

Overview

The KEMET Automotive Grade Surface Mount Capacitors in X7R dielectric are suited for a variety of applications requiring proven, reliable performance in harsh environments. Whether underhood or in-cabin, these devices emphasize the vital and robust nature of capacitors required for mission and safety of critical automotive circuits. Stricter testing protocol and inspection criteria have been established for automotive grade products in recognition of potentially harsh environmental conditions. KEMET automotive grade capacitors meet the demanding Automotive Electronics Council's AEC-Q200 qualification requirements. X7R dielectric features a 125°C maximum operating temperature and is considered temperature stable. The Electronics Industries Alliance (EIA) characterizes X7R dielectric as a Class II material. Components of this classification are fixed, ceramic dielectric capacitors, suited for bypass and decoupling applications, or for frequency discriminating circuits, where Q and stability of capacitance characteristics are not critical. X7R exhibits a predictable change in capacitance with respect to time and voltage, and boasts a minimal change in capacitance with reference to ambient temperature. Capacitance change is limited to $\pm 15\%$ from -55° C to $\pm 125^{\circ}$ C.

Benefits

- · AEC-Q200 automotive qualified
- -55°C to +125°C operating temperature range
- · Lead (Pb)-free, RoHS and REACH compliant
- Temperature stable dielectric
- EIA 0402, 0603, 0805, 1206, 1210, 1808, 1812, 1825, and 2220 case sizes
- DC voltage ratings of 6.3 V, 10 V, 16 V, 25 V, 50 V, 100 V, 200 V and 250 V
- Capacitance offerings ranging from 10 pF to 22 μF
- Available capacitance tolerances of ±5%, ±10% and ±20%
- · Non-polar device, minimizing installation concerns
- 100% pure matte tin-plated termination finish, allowing for excellent solderability

Applications

Typical applications include decoupling, bypass, filtering and transient voltage suppression.

Ordering Information

С	0805	C	225	М	4	R	Α	C	AUTO
Ceramic	Case Size (L" x W")	Specification/ Series	Capacitance Code (pF)	Capacitance Tolerance	Rated Voltage (VDC)	Inelectric	Failure Rate/Design	Termination Finish ¹	Packaging/Grade (C-Spec)
	0402 0603 0805 1206 1210 1805 1808 1812 1825 2220	C = Standard	Two significant digits and number of zeros.	J = ±5% K = ±10% M = ±20%	9 = 6.3 8 = 10 4 = 16 3 = 25 5 = 50 1 = 100 2 = 200 A = 250	R = X7R	A = N/A	C = 100% matte Sn	See "Packaging C-Spec Ordering Options Table"

¹ Additional termination finish options may be available. Contact KEMET for details.

Packaging C-Spec Ordering Options Table

Packaging Type ¹	Packaging/Grade Ordering Code (C-Spec) ³
7" Reel	AUTO
13" Reel/Unmarked	AUTO7411 (EIA 0603 and smaller case sizes) AUTO7210 (EIA 0805 and larger case sizes)
7" Reel/Unmarked/2 mm pitch ²	3190
13" Reel/Unmarked/2 mm pitch ²	3191

¹ Reeling tape options (paper or plastic) are dependent on capacitor case size (L" x W") and thickness dimension. See "Chip Thickness/Tape & Reel Packaging Quantities" and "Tape & Reel Packaging Information."

² The 2 mm pitch option allows for double the packaging quantity of capacitors on a given reel size. This option is limited to EIA 0603 (1608 metric) case size devices. For more information regarding 2 mm pitch option see "Tape & Reel Packaging Information."

³ All automotive packaging C-Specs listed exclude the option to laser mark components. Please contact KEMET if you require a laser marked option. For more information see "Capacitor Marking."

³ For additional Information regarding "AUTO" C-Spec options, see "Automotive C-Spec Information."

Qualification/Certification

Automotive grade products meet or exceed the requirements outlined by the Automotive Electronics Council. Details regarding test methods and conditions are referenced in document AEC-Q200, Stress Test Qualification for Passive Components. For additional information regarding the Automotive Electronics Council and AEC-Q200, please visit their website at www.aecouncil.com.

Environmental Compliance

Lead (Pb)-free, RoHS, and REACH compliant without exemptions.

Automotive C-Spec Information

KEMET automotive grade products meet or exceed the requirements outlined by the Automotive Electronics Council. Details regarding test methods and conditions are referenced in document AEC-Q200, Stress Test Qualification for Passive Components. These products are supported by a Product Change Notification (PCN) and Production Part Approval Process warrant (PPAP).

Automotive products offered through our distribution channel have been assigned an inclusive ordering code C-Spec, "AUTO." This C-Spec was developed in order to better serve small and medium-sized companies that prefer an automotive grade component without the requirement to submit a customer Source Controlled Drawing (SCD) or specification for review by a KEMET engineering specialist. This C-Spec is therefore not intended for use by KEMET OEM automotive customers and are not granted the same "privileges" as other automotive C-Specs. Customer PCN approval and PPAP request levels are limited (see details below.)

Product Change Notification (PCN)

The KEMET product change notification system is used to communicate primarily the following types of changes:

- Product/process changes that affect product form, fit, function, and/or reliability
- Changes in manufacturing site
- Product obsolescence

KEMET Automotive	Customer Notifica	tion Due To:	Days Prior To
C-Spec	Process/Product change	Obsolescence*	Implementation
KEMET assigned ¹	Yes (with approval and sign off)	Yes	180 days minimum
AUTO	Yes (without approval)	Yes	90 days minimum

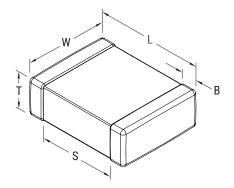
¹ KEMET assigned C-Specs require the submittal of a customer SCD or customer specification for review. For additional information contact KEMET.

Production Part Approval Process (PPAP)

The purpose of the Production Part Approval Process is:

- To ensure that supplier can meet the manufacturability and quality requirements for the purchased parts.
- To provide the evidence that all customer engineering design records and specification requirements are properly understood and fulfilled by the manufacturing organization.
- To demonstrate that the established manufacturing process has the potential to produce the part.

KEMET Automotive	I	PPAP (Product	Part Approval	Process) Leve	I
C-Spec	1	2	3	4	5
KEMET assigned ¹	•	•	•	•	•
AUTO			0		


¹ KEMET assigned C-Specs require the submittal of a customer SCD or customer specification for review. For additional information contact KEMET.

• Part number specific PPAP available

• Product family PPAP only

Dimensions – Millimeters (Inches)

EIA Size Code	Metric Size Code	L Length	W Width	T Thickness	B Bandwidth	S Separation Minimum	Mounting Technique
0402	1005	1.00 (0.040) ±0.05 (0.002)	0.50 (0.020) ±0.05 (0.002)		0.30 (0.012) ±0.10 (0.004)	0.30 (0.012)	Solder reflow only
0603 ¹	1608	1.60 (0.063) ±0.15 (0.006)	0.80 (0.032) ±0.15 (0.006)		0.35 (0.014) ±0.15 (0.006)	0.70 (0.028)	
0805²	2012	2.00 (0.079) ±0.20 (0.008)	1.25 (0.049) ±0.20 (0.008)		0.50 (0.02) ±0.25 (0.010)	0.75 (0.030)	Solder wave or Solder reflow
1206³	3216	3.20 (0.126) ±0.20 (0.008)	1.60 (0.063) ±0.20 (0.008)	_	0.50 (0.02) ±0.25 (0.010)		
12104	3225	3.20 (0.126) ±0.20 (0.008)	2.50 (0.098) ±0.20 (0.008)	See Table 2 for Thickness	0.50 (0.02) ±0.25 (0.010)	-	
1805	4513	4.50 (0.177) ±0.50 (0.020)	1.27 (0.050) ±0.38 (0.015)	_	0.60 (0.024) ±0.35 (0.014)	NI / A	
1808	4520	4.70 (0.185) ±0.50 (0.020)	2.00 (0.079) ±0.20 (0.008)	_	0.60 (0.024) ±0.35 (0.014)	N/A	Solder reflow only
1812	4532	4.50 (0.177) ±0.30 (0.012)	3.20 (0.126) ±0.30 (0.012)		0.60 (0.024) ±0.35 (0.014)		
2220	5650	5.70 (0.224) ±0.40 (0.016)	5.00 (0.197) ±0.40 (0.016)		0.60 (0.024) ±0.35 (0.014)		

¹ For capacitance values \geq 0.56 µF add 0.05 (0.002) to length tolerance dimension.

² For capacitance values 1.0 μ F or ≥ 2.2 μ F add 0.10 (0.004) to length tolerance dimension.

 3 For capacitance value 1.0 μ F all voltages and 10 μ F with 25 V add 0.05 (0.002) to length tolerance dimension.

⁴ For capacitance values \geq 4.7 µF add 0.02 (0.001) to the width tolerance dimension and 0.10 (0.004) to the length tolerance dimension.

For capacitance value 22 µF, Length is [L] 3.30 (0.130) ± 0.40 (0.016) and Width [W] is 2.60 (0.102) ± 0.30 (0.012).

Electrical Parameters/Characteristics

Item	Parameters/Characteristics
Operating Temperature Range	-55°C to +125°C
Capacitance Change with Reference to +25°C and 0 VDC Applied (TCC)	±15%
¹ Aging Rate (Maximum % Capacitance Loss/Decade Hour)	3.0%
² Dielectric Withstanding Voltage (DWV)	250% of rated voltage (5 ±1 seconds and charge/discharge not exceeding 50 mA)
³ Dissipation Factor (DF) Maximum Limit at 25°C	See Dissipation Factor Limit table
⁴ Insulation Resistance (IR) Minimum Limit at 25°C	See Insulation Resistance Limit table (Rated voltage applied for 120 ±5 seconds at 25°C)

¹ Regarding Aging Rate: Capacitance measurements (including tolerance) are indexed to a referee time of 48 or 1,000 hours. Please refer to a part number specific datasheet for referee time details

²DWV is the voltage a capacitor can withstand (survive) for a short period of time. It exceeds the nominal and continuous working voltage of the capacitor.

³ Capacitance and dissipation factor (DF) measured under the following conditions:

1 kHz ± 50 Hz and 1.0 ± 0.2 V_{rms} if capacitance \leq 10 μ F

120 Hz ± 10 Hz and 0.5 ± 0.1 V_{rms} if capacitance > 10 μ F

⁴ To obtain IR limit, divide $M\Omega - \mu F$ value by the capacitance and compare to G Ω limit. Select the lower of the two limits.

