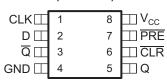


www.ti.com

SCES718-MAY 2008


# SINGLE POSITIVE EDGE TRIGGERED D-TYPE FLIP-FLOP WITH CLEAR AND PRESET

## FEATURES

- Controlled Baseline
  - One Assembly Site
    - One Test Site
  - One Fabrication Site
- Extended Temperature Performance of –55°C to 125°C
- Enhanced Diminishing Manufacturing Sources (DMS) Support
- Enhanced Product-Change Notification
- Qualification Pedigree (1)
- Supports 5-V V<sub>CC</sub> Operation
- (1) Component qualification in accordance with JEDEC and industry standards to ensure reliable operation over an extended temperature range. This includes, but is not limited to, Highly Accelerated Stress Test (HAST) or biased 85/85, temperature cycle, autoclave or unbiased HAST, electromigration, bond intermetallic life, and mold compound life. Such qualification testing should not be viewed as justifying use of this component beyond specified performance and environmental limits.

- Inputs Accept Voltages to 5.5 V
- Max  $t_{pd}$  of 7.9 ns at 3.3 V
- Low Power Consumption, 10  $\mu\text{A}$  Max I\_{CC}
- ±24 mA Output Drive at 3.3 V
- Typical V<sub>OLP</sub> (Output Ground Bounce)
  <0.8 V at V<sub>CC</sub> = 3.3 V, T<sub>A</sub> = 25°C
- Typical V<sub>OHV</sub> (Output V<sub>OH</sub> Undershoot) >2 V at V<sub>CC</sub> = 3.3 V, T<sub>A</sub> = 25°C
- I<sub>off</sub> Supports Partial Power Down Mode Operation
- Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
- ESD Protection Exceeds JESD 22
  - 2000-V Human-Body Model (A114-A)
  - 200-V Machine Model (A115-A)
  - 1000-V Charged-Device Model (C101)

#### DCU PACKAGE (TOP VIEW)



## **DESCRIPTION/ORDERING INFORMATION**

This single positive edge triggered D-type flip-flop is designed for 1.65-V to 5.5-V V<sub>CC</sub> operation.

A low level at the preset (PRE) or clear (CLR) input sets or resets the outputs, regardless of the levels of the other inputs. When PRE and CLR are inactive (high), data at the data (D) input meeting the setup time requirements is transferred to the outputs on the positive-going edge of the clock pulse. Clock triggering occurs at a voltage level and is not related directly to the rise time of the clock pulse. Following the hold-time interval, data at the D input can be changed without affecting the levels at the outputs.

This device is fully specified for partial power down applications using  $I_{off}$ . The  $I_{off}$  circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.



Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.



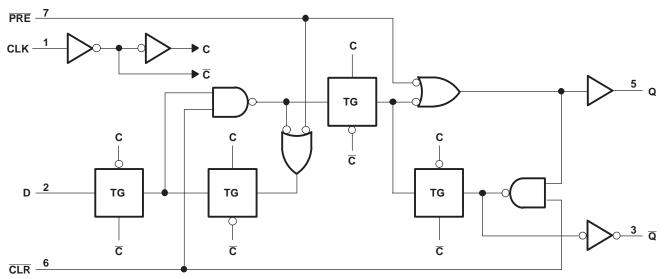
www.ti.com

#### **ORDERING INFORMATION**<sup>(1)</sup>

| T <sub>A</sub> | PACKAGE <sup>(2)</sup> |             | ORDERABLE PART NUMBER | TOP-SIDE MARKING <sup>(3)</sup> |
|----------------|------------------------|-------------|-----------------------|---------------------------------|
| –55°C to 125°C | VSSOP – DCU            | Reel of 250 | SN74LVC2G74MDCUTEP    | СНВ                             |

(1) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI website at www.ti.com.

(2) Package drawings, thermal data, and symbolization are available at www.ti.com/packaging.


(3) DCU: The actual top-side marking has one additional character that designates the assembly/test site.

