

LC²MOS 4-/8-Channel High Performance Analog Multiplexers

Data Sheet

FEATURES

44 V supply maximum ratings V_{SS} to V_{DD} analog signal range Low on resistance (100 Ω maximum) Low power (I_{SUPPLY} < 75 μA) Fast switching Break-before-make switching action Plug-in replacement for DG408/DG409

APPLICATIONS

Audio and video routing Automatic test equipment Data acquisition systems Battery-powered systems Sample-and-hold systems Communication systems

GENERAL DESCRIPTION

The ADG408/ADG409 are monolithic CMOS analog multiplexers comprising eight single channels and four differential channels, respectively. The ADG408 switches one of eight inputs to a common output as determined by the 3-bit binary address lines A0, A1, and A2. The ADG409 switches one of four differential inputs to a common differential output, as determined by the 2-bit binary address lines A0 and A1. An EN input on both devices is used to enable or disable the device. When the device is disabled, all channels are switched off.

The ADG408/ADG409 are designed on an enhanced LC²MOS process that provides low power dissipation yet gives high switching speed and low on resistance. Each channel conducts equally well in both directions when on and has an input signal range that extends to the supplies. In the off condition, signal levels up to the supplies are blocked. All channels exhibit break-before-make switching action, preventing momentary shorting when switching channels. Inherent in the design is low charge injection for minimum transients when switching the digital inputs.

The ADG408/ADG409 are improved replacements for the DG408/DG409 analog multiplexers.

ADG408/ADG409

FUNCTIONAL BLOCK DIAGRAMS

PRODUCT HIGHLIGHTS

- Extended Signal Range. The ADG408/ADG409 are fabricated on an enhanced LC²MOS process, giving an increased signal range that extends to the supply rails.
- 2. Low Power Dissipation.
- 3. Low Ron.
- 4. Single-Supply Operation. For applications where the analog signal is unipolar, the ADG408/ADG409 can be operated from a single rail power supply. The parts are fully specified with a single 12 V power supply and remain functional with single supplies as low as 5 V.

Rev. D

Document Feedback

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 ©2001–2015 Analog Devices, Inc. All rights reserved. Technical Support www.analog.com

TABLE OF CONTENTS

Features	1
Applications	1
Functional Block Diagrams	1
General Description	1
Product Highlights	1
Revision History	2
Specifications	3
Dual Supply	3
Single Supply	4

REVISION HISTORY

3/15—Rev. C to Rev. D	
Changes to Figure 12 and Figure 15	9
Updated Outline Dimensions	16
Changes to Ordering Guide	16

10/06—Rev. B to Rev. C

Updated Format	Universal
Changes to Table 3	6
Inserted Table 4 and Table 5	7
Updated Outline Dimensions	
Changes to Ordering Guide	

Absolute Maximum Ratings	6
ESD Caution	6
Pin Configurations and Function Descriptions	7
Typical Performance Characteristics	8
Test Circuits	11
Terminology	13
Outline Dimensions	14
Ordering Guide	15

3/03—Rev. A to Rev. B

Changes to Ordering Guide4
Updated Outline Dimensions11

2/01—Revision 0: Initial Version

SPECIFICATIONS

DUAL SUPPLY

 V_{DD} = 15 V, V_{SS} = -15 V, GND = 0 V, unless otherwise noted.

Table 1.

