LC²MOS 4-/8-Channel High Performance Analog Multiplexers

Data Sheet

FEATURES

44 V supply maximum ratings $V_{s s}$ to $V_{D D}$ analog signal range Low on resistance (100Ω maximum)
Low power (Isupply < $75 \mu \mathrm{~A}$)
Fast switching
Break-before-make switching action
Plug-in replacement for DG408/DG409

APPLICATIONS

Audio and video routing
Automatic test equipment
Data acquisition systems
Battery-powered systems
Sample-and-hold systems
Communication systems

GENERAL DESCRIPTION

The ADG408/ADG409 are monolithic CMOS analog multiplexers comprising eight single channels and four differential channels, respectively. The ADG408 switches one of eight inputs to a common output as determined by the 3-bit binary address lines A0, A1, and A2. The ADG409 switches one of four differential inputs to a common differential output, as determined by the 2-bit binary address lines A0 and A1. An EN input on both devices is used to enable or disable the device. When the device is disabled, all channels are switched off.

The ADG408/ADG409 are designed on an enhanced LC 2 MOS process that provides low power dissipation yet gives high switching speed and low on resistance. Each channel conducts equally well in both directions when on and has an input signal range that extends to the supplies. In the off condition, signal levels up to the supplies are blocked. All channels exhibit break-beforemake switching action, preventing momentary shorting when switching channels. Inherent in the design is low charge injection for minimum transients when switching the digital inputs.
The ADG408/ADG409 are improved replacements for the DG408/DG409 analog multiplexers.

Rev. D

TABLE OF CONTENTS

Features1
Applications. 1
Functional Block Diagrams 1
General Description 1
Product Highlights 1
Revision History 2
Specifications 3
Dual Supply 3
Single Supply 4
REVISION HISTORY
3/15-Rev. C to Rev. D
Changes to Figure 12 and Figure 15 9
Updated Outline Dimensions 16
Changes to Ordering Guide 16
10/06-Rev. B to Rev. C
Updated Format

\qquad
.Universal
Changes to Table 36
Inserted Table 4 and Table 5 7
Updated Outline Dimensions 14
Changes to Ordering Guide 15
Absolute Maximum Ratings 6
ESD Caution. 6
Pin Configurations and Function Descriptions 7
Typical Performance Characteristics 8
Test Circuits 11
Terminology 13
Outline Dimensions 14
Ordering Guide 15
3/03-Rev. A to Rev. B
Changes to Ordering Guide 4
Updated Outline Dimensions. 11

ADG408/ADG409

SPECIFICATIONS

DUAL SUPPLY

$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-15 \mathrm{~V}$, GND $=0 \mathrm{~V}$, unless otherwise noted.
Table 1.