Note: When measuring capacitance it is important to ensure the set voltage level is held constant. The HP4284 and Agilent E4980 have a feature known as Automatic Level Control (ALC). The ALC feature should be switched to "ON."

EIA Case Size	Rated DC Voltage	1,000 megohm microfarads or 100 GΩ	500 megohm microfarads or 10 GΩ	100 megohm microfarads or 10 GΩ
0402	ALL	< 0.012 µF	≥ 0.012 µF< 0.47 µf	≥ 0.47 µf
0603	≤ 200 V	< 0.047 µF	≥ 0.047 µf < 0.47 µf	≥ 0.47 µf
0003	250 V	N/A	N/A	ALL
0805 ¹	≤ 200 V	< 0.15 µF	≥ 0.15 µF < 2.2 µf	≥ 2.2 µf
0805	250 V	< .027 µF	N/A	≥ .027 µF
1206	≤ 200 V	< 0.47 µF	≥ 0.47 µF < 2.2 µf	≥ 2.2 µf
1200	250 V	< 0.12 µF	N/A	≥ 0.12 µF
1210 ²	≤ 200 V	< 0.39 µF	≥ 0.39 µF < 10 µf	≥ 10 µf
1210-	250 V	< 0.27 µF	N/A	≥ 0.27 µF
1805	ALL	ALL	N/A	N/A
1808	ALL	ALL	N/A	N/A
1812	ALL	< 2.2 µF	≥ 2.2 µF	N/A
1825	ALL	ALL	N/A	N/A
2220	ALL	< 10 µF	≥ 10 µF	N/A
2225	ALL	ALL	N/A	N/A

Insulation Resistance Limit Table

¹ For Capacitance value 1.0 μ F (50 V) IR should be calculated under 100 megohm microfarads or 10 GΩ.

 2 For Capacitance value 4.7 μF (50 V) IR should be calculated under 100 megohm microfarads or 10 G $\!\Omega$

Dissipation Factor (DF) Limits Table

EIA Case Size	Rated DC Voltage	Capacitance	Dissipation Factor (Maximum %)
	< 16		5.0
0402	16/25	All	3.5
	> 25		2.5
	< 16		5.0
06031	16/25	< 1.0 µF	3.5
0005	> 25		2.5
	All	≥ 1.0 µF	10.0
	< 16	< 4.7 µF	5.0
	< 10	≥ 4.7 µF	10.0
	16	< 4.7 µF	3.5
0805 ²	10	≥ 4.7 µF	10.0
0005	25	<2.2 µF	3.5
	25	≥ 2.2 µF	10.0
	> 25	<1.0 µF	2.5
	~ 25	≥ 1.0 µF	10.0
	< 16	All	5.0
1206 ³	16/25	All	3.5
	> 25	All	2.5
	< 16	All	5.0
	16	All	3.5
	05	< 10 µF	3.5
1210 ⁴	25	≥ 10 µF	10.0
	> 25	All	2.5
	50	All	2.5
	> 50	All	2.5
	< 16		5.0
1805 - 2225	16/25	All	3.5
	> 25		2.5

¹ For Capacitance values 0.22 μF (16 and 25 Volts) DF is 5%.

 2 For Capacitance values 2.2 μF (6.3, 10, and 16 Volts) DF is 10%.

 3 For Capacitance values 4.7 and 10 μF (All Voltages) and 2.2 μF (25 and 50 Volts) DF is 10%.

⁴ For Capacitance values ≥ 10 μ F (≤ 16 V) DF is 10% and for Capacitance value 4.7 μ F (50 V) DF is 5%.

Post Environmental Limits

$\frac{ }{ $	High	Temperature	Life, Biased	Humidity, Mo	oisture Resis	tance
0402 16/25 All 5.0 > 25 All 3.0 < 16	EIA Case Size		Capacitance	Factor		
<		< 16	All	7.5		
$ \begin{array}{ c c c c } & < 16 & & & & & & & & & & & & & & & & & & $	0402	16/25	All	5.0		
0603° $16/25$ $(-1.0 \ \mu F)$ 5.0 3.0 All $\geq 1.0 \ \mu F$ 20.0 All $\geq 1.0 \ \mu F$ 20.0 $2.10 \ \mu F$ 20.0 $2.4.7 \ \mu F$ 20.0 $2.4.7 \ \mu F$ 20.0 $2.4.7 \ \mu F$ 20.0 $2.2 \ \mu F$ 20.0 $2.10 \ \mu F$ 20.0 $10\% \ of Initial Imit 10\% \ of Initial Imit10\% \ of Imit Imit10\% \ of Imit Imit Imit10\% \ of Imit Imit Imit10\% \ of Imit Imit Imit Imit10\% \ of Imit Imit Imit Imit Imit Imit Imit Imit$		> 25	All	3.0		
0603^{11} > 25 3.0 AII $\geq 1.0 \ \mu F$ 20.0 AII $\geq 1.0 \ \mu F$ 20.0 $< 4.7 \ \mu F$ 20.0 2605^2 -16 $\geq 4.7 \ \mu F$ 20.0 16 $\geq 4.7 \ \mu F$ 20.0 25 $\geq 4.7 \ \mu F$ 20.0 25 $\geq 2.2 \ \mu F$ 20.0 25 $< 2.2 \ \mu F$ 20.0 ≥ 25 $< 1.0 \ \mu F$ 20.0 ≥ 25 $< 1.0 \ \mu F$ 20.0 > 25 $< 1.0 \ \mu F$ 20.0 25 $< 1.0 \ \mu F$ 20.0 25 AII 5.0 $10\% of Initial Initia$		< 16		7.5		
	06021	16/25	< 1.0 µF	5.0		
10% 01% 01% 01% 01% 01% 01% 01% 01% 01%	0003	> 25		3.0		
		All	≥ 1.0 µF	20.0		
1210^4 16 $1 \le 4.7 \mu F$ 20.0 16 $1 \le 4.7 \mu F$ 5.0 $1 \ge 4.7 \mu F$ 20.0 $1 \ge 4.7 \mu F$ 20.0 $1 \ge 2.2 \mu F$ $2.2 \mu F$ 20.0 $1 \ge 2.2 \mu F$ $2.2 $. 16	< 4.7 µF	7.5		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		< 10	≥ 4.7 µF	20.0		
0805^{2} $ \begin{array}{ccccccccccccccccccccccccccccccccccc$		16	< 4.7 µF	5.0		
$ \begin{array}{ c c c c c } & < & < & < & < & < & < & < & < & & \\ \hline & & & & & & & \\ \hline & & & & & & &$	00052	10	≥ 4.7 µF	20.0		
$ \begin{vmatrix} 2.2 \ \mu F \\ 20.0 \\ \\ \\ 2.25 \\ 2.10 \ \mu F \\ 20.0 \\ \hline 2.10 \ \mu F \\ 20.0 \\ \hline 2.0 \ \mu F \\ 20.0 \\ \hline 2.0 \ \mu F \\ 20.0 \\ \hline 2.0 \ \mu F \\ 20 \\ 16/25 \\ 16/25 \\ 16/25 \\ 20 \\ 16 \\ 16 \\ 16 \\ 16 \\ 16 \\ 16 \\ 16 \\ 1$	0805-	05	< 2.2 µF	5.0		
$ \begin{array}{ c c c c c c } & > 25 & 1.0 \ \mu F & 20.0 \\ \hline & \geq 1.0 \ \mu F & 20.0 \\ \hline & \geq 1.0 \ \mu F & 20.0 \\ \hline & \geq 1.0 \ \mu F & 20.0 \\ \hline & 16/25 & All & 5.0 \\ \hline & > 25 & All & 3.0 \\ \hline & 16 & All & 7.5 \\ \hline & 16 & All & 5.0 \\ \hline & 25 & All & 5.0 \\ \hline & \geq 10 \ \mu F & 5.0 \\ \hline & \geq 10 \ \mu F & 20.0 \\ \hline & \geq 25 & All & 3.0 \\ \hline & \geq 25 & All & 3.0 \\ \hline & \geq 50 & All & 3.0 \\ \hline & 50 & All & 3.0 \\ \hline & 50 & All & 3.0 \\ \hline & 1805 - 2225 & 16/25 & All & 5.0 \\ \hline \end{array} $		25	≥ 2.2 µF	20.0		
$\geq 1.0 \ \mu\text{F}$ 20.01003 < 16 AII7.51206316/25AII5.0 > 25 AII3.0 < 16 AII7.516AII5.025 $< 10 \ \mu\text{F}$ 5.025AII3.025 $< 10 \ \mu\text{F}$ 20.0 > 25 AII3.0 > 25 AII3.0 > 50 AII3.0 > 50 AII3.0 > 50 AII3.01805 - 222516/25AII16/25AII5.0		. 05	< 1.0 µF	3.0	100%	10% of Initial
1206316/25All5.0> 25All3.0> 25All3.0 < 16 All7.516All5.0 25 $< 10 \mu F$ 5.0 25 $< 10 \mu F$ 20.0 > 25 All3.0 50 All3.0 50 All3.0 < 16 All7.51805 - 222516/25All		> 25	≥ 1.0 µF	20.0	±20%	limit
> 25AII3.0< 16		< 16	All	7.5		
< 16 All7.516All5.0 25 $< 10 \mu F$ 5.0 25 $210 \mu F$ 20.0 > 25 All3.0 50 All3.0 > 50 All3.0 < 16 All7.5 $1805 - 2225$ $16/25$ All	1206 ³	16/25	All	5.0		
16All5.0 25 $< 10 \mu F$ 5.0 25 $\geq 10 \mu F$ 20.0 > 25 All 3.0 50 All 3.0 50 All 3.0 > 50 All 3.0 < 16 All 7.5 $1805 - 2225$ $16/25$ All		> 25	All	3.0		
1210^4 $< 10 \mu F$ 5.0 25 $\geq 10 \mu F$ 20.0 > 25 AII 3.0 50 AII 3.0 > 50 AII 3.0 > 50 AII 3.0 < 16 AII 7.5 $1805 - 2225$ $16/25$ AII 5.0		< 16	All	7.5		
25 $\geq 10 \mu F$ 20.0 > 25 AII 3.0 50 AII 3.0 > 50 AII 3.0 > 50 AII 3.0 $1805 - 2225$ $16/25$ AII 5.0		16	All	5.0		
12104≥ 10 μF20.0> 25All3.050All3.0> 50All3.0> 50All3.01805 - 222516/25All16/25All5.0		05	< 10 µF	5.0		
50 AII 3.0 > 50 AII 3.0 < 16	1210 ⁴	25	≥ 10 µF	20.0		
> 50 AII 3.0 < 16		> 25	All	3.0		
< 16 All 7.5 1805 - 2225 16/25 All 5.0		50	All	3.0		
1805 – 2225 16/25 All 5.0		> 50	All	3.0		
		< 16	All	7.5		
> 25 All 3.0	1805 - 2225	16/25	All	5.0		
		> 25	All	3.0		

¹ For Capacitance values 0.22 μF (16 and 25 Volts) DF is 7.5%.