## FUNCTION TABLE

|     | INP           | OUTPUTS    |   |                  |                  |  |  |  |  |  |
|-----|---------------|------------|---|------------------|------------------|--|--|--|--|--|
| PRE | PRE CLR CLK D |            |   |                  | Q                |  |  |  |  |  |
| L   | Н             | Х          | Х | Н                | L                |  |  |  |  |  |
| Н   | L             | Х          | х | L                | н                |  |  |  |  |  |
| L   | L             | Х          | Х | H <sup>(1)</sup> | H <sup>(1)</sup> |  |  |  |  |  |
| н   | н             | $\uparrow$ | н | н                | L                |  |  |  |  |  |
| н   | н             | $\uparrow$ | L | L                | н                |  |  |  |  |  |
| н   | Н             | L          | х | Q <sub>0</sub>   |                  |  |  |  |  |  |

(1) This configuration is nonstable; that is, it does not persist when PRE or CLR returns to its inactive (high) level.

### LOGIC DIAGRAM (POSITIVE LOGIC)





www.ti.com

### Absolute Maximum Ratings<sup>(1)</sup>

over operating free-air temperature range (unless otherwise noted)

|                  |                                            |                                                      | MIN  | MAX                   | UNIT |
|------------------|--------------------------------------------|------------------------------------------------------|------|-----------------------|------|
| $V_{CC}$         | Supply voltage range                       |                                                      | -0.5 | 6.5                   | V    |
| VI               | Input voltage range <sup>(2)</sup>         |                                                      | -0.5 | 6.5                   | V    |
| Vo               | Voltage range applied to any output in t   | the high-impedance or power-off state <sup>(2)</sup> | -0.5 | 6.5                   | V    |
| Vo               | Voltage range applied to any output in t   | the high or low state <sup>(2)(3)</sup>              | -0.5 | V <sub>CC</sub> + 0.5 | V    |
| I <sub>IK</sub>  | Input clamp current                        | V <sub>1</sub> < 0                                   |      | -50                   | mA   |
| I <sub>OK</sub>  | Output clamp current                       | V <sub>O</sub> < 0                                   |      | -50                   | mA   |
| I <sub>O</sub>   | Continuous output current                  |                                                      |      | ±50                   | mA   |
|                  | Continuous current through $V_{CC}$ or GNI | D                                                    |      | ±100                  | mA   |
| $\theta_{JA}$    | Package thermal impedance <sup>(4)</sup>   | DCU package                                          |      | 227                   | °C/W |
| T <sub>stg</sub> | Storage temperature range                  |                                                      | -65  | 150                   | °C   |

(1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) The input negative-voltage and output voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
 (3) The value of V<sub>CC</sub> is provided in the recommended operating conditions table.

(4) The package thermal impedance is calculated in accordance with JESD 51-7.