Parameter	B Version		T Version		Unit	Test Conditions/Comments
	$+25^{\circ} \mathrm{C}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +85^{\circ} \mathrm{C} \end{aligned}$	$+25^{\circ} \mathrm{C}$	$\begin{aligned} & -55^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$		
ANALOG SWITCH						
Analog Signal Range		$V_{S S}$ to $V_{\text {DD }}$		$\mathrm{V}_{S S}$ to V_{DD}	V	
Ron	40		40		Ω typ	$\mathrm{V}_{\mathrm{D}}= \pm 10 \mathrm{~V}, \mathrm{I}_{\mathrm{s}}=-10 \mathrm{~mA}$
	100	125	100	125	Ω max	
\triangle Ron	15		15		Ω max	$\mathrm{V}_{\mathrm{D}}=+10 \mathrm{~V},-10 \mathrm{~V}$
LEAKAGE CURRENTS						
Source Off Leakage I_{s} (Off)	± 0.5	± 50	± 0.5	± 50	$n A$ max	$\mathrm{V}_{\mathrm{D}}= \pm 10 \mathrm{~V}, \mathrm{~V}_{S}=\mp 10 \mathrm{~V}$; see Figure 19
Drain Off Leakage I_{D} (Off)						$\mathrm{V}_{\mathrm{D}}= \pm 10 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=\mp 10 \mathrm{~V}$; see Figure 20
ADG408	± 1	± 100		± 100	$n A$ max	
ADG409	± 1	± 50		± 50	$n A \max$	
Channel On Leakage $\mathrm{I}_{\mathrm{D},} \mathrm{Is}(\mathrm{On})$						$\mathrm{V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}= \pm 10 \mathrm{~V}$; see Figure 21
ADG408	± 1	± 100	± 1	± 100	$n A \max$	
ADG409	± 1	± 50	± 1	± 50	nA max	
DIGITAL INPUTS						
Input High Voltage, $\mathrm{V}_{\mathrm{INH}}$		2.4		2.4	\checkmark min	
Input Low Voltage, V1NL		0.8		0.8	V max	
Input Current						
InL or $\mathrm{I}_{\mathrm{INH}}$		± 10		± 10	$\mu \mathrm{A}$ max	$\mathrm{V}_{\text {IN }}=0$ or V_{DD}
$\mathrm{C}_{1 \times}$, Digital Input Capacitance	8		8		pF typ	$\mathrm{f}=1 \mathrm{MHz}$
DYNAMIC CHARACTERISTICS ${ }^{1}$						
ttransition		120		120	ns typ	$\mathrm{RL}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$;
		250		250	ns max	$\mathrm{V}_{\mathrm{S} 1}= \pm 10 \mathrm{~V}, \mathrm{~V}_{58}=\mp 10 \mathrm{~V}$; see Figure 22
topen	10	10	10	10	ns min	$\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$;
						$\mathrm{V}_{\mathrm{s}}=5 \mathrm{~V}$; see Figure 23
ton (EN)	85	125	85	125	ns typ	$\mathrm{RL}_{\mathrm{L}}=300 \Omega \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$;
	150	225	150	225	ns max	$\mathrm{V}_{5}=5 \mathrm{~V}$; see Figure 24
toff (EN)		65		65	ns typ	$\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$;
		150		150	ns max	$\mathrm{V}_{s}=5 \mathrm{~V}$; see Figure 24
Charge Injection	20		20		pC typ	$\mathrm{V}_{S}=0 \mathrm{~V}, \mathrm{R}_{S}=0 \Omega, \mathrm{C}_{\mathrm{L}}=10 \mathrm{nF}$; see Figure 25
OFF Isolation	-75		-75		dB typ	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{f}=100 \mathrm{kHz}$;
						$V_{\text {EN }}=0 \mathrm{~V}$; see Figure 26
Channel-to-Channel Crosstalk	85		85		dB typ	$\mathrm{RL}=1 \mathrm{k} \Omega, \mathrm{f}=100 \mathrm{kHz}$; see Figure 27
C_{5} (OFF)	11		11		pF typ	$\mathrm{f}=1 \mathrm{MHz}$
C_{D} (OFF)						$\mathrm{f}=1 \mathrm{MHz}$
ADG408	40		40		pF typ	
ADG409	20		20		pF typ	
$\mathrm{C}_{\mathrm{D}}, \mathrm{C}_{\mathrm{S}}(\mathrm{ON})$						$\mathrm{f}=1 \mathrm{MHz}$
ADG408	54		54		pF typ	
ADG409	34		34		pF typ	

Parameter	B Version		T Version		Unit	Test Conditions/Comments
	$+25^{\circ} \mathrm{C}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +85^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	$+25^{\circ} \mathrm{C}$	$\begin{aligned} & -55^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$		
POWER REQUIREMENTS						
ldo	1		1		$\mu \mathrm{A}$ typ	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EN}}=0 \mathrm{~V}$
		5		5	$\mu \mathrm{A}$ max	
Iss		1		1	$\mu \mathrm{A}$ typ	
		5		5	$\mu \mathrm{A}$ max	
IDD	100		100		$\mu \mathrm{A}$ typ	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}, \mathrm{~V}_{\text {EN }}=2.4 \mathrm{~V}$
	200	500	200	500	$\mu \mathrm{A}$ max	

${ }^{1}$ Guaranteed by design, not subject to production test.

SINGLE SUPPLY

$\mathrm{V}_{\mathrm{DD}}=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}$, GND $=0 \mathrm{~V}$, unless otherwise noted.
Table 2.