 2 For Capacitance values 2.2 μF (6.3, 10, and 16 Volts) DF is 20%

 3 For Capacitance values 4.7 and 10 μF (All Voltages) and 2.2 μF (25 and 50 Volts) DF is 20%

 4 For Capacitance values \geq 10 μF (\leq 16 V) DF is 20% and for Capacitance value 4.7 μF (50 V) DF is 7.5%

Table 1A - Capacitance Range/Selection Waterfall (0402 - 1206 Case Sizes)

			se S Seri	Size es		CC)40	2C				(:06	030	C					(C08	050	2					(C12	06	С		
Capacitance	Сар	Volt	age (Code	9	8	4	3	5	9	8	4	3	5	1	2	A	9	8	4	3	5	1	2	A	9	8	4	3	5	1	2	A
	Code		ed Vol (VDC	ltage)	6.3	9	16	25	20	6.3	10	16	25	20	100	200	250	6.3	9	16	25	50	100	200	250	6.3	5	16	25	20	100	200	250
			oacita olerar					Pr	odu	ct Av	aila	bility	y an	d Ch	ip Tł	nickı	ness	Cod	les -	- See	e Tab	ole 2	for	Chip	o Thi	ckne	ess I	Dime	ensio	ons			
10 - 91 pF*	100 - 910*	J	K	М	BB	BB	BB	BB	BB	CF		DN		EB																			
100 - 150 pF**	101 - 151**	J	K	M	BB	BB	BB	BB	BB	CF		DN		EB																			
180 - 820 pF**	181 - 821**	J	K	M	BB	BB	BB	BB	BB	CF		DN	EB																				
1,000 pF	102	J	K	M	BB	BB	BB	BB	BB	CF	DN	EB																					
1,200 pF	122	J	K	M	BB	BB	BB	BB BB	BB	CF	CF	CF	CF	CF	CF	CF CF	CF	DN	EB														
1,500 pF	152	J	K	M	BB	BB	BB		BB	CF	DN	EB																					
1,800 pF	182	J	K	M	BB	BB	BB	BB	BB	CF	CF	CF	CF	CF	CF		CF	DN	EB														
2,200 pF	222	J	K	M	BB	BB	BB	BB	BB	CF	DN	EB																					
2,700 pF	272 332	J	K K	M	BB BB	BB BB	BB	BB	BB BB	CF CF	DN DN	DN DN	DN	DN	DN	DN	DN	DN	EB EB	EB	EB	EB	EB	EB EB	EB EB	EB EB							
3,300 pF		J	_	M	BB	BB	BB BB	BB BB	BB	CF				DN	DN	DN	DN	DN DN	DN	EB	EB	EB EB	EB EB	EB EB	EB	EB	EB						
3,900 pF 4,700 pF	392 472	J J	K	M	BB	BB	BB	BB	BB	CF	DN DN	DN DN	DN DN	DN DN	DN DN	DN DN	DN	DN DN	EB	EB EB	EB	EB	EB	EB	EB	EB							
4,700 pF 5,600 pF	472 562		K	M	BB	BB	BB	BB	BB	CF	DN	EB																					
5,600 pF 6,800 pF	562 682	J	K K	M	BB	BB	BB	BB	BB	CF		DN	EB																				
8,200 pF	822	J	K	M	BB	BB	BB	BB	BB	CF	DN	EB																					
10,000 pF	103	J J	K	M	BB	BB	BB	BB	BB	CF	DN	EB																					
12,000 pF	103	J	K	M	BB	BB	BB	BB	BB	CF	CF	CF	CF	CF	CF	UF	UF	DN	EB														
12,000 pF	123	J	K	M	BB	BB	BB	BB	BB	CF	CF	CF	CF	CF	CF			DN	DN	DN	DN	DN	DP	DN	DN	EB							
18,000 pF	183	J	K	M	BB	BB	BB	BB	BB	CF	CF	CF	CF	CF	CF			DN	DN	DN	DN	DN	DP	DN	DN	EB							
22,000 pF	223	J	K	M	BB	BB	BB	BB	BB	CF	CF	CF	CF	CF	CF			DN	DN	DN	DN	DN	DP	DN	DN	EB							
27,000 pF	273	J	K	M	BB	BB	BB	BB	DD	CF	CF	CF	CF	CF	CF			DN	DN	DN	DN	DN	DP	DE	DG	EB							
33,000 pF	333	J	K	M	BB	BB	BB	BB		CF	CF	CF	CF	CF	CF			DN	DN	DN	DN	DN	DP	DE	DG	EB							
39,000 pF	393	J	K	M	BB	BB	BB	BB		CF	CF	CF	CF	CF	CF			DN	DN	DN	DN	DN	DP	DE	DG	EB	EB	EB	EB	EB	EC	EB	EB
47,000 pF	473	J	K	M	BB	BB	BB	BB		CF	CF	CF	CF	CF	CF			DN	DN	DN	DN	DN	DE	DG	DG	EB	EB	EB	EB	EB	EC	ED	ED
56,000 pF	563	J	K	M	BB	BB	BB	00		CF	CF	CF	CF	CF	01			DP	DP	DP	DP	DP	DE	DG	DG	EB	EB	EB	EB	EB	EB	ED	ED
68,000 pF	683	J	K	M	BB	BB	BB			CF	CF	CF	CF	CF				DP	DP	DP	DP	DP	DE	DG	DG		EB	EB	EB	EB	EB	ED	ED
82,000 pF	823	J	K	M	BB	BB	BB			CF	CF	CF	CF	CF				DP	DP	DP	DP	DP	DE		00	EB	EB	EB	EB	EB	EB	ED	ED
0.10 µF	104	J	K	M	BB	BB	BB			CF	CF	CF	CF	CF				DN	DN	DN	DN	DN	DE			EB	EB	EB	EB	EB	EB	EM	EM
0.12 µF	124	J	K	M						CF	CF	CF	CF	CF				DN	DN	DN	DN	DP	DG			EC	EC	EC	EC	EC	EC	EG	EM
0.15 µF	154	Ĵ	K	M						CF	CF	CF	CF	CF				DN	DN	DN	DN	DP	DG			EC	EC	EC	EC	EC	EC	EG	EG
0.18 µF	184	J	K	M						CF	CF	CF	CF	01				DN	DN	DN	DN	DP	DG			EC	EC	EC	EC	EC	EC	EM	EM
0.22 µF	224	J	K	M						CF	CF	CF	CF					DN	DN	DN	DN	DP	DG			EC	EC	EC	EC	EC	EC	EG	EG
0.22 μF	274	J	K	M						CF	CF	CF						DP	DP	DP	DP	DP				EB	EB	EB	EB	EC	EM		
0.33 μF	334	J	K	M						CF	CF	CF						DP	DP	DP	DP	DP				EB	EB	EB	EB	EC	EG		
0.39 µF	394	J	K	M						CF	CF	CF						DG	DG	DG	DG	DE				EB	EB	EB	EB	EC	EG		
0.47 μF	474	J	K	M						CF	CF	CF						DP	DP	DP	DP	DE				EC	EC	EC	EC	EC	EG		
0.56 µF	564	J	K	M						1								DP	DP	DP	DG	DH				ED	ED	ED	ED	EC	EM		
0.68 µF	684	J	K	M														DP	DP	DP	DG	DH				EE	EE	EE	EE	ED	EM		
0.82 µF	824	J	ĸ	M														DP	DP	DP	DG					EF	EF	EF	EF	ED	EH		
1.0 μF	105	J	ĸ	M						CJ1	CJ1	CJ1						DP	DP	DP		DH				EF	EF	EF			EH		
1.2 μF	125	J	K	M														DE	DE							ED	ED	ED	-	EH			
1.5 μF	155	J	K	M															DG							EF	EF	EF	EG	EH			
1.8 µF	185	J	K	M															DG							ED	ED	ED	EF	EH			
2.2 µF	225	J	K	M																	DG	DH				EH		EH	EH				
2.7 μF	275	J	K	M																						EN		EN	EH				
3.3 µF	335	J	К	М																						ED	ED	ED					
3.9 µF	395	J	к	М																						EF	EF	EF					
				ltage	6.3	6	16	25	50	6.3	10	16	25	50	100	200	250	6.3	6	16	25	50	100	200	250	6.3	6	16	25	50	100	200	250
Capacitance	Cap Code				9	8	4	3	5	9	8	4	3	5	1	2	A	9	8	4	3	5	1	2	A	9	8	4	3	5	1	2	A
-	-	Ca	ise S Serie	ize		C	0402	20					C06	03C							C08	05C							C12	.06C	;		

*Capacitance range includes E24 decade values only (i.e., 10, 11, 12, 13, 15, 16, 18, 20, 22, 24, 27, 30, 33, 36, 39, 43, 47, 51, 56, 62, 68, 75, 82, and 91.) **Capacitance range includes E12 decade values only. (i.e., 10, 12, 15, 18, 22, 27, 33, 39, 47, 56, 68, and 82.) xx¹ Available only in K and M tolerances.

