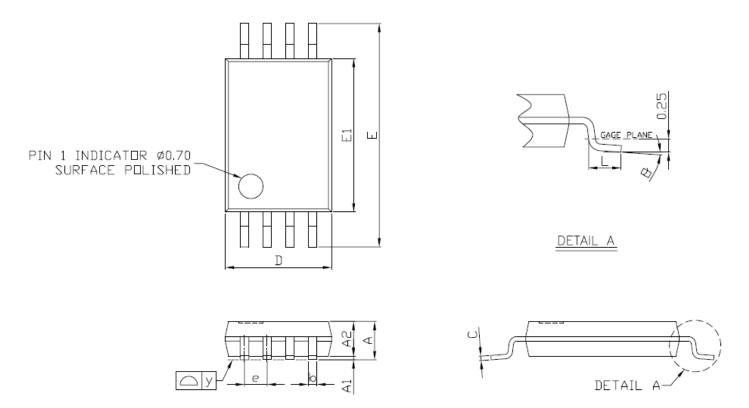


Figure 13. TSSOP-8 Package Drawing

Table 2. CT310 TSSOP-8 Package Dimensions

Symbol	Dimensions in Millimeters (mm)					
Symbol	Min.	Тур.	Max.			
Α	1.05	1.10	1.20			
A1	0.05	0.10	0.15			
A2	-	1.00	1.05			
b	0.25	-	0.30			
С	-	0.127	-			
D	2.90	3.05	3.10			
E	6.20	6.40	6.60			
E1	4.30	4.40	4.50			
е	-	0.65	-			
L	0.50	0.60	0.70			
у	-	=	0.076			
θ	0°	4°	8°			

Crocus Technology provides package drawings as a service to customers considering or planning to use Crocus products in their designs. Drawings may change without notice. Please note the revision and date of the data sheet and contact a Crocus Technology representative to verify or obtain the most recent version. The package specifications do not expand the terms of Crocus Technology's worldwide terms and conditions, specifically the warranty therein, which covers Crocus Technology's products.

TSSOP-8 Tape & Pocket Drawing and Dimensions

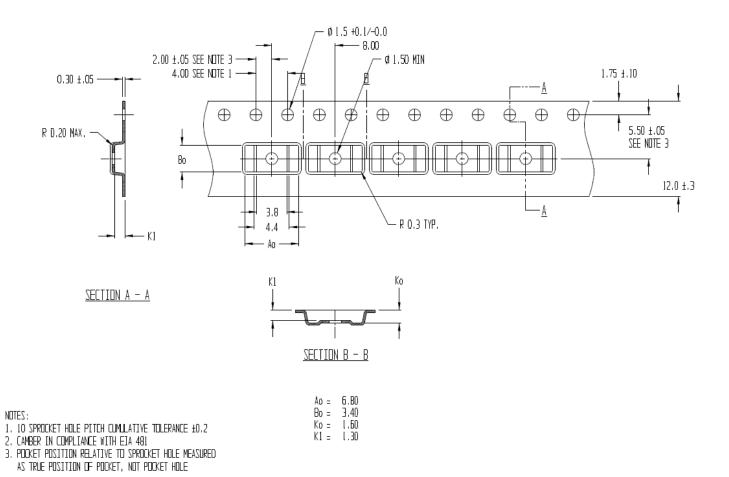
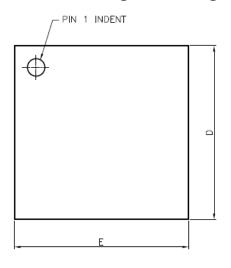
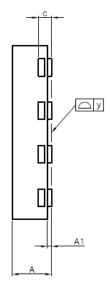
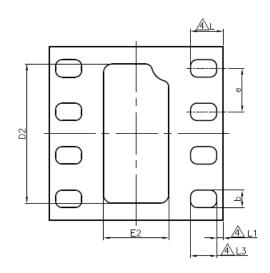





Figure 14. TSSOP-8 Tape and Pocket Drawings

DFN-8 Package Drawing and Dimensions

NOTE:

1. The terminal #1 identifier is a laser marked feature.

Figure 15. DFN-8 Package Drawing

Table 3. CT310 DFN-8 Package Dimensions

Cumba		Dimens	sions in Millimeter	s (mm)
Symbo	וכ	Min.	Тур.	Max.
Α		0.40	0.45	0.50
A1		0.00	0.02	0.05
b		0.15	0.20	0.25
С		=	0.150 REF	-
D		1.925	2.000	2.075
D2		1.550	1.600	1.650
Е		1.925	2.000	2.075
E2		0.700	0.750	0.800
е		=	0.500	-
L Z	₹	0.325	0.375	0.425
L1 /	4	-	0.075	-
L3 /	4	0.250	0.300	0.350
У		0.000	-	0.075

Crocus Technology provides package drawings as a service to customers considering or planning to use Crocus products in their designs. Drawings may change without notice. Please note the revision and date of the data sheet and contact a Crocus Technology representative to verify or obtain the most recent version. The package specifications do not expand the terms of Crocus Technology's worldwide terms and conditions, specifically the warranty therein, which covers Crocus Technology's products.