Parameter	B Version		T Version		Unit	Test Conditions/Comments
	$+25^{\circ} \mathrm{C}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +85^{\circ} \mathrm{C} \end{aligned}$	$+25^{\circ} \mathrm{C}$	$\begin{aligned} & -55^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$		
ANALOG SWITCH Analog Signal Range Ron	90	$0 \text { to } V_{D D}$	90	0 to $\mathrm{V}_{\text {D }}$	$\begin{aligned} & \text { V } \\ & \Omega \text { typ } \end{aligned}$	$\mathrm{V}_{\mathrm{D}}=3 \mathrm{~V}, 10 \mathrm{~V}, \mathrm{I}_{\mathrm{s}}=-1 \mathrm{~mA}$
LEAKAGE CURRENTS Source Off Leakage Is (Off) Drain Off Leakage lo (Off) ADG408 ADG409 Channel On Leakage $I_{D}, I_{S}(O n)$ ADG408 ADG409	$\begin{aligned} & \pm 0.5 \\ & \pm 1 \\ & \pm 1 \\ & \pm 1 \\ & \pm 1 \end{aligned}$	$\begin{aligned} & \pm 50 \\ & \pm 100 \\ & \pm 50 \\ & \\ & \pm 100 \\ & \pm 50 \end{aligned}$	$\begin{aligned} & \pm 0.5 \\ & \pm 1 \\ & \pm 1 \\ & \pm 1 \\ & \pm 1 \end{aligned}$	$\begin{aligned} & \pm 50 \\ & \pm 100 \\ & \pm 50 \\ & \\ & \pm 100 \\ & \pm 50 \end{aligned}$	nA max nA max nA max nA max nA max	$\mathrm{VD}=8 \mathrm{~V} / 0 \mathrm{~V}, \mathrm{~V}_{\mathrm{s}}=0 \mathrm{~V} / 8 \mathrm{~V}$; see Figure 19 $V_{D}=8 \mathrm{~V} / 0 \mathrm{~V}, \mathrm{~V}_{\mathrm{s}}=0 \mathrm{~V} / 8 \mathrm{~V}$; see Figure 20 $\mathrm{V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}=8 \mathrm{~V} / 0 \mathrm{~V} \text {; see Figure } 21$
DIGITAL INPUTS Input High Voltage, $\mathrm{V}_{\mathrm{INH}}$ Input Low Voltage, VinL Input Current linl or $l_{\text {INH }}$ CIN, Digital Input Capacitance	8	$\begin{gathered} 2.4 \\ 0.8 \\ \\ \pm 10 \end{gathered}$	8	$\begin{gathered} 2.4 \\ 0.8 \\ \pm 10 \end{gathered}$	\vee min \checkmark max $\mu \mathrm{A}$ max pF typ	$\begin{aligned} & V_{\text {IN }}=0 \text { or } V_{D D} \\ & f=1 \mathrm{MHz} \end{aligned}$
DYNAMIC CHARACTERISTICS ${ }^{1}$ $\mathrm{t}_{\text {transition }}$ topen ton (EN) toff (EN) Charge Injection Off Isolation	130 10 140 60 5 -75		$\begin{aligned} & 130 \\ & 10 \\ & 140 \\ & 60 \\ & 5 \\ & -75 \end{aligned}$		ns typ ns typ ns typ ns typ pC typ dB typ	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} ; \\ & \mathrm{V}_{\mathrm{S} 1}=8 \mathrm{~V} / 0 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V} / 8 \mathrm{~V} \text {; see Figure } 22 \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} ; \\ & \mathrm{V}_{\mathrm{S}}=5 \mathrm{~V} ; \text { see Figure } 23 \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} ; \\ & \mathrm{V}_{\mathrm{S}}=5 \mathrm{~V} ; \text { see Figure } 24 \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} ; \\ & \mathrm{V}_{\mathrm{S}}=5 \mathrm{~V} ; \text { see Figure } 24 \\ & \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=0 \Omega, \mathrm{C}_{\mathrm{L}}=10 \mathrm{nF} \text {; see Figure } 25 \\ & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega \mathrm{f}=100 \mathrm{kHz} ; \\ & \mathrm{V}_{\text {EN }}=0 \mathrm{~V} \text {; see Figure } 26 \end{aligned}$