Table 1A – Capacitance Range/Selection Waterfall (0402 – 1206 Case Sizes) cont.

				e S eri	Size es		CC)40	2C				(:06	03(2					C	:08	05(C					(C12	060	0		
Capacitance	Сар	V	olta	ige (Code	9	8	4	3	5	9	8	4	3	5	1	2	Α	9	8	4	3	5	1	2	A	9	8	4	3	5	1	2	Α
Capacitance	Code	R		l Vo VDC	ltage)	6.3	1	16	25	50	6.3	10	16	25	50	100	200	250	6.3	10	16	25	50	100	200	250	6.3	10	16	25	20	100	200	250
	-	C		acita erar	ince ice				Pr	odu	ct Av	aila	bility	/ and	d Ch	ip Tł	ickr	ness	Cod	les -	See	e Tak	ole 2	for	Chip	o Thi	ckne	ess I	Dime	nsio	ns			
4.7 µF	475	Ι,	J	Κ	М														DG	DG	DG	DH					EF	EH	EH	EH	EH			
5.6 µF	565		J	Κ	M																						EH	EH	EH					
6.8 µF	685		J	Κ	M																						EH	EH	EH					
8.2 μF	825	.	J	Κ	M																						EH	EH	EH					
10 µF	106		J	Κ	M														DH	DH							EH	EH	EH	EH				
		R		l Vo VDC	ltage)	6.3	10	16	25	50	6.3	10	16	25	50	100	200	250	6.3	10	16	25	50	100	200	250	6.3	10	16	25	50	100	200	250
Capacitance	Cap Code	v	olta	ige (Code	9	8	4	3	5	9	8	4	3	5	1	2	Α	9	8	4	3	5	1	2	A	9	8	4	3	5	1	2	A
				se S erie			C	040	20					C06	03C					·		C08	05C	~					·	C12	06C	<u>.</u>	~	

*Capacitance range Includes E24 decade values only. (i.e., 10, 11, 12, 13, 15, 16, 18, 20, 22, 24, 27, 30, 33, 36, 39, 43, 47, 51, 56, 62, 68, 75, 82 and 91) **Capacitance range Includes E12 decade values only. (i.e., 10, 12, 15, 18, 22, 27, 33, 39, 47, 56, 68 and 82) xx¹ Available only in K and M tolerance.

Table 1B – Capacitance Range/Selection Waterfall (1210 – 1808 Case Sizes)

			ase Si 'Serie					C12	10C				C	1805	С	C	1808	С
Capacitance	Cap Code	Vo	ltage C	ode	9	8	4	3	5	1	2	A	5	1	2	5	1	2
oupuonunoe	oup coue	Rated	Voltage	e (VDC)	6.3	10	16	25	50	100	200	250	50	100	200	50	100	200
		Capaci	tance To	olerance	Prod	uct Ava	nilabilit	y and C	hip Th	icknes	s Codes	s – See	Table	2 for Cl	hip Thio	kness	Dimen	sion
10 - 91 pF*	100 - 910*	J	K	М	FB	FB	FB	FB	FB	FB	FB							
100 - 180 pF**	101 - 181**	J	K	M	FB	FB	FB	FB	FB	FB	FB							
220 pF	221	J	K	M	FB	FB	FB	FB	FB	FB	FB		NC	NC	NC			
270 pF	271	J	K	M	FB	FB	FB	FB	FB	FB	FB		NC	NC	NC			
330 pF	331	J	K	M	FB	FB	FB	FB	FB	FB	FB		NC	NC	NC	LF	LF	L
390 pF	391	J	K	M	FB	FB	FB	FB	FB	FB	FB		NC	NC	NC	LF	LF	L
470 - 820 pF**	471 - 821**	J	K	M	FB	FB	FB	FB	FB	FB	FB		NC	NC	NC	LF	LF	L
1,000 pF	102	J	K	M	FB	FB	FB	FB	FB	FB	FB		NC	NC	NC	LF	LF	L
1,200 pF	122	J	K	M	FB	FB	FB	FB	FB	FB	FB		NC	NC		LF	LF	L
1,500 pF	152	J	K	M	FB	FB	FB	FB	FB	FB	FE		NC	NC		LF	LF	L
1,800 pF	182	J	K	M	FB	FB	FB	FB	FB	FB	FE		NC	NC		LF	LF	L
2,200 pF	222	J	K	M	FB	FB	FB	FB	FB	FB	FB	FB	NC	NC		LF	LF	L
2,700 pF	272	J	K	M	FB	FB	FB	FB	FB	FB	FB	FB	NA			LF	LF	L
3,300 pF	332	J	K	M	FB	FB	FB	FB	FB	FB	FB	FB	NA			LF	LF	
3,900 pF	392	J	K	M	FB	FB	FB	FB	FB	FB	FB	FB	NA			LF	LF	
4,700 pF	472	J	K	M	FB	FB	FB	FB	FB	FB	FB	FB	NA	NA		LD	LD	
5,600 pF	562	J	K	M	FB	FB	FB	FB	FB	FB	FB	FB	NA	NA		LD	LD	
6,800 pF	682	J	K	M	FB	FB	FB	FB	FB	FB	FB	FB	NA	NA		LD	LD	
8,200 pF	822	J	K	M	FB	FB	FB	FB	FB	FB	FB	FB	NA	NA		LD	LD	
10,000 pF	103	J	K	M	FB	FB	FB	FB	FB	FB	FB	FB	NA	NA		LD	LD	
		Rated	Voltage	e (VDC)	6.3	10	16	25	50	100	200	250	50	100	200	50	100	000
Capacitance	Cap Code	Va	ltage C	ode	9	8	4	3	5	1	2	A	5	1	2	5	1	2
		-	ase Si /Serie					C12	10C					C1805(;		C1808()

*Capacitance range Includes E24 decade values only. (i.e., 10, 11, 12, 13, 15, 16, 18, 20, 22, 24, 27, 30, 33, 36, 39, 43, 47, 51, 56, 62, 68, 75, 82 and 91) **Capacitance range Includes E12 decade values only. (i.e., 10, 12, 15, 18, 22, 27, 33, 39, 47, 56, 68 and 82) ² Available capacitance values available in <u>X7R with KONNEKT Technology</u>.

Table 1B - Capacitance Range/Selection Waterfall (1210 - 1808 Case Sizes) cont.

			ase Si 'Serie	-				C12	10C				C	:1805	С	C	:1808	С
Capacitance	Cap Code	Vo	ltage Co	ode	9	8	4	3	5	1	2	A	5	1	2	5	1	2
oupacitance	oup ooue	Rated	Voltage	e (VDC)	6.3	10	16	25	50	100	200	250	50	100	200	50	100	200
		Capacit	ance To	lerance	Prod	uct Ava	ailabilit	y and C	chip Th	icknes	s Code	s – See	Table	2 for Cl	hip Thio	ckness	Dimen	sions
12,000 pF	123	J	K	М	FB	FB	FB	FB	FB	FB	FB	FB	NA	NA		LD	LD	
15,000 pF	153	J	K	M	FB	FB	FB	FB	FB	FB	FB	FB	NA	NA		LD	LD	
18,000 pF	183	J	K	M	FB	FB	FB	FB	FB	FB	FB	FB	NA	NA		LD	LD	
22,000 pF	223	J	K	M	FB	FB	FB	FB	FB	FB	FB	FB	NA	NA		LD	LD	
27,000 pF	273	J	K	M	FB	FB	FB	FB	FB	FB	FB	FB	NA	NA		LD	LD	
33,000 pF	333	J	K	M	FB	FB	FB	FB	FB	FB	FB	FB	NA			LD	LD	
39,000 pF	393	J	К	М	FB	FB	FB	FB	FB	FB	FB	FB	NA			LD	LD	
47,000 pF	473	J	K	M	FB	FB	FB	FB	FB	FB	FB	FB	NA			LD	LD	
56,000 pF	563	J	K	M	FB	FB	FB	FB	FB	FB	FC	FC	NA			LD	LD	
68,000 pF	683	J	К	М	FB	FB	FB	FB	FB	FB	FC	FC	NA			LD		
82,000 pF	823	J	K	M	FB	FB	FB	FB	FB	FC	FF	FF	NA			LD		
0.10 µF	104	J	K	M	FB	FB	FB	FB	FB	FD	FG	FG	NA			LD		
0.12 µF	124	J	К	M	FB	FB	FB	FB	FB	FD	FH	FH				LD		
0.15 µF	154	J	К	М	FC	FC	FC	FC	FC	FD	FM	FM				LD		
0.18 µF	184	J	к	м	FC	FC	FC	FC	FC	FD	FK	FK				LD		
0.22 µF	224	J	к	М	FC	FC	FC	FC	FC	FD	FK	FK						
0.27 µF	274	J	к	м	FC	FC	FC	FC	FC	FD	FP	FP						
0.33 µF	334	J	ĸ	M	FD	FD	FD	FD	FD	FD	FM	FM						
0.39 µF	394	J	ĸ	M	FD	FD	FD	FD	FD	FD	FK	FK						
0.47 µF	474	Ĵ	ĸ	M	FD	FD	FD	FD	FD	FD	FS	FS						
0.56 µF	564	J	K	M	FD	FD	FD	FD	FD	FF	10	10						
0.68 µF	684	Ĵ	K	M	FD	FD	FD	FD	FD	FG								
0.82 µF	824	Ĵ	K	M	FF	FF	FF	FF	FF	FL								
1.0 μF	105	J	K	M	FH	FH	FH	FH	FH	FM								
1.2 μF	125	J	K	M	FH	FH	FH	FH	FG	FH								
1.5 μF	125	J	K	M	FH	FH	FH	FH	FG	FM								
1.8 μF	185	J	K	M	FH	FH	FH	FH	FG	FJ								
2.2 μF	225	J	K	M	FJ	FJ	FJ	FJ	FG	FK								
2.2 μF 2.7 μF	275	J	K	M	FE	FE	FE	FG	FH									
2.7 µF 3.3 µF	335	J	K	M	FF	FF	FF	FM	FM									
3.9 µF	395	J	K	M	FG	FG	FG	FIG	FK									
3.9 μF 4.7 μF	475	J	K	M	FC	FC	FC	FG	FS									
4.7 μF 5.6 μF	565	J	K	M	FF	FC	FC	FG	13									
5.6 μF 6.8 μF	685	J	K	M	FG	FG	FG	FM										
•	825	J	K	M	FG	FG	FG	FM										
8.2 μF 10 μF	106	J	K	M	FH	FH	FH	FK										
10 μF 22 μF	226	J	K	M	FS	FS	г э	гэ										
22 μr	220		n.	IVI														<u> </u>
		Rated	Voltage	e (VDC)	6.3	10	16	25	50	100	200	250	50	100	200	50	100	200
Capacitance	Cap Code	Vo	ltage Co	ode	9	8	4	3	5	1	2	A	5	1	2	5	1	2
		-	ase Siz /Series	-				C12	10C				C1805C			C1808C		

*Capacitance range Includes E24 decade values only. (i.e., 10, 11, 12, 13, 15, 16, 18, 20, 22, 24, 27, 30, 33, 36, 39, 43, 47, 51, 56, 62, 68, 75, 82 and 91)

**Capacitance range Includes E12 decade values only. (i.e., 10, 12, 15, 18, 22, 27, 33, 39, 47, 56, 68 and 82)

² Available capacitance values available in X7R with KONNEKT Technology.

