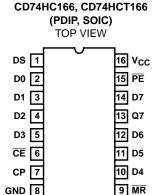


Data sheet acquired from Harris Semiconductor

CD54HC166, CD74HC166, CD54HCT166


High-Speed CMOS Logic 8-Bit Parallel-In/Serial-Out Shift Register

February 1998 - Revised October 2003

Features

- Buffered Inputs
- Fanout (Over Temperature Range)
 - Standard Outputs...... 10 LSTTL Loads
 - Bus Driver Outputs 15 LSTTL Loads
- Wide Operating Temperature Range . . . -55°C to 125°C
- Balanced Propagation Delay and Transition Times
- Significant Power Reduction Compared to LSTTL Logic ICs
- HC Types
 - 2V to 6V Operation
 - High Noise Immunity: N_{IL} = 30%, N_{IH} = 30% of V_{CC} at V_{CC} = 5V
- HCT Types
 - 4.5V to 5.5V Operation
 - Direct LSTTL Input Logic Compatibility, V_{IL}= 0.8V (Max), V_{IH} = 2V (Min)

Pinout

CD54HC166, CD54HCT166

(CERDIP)

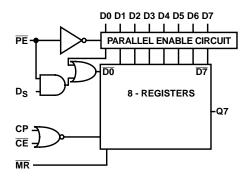
Description

The 'HC166 and 'HCT166 8-bit shift register is fabricated with silicon gate CMOS technology. It possesses the low power consumption of standard CMOS integrated circuits, and can operate at speeds comparable to the equivalent low power Schottky device.

The 'HCT166 is functionally and pin compatible with the standard 'LS166.

The 166 is an 8-bit shift register that has fully synchronous serial or parallel data entry selected by an active LOW Parallel Enable (\overline{PE}) input. When the \overline{PE} is LOW one setup time before the LOW-to-HIGH clock transition, parallel data is entered into the register. When \overline{PE} is HIGH, data is entered into the internal bit position Q0 from Serial Data Input (DS), and the remaining bits are shifted one place to the right (Q0 \rightarrow Q1 \rightarrow Q2, etc.) with each positive-going clock transition. For expansion of the register in parallel to serial converters, the Q7 output is connected to the DS input of the succeeding stage.

The clock input is a gated OR structure which allows one input to be used as an active LOW Clock Enable (\overline{CE}) input. The pin assignment for the CP and \overline{CE} inputs is arbitrary and can be reversed for layout convenience. The LOW-to-HIGH transition of \overline{CE} input should only take place while the CP is HIGH for predictable operation.


A LOW on the Master Reset ($\overline{\text{MR}}$) input overrides all other inputs and clears the register asynchronously, forcing all bit positions to a LOW state.

Ordering Information

PART NUMBER	TEMP. RANGE (°C)	PACKAGE
CD54HC166F3A	-55 to 125	16 Ld CERDIP
CD54HCT166F3A	-55 to 125	16 Ld CERDIP
CD74HC166E	-55 to 125	16 Ld PDIP
CD74HC166M	-55 to 125	16 Ld SOIC
CD74HC166MT	-55 to 125	16 Ld SOIC
CD74HC166M96	-55 to 125	16 Ld SOIC
CD74HCT166E	-55 to 125	16 Ld PDIP
CD74HCT166M	-55 to 125	16 Ld SOIC
CD74HCT166MT	-55 to 125	16 Ld SOIC
CD74HCT166M96	-55 to 125	16 Ld SOIC

NOTE: When ordering, use the entire part number. The suffix 96 denotes tape and reel. The suffix T denotes a small-quantity reel of 250.

