STD1NK60-1

N-channel 600 V, 7.3 Ω typ., 1 A SuperMESH™ Power MOSFET in an IPAK package

Datasheet - production data

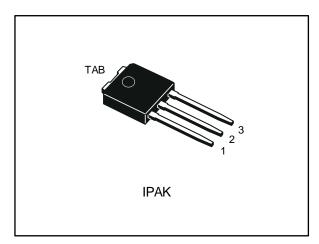
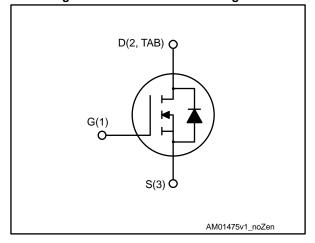



Figure 1: Internal schematic diagram

Features

Order code	V _{DS}	R _{DS(on)} max.	ΙD	Ртот
STD1NK60-1	600 V	8.5 Ω	1 A	30 W

- Extremely high dv/dt capability
- ESD improved capability
- 100% avalanche tested
- Gate charge minimized

Applications

- Low power battery chargers
- Swith mode low power supplies (SMPS)
- Low power, ballast, CFL (compact fluorescent lamps)

Description

This high voltage device is an N-channel Power MOSFET developed using the SuperMESH™ technology by STMicroelectronics, an optimization of the well-established PowerMESH™. In addition to a significant reduction in on-resistance, this device is designed to ensure a high level of dv/dt capability for the most demanding applications.

Table 1: Device summary

Order code	Marking	Package	Packing
STD1NK60-1	D1NK60	IPAK	Tube

Contents STD1NK60-1

Contents

1	Electric	al ratings	3
2	Electric	cal characteristics	4
	2.1	Electrical characteristics (curves)	6
3	Test cir	cuits	9
4	Packag	e information	10
	4.1	IPAK (TO-251) type A package information	10
	4.2	IPAK (TO-251) type C package information	12
5	Revisio	n history	14

STD1NK60-1 Electrical ratings

1 Electrical ratings

Table 2: Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{DS}	Drain-source voltage	600	V
V_{DGR}	Drain-gate voltage (R_{GS} = 20 k Ω)	600	V
V _G s	Gate-source voltage	±30	V
ΙD	Drain current (continuous) at T _C = 25 °C	1.0	Α
I_D	Drain current (continuous) at T _C = 100 °C	0.63	Α
I _{DM} ⁽¹⁾	Drain current (pulsed)	4	Α
Ртот	Total dissipation at $T_C = 25$ °C	30	W
I _{AR}	Avalanche current, repetitive or not-repetitive (pulse width limited by T_{jmax})	1	Α
Eas	Single pulse avalanche energy (starting T_j = 25 °C, I_D = I_{AR} , V_{DD} = 50 V)	25	mJ
dv/dt (2)	Peak diode recovery voltage slope	3	V/ns
Tj	Operating junction temperature range	55 to 150	°C
T _{stg}	Storage temperature range	- 55 to 150	C

Notes:

Table 3: Thermal data

Symbol	Parameter	Value	Unit
R _{thj-case}	Thermal resistance junction-case	4.2	°C/W
R _{thj-amb}	R _{thj-amb} Thermal resistance junction-ambient		°C/W

⁽¹⁾Pulse width limited by safe operating area.

 $^{^{(2)}}I_{SD} \leq 1.0$ A, di/dt ≤ 100 A/µs; V_{DD} $\leq V_{(BR)DSS},$ T_J $\leq T_{JMAX}$

Electrical characteristics STD1NK60-1

2 Electrical characteristics

 $T_C = 25$ ° C unless otherwise specified

Table 4: On/off-state

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage	V _{GS} = 0 V, I _D = 1 mA	600			V
	7	V _{GS} = 0 V, V _{DS} = 600 V			1	μΑ
I _{DSS}	Zero gate voltage drain current	$V_{GS} = 0 \text{ V}, V_{DS} = 600 \text{ V}$ $T_{C} = 125 ^{\circ}\text{C}$ (1)			50	μΑ
I _{GSS}	Gate body leakage current	V _{DS} =0 V, V _{GS} = ±30 V			±100	nA
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}$, $I_D = 250 \mu A$	2.25	3	3.7	V
R _{DS(on)}	Static drain-source on- resistance	V _{GS} = 10 V, I _D = 0.5 A		7.3	8.5	Ω

Notes:

Table 5: Dynamic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Ciss	Input capacitance		-	156	ı	pF
Coss	Output capacitance	V _{DS} = 25 V, f = 1 MHz, V _{GS} = 0 V	-	23.5	-	pF
C _{rss}	Reverse transfer capacitance	VDS = 23 V, I = 1 IVII 12, VGS = 0 V		3.8	-	pF
Qg	Total gate charge	V _{DD} = 480 V, I _D = 1 A	-	7	-	nC
Qgs	Gate-source charge	V _{GS} = 0 to 10 V	-	1.1	ı	nC
Q_{gd}	Gate-drain charge	(see Figure 16: "Test circuit for gate charge behavior")	-	3.7	-	nC

Table 6: Switching times

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time	V_{DD} = 300 V, I_{D} = 0.5 A, R_{G} = 4.7 Ω	-	6.5	-	ns
tr	Rise time	V _{GS} = 10 V	-	5	-	ns
t _{d(off)}	Turn-off delay time	(see Figure 15: "Test circuit for resistive load switching times" and	-	19	-	ns
t _f	Fall time	Figure 20: "Switching time waveform")	-	25	1	ns

 $[\]ensuremath{^{(1)}}\mbox{Defined}$ by design, not subject to production test.

Table 7: Source-drain diode

Symbol	Parameter	Test conditions		Тур.	Max.	Unit
I _{SD}	Source-drain current		-		1	Α
I _{SDM} ⁽¹⁾	Source-drain current (pulsed)		-		4	Α
V _{SD} ⁽²⁾	Forward on voltage	I _{SD} = 1.0 A, V _{GS} = 0 V	-		1.6	V
t _{rr}	Reverse recovery time	$I_{SD} = 1.0 \text{ A}, \text{ di/dt} = 100 \text{ A/}\mu\text{s},$	-	140		ns
Qrr	Reverse recovery charge	V _{DD} = 25 V (see Figure 17: "Test circuit for	-	240		nC
I _{RRM}	Reverse recovery current	inductive load switching and diode recovery times")	-	3.3		Α
t _{rr}	Reverse recovery time	I _{SD} = 1.0 A, di/dt = 100 A/µs,	-	229		ns
Qrr	Reverse recovery charge	V _{DD} = 25 V, T _j = 150 °C (see Figure 17: "Test circuit for	-	377		nC
I _{RRM}	Reverse recovery current	inductive load switching and diode recovery times")	-	3.3		Α

Notes:

⁽¹⁾Pulse width limited by safe operating area

 $^{^{(2)}\}text{Pulsed:}$ pulse duration = 300 μ s, duty cycle 1.5%

2.1 Electrical characteristics (curves)

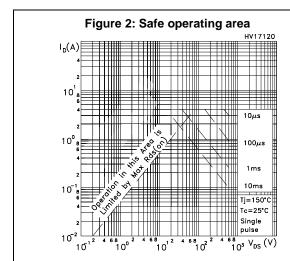
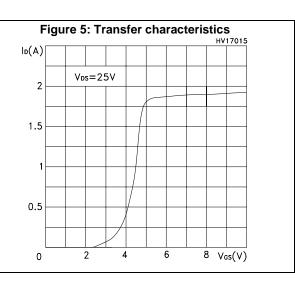
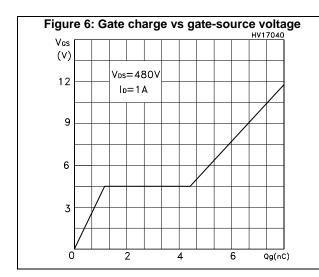
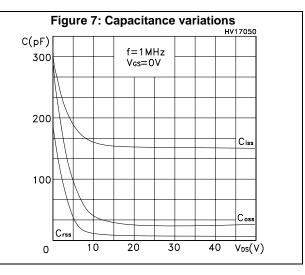





Figure 3: Thermal impedance

K 00^{-1} 0^{-1} 0^{-1} 0^{-2} 0

STD1NK60-1 Electrical characteristics

Figure 8: Static drain-source on-resistance

R_{DS(on)} (Ω)