Table 1C - Capacitance Range/Selection Waterfall (1812 - 2220 Case Sizes)

			ise Si Serie	-		C	18120	C ²			C18	25C			C	2220	С	
Capacitance	Cap Code	Vo	ltage C	ode	3	5	1	2	A	5	1	2	A	3	5	1	2	A
		Rated	Voltage	e (VDC)	25	50	10	200	250	50	100	200	250	25	20	100	200	250
		Capacit	ance To	olerance	Prod	uct Ava	nilabilit	y and C	chip Th	icknes	s Code	s – See	Table	2 for Cl	hip Thio	ckness	Dimen	sions
470 - 820 pF**	471 - 821**	J	K	М	GB	GB	GB	GB										
1,000 pF	102	J	K	M	GB	GB	GB	GB										
1,200 pF	122	J	K	M	GB	GB	GB	GB										
1,500 pF	152	J	K	M	GB	GB	GB	GB										
1,800 pF	182	J	K	M	GB	GB	GB	GB										
2,200 pF	222	J	K	M	GB	GB	GB	GB										
2,700 pF	272	J	K	M	GB	GB	GB	GB										
3,300 pF	332	J	K	M	GB	GB	GB	GB										
3,900 pF	392	J	K	M	GB	GB	GB	GB										
4,700 pF	472	J	K K	M	GB GB	GB GB	GB GB	GD GH										
5,600 pF	562	J		M					CD									
6,800 pF	682 822	J	K K	M	GB GB	GB GB	GB GB	GB GB	GB GB					JE JE	JE JE	JE JE		
8,200 pF 10,000 pF	103	J	ĸ	M	GB	GB	GB	GB	GB					JE	JE	JE		
12,000 pF	123	J	K	M	GB	GB	GB	GB	GB					JE	JE	JE		
15,000 pF	153	J	K	M	GB	GB	GB	GB	GB					JE	JE	JE		
18,000 pF	183	J	K	M	GB	GB	GB	GB	GB					JE	JE	JE		
22,000 pF	223	J	K	M	GB	GB	GB	GB	GB	НВ	НВ	НВ	НВ	JE	JE	JE		
27,000 pF	273	J	ĸ	M	GB	GB	GB	GB	GB	НВ	HB	НВ	HB	JE	JE	JE		
33,000 pF	333	Ĵ	ĸ	M	GB	GB	GB	GB	GB	НВ	HB	HB	HB	JB	JB	JB		
39,000 pF	393	J	K	M	GB	GB	GB	GB	GB	HB	HB	HB	HB	JB	JB	JB		
47,000 pF	473	Ĵ	K	M	GB	GB	GB	GB	GB	НВ	НВ	HB	HB	JB	JB	JB		
56,000 pF	563	Ĵ	K	M	GB	GB	GB	GB	GB	НВ	НВ	HB	HB	JB	JB	JB		
68,000 pF	683	Ĵ	K	M	GB	GB	GB	GB	GB	НВ	HB	HB	HB	JB	JB	JB		
82,000 pF	823	J	К	м	GB	GB	GB	GB	GB	НВ	HB	HB	HB	JB	JB	JC	JC	JC
0.10 µF	104	J	К	М	GB	GB	GB	GB	GB	НВ	HB	HB	HB	JB	JB	JC	JC	JC
0.12 μF	124	J	К	м	GB	GB	GB	GB	GB	НВ	HB	HB	HB	JB	JB	JC	JC	JC
0.15 μF	154	J	К	м	GB	GB	GB	GE	GE	НВ	HB	HB	HB	JB	JB	JC	JC	JC
0.18 µF	184	J	K	M	GB	GB	GB	GG	GG	НВ	HB	HB	HB	JB	JB	JC	JC	JC
0.22 µF	224	J	K	M	GB	GB	GB	GG	GG	HB	HB	HB	HB	JB	JB	JC	JC	JC
		Rated	Voltage	e (VDC)	25	50	100	200	250	50	100	200	250	25	50	100	200	250
Capacitance	Cap Code	Vo	ltage C	ode	3	5	1	2	A	5	1	2	A	3	5	1	2	A
			ase Si /Serie:			(C1812C	2			C18	25C		C2220C				

*Capacitance range Includes E24 decade values only. (i.e., 10, 11, 12, 13, 15, 16, 18, 20, 22, 24, 27, 30, 33, 36, 39, 43, 47, 51, 56, 62, 68, 75, 82 and 91)

**Capacitance range Includes E12 decade values only. (i.e., 10, 12, 15, 18, 22, 27, 33, 39, 47, 56, 68 and 82)

² Available capacitance values available in X7R with KONNEKT Technology.

Table 1C – Capacitance Range/Selection Waterfall (1812 – 2220 Case Sizes) cont.

		Case Size /Series			C	1812(C ²			C18	25C		C2220C					
Capacitance	Cap Code	Vo	ltage C	ode	3	5	1	2	Α	5	1	2	A	3	5	1	2	A
Capacitance	Cap Coue	Rated			25	50	100	200	250	50	100	200	250	25	50	100	200	250
		Capaci	tance To	olerance	Prod	uct Ava	ailabilit	y and C	chip Th	icknes	s Code	s – See	Table	2 for Cl	nip Thio	ckness	Dimen	sions
0.27 μF	274	J	K	М	GB	GB	GG	GG	GG	HB	HB	HB	HB	JC	JC	JC	JC	JC
0.33 µF	334	J	K	M	GB	GB	GG	GG	GG	HB	HB	HB	HB	JC	JC	JC	JC	JC
0.39 µF	394	J	K	M	GB	GB	GG	GG	GG	HD	HD	HD	HD	JC	JC	JC	JC	JC
0.47 µF	474	J	K	M	GB	GB	GG	GJ	GJ	HD	HD	HD	HD	JC	JC	JC	JC	JC
0.56 µF	564	J	K	М	GC	GC	GG			HD	HD	HD	HD	JC	JD	JD	JD	JD
0.68 µF	684	J	K	М	GC	GC	GG			HD	HD	HD	HD	JC	JD	JD	JD	JD
0.82 µF	824	J	K	М	GE	GE	GG			HF	HF	HF	HF	JC	JF	JF	JF	JF
1.0 µF	105	J	K	М	GE	GE	GG			HF	HF	HF	HF	JC	JF	JF	JF	JF
1.2 μF	125	J	K	М	GB	GB	GB							JC	JC			
1.5 µF	155	J	K	М	GC	GC	GC							JC	JC			
1.8 μF	185	J	K	M	GE	GE	GE							JD	JD			
2.2 µF	225	J	K	M	GO	GO	GG							JF	JF			
2.7 µF	275	J	K	М	GJ	GJ	GJ											
3.3 µF	335	J	K	М	GL	GL	GL											
3.9 µF	395	J	K	М	GK	GK												
4.7 μF	475	J	K	М	GK	GK								JF	JF			
10 µF	106	J	ĸ	М	GK									JF	JO			
15 μF	156	J	ĸ	М										JO				
22 μF	226	J	K	М										JO				
			Voltage	. ,	25	20	100	200	250	50	100	200	250	25	50	100	200	250
Capacitance	Cap Code	Vo	ltage C	ode	3	5	1	2	A	5	1	2	A	3	5	1	2	A
		-	ase Si /Serie	-			C1812C	2			C18	25C				C22200	;	

*Capacitance range Includes E24 decade values only. (i.e., 10, 11, 12, 13, 15, 16, 18, 20, 22, 24, 27, 30, 33, 36, 39, 43, 47, 51, 56, 62, 68, 75, 82 and 91)

**Capacitance range Includes E12 decade values only. (i.e., 10, 12, 15, 18, 22, 27, 33, 39, 47, 56, 68 and 82)

² Available capacitance values available in X7R with KONNEKT Technology.

Thickness	Case	Thickness ±	Paper Q	uantity ¹	Plastic (Quantity	
Code	Size ¹	Range (mm)	7" Reel	13" Reel	7" Reel	13" Reel	
BB	0402	0.50 ± 0.05	10,000	50,000	0	0	
CF	0603	0.80 ± 0.07*	4,000	15,000	0	0	
CJ	0603	0.80 ± 0.15*	4,000	15,000	0	0	
DN	0805	0.78 ± 0.10*	4,000	15,000	0	0	
DP	0805	0.90 ± 0.10*	4,000	15,000	0	0	
DE	0805	1.00 ± 0.10	0	0	2,500	10,000	
DG	0805	1.25 ± 0.15	0	0	2,500	10,000	
DH	0805	1.25 ± 0.20	0	0	2,500	10,000	
EB	1206	0.78 ± 0.10	0	0	4,000	10,000	
EC	1206	0.90 ± 0.10	0	0	4,000	10,000	
EN	1206	0.95 ± 0.10	0	0	4,000	10,000	
ED	1206	1.00 ± 0.10	0	0	2,500	10,000	
EE	1206	1.10 ± 0.10	0	0	2,500	10,000	
EF	1206	1.20 ± 0.15	0	0	2,500	10,000	
EM	1206	1.25 ± 0.15	0	0	2,500	10,000	
EG	1206	1.60 ± 0.15	0	0	2,000	8,000	
EH	1206	1.60 ± 0.20	0	0	2,000	8,000	
FB	1210	0.78 ± 0.10	0	0	4,000	10,000	
FC	1210	0.90 ± 0.10	0	0	4,000	10,000	
FD	1210	0.95 ± 0.10	0	0	4,000	10,000	
FE	1210	1.00 ± 0.10	0	0	2,500	10,000	
FF	1210	1.10 ± 0.10	0	0	2,500	10,000	
FG	1210	1.25 ± 0.15	0	0	2,500	10,000	
FL	1210	1.40 ± 0.15	0	0	2,000	8,000	
FH	1210	1.55 ± 0.15	0	0	2,000	8,000	
FP	1210	1.60 ± 0.20	0	0	2,000	8,000	
FM	1210	1.70 ± 0.20	0	0	2,000	8,000	
FJ	1210	1.85 ± 0.20	0	0	2,000	8,000	
FK	1210	2.10 ± 0.20	0	0	2,000	8,000	
FS	1210	2.50 ± 0.30	0	0	1,000	4,000	
Thickness	Case	Thickness ±	7" Reel	13" Reel	7" Reel	13" Reel	
Code	Size1	Range (mm)	Paper Q	uantity ¹	Plastic Quantity		

Package quantity based on finished chip thickness specifications.