www.ti.com

INSTRUMENTS

**Texas** 

# Recommended Operating Conditions<sup>(1)</sup>

|                 |                                    |                                                      | MIN                  | MAX                  | UNIT |
|-----------------|------------------------------------|------------------------------------------------------|----------------------|----------------------|------|
| \ <i>\</i>      | Supply voltage                     | Operating                                            | 1.65                 | 5.5                  | V    |
| V <sub>CC</sub> | Supply voltage                     | Data retention only                                  | 1.5                  |                      | v    |
|                 |                                    | $V_{CC} = 1.65 \text{ V} \text{ to } 1.95 \text{ V}$ | $0.65 \times V_{CC}$ |                      |      |
| <b>.</b> /      | High lovel input voltage           | $V_{CC}$ = 2.3 V to 2.7 V                            | 1.7                  |                      | V    |
| VIH             | High-level input voltage           | $V_{CC} = 3 V \text{ to } 3.6 V$                     | 2                    |                      | v    |
|                 |                                    | $V_{CC}$ = 4.5 V to 5.5 V                            | $0.7 	imes V_{CC}$   |                      |      |
|                 |                                    | $V_{CC} = 1.65 \text{ V}$ to 1.95 V                  |                      | $0.35 \times V_{CC}$ |      |
| V <sub>IL</sub> | Low-level input voltage            | $V_{CC}$ = 2.3 V to 2.7 V                            |                      | 0.7                  | V    |
| ۷IL             | Low-level input voltage            | $V_{CC} = 3 V$ to 3.6 V                              |                      | 0.8                  | v    |
|                 |                                    | $V_{CC}$ = 4.5 V to 5.5 V                            |                      | $0.3 \times V_{CC}$  |      |
| VI              | Input voltage                      |                                                      | 0                    | 5.5                  | V    |
| Vo              | Output voltage                     |                                                      | 0                    | V <sub>CC</sub>      | V    |
|                 |                                    | $V_{CC} = 1.65 V$                                    |                      | -4                   |      |
|                 |                                    | $V_{CC} = 2.3 V$                                     |                      | -8                   |      |
| loн             | High-level output current          | $V_{CC} = 3 V$                                       |                      | -16                  | mA   |
|                 |                                    | $v_{CC} = 3 v$                                       |                      | -24                  |      |
|                 |                                    | $V_{CC} = 4.5 V$                                     |                      | -24                  |      |
|                 |                                    | V <sub>CC</sub> = 1.65 V                             |                      | 4                    |      |
|                 |                                    | V <sub>CC</sub> = 2.3 V                              |                      | 8                    |      |
| OL              | Low-level output current           | $V_{CC} = 3 V$                                       |                      | 16                   | mA   |
|                 |                                    | v <sub>CC</sub> = 5 v                                |                      | 24                   |      |
|                 |                                    | V <sub>CC</sub> = 4.5 V                              |                      | 24                   |      |
|                 |                                    | $V_{CC}$ = 1.8 V ± 0.15 V, 2.5 V ± 0.2 V             |                      | 20                   |      |
| Δt/Δv           | Input transition rise or fall rate | $V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$           |                      | 10                   | ns/V |
|                 |                                    | $V_{CC} = 5 V \pm 0.5 V$                             |                      | 5                    |      |
| T <sub>A</sub>  | Operating free-air temperature     |                                                      | -55                  | 125                  | °C   |

(1) All unused inputs of the device must be held at V<sub>CC</sub> or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.



#### www.ti.com

#### **Electrical Characteristics**

over recommended operating free-air temperature range (unless otherwise noted)

| PA               | RAMETER                   | TEST CONDITIONS                                                | V <sub>cc</sub> | MIN TYP <sup>(1)</sup> | MAX  | UNIT |  |  |
|------------------|---------------------------|----------------------------------------------------------------|-----------------|------------------------|------|------|--|--|
|                  |                           | I <sub>OH</sub> = -100 μA                                      | 1.65 V to 5.5 V | V <sub>CC</sub> – 0.1  |      |      |  |  |
|                  |                           | $I_{OH} = -4 \text{ mA}$                                       | 1.65 V          | 1.2                    |      |      |  |  |
|                  |                           | $I_{OH} = -8 \text{ mA}$                                       | 2.3 V           | 1.9                    |      | V    |  |  |
| V <sub>OH</sub>  |                           | $I_{OH} = -16 \text{ mA}$                                      | 2.1/            | 2.4                    |      | V    |  |  |
|                  |                           | $I_{OH} = -24 \text{ mA}$                                      | - 3 V           | 2.3                    |      |      |  |  |
|                  |                           | $I_{OH} = -24 \text{ mA}$                                      | 4.5 V           | 3.8                    |      |      |  |  |
|                  |                           | I <sub>OL</sub> = 100 μA                                       | 1.65 V to 5.5 V |                        | 0.1  |      |  |  |
|                  |                           | I <sub>OL</sub> = 4 mA                                         | 1.65 V          |                        | 0.45 |      |  |  |
|                  |                           | I <sub>OL</sub> = 8 mA                                         | 2.3 V           |                        | 0.3  | V    |  |  |
| V <sub>OL</sub>  |                           | I <sub>OL</sub> = 16 mA                                        | - 3 V           |                        | 0.4  | V    |  |  |
|                  |                           | I <sub>OL</sub> = 24 mA                                        | - 3V            |                        | 0.55 |      |  |  |
|                  |                           | I <sub>OL</sub> = 24 mA                                        | 4.5 V           |                        |      |      |  |  |
|                  | Data or<br>control inputs | V <sub>I</sub> = 5.5 V or GND                                  | 0 to 5.5 V      |                        | ±5   | μΑ   |  |  |
| l <sub>off</sub> |                           | $V_{I}$ or $V_{O} = 5.5 V$                                     | 0               |                        | ±10  | μA   |  |  |
| I <sub>CC</sub>  |                           | $V_{I} = 5.5 \text{ V or GND}, \qquad I_{O} = 0$               | 1.65 V to 5.5 V |                        | 10   | μA   |  |  |
| Δl <sub>CC</sub> |                           | One input at $V_{CC}$ – 0.6 V, Other inputs at $V_{CC}$ or GND | 3 V to 5.5 V    |                        | 500  | μA   |  |  |
| Ci               |                           | $V_{I} = V_{CC}$ or GND                                        | 3.3 V           | 5                      |      | pF   |  |  |