	BV	/ersion	τ١	/ersion		
		–40°C to		–55°C to		
Parameter	+25°C	+85°C	+25°C	+125°C	Unit	Test Conditions/Comments
ANALOG SWITCH						
Analog Signal Range		V_{SS} to V_{DD}		V_{SS} to V_{DD}	V	
Ron	40		40		Ωtyp	$V_D = \pm 10 V$, $I_S = -10 mA$
	100	125	100	125	Ωmax	
ΔR _{ON}	15		15		Ωmax	$V_D = +10 V, -10 V$
LEAKAGE CURRENTS						
Source Off Leakage I _s (Off)	±0.5	±50	±0.5	±50	nA max	V_D = ±10 V, V_S = \mp 10 V; see Figure 19
Drain Off Leakage I _D (Off)						V_D = ±10 V, V_S = \mp 10 V; see Figure 20
ADG408	±1	±100	±1	±100	nA max	
ADG409	±1	±50	±1	±50	nA max	
Channel On Leakage I _D , Is (On)						$V_s = V_D = \pm 10 V$; see Figure 21
ADG408	±1	±100	±1	±100	nA max	
ADG409	±1	±50	±1	±50	nA max	
DIGITAL INPUTS						
Input High Voltage, V _{INH}		2.4		2.4	V min	
Input Low Voltage, VINL		0.8		0.8	V max	
Input Current						
linl or linh		±10		±10	μA max	$V_{IN} = 0 \text{ or } V_{DD}$
C _{IN} , Digital Input Capacitance	8		8		pF typ	f = 1 MHz
DYNAMIC CHARACTERISTICS ¹						
transition		120		120	ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$;
		250		250	ns max	$V_{S1} = \pm 10 \text{ V}, V_{S8} = \mp 10 \text{ V}; \text{ see Figure 22}$
topen	10	10	10	10	ns min	$R_L = 300 \Omega, C_L = 35 pF;$
						$V_s = 5 V$; see Figure 23
t _{on} (EN)	85	125	85	125	ns typ	$R_L = 300 \Omega C_L = 35 pF;$
	150	225	150	225	ns max	$V_s = 5 V$; see Figure 24
t _{off} (EN)		65		65	ns typ	$R_L = 300 \Omega, C_L = 35 pF;$
		150		150	ns max	$V_s = 5 V$; see Figure 24
Charge Injection	20		20		pC typ	$V_s = 0 V$, $R_s = 0 \Omega$, $C_L = 10 nF$; see Figure 25
OFF Isolation	-75		-75		dB typ	$R_L = 1 k\Omega$, $f = 100 kHz$;
						$V_{EN} = 0$ V; see Figure 26
Channel-to-Channel Crosstalk	85		85		dB typ	$RL = 1 k\Omega$, $f = 100 kHz$; see Figure 27
C _s (OFF)	11		11		pF typ	f = 1 MHz
C _D (OFF)					P. 9P	f = 1 MHz
ADG408	40		40		pF typ	
ADG409	20		20		pF typ	
C _D , C _s (ON)	20		20		Pr UP	f = 1 MHz
ADG408	54		54		pF typ	
ADG408 ADG409	34		34			
AUG409	54		54		pF typ	

	BV	/ersion	т١	/ersion		
Parameter	+25°C	–40°C to +85°C	+25°C	–55°C to +125°C	Unit	Test Conditions/Comments
POWER REQUIREMENTS						
I _{DD}		1		1	μA typ	$V_{IN} = 0 V, V_{EN} = 0 V$
		5		5	μA max	
I _{SS}		1		1	μA typ	
		5		5	μA max	
I _{DD}	100		100		μA typ	$V_{IN} = 0 V, V_{EN} = 2.4 V$
	200	500	200	500	μA max	

¹ Guaranteed by design, not subject to production test.

SINGLE SUPPLY

 V_{DD} = 12 V, V_{SS} = 0 V, GND = 0 V, unless otherwise noted.

Table 2.

	BV	ersion	T Ve	rsion		
. .		–40°C to		–55°C to		
Parameter	+25°C	+85°C	+25°C	+125°C	Unit	Test Conditions/Comments
ANALOG SWITCH						
Analog Signal Range		0 to V _{DD}		0 to V_{DD}	V	
Ron	90		90		Ω typ	$V_D = 3 V, 10 V, I_S = -1 mA$
LEAKAGE CURRENTS						
Source Off Leakage I _s (Off)	±0.5	±50	±0.5	±50	nA max	$VD = 8 V/0 V$, $V_s = 0 V/8 V$; see Figure 19
Drain Off Leakage I _D (Off)						$V_D = 8 V/0 V$, $V_S = 0 V/8 V$; see Figure 20
ADG408	±1	±100	±1	±100	nA max	
ADG409	±1	±50	±1	±50	nA max	
Channel On Leakage I _D , I _S (On)						$V_s = V_D = 8 V/0 V$; see Figure 21
ADG408	±1	±100	±1	±100	nA max	
ADG409	±1	±50	±1	±50	nA max	
DIGITAL INPUTS						
Input High Voltage, VINH		2.4		2.4	V min	
Input Low Voltage, VINL		0.8		0.8	V max	
Input Current						
IINL OF INH		±10		±10	µA max	$V_{IN} = 0 \text{ or } V_{DD}$
C _{IN} , Digital Input Capacitance	8		8		pF typ	f = 1 MHz
DYNAMIC CHARACTERISTICS ¹						
t transition	130		130		ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$;
						$V_{S1} = 8 V/0 V$, $V_{S8} = 0 V/8 V$; see Figure 22
topen	10		10		ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$;
						Vs = 5 V; see Figure 23
t _{on} (EN)	140		140		ns typ	$R_{L} = 300 \Omega C_{L} = 35 pF;$
						$V_s = 5 V$; see Figure 24
t _{off} (EN)	60		60		ns typ	$R_L = 300 \Omega, C_L = 35 pF;$
						Vs = 5 V; see Figure 24
Charge Injection	5		5		pC typ	$V_s = 0 V, R_s = 0 \Omega, C_L = 10 nF$; see Figure 25
Off Isolation	-75		-75		dB typ	$R_{L} = 1 \text{ k}\Omega \text{ f} = 100 \text{ kHz};$
						$V_{EN} = 0 V$; see Figure 26