¹ If ordering using the 2 mm Tape & Reel pitch option, the packaging quantity outlined in the table above will be doubled. This option is limited to EIA 0603 (1608 metric) case size devices. For more information regarding 2 mm pitch option see "Tape & Reel Packaging Information."

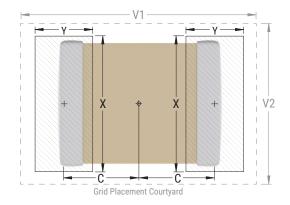
Thickness	Case	Thickness ±	Paper Q	uantity ¹	Plastic Quantity			
Code	Size ¹	Range (mm)	7" Reel	13" Reel	7" Reel	13" Reel		
NA	1805	0.90 ± 0.10	0	0	4,000	10,000		
NC	1805	1.00 ± 0.15	0	0	4,000	10,000		
LD	1808	0.90 ± 0.10	0	0	2,500	10,000		
LF	1808	1.00 ± 0.15	0	0	2,500	10,000		
GB	1812	1.00 ± 0.10	0	0	1,000	4,000		
GC	1812	1.10 ± 0.10	0	0	1,000	4,000		
GD	1812	1.25 ± 0.15	0	0	1,000	4,000		
GE	1812	1.30 ± 0.10	0	0	1,000	4,000		
GH	1812	1.40 ± 0.15	0	0	1,000	4,000		
GG	1812	1.55 ± 0.10	0	0	1,000	4,000		
GK	1812	1.60 ± 0.20	0	0	1,000	4,000		
GJ	1812	1.70 ± 0.15	0	0	1,000	4,000		
GL	1812	1.90 ± 0.20	0	0	500	2,000		
GO	1812	2.50 ± 0.20	0	0	500	2,000		
HB	1825	1.10 ± 0.15	0	0	1,000	4,000		
HD	1825	1.30 ± 0.15	0	0	1,000	4,000		
HF	1825	1.50 ± 0.15	0	0	1,000	4,000		
JB	2220	1.00 ± 0.15	0	0	1,000	4,000		
JC	2220	1.10 ± 0.15	0	0	1,000	4,000		
JD	2220	1.30 ± 0.15	0	0	1,000	4,000		
JE	2220	1.40 ± 0.15	0	0	1,000	4,000		
JF	2220	1.50 ± 0.15	0	0	1,000	4,000		
JO	2220	2.40 ± 0.15	0	0	500	2,000		
Thickness	Case	Thickness ±	7" Reel	13" Reel	7" Reel	13" Reel		
Code	Size1	Range (mm)	Paper Q	uantity ¹	Plastic Quantity			

Table 2 – Chip Thickness/Tape & Reel Packaging Quantities cont.

Package quantity based on finished chip thickness specifications.

¹ If ordering using the 2 mm Tape & Reel pitch option, the packaging quantity outlined in the table above will be doubled. This option is limited to EIA 0603 (1608 metric) case size devices. For more information regarding 2 mm pitch option see "Tape & Reel Packaging Information."

Table 3 – Chip Capacitor Land Pattern Design Recommendations per IPC-7351


EIA Size Code	Metric Size Code	1	Density Level A: Maximum (Most) Land Protrusion (mm)					Density Level B: Median (Nominal) Land Protrusion (mm)				Density Level C: Minimum (Least) Land Protrusion (mm)				
Coue	Coue	C	Y	X	V1	V2	C	Y	X	V1	V2	C	Y	X	V1	V2
0402	1005	0.50	0.72	0.72	2.20	1.20	0.45	0.62	0.62	1.90	1.00	0.40	0.52	0.52	1.60	0.80
0603	1608	0.90	1.15	1.10	4.00	2.10	0.80	0.95	1.00	3.10	1.50	0.60	0.75	0.90	2.40	1.20
0805	2012	1.00	1.35	1.55	4.40	2.60	0.90	1.15	1.45	3.50	2.00	0.75	0.95	1.35	2.80	1.70
1206	3216	1.60	1.35	1.90	5.60	2.90	1.50	1.15	1.80	4.70	2.30	1.40	0.95	1.70	4.00	2.00
1210	3225	1.60	1.35	2.80	5.65	3.80	1.50	1.15	2.70	4.70	3.20	1.40	0.95	2.60	4.00	2.90
1210 ¹	3225	1.50	1.60	2.90	5.60	3.90	1.40	1.40	2.80	4.70	3.30	1.30	1.20	2.70	4.00	3.00
1812	4532	2.15	1.60	3.60	6.90	4.60	2.05	1.40	3.50	6.00	4.00	1.95	1.20	3.40	5.30	3.70
2220	5650	2.75	1.70	5.50	8.20	6.50	2.65	1.50	5.40	7.30	5.90	2.55	1.30	5.30	6.60	5.60

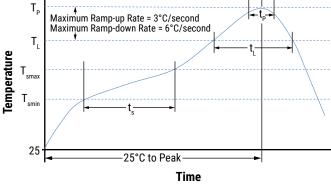
¹ Only for capacitance values $\ge 22 \ \mu F$

Density Level A: For low-density product applications. Recommended for wave solder applications and provides a wider process window for reflow solder processes. KEMET only recommends wave soldering of EIA 0603, 0805, and 1206 case sizes.

Density Level B: For products with a moderate level of component density. Provides a robust solder attachment condition for reflow solder processes. **Density Level C:** For high component density product applications. Before adapting the minimum land pattern variations the user should perform qualification testing based on the conditions outlined in IPC Standard 7351 (IPC-7351).

Image below based on Density Level B for an EIA 1210 case size.

Soldering Process

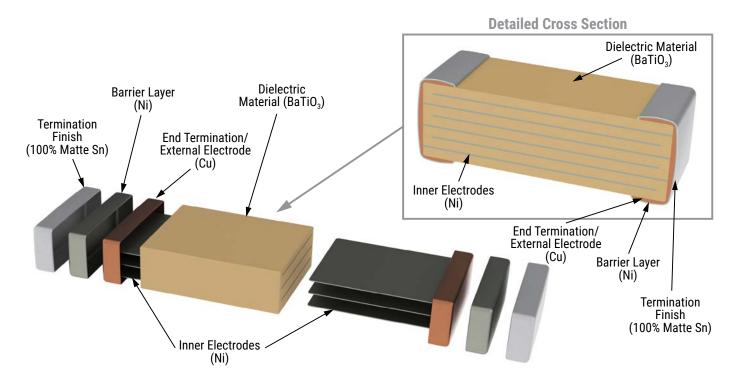

Recommended Soldering Technique:

- Solder wave or solder reflow for EIA case sizes 0603, 0805 and 1206
- · All other EIA case sizes are limited to solder reflow only

Recommended Reflow Soldering Profile:

The KEMET families of surface mount multilayer ceramic capacitors (SMD MLCCs) are compatible with wave (single or dual), convection, IR or vapor phase reflow techniques. Preheating of these components is recommended to avoid extreme thermal stress. The KEMET recommended profile conditions for convection and IR reflow reflect the profile conditions of the IPC/J-STD-020 standard for moisture sensitivity testing. These devices can safely withstand a maximum of three reflow passes at these conditions.

Profile Feature	Terminati	ion Finish
Tomereature	SnPb	100% Matte Sn
Preheat/Soak		
Temperature Minimum (T _{smin})	100°C	150°C
Temperature Maximum (T _{Smax})	150°C	200°C
Time (t_s) from T_{smin} to T_{smax}	60 – 120 seconds	60 – 120 seconds
Ramp-Up Rate (T_L to T_P)	3°C/second maximum	3°C/second maximum
Liquidous Temperature (T_L)	183°C	217°C
Time Above Liquidous (t_L)	60 – 150 seconds	60 – 150 seconds
Peak Temperature (T _P)	235°C	260°C
Time Within 5°C of Maximum Peak Temperature (t _P)	20 seconds maximum	30 seconds maximum
Ramp-Down Rate $(T_{p} to T_{L})$	6°C/second maximum	6°C/second maximum
Time 25°C to Peak Temperature	6 minutes maximum	8 minutes maximum

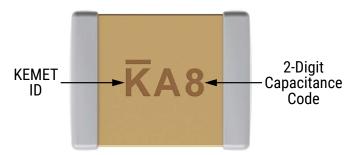

Note: All temperatures refer to the center of the package, measured on the capacitor body surface that is facing up during assembly reflow.

Storage & Handling

Ceramic chip capacitors should be stored in normal working environments. While the chips themselves are quite robust in other environments, solderability will be degraded by exposure to high temperatures, high humidity, corrosive atmospheres, and long term storage. In addition, packaging materials will be degraded by high temperature – reels may soften or warp and tape peel force may increase. KEMET recommends that maximum storage temperature not exceed 40°C and maximum storage humidity not exceed 70% relative humidity. Temperature fluctuations should be minimized to avoid condensation on the parts and atmospheres should be free of chlorine and sulfur bearing compounds. For optimized solderability chip stock should be used promptly, preferably within 1.5 years of receipt.

Construction (Typical)

Capacitor Marking (Optional)

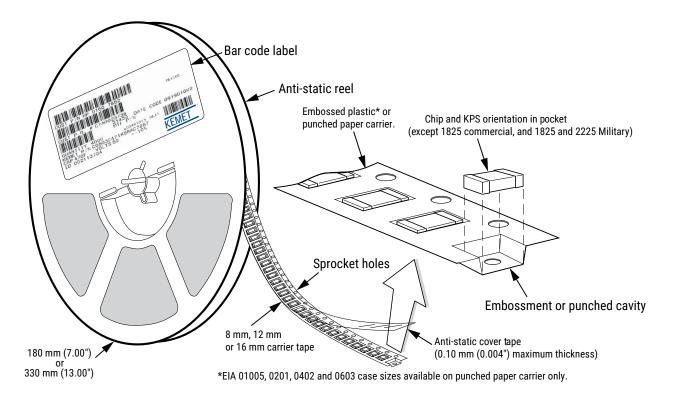

These surface mount multilayer ceramic capacitors are normally supplied unmarked. If required, they can be marked as an extra cost option. Marking is available on most KEMET devices, but must be requested using the correct ordering code identifier(s). If this option is requested, two sides of the ceramic body will be laser marked with a "K" to identify KEMET, followed by two characters (per EIA–198 - see table below) to identify the capacitance value. EIA 0603 case size devices are limited to the "K" character only.

Laser marking option is not available on:

- COG, ultra stable X8R and Y5V dielectric devices.
- EIA 0402 case size devices.
- EIA 0603 case size devices with flexible termination option.
- KPS commercial and automotive grade stacked devices.
- X7R dielectric products in capacitance values outlined below.