8.5

V_{GS}=10V

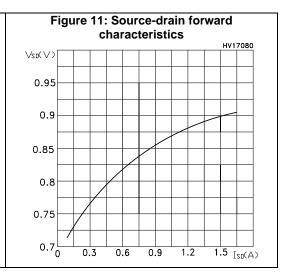
8

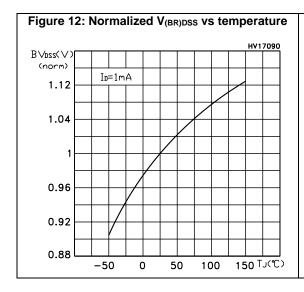
7.5

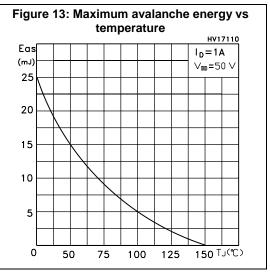
7

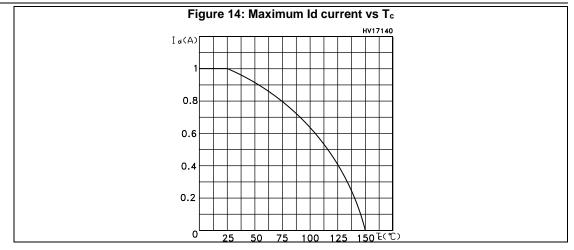
6.5

0

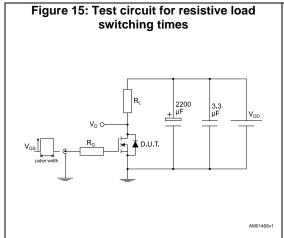

0.3


0.6


0.9


1.2

I_D(A)



STD1NK60-1 Test circuits

3 Test circuits

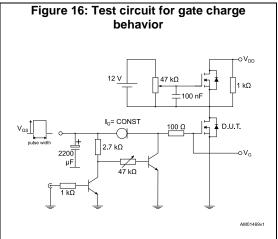
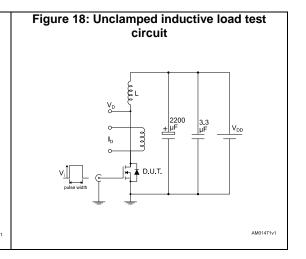
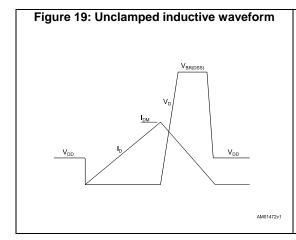
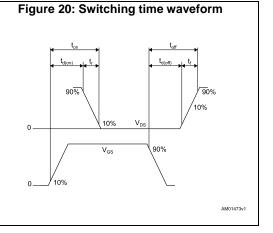





Figure 17: Test circuit for inductive load switching and diode recovery times

4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: **www.st.com**. ECOPACK® is an ST trademark.

4.1 IPAK (TO-251) type A package information

Figure 21: IPAK (TO-251) type A package outline *L2* D b2 (3x) Н **b** (3x) A 1 *B5* 0068771_IK_typeA_rev14 e 1-

Table 8: IPAK (TO-251) type A package mechanical data

Dim		mm	
Dim.	Min.	Тур.	Max.
А	2.20		2.40
A1	0.90		1.10
b	0.64		0.90
b2			0.95
b4	5.20		5.40
B5		0.30	
С	0.45		0.60
c2	0.48		0.60
D	6.00		6.20
Е	6.40		6.60
е		2.28	
e1	4.40		4.60
Н		16.10	
L	9.00		9.40
L1	0.80		1.20
L2		0.80	1.00
V1		10°	

4.2 IPAK (TO-251) type C package information

Figure 22: IPAK (TO-251) type C package outline

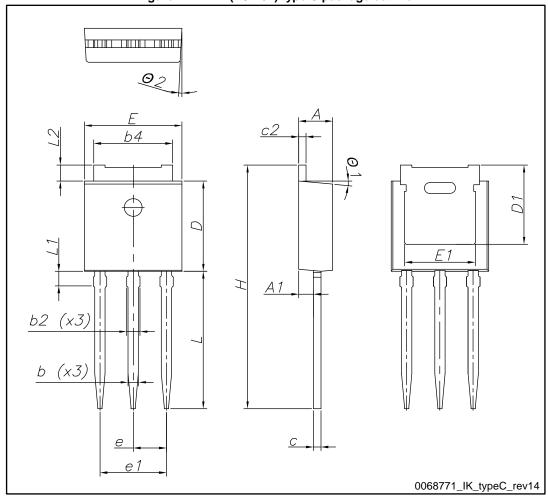


Table 9: IPAK (TO-251) type C package mechanical data

	145.6 0. 11 741 (10 201) typ	mm	
Dim.	Min.	Тур.	Max.
А	2.20	2.30	2.35
A1	0.90	1.00	1.10
b	0.66		0.79
b2			0.90
b4	5.23	5.33	5.43
С	0.46		0.59
c2	0.46		0.59
D	6.00	6.10	6.20
D1	5.20	5.37	5.55
E	6.50	6.60	6.70
E1	4.60	4.78	4.95
е	2.20	2.25	2.30
e1	4.40	4.50	4.60
Н	16.18	16.48	16.78
L	9.00	9.30	9.60
L1	0.90	1.00	1.20
L2	0.90	1.08	1.25
θ1	3°	5°	7°
θ2	1°	3°	5°

Revision history STD1NK60-1

5 Revision history

Table 10: Document revision history

Date	Revision	Changes
09-Feb-2017	1	First release.

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2017 STMicroelectronics - All rights reserved

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

STMicroelectronics: STD1NK60-1