ADG408/ADG409

Parameter	B Version		T Version		Unit	Test Conditions/Comments
	$\begin{array}{ll} & -40^{\circ} \mathrm{C} \text { to } \\ +25^{\circ} \mathrm{C} & +85^{\circ} \mathrm{C} \end{array}$		$+25^{\circ} \mathrm{C}$	$+125^{\circ} \mathrm{C}$		
Channel-to-Channel Crosstalk	85		85		$\begin{aligned} & \mathrm{dB} \text { typ } \\ & \mathrm{pF} \text { typ } \end{aligned}$	$\begin{aligned} & R_{L}=1 \mathrm{k} \Omega, f=100 \mathrm{kHz} \text {; see Figure } 27 \\ & \mathrm{f}=1 \mathrm{MHz} \end{aligned}$
C_{5} (Offf)	11		11			
C_{D} (Off)						$\mathrm{f}=1 \mathrm{MHz}$
ADG408	40		40		pF typ	
ADG409	20		20		pF typ	
$C_{\text {d }}, C_{S}(\mathrm{On})$	54					$\mathrm{f}=1 \mathrm{MHz}$
ADG408			54		pF typ	
ADG409	34		34		pF typ	
POWER REQUIREMENTS						
IDD		1		1	$\mu \mathrm{A}$ typ	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, \mathrm{~V}_{\text {EN }}=0 \mathrm{~V}$
		5		5	$\mu \mathrm{A}$ max	
ldo	100		100		$\mu \mathrm{A}$ typ	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EN}}=2.4 \mathrm{~V}$
	200	500	200	500		

[^0]
ABSOLUTE MAXIMUM RATINGS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.
Table 3.

Parameter	Rating
$\mathrm{V}_{\text {DD }}$ to $\mathrm{V}_{\text {SS }}$	44 V
VDD to GND	-0.3 V to +32 V
Vss to GND	+0.3 V to -32 V
Analog, Digital Inputs	$V_{S S}-2 V$ to $V_{D D}+2 V$ or 20 mA , whichever occurs first
Continuous Current, S or D	20 mA
Peak Current, S or D (Pulsed at $1 \mathrm{~ms}, 10 \%$ Duty Cycle Maximum)	40 mA
Operating Temperature Range	
Industrial (B Version)	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Extended (TVersion)	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature	$150^{\circ} \mathrm{C}$
CERDIP Package, Power Dissipation	900 mW
$\theta_{\text {JA, }}$, Thermal Impedance	$76^{\circ} \mathrm{C} / \mathrm{W}$
Lead Temperature, Soldering $(10 \mathrm{sec})$	$300^{\circ} \mathrm{C}$
PDIP Package, Power Dissipation	470 mW
θ_{jA}, Thermal Impedance	$117^{\circ} \mathrm{C} / \mathrm{W}$
Lead Temperature, Soldering $(10 \mathrm{sec})$	$260^{\circ} \mathrm{C}$
TSSOP Package, Power Dissipation	450 mW
$\theta_{\text {JA, }}$, Thermal Impedance	$155^{\circ} \mathrm{C} / \mathrm{W}$
$\theta_{\text {ıc, }}$ Thermal Impedance	$50^{\circ} \mathrm{C} / \mathrm{W}$
SOIC Package, Power Dissipation	600 mW
$\theta_{\text {JA, }}$, Thermal Impedance	$77^{\circ} \mathrm{C} / \mathrm{W}$
Lead Temperature, Soldering	
Vapor Phase (60 sec)	$215^{\circ} \mathrm{C}$
Infrared (15 sec)	$220^{\circ} \mathrm{C}$