Data Sheet

ADG408/ADG409

	BV	ersion	τ١	/ersion		
Parameter	+25°C	–40°C to +85°C	+25°C	–55°C to +125°C	Unit	Test Conditions/Comments
Channel-to-Channel Crosstalk	85		85		dB typ	$R_L = 1 \text{ k}\Omega$, f = 100 kHz; see Figure 27
C _s (Offf)	11		11		pF typ	f = 1 MHz
C _D (Off)						f = 1 MHz
ADG408	40		40		pF typ	
ADG409	20		20		pF typ	
C _D , C _s (On)						f = 1 MHz
ADG408	54		54		pF typ	
ADG409	34		34		pF typ	
POWER REQUIREMENTS						
l _{DD}		1		1	μA typ	$V_{IN} = 0 V, V_{EN} = 0 V$
		5		5	μA max	
I _{DD}	100		100		μA typ	$V_{IN} = 0 V, V_{EN} = 2.4 V$
	200	500	200	500	μA max	

¹ Guaranteed by design, not subject to production test.

ABSOLUTE MAXIMUM RATINGS

 $T_A = 25^{\circ}C$, unless otherwise noted.

Table 3.

Parameter	Rating
V _{DD} to V _{SS}	44 V
V _{DD} to GND	–0.3 V to +32 V
Vss to GND	+0.3 V to -32 V
Analog, Digital Inputs	V _{SS} – 2 V to V _{DD} + 2 V or 20 mA, whichever occurs first
Continuous Current, S or D	20 mA
Peak Current, S or D	
(Pulsed at 1 ms, 10% Duty Cycle Maximum)	40 mA
Operating Temperature Range	
Industrial (B Version)	–40°C to +85°C
Extended (T Version)	–55°C to +125°C
Storage Temperature Range	–65°C to +150°C
Junction Temperature	150°C
CERDIP Package, Power Dissipation	900 mW
θ_{JA} , Thermal Impedance	76°C/W
Lead Temperature, Soldering (10 sec)	300°C
PDIP Package, Power Dissipation	470 mW
$\theta_{JA,}$ Thermal Impedance	117°C/W
Lead Temperature, Soldering (10 sec)	260°C
TSSOP Package, Power Dissipation	450 mW
θ_{JA} , Thermal Impedance	155°C/W
θ _{Jc} , Thermal Impedance	50°C/W
SOIC Package, Power Dissipation	600 mW
θ _{JA} , Thermal Impedance	77°C/W
Lead Temperature, Soldering	
Vapor Phase (60 sec)	215°C
Infrared (15 sec)	220°C

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS

00027-002

A0 1 16 A1 EN 2 V _{SS} 3 ADG408 15 A2 S1 4 (Not to Scale) 12 S5 S3 6 S4 7 D 8 9 S8
--

Figure 2. ADG408 Pin Configuration

Table 4. ADG408 Pin Function Descriptions

Pin		
No.	Mnemonic	Description
1	A0	Logic Control Input.
2	EN	Active High Digital Input. When low, the device is disabled and all switches are off.
		When high, Ax logic inputs determine on switches.
3	Vss	Most Negative Power Supply Potential in Dual Supplies. In single-supply applications,
		it can be connected to ground.
4	S1	Source Terminal 1. Can be an input or
-	62	an output.
5	S2	Source Terminal 2. Can be an input or an output.
6	S3	Source Terminal 3. Can be an input or
		an output.
7	S4	Source Terminal 4. Can be an input or an output.
8	D	Drain Terminal. Can be an input or an
9	58	output.
9	58	Source Terminal 8. Can be an input or an output.
10	S7	Source Terminal 7. Can be an input or
11	56	an output.
11	50	Source Terminal 6. Can be an input or an output.
12	S5	Source Terminal 5. Can be an input or
		an output.
13	V _{DD}	Most Positive Power Supply Potential.
14	GND	Ground (0 V) Reference.
15	A2	Logic Control Input.
16	A1	Logic Control Input.