EIA Case Size	Metric Size Code	Capacitance
0603	1608	≤ 170 pF
0805	2012	≤ 150 pF
1206	3216	≤ 910 pF
1210	3225	≤ 2,000 pF
1808	4520	≤ 3,900 pF
1812	4532	≤ 6,700 pF
1825	4564	≤ 0.018 µF
2220	5650	≤ 0.027 µF
2225	5664	≤ 0.033 µF

Marking appears in legible contrast. Illustrated below is an example of an MLCC with laser marking of "KA8", which designates a KEMET device with rated capacitance of 100 μ F. Orientation of marking is vendor optional.


Capacitor Marking (Optional) cont.

	Capacitance (pF) For Various Alpha/Numeral Identifiers										
Alaba						Numera	al				
Alpha	9	0	1	2	3	4	5	6	7	8	
Character					Сара	citance	e (pF)				
A	0.10	1.0	10	100	1,000	10,000	100,000	1,000,000	10,000,000	100,000,000	
В	0.11	1.1	11	110	1,100	11,000	110,000	1,100,000	11,000,000	110,000,000	
С	0.12	1.2	12	120	1,200	12,000	120,000	1,200,000	12,000,000	120,000,000	
D	0.13	1.3	13	130	1,300	13,000	130,000	1,300,000	13,000,000	130,000,000	
E	0.15	1.5	15	150	1,500	15,000	150,000	1,500,000	15,000,000	150,000,000	
F	0.16	1.6	16	160	1,600	16,000	160,000	1,600,000	16,000,000	160,000,000	
G	0.18	1.8	18	180	1,800	18,000	180,000	1,800,000	18,000,000	180,000,000	
Н	0.20	2.0	20	200	2,000	20,000	200,000	2,000,000	20,000,000	200,000,000	
J	0.22	2.2	22	220	2,200	22,000	220,000	2,200,000	22,000,000	220,000,000	
К	0.24	2.4	24	240	2,400	24,000	240,000	2,400,000	24,000,000	240,000,000	
L	0.27	2.7	27	270	2,700	27,000	270,000	2,700,000	27,000,000	270,000,000	
М	0.30	3.0	30	300	3,000	30,000	300,000	3,000,000	30,000,000	300,000,000	
N	0.33	3.3	33	330	3,300	33,000	330,000	3,300,000	33,000,000	330,000,000	
Р	0.36	3.6	36	360	3,600	36,000	360,000	3,600,000	36,000,000	360,000,000	
Q	0.39	3.9	39	390	3,900	39,000	390,000	3,900,000	39,000,000	390,000,000	
R	0.43	4.3	43	430	4,300	43,000	430,000	4,300,000	43,000,000	430,000,000	
S	0.47	4.7	47	470	4,700	47,000	470,000	4,700,000	47,000,000	470,000,000	
Т	0.51	5.1	51	510	5,100	51,000	510,000	5,100,000	51,000,000	510,000,000	
U	0.56	5.6	56	560	5,600	56,000	560,000	5,600,000	56,000,000	560,000,000	
V	0.62	6.2	62	620	6,200	62,000	620,000	6,200,000	62,000,000	620,000,000	
W	0.68	6.8	68	680	6,800	68,000	680,000	6,800,000	68,000,000	680,000,000	
Х	0.75	7.5	75	750	7,500	75,000	750,000	7,500,000	75,000,000	750,000,000	
Y	0.82	8.2	82	820	8,200	82,000	820,000	8,200,000	82,000,000	820,000,000	
Z	0.91	9.1	91	910	9,100	91,000	910,000	9,100,000	91,000,000	910,000,000	
а	0.25	2.5	25	250	2,500	25,000	250,000	2,500,000	25,000,000	250,000,000	
b	0.35	3.5	35	350	3,500	35,000	350,000	3,500,000	35,000,000	350,000,000	
d	0.40	4.0	40	400	4,000	40,000	400,000	4,000,000	40,000,000	400,000,000	
e	0.45	4.5	45	450	4,500	45,000	450,000	4,500,000	45,000,000	450,000,000	
f	0.50	5.0	50	500	5,000	50,000	500,000	5,000,000	50,000,000	500,000,000	
m	0.60	6.0	60	600	6,000	60,000	600,000	6,000,000	60,000,000	600,000,000	
n	0.70	7.0	70	700	7,000	70,000	700,000	7,000,000	70,000,000	700,000,000	
t	0.80	8.0	80	800	8,000	80,000	800,000	8,000,000	80,000,000	800,000,000	
y	0.90	9.0	90	900	9,000	90,000	900,000	9,000,000	90,000,000	900,000,000	

Tape & Reel Packaging Information

KEMET offers multilayer ceramic chip capacitors packaged in 8, 12 and 16 mm tape on 7" and 13" reels in accordance with EIA Standard 481. This packaging system is compatible with all tape-fed automatic pick and place systems. See Table 2 for details on reeling quantities for commercial chips.

Table 5 – Carrier Tape Configuration, Embossed Plastic & Punched Paper (mm)

	Таре	Embosse	ed Plastic	Punched Paper			
EIA Case Size	Size	7" Reel	13" Reel	7" Reel	13" Reel		
	(W)*	Pitch	(P ₁)*	Pitch	(P ₁)*		
01005 - 0402	8			2	2		
0603	8			2/4	2/4		
0805	8	4	4	4	4		
1206 - 1210	8	4	4	4	4		
1805 - 1808	12	4	4				
≥ 1812	12	8	8				
KPS 1210	12	8	8				
KPS 1812 and 2220	16	12	12				
Array 0612	8	4	4				

*Refer to Figures 1 and 2 for W and P₁ carrier tape reference locations. *Refer to Tables 6 and 7 for tolerance specifications.

New 2 mm Pitch Reel Options*

Packaging Ordering Code (C-Spec)	Packaging Type/Options
C-3190	Automotive grade 7" reel unmarked
C-3191	Automotive grade 13" reel unmarked
C-7081	Commercial grade 7" reel unmarked
C-7082	Commercial grade 13" reel unmarked

* 2 mm pitch reel only available for 0603 EIA case size. 2 mm pitch reel for 0805 EIA case size under development.

Benefits of Changing from 4 mm to 2 mm Pitching Spacing

- Lower placement costs.
- Double the parts on each reel results in fewer reel changes and increased efficiency.
- Fewer reels result in lower packaging, shipping and storage costs, reducing waste.

Figure 1 – Embossed (Plastic) Carrier Tape Dimensions

Table 6 – Embossed (Plastic) Carrier Tape Dimensions

Metric will govern

Constant Dimensions — Millimeters (Inches)									
Tape Size	D ₀	D ₁ Minimum Note 1	E ₁	P ₀	P ₂	R Reference Note 2	S ₁ Minimum Note 3	T Maximum	T ₁ Maximum
8 mm	1.5 +0.10/-0.0 (0.059 +0.004/-0.0)	1.0 (0.039)	1.75 ±0.10 (0.069 ±0.004)	4.0 ±0.10 (0.157 ±0.004)	2.0 ±0.05 (0.079 ±0.002)	25.0 (0.984)	0.600 (0.024)	0.600 (0.024)	0.100 (0.004)
12 mm		1.5 (0.059)				30 (1.181)			
16 mm									
Variable Dimensions – Millimeters (Inches)									
Tape Size	Pitch	B ₁ Maximum Note 4	E ₂ Minimum	F	P ₁	T ₂ Maximum	W Maximum	A ₀ ,B ₀	& K ₀
8 mm	Single (4 mm)	4.35 (0.171)	6.25 (0.246)	3.5 ±0.05 (0.138 ±0.002)	4.0 ±0.10 (0.157 ±0.004)	2.5 (0.098)	8.3 (0.327)		
12 mm	Single (4 mm) and double (8 mm)	8.2 (0.323)	10.25 (0.404)	5.5 ±0.05 (0.217 ±0.002)	8.0 ±0.10 (0.315 ±0.004)	4.6 (0.181)	12.3 (0.484)	Note 5	
16 mm	Triple (12 mm)	12.1 (0.476)	14.25 (0.561)	7.5 ±0.05 (0.138 ±0.002)	12.0 ±0.10 (0.157 ±0.004)	4.6 (0.181)	16.3 (0.642)		

1. The embossment hole location shall be measured from the sprocket hole controlling the location of the embossment. Dimensions of the embossment location and the hole location shall be applied independently of each other.

2. The tape with or without components shall pass around R without damage (see Figure 6.)

3. If S₁ < 1.0 mm, there may not be enough area for a cover tape to be properly applied (see EIA Standard 481, paragraph 4.3, section b.)

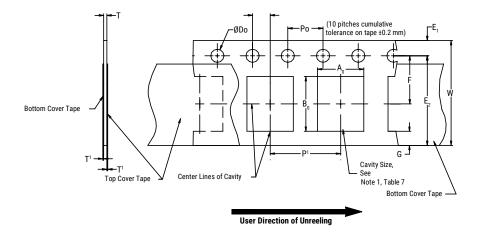
4. B, dimension is a reference dimension for tape feeder clearance only.

5. The cavity defined by A_{μ} , B_{μ} and K_{μ} shall surround the component with sufficient clearance that:

(a) the component does not protrude above the top surface of the carrier tape.

(b) the component can be removed from the cavity in a vertical direction without mechanical restriction, after the top cover tape has been removed.

(c) rotation of the component is limited to 20° maximum for 8 and 12 mm tapes and 10° maximum for 16 mm tapes (see Figure 3.)


(d) lateral movement of the component is restricted to 0.5 mm maximum for 8 and 12 mm wide tape and to 1.0 mm maximum for 16 mm tape (see Figure 4.)

(e) for KPS product, A_{a} and B_{a} are measured on a plane 0.3 mm above the bottom of the pocket.

(f) see addendum in EIA Standard 481 for standards relating to more precise taping requirements.