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

ESD CAUTION

	ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS

Figure 2. ADG408 Pin Configuration

Figure 3. ADG409 Pin Configuration

Table 4. ADG408 Pin Function Descriptions

$\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$	Mnemonic	Description
1	A0	Logic Control Input.
2	EN	Active High Digital Input. When low, the device is disabled and all switches are off. When high, Ax logic inputs determine on switches.
3	$\mathrm{V}_{\text {ss }}$	Most Negative Power Supply Potential in Dual Supplies. In single-supply applications, it can be connected to ground.
4	S1	Source Terminal 1. Can be an input or an output.
5	S2	Source Terminal 2. Can be an input or an output.
6	S3	Source Terminal 3. Can be an input or an output.
7	S4	Source Terminal 4. Can be an input or an output.
8	D	Drain Terminal. Can be an input or an output.
9	S8	Source Terminal 8. Can be an input or an output.
10	S7	Source Terminal 7. Can be an input or an output.
11	S6	Source Terminal 6. Can be an input or an output.
12	S5	Source Terminal 5. Can be an input or an output.
13	$V_{\text {DD }}$	Most Positive Power Supply Potential.
14	GND	Ground (0V) Reference.
15	A2	Logic Control Input.
16	A1	Logic Control Input.

Table 6. ADG408 Truth Table

A2	A1	A0	EN	On Switch
X	X	X	0	None
0	0	0	1	1
0	0	1	1	2
0	1	0	1	3
0	1	1	1	4
1	0	0	1	5
1	0	1	1	6
1	1	0	1	7
1	1	1	1	8

Table 5. ADG409 Pin Function Descriptions

Pin No.	Mnemonic	Description
1	A0	Logic Control Input.
2	EN	Active High Digital Input. When low, the device is disabled and all switches are off. When high, Ax logic inputs determine on switches.
3	$\mathrm{V}_{\text {ss }}$	Most Negative Power Supply Potential in Dual Supplies. In single-supply applications, it can be connected to ground.
4	S1A	Source Terminal 1A. Can be an input or an output.
5	S2A	Source Terminal 2A. Can be an input or an output.
6	S3A	Source Terminal 3A. Can be an input or an output.
7	S4A	Source Terminal 4A. Can be an input or an output.
8	DA	Drain Terminal A. Can be an input or an output.
9	DB	Drain Terminal B. Can be an input or an output.
10	S4B	Source Terminal 4B. Can be an input or an output.
11	S3B	Source Terminal 3B. Can be an input or an output.
12	S2B	Source Terminal 2B. Can be an input or an output.
13	S1B	Source Terminal 1B. Can be an input or an output.
14	$V_{\text {D }}$	Most Positive Power Supply Potential.
15	GND	Ground (0 V) Reference.
16	A1	Logic Control Input.

Table 7. ADG409 Truth Table

			On Switch
A1	A0	EN	Pair
X	X	0	None
0	0	1	1
0	1	1	2
1	0	1	3
1	1	1	4

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 4. Ron as a Function of $V_{D}\left(V_{S}\right)$: Dual-Supply Voltage

Figure 5. Ron as a Function of $V_{D}\left(V_{S}\right)$ for Different Temperatures

Figure 6. Leakage Currents as a Function of $V_{D}\left(V_{S}\right)$

Figure 7. Ron as a Function of $V_{D}\left(V_{s}\right)$: Single-Supply Voltage

Figure 8. Ron as a Function of $V_{D}\left(V_{S}\right)$ for Different Temperature

Figure 9. Leakage Currents as a Function of $V_{D}\left(V_{S}\right)$

Figure 10. Switching Time vs. VIN (Bipolar Supply)

Figure 11. Switching Time vs. Single Supply

Figure 12. Positive Supply Current vs. Switching Frequency

Figure 13. Switching Time vs. VIN (Single Supply)

Figure 14. Switching Time vs. Bipolar Supply

Figure 15. Negative Supply Current vs. Switching Frequency

Figure 16. Off Isolation vs. Frequency

Figure 17. Crosstalk vs. Frequency

TEST CIRCUITS

Figure 18. On Resistance

Figure 20. I_{D} (Off)

Figure 21. ID (On)

Figure 22. Switching Time of Multiplexer, $t_{\text {transition }}$

Figure 23. Break-Before-Make Delay, topen

Figure 24. Enable Delay, ton (EN), toff (EN)