Table 6. ADG408 Truth Table

A2	A1	A0	EN	On Switch
Х	Х	Х	0	None
0	0	0	1	1
0	0	1	1	2
0	1	0	1	3
0	1	1	1	4
1	0	0	1	5
1	0	1	1	6
1	1	0	1	7
1	1	1	1	8

A0 1 EN 2 V _{SS} 3 S1A 4 S2A 5 S3A 6 S3A 7	ADG409 TOP VIEW (Not to Scale)	16 A1 15 GND 14 V _{DD} 13 S1B 12 S2B 11 S3B 10 S4B	003
S4A 7		10 S4B	003
DA 8		9 DB	00027-003

Figure 3. ADG409 Pin Configuration

Table 5. ADG409 Pin Function Descriptions

Pin		
No.	Mnemonic	Description
1	A0	Logic Control Input.
2	EN	Active High Digital Input. When low, the device is disabled and all switches are off. When high, Ax logic inputs determine on
3	V _{ss}	switches. Most Negative Power Supply Potential in Dual Supplies. In single-supply applications, it can be connected to ground.
4	S1A	Source Terminal 1A. Can be an input or an output.
5	S2A	Source Terminal 2A. Can be an input or an output.
6	S3A	Source Terminal 3A. Can be an input or an output.
7	S4A	Source Terminal 4A. Can be an input or an output.
8	DA	Drain Terminal A. Can be an input or an output.
9	DB	Drain Terminal B. Can be an input or an output.
10	S4B	Source Terminal 4B. Can be an input or an output.
11	S3B	Source Terminal 3B. Can be an input or an output.
12	S2B	Source Terminal 2B. Can be an input or an output.
13	S1B	Source Terminal 1B. Can be an input or an output.
14	V _{DD}	Most Positive Power Supply Potential.
15	GND	Ground (0 V) Reference.
16	A1	Logic Control Input.

Table 7. ADG409 Truth Table

			On Switch	
A1	A0	EN	Pair	
Х	Х	0	None	
0	0	1	1	
0	1	1	2	
1	0	1	3	
1	1	1	4	

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 4. Ron as a Function of VD (Vs): Dual-Supply Voltage

Figure 5. R_{ON} as a Function of V_{D} (Vs) for Different Temperatures

Figure 6. Leakage Currents as a Function of V_D (V_S)

Figure 7. RON as a Function of VD (Vs): Single-Supply Voltage

Figure 9. Leakage Currents as a Function of V_D (V_S)

900

00027-

Data Sheet

120 V_{DD} = +15V V_{SS} = -15V 100 t_{TRANSITION} 80 TIME (ns) t_{ON} (EN) 60 t_{OFF} (EN) 40 20 11 3 13 00027-010 5 7 9 15 V_{IN} (V)

Figure 10. Switching Time vs. V_{IN} (Bipolar Supply)

Figure 11. Switching Time vs. Single Supply

Figure 12. Positive Supply Current vs. Switching Frequency

Figure 13. Switching Time vs. V_{IN} (Single Supply)

ADG408/ADG409

Data Sheet

Figure 16. Off Isolation vs. Frequency

Figure 17. Crosstalk vs. Frequency

TEST CIRCUITS

Figure 18. On Resistance

00027-018

Figure 19. Is (Off)

Figure 22. Switching Time of Multiplexer, tTRANSITION

Figure 23. Break-Before-Make Delay, tOPEN

Figure 26. Off Isolation

Figure 27. Channel-to-Channel Crosstalk

00027-027

TERMINOLOGY

Ron

Ohmic resistance between D and S.

 ΔR_{ON} Difference between the R_{ON} of any two channels.

Is (Off) Source leakage current when the switch is off.

 I_D (Off) Drain leakage current when the switch is off.