Figure 2 – Punched (Paper) Carrier Tape Dimensions

Table 7 – Punched (Paper) Carrier Tape Dimensions

Metric will govern

Constant Dimensions — Millimeters (Inches)							
Tape Size	D _o	E ₁	P ₀	P ₂	T ₁ Maximum	G Minimum	R Reference Note 2
8 mm	1.5 +0.10 -0.0 (0.059 +0.004 -0.0)	1.75 ±0.10 (0.069 ±0.004)	4.0 ±0.10 (0.157 ±0.004)	2.0 ±0.05 (0.079 ±0.002)	0.10 (0.004) maximum	0.75 (0.030)	25 (0.984)
Variable Dimensions – Millimeters (Inches)							
Tape Size	Pitch	E2 Minimum	F	P ₁	T Maximum	W Maximum	A ₀ B ₀
8 mm	Half (2 mm)	6.25	3.5 ±0.05 (0.138 ±0.002)	2.0 ±0.05 (0.079 ±0.002)	1.1	8.3 (0.327)	Note 1
8 mm	Single (4 mm)	(0.246)		4.0 ±0.10 (0.157 ±0.004)	(0.098)	8.3 (0.327)	

1. The cavity defined by A_{α} , B_{α} and T shall surround the component with sufficient clearance that:

a) the component does not protrude beyond either surface of the carrier tape.

b) the component can be removed from the cavity in a vertical direction without mechanical restriction, after the top cover tape has been removed.

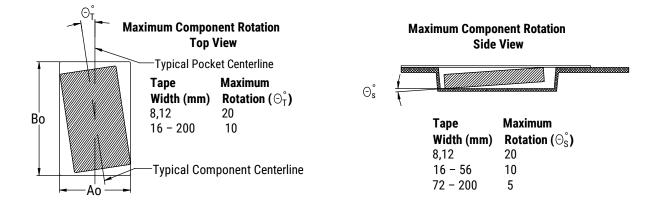
c) rotation of the component is limited to 20° maximum (see Figure 3.)

d) lateral movement of the component is restricted to 0.5 mm maximum (see Figure 4.)

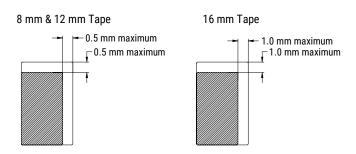
e) see addendum in EIA Standard 481 for standards relating to more precise taping requirements.

2. The tape with or without components shall pass around R without damage (see Figure 6.)

Packaging Information Performance Notes


- 1. Cover Tape Break Force: 1.0 kg minimum.
- 2. Cover Tape Peel Strength: The total peel strength of the cover tape from the carrier tape shall be:

Tape Width	Peel Strength			
8 mm	0.1 to 1.0 newton (10 to 100 gf)			
12 and 16 mm	0.1 to 1.3 newton (10 to 130 gf)			


The direction of the pull shall be opposite the direction of the carrier tape travel. The pull angle of the carrier tape shall be 165° to 180° from the plane of the carrier tape. During peeling, the carrier and/or cover tape shall be pulled at a velocity of 300 ± 10 mm/minute.

3. Labeling: Bar code labeling (standard or custom) shall be on the side of the reel opposite the sprocket holes. *Refer to EIA Standards 556 and 624*.

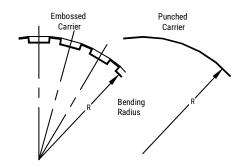

Figure 3 – Maximum Component Rotation

Figure 4 – Maximum Lateral Movement

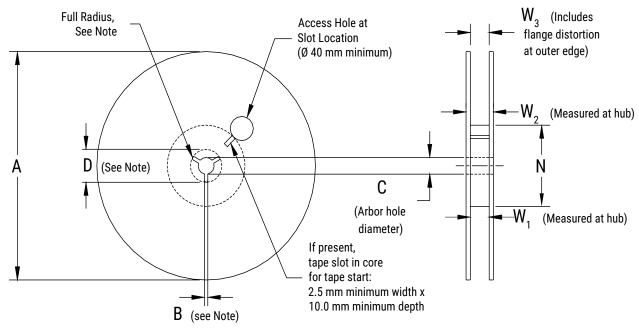
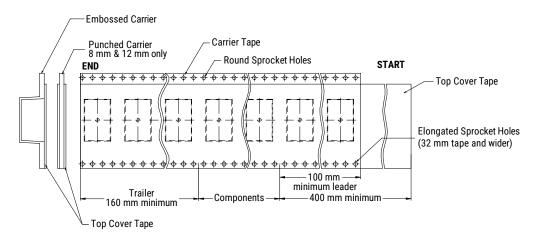


Figure 5 – Bending Radius

Figure 6 – Reel Dimensions

Note: Drive spokes optional; if used, dimensions B and D shall apply.


Table 8 – Reel Dimensions

Metric will govern

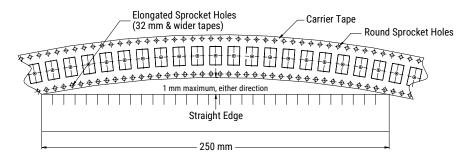

Constant Dimensions — Millimeters (Inches)							
Tape Size	А	B Minimum C		D Minimum			
8 mm	178 ±0.20	1.5 (0.059)	13.0 +0.5/-0.2 (0.521 +0.02/-0.008)				
12 mm	(7.008 ±0.008) or			20.2 (0.795)			
16 mm	330 ±0.20 (13.000 ±0.008)		(,				
	Variable Dimensions – Millimeters (Inches)						
Tape Size	N Minimum	W ₁	W ₂ Maximum	W ₃			
8 mm		8.4 +1.5/-0.0 (0.331 +0.059/-0.0)	14.4 (0.567)				
12 mm	50 (1.969)	12.4 +2.0/-0.0 (0.488 +0.078/-0.0)	18.4 (0.724)	Shall accommodate tape width without interference			
16 mm		16.4 +2.0/-0.0 (0.646 +0.078/-0.0)	22.4 (0.882)				

Figure 7 – Tape Leader & Trailer Dimensions

Figure 8 – Maximum Camber

KEMET Electronics Corporation Sales Offices

For a complete list of our global sales offices, please visit www.kemet.com/sales.

Disclaimer

All product specifications, statements, information and data (collectively, the "Information") in this datasheet are subject to change. The customer is responsible for checking and verifying the extent to which the Information contained in this publication is applicable to an order at the time the order is placed. All Information given herein is believed to be accurate and reliable, but it is presented without guarantee, warranty, or responsibility of any kind, expressed or implied.

Statements of suitability for certain applications are based on KEMET Electronics Corporation's ("KEMET") knowledge of typical operating conditions for such applications, but are not intended to constitute – and KEMET specifically disclaims – any warranty concerning suitability for a specific customer application or use. The Information is intended for use only by customers who have the requisite experience and capability to determine the correct products for their application. Any technical advice inferred from this Information or otherwise provided by KEMET with reference to the use of KEMET's products is given gratis, and KEMET assumes no obligation or liability for the advice given or results obtained.

Although KEMET designs and manufactures its products to the most stringent quality and safety standards, given the current state of the art, isolated component failures may still occur. Accordingly, customer applications which require a high degree of reliability or safety should employ suitable designs or other safeguards (such as installation of protective circuitry or redundancies) in order to ensure that the failure of an electrical component does not result in a risk of personal injury or property damage.

Although all product-related warnings, cautions and notes must be observed, the customer should not assume that all safety measures are indicted or that other measures may not be required.

KEMET is a registered trademark of KEMET Electronics Corporation.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

KEMET:

C0805C104J5RAC3123 C0805C102J5RAC3123 C0805C223K5RAC3123 C0805C223K1RAC3123
C0805C103K1RAC3123 C0603C102K5RACAUTO C0603C102K1RACAUTO C0805C103K2RACAUTO
C0805C224K3RACAUTO C0805C474K3RACAUTO C0603C104J5RACAUTO C0603C473K5RACAUTO
C0402C472J5RAC3121 C1206C103K5RACAUTO C0603C104K4RACAUTO C0805C105K4RACAUTO
C0805C223K5RACAUTO C1206C103K2RAC3124 C1206C104K1RACAUTO C1206C106K4RACAUTO
C1206C106K8RAC3123 C1206C106K8RACAUTO C1206C223K2RAC3124 C1206C224K5RAC3124
C1206C225K5RACAUTO C1206C473K2RACAUTO C1206C474K4RAC3124 C1206C474K5RAC3124
C1206C474K5RACAUTO C1210C105K1RACAUTO C1210C105M5RACAUTO C1210C224K5RACAUTO
C1210C225K5RACAUTO C1206C473K5RAC3124 C0402C821K3RACAUTO C0603C102M5RACAUTO
<u>C0603C103M5RACAUTO</u> <u>C0603C222K5RACAUTO</u> <u>C0805C105K8RACAUTO</u> <u>C0805C222K5RACAUTO</u>
<u>C0805C473K5RACAUTO</u> <u>C0805C102KARACAUTO</u> <u>C0805C103KARACAUTO</u> <u>C0805C472KARACAUTO</u>
C0805C223KARACAUTO C1206C104KARACAUTO C1206C103KARACAUTO C1210C104KARACAUTO
C1812C474JARACAUTO C1812C474KARACAUTO C1812C104KARACAUTO C1812C394KARACAUTO
<u>C2225C105KARACAUTO</u> <u>C0603C103M5RAC3121</u> <u>C0402C104K4RACAUTO</u> <u>C1206C105K5RACAUTO</u>
C1210C475K5RACAUTO C0603C103K5RACAUTO C0603C104K5RACAUTO C0805C102K5RACAUTO
C0805C103K5RACAUTO C0805C104K5RACAUTO C1206C104K5RACAUTO C0603C221K1RACAUTO
<u>C0805C334K5RACAUTO</u> <u>C0805C474K5RACAUTO</u> <u>C0805C102K2RACAUTO</u> <u>C1206C224K5RACAUTO</u>
C1206C105K3RACAUTO C0603C104K3RACAUTO C0603C472K5RACAUTO C0603C332K5RACAUTO
C0805C102K1RACAUTO C1206C225J8RACAUTO C1206C475J8RACAUTO C1210C106J4RACAUTO
C1206C225J4RACAUTO C1206C475J9RACAUTO C1206C475J4RACAUTO C0805C224K5RACAUTO
C0603C334K4RAC3121 C0805C103K1RACAUTO C1210C106K3RACAUTO C0805C223K1RACAUTO
<u>C0603C333K5RACAUTO</u> <u>C0805C224K4RACAUTO</u> <u>C1210C105K5RACAUTO</u> <u>C1206C103K2RACAUTO</u>
<u>C0603C471K5RACAUTO</u> <u>C1206C473K1RACAUTO</u> <u>C0805C393K1RACAUTO</u> <u>C1206C225K8RACAUTO</u>
C1206C223K5RACAUTO C0402C682K5RACAUTO C0805C222K1RACAUTO C0402C222K5RACAUTO
C0603C474K8RACAUTO C0402C103K4RACAUTO C1206C475K3RACAUTO C1206C104K2RACAUTO