(1) All typical values are at V<sub>CC</sub> = 3.3 V,  $T_A = 25^{\circ}C$ .

#### **Timing Requirements**

over recommended operating free-air temperature range (unless otherwise noted) (see Figure 1)

|                    |                            |                     |     | = 3.3 V<br>0.3 V | V <sub>CC</sub> = 5 V<br>± 0.5 V |     | UNIT |
|--------------------|----------------------------|---------------------|-----|------------------|----------------------------------|-----|------|
|                    |                            |                     | MIN | MAX              | MIN                              | MAX |      |
| f <sub>clock</sub> |                            |                     |     | 175              |                                  | 200 | MHz  |
|                    | Pulse duration             | CLK                 | 2.  | 7                | 2                                |     | 20   |
| τ <sub>w</sub>     | Fuise duration             | PRE or CLR low      | 2.  | 7                | 2                                |     | ns   |
|                    | Cotur time hotors CLKA     | Data                | 1.: | 3                | 1.1                              |     | 20   |
| t <sub>su</sub>    | Setup time, before CLK↑    | PRE or CLR inactive | 1.: | 2                | 1.2                              |     | ns   |
| t <sub>h</sub>     | Hold time, data after CLK↑ |                     | 1.: | 2                | 0.5                              |     | ns   |

### **Switching Characteristics**

over recommended operating free-air temperature range (unless otherwise noted) (see Figure 1)

| PARAMETER        | FROM<br>(INPUT) | TO<br>(OUTPUT) | V <sub>CC</sub> =<br>± 0.3 | 3.3 V<br>3 V | V <sub>CC</sub> =<br>± 0.5 | 5 V<br>5 V | UNIT |
|------------------|-----------------|----------------|----------------------------|--------------|----------------------------|------------|------|
|                  | (INFUT)         | (601701)       | MIN                        | MAX          | MIN                        | MAX        |      |
| f <sub>max</sub> |                 |                | 175                        |              | 200                        |            | MHz  |
|                  | CLK             | Q              | 2.2                        | 7.9          | 1.4                        | 6.1        |      |
| t <sub>pd</sub>  | CLK             | Q              | 2.6                        | 8.2          | 1.6                        | 6.4        | ns   |
|                  | PRE or CLR      | Q or Q         | 1.7                        | 7.9          | 1.6                        | 6.1        |      |