 $\mathbf{I}_{\mathrm{D}}, \mathbf{I}_{\mathrm{S}}$ (On) Channel leakage current when the switch is on.

 $\mathbf{V}_{\mathrm{D}}\left(\mathbf{V}_{S}\right)$ Analog voltage on Terminal D and Terminal S.

 $\begin{array}{l} C_{s}\left(Off\right)\\ \mbox{Channel input capacitance for off condition.} \end{array}$

 C_D (Off) Channel output capacitance for off condition.

C_D, C_s (On) On switch capacitance.

CIN

Digital input capacitance.

ton (EN)

Delay time between the 50% and 90% points of the digital input and switch on condition.

toff (EN)

Delay time between the 50% and 90% points of the digital input and switch off condition.

tTRANSITION

Delay time between the 50% and 90% points of the digital inputs and the switch on condition when switching from one address state to another.

tOPEN Off time measured between the 80% point of both switches when switching from one address state to another.

 \mathbf{V}_{INL} Maximum input voltage for Logic 0.

 $V_{\mbox{\scriptsize INH}}$ Minimum input voltage for Logic 1.

I_{INL} (I_{INH}) Input current of the digital input.

Crosstalk A measure of unwanted signal that is coupled through from one channel to another as a result of parasitic capacitance.

Off Isolation A measure of unwanted signal coupling through an off channel.

Charge Injection

A measure of the glitch impulse transferred from the digital input to the analog output during switching.

IDD Positive supply current.

Iss Negative supply current. ADG408/ADG409

03-07-2014-D

OUTLINE DIMENSIONS

Figure 29. 16-Lead Standard Small Outline Package [SOIC_N] Narrow Body (R-16)

Dimensions shown in millimeters and (inches)

COMPLIANT TO JEDEC STANDARDS MO-153-AB

Figure 30. 16-Lead Thin Shrink Small Outline Package [TSSOP] (RU-16) Dimensions shown in millimeters

ORDERING GUIDE

Model ¹	Temperature Range	Package Description	Package Option
ADG408BN	-40°C to +85°C	16-Lead Plastic Dual In-Line Package [PDIP]	N-16
ADG408BNZ	-40°C to +85°C	16-Lead Plastic Dual In-Line Package [PDIP]	N-16
ADG408BR	-40°C to +85°C	16-Lead Narrow Body Small Outline Package [SOIC_N]	R-16
ADG408BR-REEL	-40°C to +85°C	16-Lead Narrow Body Small Outline Package [SOIC_N]	R-16
ADG408BR-REEL7	-40°C to +85°C	16-Lead Narrow Body Small Outline Package [SOIC_N]	R-16
ADG408BRU	-40°C to +85°C	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG408BRU-REEL	-40°C to +85°C	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG408BRU-REEL7	-40°C to +85°C	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG408BRUZ	-40°C to +85°C	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG408BRUZ-REEL	-40°C to +85°C	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG408BRUZ-REEL7	-40°C to +85°C	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG408BRZ	-40°C to +85°C	16-Lead Narrow Body Small Outline Package [SOIC_N]	R-16
ADG408BRZ-REEL	-40°C to +85°C	16-Lead Narrow Body Small Outline Package [SOIC_N]	R-16
ADG408BRZ-REEL7	-40°C to +85°C	16-Lead Narrow Body Small Outline Package [SOIC_N]	R-16
ADG408BCHIPS		DIE	
ADG409BNZ	-40°C to +85°C	16-Lead Plastic Dual In-Line Package [PDIP]	N-16
ADG409BR	-40°C to +85°C	16-Lead Narrow Body Small Outline Package [SOIC_N]	R-16
ADG409BR-REEL7	-40°C to +85°C	16-Lead Narrow Body Small Outline Package [SOIC_N]	R-16
ADG409BRUZ	-40°C to +85°C	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG409BRUZ-REEL7	-40°C to +85°C	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG409BRZ	-40°C to +85°C	16-Lead Narrow Body Small Outline Package [SOIC_N]	R-16
ADG409BRZ-REEL	-40°C to +85°C	16-Lead Narrow Body Small Outline Package [SOIC_N]	R-16
ADG409BRZ-REEL7	-40°C to +85°C	16-Lead Narrow Body Small Outline Package [SOIC_N]	R-16

¹ Z = RoHS Compliant Part

©2001–2015 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D00027-0-3/15(D)

www.analog.com

Rev. D | Page 15 of 15