

Product Description

μ-processor controlled amplifier for one set of photoelectric through beam sensors, type MOF.., MMF.. and MNF (see separate datasheet for MMFTR15 and MOFT20). Utilizes an 11-pin circular plug for easy connection.
8 A SPDT relay output, NPN
/ PNP transistor output or
alarm output. Diagnostics for sensor test during operation. Alignment help via LED or alternation of alarm output. Level indication for dirt accumulation. Manual or automatic emitter power regulation. Two emitter codes available for high neighbour immunity. ON- or OFF delay adjustable up to 10 sec .

- μ-Processor controlled
- Amplifier relay for photoelectric switches
- Automatic or manual emitter power regulation
- Self-diagnostic functions
- Alignment help
- Rated operational voltage: 24 VAC/DC, 24 VAC, 115 VAC or 230 VAC
- Output 8 A/250 VAC SPDT relay and 100 mA NPN
- LED indication: Automatic gain, output, level, emitter or receiver fault

(EcMis

Ordering Key

S142 B RNN 924
Type
Special function
Output type
(R-Relay, N-NPN, P-PNP, T-Test)
Power supply

Type Selection

Function	Ordering no. Supply: $\mathbf{2 4}$ VAC/DC	Ordering no. Supply: 24 VAC	Ordering no. Supply: 115 VAC	Ordering no. Supply: 230 VAC
NPN output \& Test input	S142 B RNT 924		S142 B RNT 115	S142 B RNT 230
NPN output \& Alarm output	S142 B RNN 924) ${ }^{1}$	S142 B RNN 024) ${ }^{1}$	S142 B RNN 115) ${ }^{1}$	S142 B RNN 2301)
PNP out., PNP Alarm \& Test	S142 B PPT 924		S142 B PPT 115	S142 B PPT 230

Specifications

Alarm	NPN / PNP, 100 mA , 10-40 VDC Delay on alarm 10 sec
Test input (Mute)	NPN PNP
Emitter Enabled	>5.0 VDC < $\mathrm{V}_{\mathrm{cc}}-3 \mathrm{VDC}$
Emitter Disabled	$<3.0 \mathrm{VDC}>\mathrm{V}_{\mathrm{cc}}-5 \mathrm{VDC}$
Imax @ 40 VDC	1 mA
Protection output transistor	Reverse polarity, short circuit and transients
Supply to sensors	
Emitter	Pins 5 \& 7
Supply voltage (open loop)	15 V square wave
Current	$<450 \mathrm{~mA}$, short circuit protected
Output resistance	10Ω
Receiver	Pins 6 \& 8
Supply voltage (open loop)	5 VDC
Short-circuit current	10 mA
Input resistance	470 ת

Specifications

Response time OFF-ON (ton) ON-OFF (toff)	$\begin{array}{r} 0.1-10 \mathrm{~s} \\ 0.1-10 \mathrm{~s} \\ \hline \end{array}$
Environment	
Overvoltage category	III (IEC 60664)
Degree of protection	IP 20 /IEC 60529, 60947-1)
Pollution degree	3 (IEC 60664/60664A, 60947-1)
Temperature	
Operating	-20° to $+50^{\circ} \mathrm{C}\left(-4^{\circ}\right.$ to $\left.+122^{\circ} \mathrm{F}\right)$
Storage	-50° to $+85^{\circ} \mathrm{C}\left(-58^{\circ}\right.$ to $\left.+185^{\circ} \mathrm{F}\right)$
Housing material	NORYL SE1, light grey
Weight	
AC supply	200 g
AC/DC supply	125 g
Approvals	UL508, UL325*, CSA
CE marking	$\begin{aligned} & \text { EN12445, EN12453**, } \\ & \text { EN12978 } \end{aligned}$

* Must be approved in the final door installation
** EN12453 (apply only when using Carlo Gavazzi MOF sensors with 2 and 5 degree optical angle)

Specifications

Diagnostic

If a fault occurs on either the emitter or receiver the Alarm LED and output will turn ON.

Receiver fault

During normal operation the receiver is monitored for faults.
If the wires are short-circuited the "Code A, Yellow LED" flashes at a rate of 2 Hz .
If the wires are broken the "Code A, Yellow LED" flashes at a rate of 4 Hz .

Emitter fault

During normal operation the emitter is monitored for faults.

If the wires are short-circuited the "Code B, Green LED" flashes at a rate of 2 Hz .
If the wires are broken the "Code B, Green LED" flashes at a rate of 4 Hz .

Alignment

If the alignment DIP switch is set the Yellow Signal LED Flashes according to the signal quality.
Low frequency means weak signal.
Steady indication means maximum signal. On long distance it is not possible to get a steady signal but the alignment is optimal when the led flashes with the highest frequency.

On short distance the sensitivity can be reduced using the potentiometer and then get better readings in the alignment LED.

The ALARM output will follow the Signal LED in alignment mode, so a Sensor tester (optional) can be connected to serve as a remote indication during alignment of the sensors.
NB! In alignment mode the output is off.

Code A or B

When two sensor pairs are mounted close to each other it is recommended to select one set to Code A and the
other to Code B to minimize crosstalk.

Dirt reserve

For optimal detection excess gain settings can be selected using the Level Low/High DIP switch:
-High: Allows high dirt build-up.

- Low: Allows detection of semi-transparent objects.

Power settings

To avoid a too strong emitter the power can be reduced to 50% reducing the max distance to 25%

Wiring Diagram

S142.RNT..	S142.RNN..	S142.PPT..

Operation Diagram

${ }^{2)}$ Switching function selected by DIP-switch, inverted function on pin 1, 4

Dimensions

Connection to sensortester

Connection to sensortester ST-03 for alignment

	Sensortester		
	-	Signal	+
RNT Pin no.	10	9	
RNN Pin no.	10	11	
PPT Pin no.		9	2

Accessories

- 11 pole circular socket ZPD11
- Holding down spring HF
- Mounting rack SM13
- Front panel mounting bezel FRS2

Delivery Contents

- Amplifier
- Packaging: Carton box

Installation of industrial doors in compliance with the UL325 standard

Connections

1) Connect the supply wires to the amplifier (for DC systems: + on terminal 2, - on terminal 10).
2) Make sure that the power is within the specified tolerances and employed as required by the local codes.

Mounting

1) When installing the sensors, make sure that the maximum range is not exceeded and - if 2 separate systems are mounted close to each other - place the sensors so cross-talk is avoided.
2) To protect the receiver and the transmitter against damage, proper fittings must be used in the installation.
3) The amplifier must be mounted in an appropriate enclosure to protect it against mechanical as well as electrical damage and fire.
4) Do not apply power to the amplifier before the sensors are connected.
5) Connect the receiver and the emitter to the dedicated terminals.
6) Apply power to the amplifier.
7) The yellow LED's for the output should be ON (N.O.), OFF (N.C.) with no object present. Note: For systems with test input, be sure that the Emitter is enabled.
8) Interrupt the light beam and make sure that the yellow LED turns OFF (N.O), turns ON (N.C.).

For each door cycle:
The connected door controller must verify that the sensors operate properly, by testing the sensor function using the test input in at least one of the doors' end position.

CAUTION

Not for use and mounting as a separate accessory. Only for incorporation by a professional inside a door, drapery, gate, louver or window operator or system after evaluation of the combination (assembly) has shown compliance with the applicable standards.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery \& Lifecycle Information:

Carlo Gavazzi:
S142BPPT924 S142BPPT230 S142BRNN115 S142BRNN924 S142BPPT115 S142BRNT115 S142BRNN024
S142BRNT924 S142BRNT230 S142BRNN230