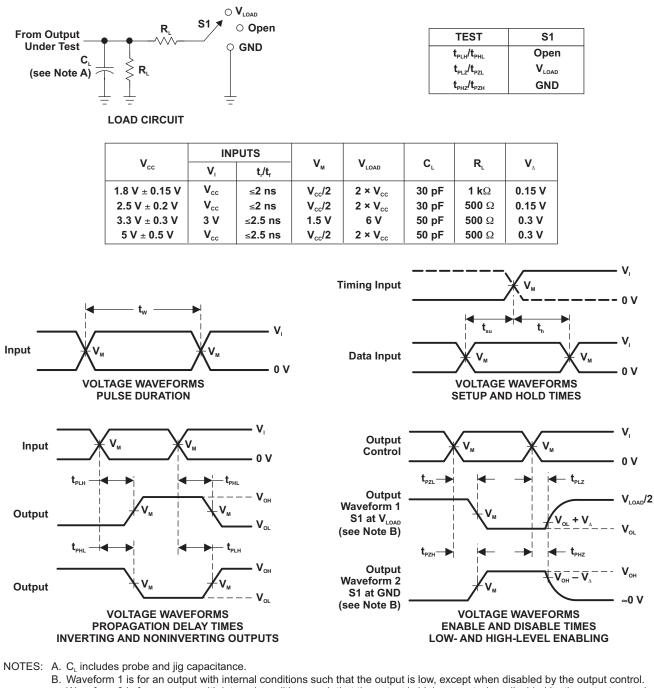
www.ti.com

SCES718-MAY 2008

## **Operating Characteristics**

 $T_A = 25^{\circ}C$ 

| PARAMETER                                     | TEST CONDITIONS | V <sub>CC</sub> = 3.3 V<br>TYP | V <sub>CC</sub> = 5 V<br>TYP | UNIT |  |
|-----------------------------------------------|-----------------|--------------------------------|------------------------------|------|--|
| C <sub>pd</sub> Power dissipation capacitance | f = 10 MHz      | 37                             | 40                           | pF   |  |


## SN74LVC2G74-EP



SCES718-MAY 2008

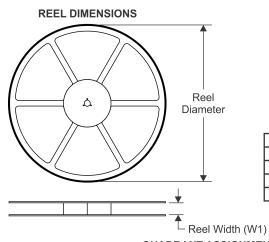
#### www.ti.com

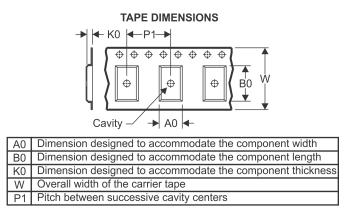




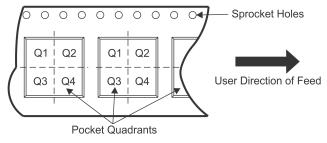
Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control. C. All input pulses are supplied by generators having the following characteristics: PRR  $\leq$  10 MHz, Z<sub>o</sub> = 50  $\Omega$ .

- D. The outputs are measured one at a time, with one transition per measurement.
- E.  $t_{\mbox{\tiny PLZ}}$  and  $t_{\mbox{\tiny PHZ}}$  are the same as  $t_{\mbox{\tiny dis}}$
- F.  $t_{PZL}$  and  $t_{PZH}$  are the same as  $t_{en}$ .
- G.  $t_{\mbox{\tiny PLH}}$  and  $t_{\mbox{\tiny PHL}}$  are the same as  $t_{\mbox{\tiny pd}}.$
- H. All parameters and waveforms are not applicable to all devices.


#### Figure 1. Load Circuit and Voltage Waveforms


# PACKAGE MATERIALS INFORMATION

www.ti.com


Texas Instruments

### TAPE AND REEL INFORMATION

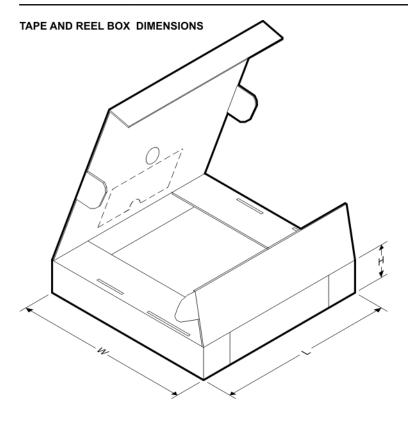




### QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE



| *All dimensions are nom | inal |
|-------------------------|------|
|-------------------------|------|