Figure 25. Charge Injection

Figure 26. Off Isolation

Figure 27. Channel-to-Channel Crosstalk

ADG408/ADG409

TERMINOLOGY

Ron
Ohmic resistance between D and S .
Δ Ron
Difference between the Ron of any two channels.
Is (Off)
Source leakage current when the switch is off.
I_{D} (Off)
Drain leakage current when the switch is off.
$\mathrm{I}_{\mathrm{D}}, \mathrm{I}_{\mathrm{S}}(\mathbf{O n})$
Channel leakage current when the switch is on.
$V_{D}\left(V_{s}\right)$
Analog voltage on Terminal D and Terminal S.
C_{s} (Off)
Channel input capacitance for off condition.
C_{D} (Off)
Channel output capacitance for off condition.
$\mathrm{C}_{\mathrm{D}}, \mathrm{Cs}$ (On)
On switch capacitance.
$\mathrm{C}_{\text {IN }}$
Digital input capacitance.
t_{ON} (EN)
Delay time between the 50% and 90% points of the digital input and switch on condition.
$t_{\text {Off }}$ (EN)
Delay time between the 50% and 90% points of the digital input and switch off condition.

$\mathbf{t}_{\text {transition }}$

Delay time between the 50% and 90% points of the digital inputs and the switch on condition when switching from one address state to another.
topen
Off time measured between the 80% point of both switches when switching from one address state to another.
$V_{\text {INL }}$
Maximum input voltage for Logic 0 .
$V_{\text {INH }}$
Minimum input voltage for Logic 1.
InL $\left(\mathbf{I}_{\text {INH }}\right)$
Input current of the digital input.

Crosstalk

A measure of unwanted signal that is coupled through from one channel to another as a result of parasitic capacitance.

Off Isolation

A measure of unwanted signal coupling through an off channel.

Charge Injection

A measure of the glitch impulse transferred from the digital input to the analog output during switching.
$I_{D D}$
Positive supply current.
Iss
Negative supply current.

OUTLINE DIMENSIONS

COMPLIANT TO JEDEC STANDARDS MS-001-BB
Figure 28. 16-Lead Plastic Dual In-Line Package [PDIP]
Narrow Body
Dimensions shown in inches and (millimeters)

COMPLIANT TO JEDEC STANDARDS MS-012-AC
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.

Figure 29. 16-Lead Standard Small Outline Package [SOIC_N] Narrow Body
(R-16)

Dimensions shown in millimeters and (inches)

Figure 30. 16-Lead Thin Shrink Small Outline Package [TSSOP] (RU-16)
Dimensions shown in millimeters

ORDERING GUIDE

Model ${ }^{1}$	Temperature Range	Package Description	Package Option
ADG408BN	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16-Lead Plastic Dual In-Line Package [PDIP]	N-16
ADG408BNZ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16-Lead Plastic Dual In-Line Package [PDIP]	N-16
ADG408BR	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16-Lead Narrow Body Small Outline Package [SOIC_N]	R-16
ADG408BR-REEL	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16-Lead Narrow Body Small Outline Package [SOIC_N]	R-16
ADG408BR-REEL7	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16-Lead Narrow Body Small Outline Package [SOIC_N]	R-16
ADG408BRU	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG408BRU-REEL	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG408BRU-REEL7	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG408BRUZ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG408BRUZ-REEL	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG408BRUZ-REEL7	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG408BRZ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16-Lead Narrow Body Small Outline Package [SOIC_N]	R-16
ADG408BRZ-REEL	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16-Lead Narrow Body Small Outline Package [SOIC_N]	R-16
ADG408BRZ-REEL7	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16-Lead Narrow Body Small Outline Package [SOIC_N]	R-16
ADG408BCHIPS		DIE	
ADG409BNZ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16-Lead Plastic Dual In-Line Package [PDIP]	N-16
ADG409BR	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16-Lead Narrow Body Small Outline Package [SOIC_N]	R-16
ADG409BR-REEL7	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16-Lead Narrow Body Small Outline Package [SOIC_N]	R-16
ADG409BRUZ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG409BRUZ-REEL7	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG409BRZ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16-Lead Narrow Body Small Outline Package [SOIC_N]	R-16
ADG409BRZ-REEL	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16-Lead Narrow Body Small Outline Package [SOIC_N]	R-16
ADG409BRZ-REEL7	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16-Lead Narrow Body Small Outline Package [SOIC_N]	R-16

[^0]: ${ }^{1}$ Guaranteed by design, not subject to production test.