DFN-8 Tape & Pocket Drawing and Dimensions

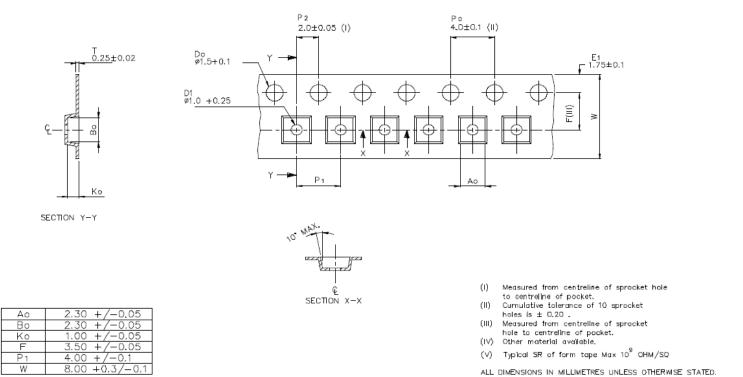


Figure 16. DFN-8 Tape and Pocket Drawings

Package Information

Table 4. CT310 Package Information

Part Number	Package Type	# of Leads	Package Quantity	Lead Finish	Eco Plan (1)	MSL Rating ⁽²⁾	Operating Temperature ⁽³⁾	Device Marking
CT310LS-IT8	TSSOP	8	3,000	Sn	Green & RoHS	1	-40°C to +85°C	CT310LS-IT8 YYWWSS
CT310LS-HT8	TSSOP	8	3,000	Sn	Green & RoHS	1	-40°C to +125°C	CT310LS-HT8 YYWWSS
CT310LS-AT8	TSSOP	8	3,000	Sn	Green & RoHS	1	-40°C to +125°C	CT310LS-AT8 YYWWSS
CT310LS-FT8	TSSOP	8	3,000	Sn	Green & RoHS	1	-40°C to +150°C	CT310LS-FT8 YYWWSS
CT310LS-ID8	DFN	8	3,000	Sn	Green & RoHS	1	-40°C to +85°C	310I YWWS
CT310LS-HD8	DFN	8	3,000	Sn	Green & RoHS	1	-40°C to +125°C	310H YWWS
CT310LS-FD8	DFN	8	3,000	Sn	Green & RoHS	1	-40°C to +150°C	310F YWWS

- (1) RoHS is defined as semiconductor products that are compliant to the current EU RoHS requirements. It also will meet the requirement that RoHS substances do not exceed 0.1% by weight in homogeneous materials. Green is defined as the content of Chlorine (CI), Bromine (Br) and Antimony Trioxide based flame retardants satisfy JS709B low halogen requirements of ≤ 1,000 ppm.
- (2) MSL Rating = Moisture Sensitivity Level Rating as defined by JEDEC standard classifications.
- (3) Package will withstand ambient temperature range of -40°C to +150°C and storage temperature range of -65°C to +165°C.
- (4) Device Marking for TSSOP is defined as CT310LS-XT8 YYWWSS where CT310LS = base part number, X = temperature code, T8 = TSSOP-8 package, YY = year, WW = work week and SS = sequential number. DFN is defined as 300X where X = temperature code and Y = year, WW = work week and S = sequential number.

Disclaimer: The contents of this document are provided for informational purposes only. CROCUS TECHNOLOGY, INC. AND CROCUS TECHNOLOGY SA (COLLECTIVELY "CROCUS") MAKE NO REPRESENTATIONS OR WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS HEREIN, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Crocus reserves the right to make changes to the specifications and product descriptions, and/or to discontinue or make changes to its products at any time without notice. Crocus's products have not been designed, tested, or manufactured for use and should not be used in applications where the failure, malfunction or inaccuracy of the Products carries a risk of death or serious bodily injury or damage to tangible property, including, but not limited to, life support systems, nuclear facilities, military, aircraft navigation or communication, emergency systems, harsh environments, or other applications with a similar degree of potential hazard.