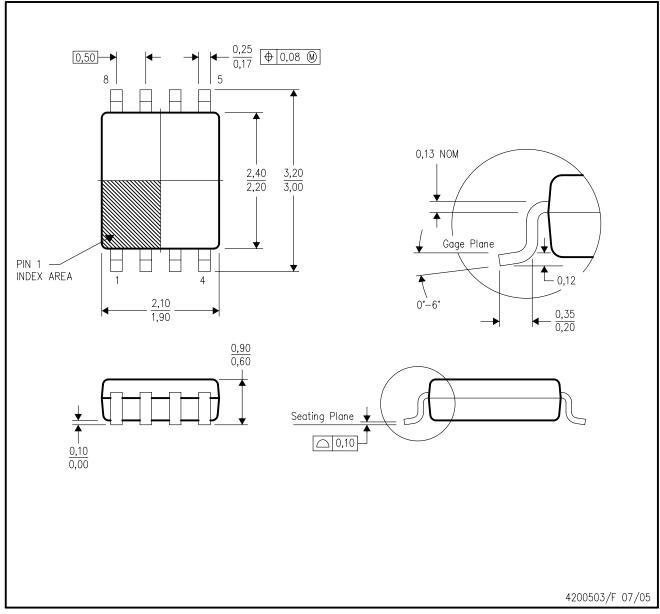

| Device             |       | Package<br>Drawing |   | SPQ | Reel<br>Diameter<br>(mm) | Reel<br>Width<br>W1 (mm) | A0<br>(mm) | B0<br>(mm) | K0<br>(mm) | P1<br>(mm) | W<br>(mm) | Pin1<br>Quadrant |
|--------------------|-------|--------------------|---|-----|--------------------------|--------------------------|------------|------------|------------|------------|-----------|------------------|
| SN74LVC2G74MDCUTEP | VSSOP | DCU                | 8 | 250 | 180.0                    | 8.4                      | 2.25       | 3.35       | 1.05       | 4.0        | 8.0       | Q3               |

TEXAS INSTRUMENTS

www.ti.com

# PACKAGE MATERIALS INFORMATION

3-Aug-2017



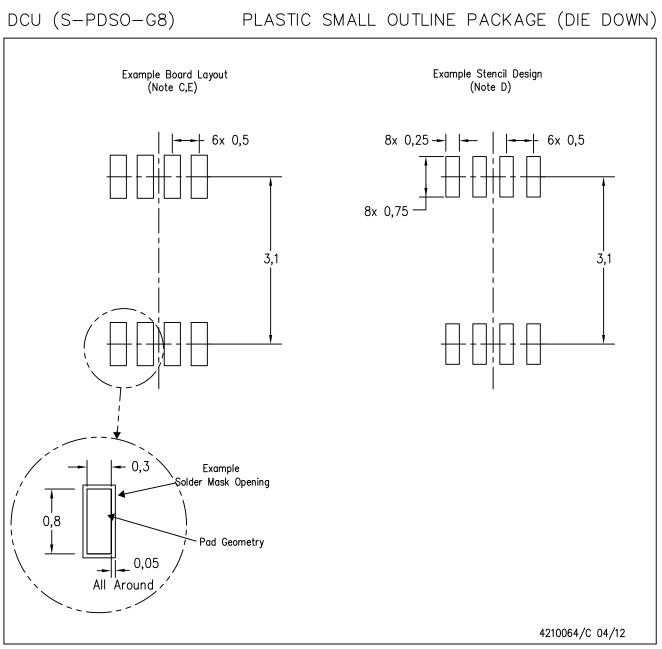

\*All dimensions are nominal

| Device             | Package Type | Package Drawing | Pins | SPQ | Length (mm) | Width (mm) | Height (mm) |
|--------------------|--------------|-----------------|------|-----|-------------|------------|-------------|
| SN74LVC2G74MDCUTEP | VSSOP        | DCU             | 8    | 250 | 202.0       | 201.0      | 28.0        |

DCU (R-PDSO-G8)

PLASTIC SMALL-OUTLINE PACKAGE (DIE DOWN)




NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.15 per side.

D. Falls within JEDEC MO-187 variation CA.





- NOTES: A. All linear dimensions are in millimeters. В. This drawing is subject to change without notice.
  - C. Publication IPC-7351 is recommended for alternate designs.
  - D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
  - E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.



#### **IMPORTANT NOTICE**

Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

TI's published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services.

Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyers and others who are developing systems that incorporate TI products (collectively, "Designers") understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers' applications and compliance of their applications (and of all TI products used in or for Designers' applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will thoroughly test such applications and the functionality of such TI products as used in such applications.

TI's provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer's company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements.

Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.

TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers' own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection.

Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer's noncompliance with the terms and provisions of this Notice.

> Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2017, Texas Instruments Incorporated