Functional Diagram

TRUTH TABLE

		INP		INTE	RNAI				
MASTER	PARALLEL	CLOCK			PARALLEL	Q ST	OUTPUT		
RESET	ENABLE	ENABLE	CLOCK	SERIAL	D0 D7	Q0	Q1	Q7	
L	Х	Х	Х	Х	Х	L	L	L	
Н	Х	L	L	Х	Х	Q00	Q10	Q0	
Н	L	L	1	Х	ah	а	b	h	
Н	Н	L	1	Н	Х	Н	Q0n	Q6n	
Н	Н	L	1	L	Х	L	Q0n	Q6n	
Н	Х	Н	1	Х	Х	Q00	Q10	Q70	

H= High Voltage Level

L= Low Voltage Level

X= Don't Care

Q00, Q10, Q70 = The level of Q0, Q1, or Q7, respectively, before the indicated steady-state input conditions were established.

Q0n, Q6n = The level of Q0 or Q6, respectively, before the most recent ↑ transition of the clock.

^{↑=} Transition from Low to High Level

a...h = The level of steady-state input at inputs D0 thru D7, respectively.

Absolute Maximum Ratings

DC Supply Voltage, V_{CC} -0.5V to 7V DC Input Diode Current, I_{IK} For $V_I < -0.5V$ or $V_I > V_{CC} + 0.5V$ ± 20 mA DC Output Diode Current, I_{OK} For $V_O < -0.5V$ or $V_O > V_{CC} + 0.5V$±20mA DC Drain Current, per Output, IO For $-0.5V < V_O < V_{CC} + 0.5V$±25mA DC Output Source or Sink Current per Output Pin, IO DC V_{CC} or Ground Current, I_{CC or} I_{GND}±50mA

Thermal Information

Thermal Resistance (Typical, Note 1)	θ_{JA} (°C/W)
E (PDIP) Package	. 67
M (SOIC) Package	
Maximum Junction Temperature	
Maximum Storage Temperature Range	-65°C to 150°C
Maximum Lead Temperature (Soldering 10s)	300°C
(SOIC - Lead Tips Only)	

Operating Conditions

Temperature Range (T _A)55°C to 125°C Supply Voltage Range, V _{CC}
HC Types2V to 6V
HCT Types
71
DC Input or Output Voltage, V _I , V _O
Input Rise and Fall Time
2V
4.5V 500ns (Max)
6V

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTE:

1. The package thermal impedance is calculated in accordance with JESD 51-7.

DC Electrical Specifications

			ST ITIONS			25°C		-40°C T	O 85°C	-55°C T	O 125 ⁰ C	
PARAMETER	SYMBOL	V _I (V)	I _O (mA)	V _{CC} (V)	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNITS
HC TYPES												
High Level Input	V _{IH}	-	-	2	1.5	-	-	1.5	-	1.5	-	V
Voltage				4.5	3.15	-	-	3.15	-	3.15	-	V
				6	4.2	-	-	4.2	-	4.2	-	V
Low Level Input	V _{IL}	-	-	2	-	-	0.5	-	0.5	-	0.5	V
Voltage				4.5	-	-	1.35	-	1.35	-	1.35	V
				6	-	-	1.8	-	1.8	-	1.8	٧
High Level Output	V _{OH}	V _{IH} or	-0.02	2	1.9	-	-	1.9	-	1.9	-	٧
Voltage CMOS Loads		V _{IL}	-0.02	4.5	4.4	-	-	4.4	-	4.4	-	V
			-0.02	6	5.9	-	-	5.9	-	5.9	-	V
High Level Output	1		-4	4.5	3.98	-	-	3.84	-	3.7	-	٧
Voltage TTL Loads			-5.2	6	5.48	-	-	5.34	-	5.2	-	V
Low Level Output	V _{OL}	V _{IH} or	0.02	2	-	-	0.1	-	0.1	-	0.1	V
Voltage CMOS Loads		V_{IL}	0.02	4.5	-	-	0.1	-	0.1	-	0.1	٧
			0.02	6	-	-	0.1	-	0.1	-	0.1	V
Low Level Output			4	4.5	-	-	0.26	-	0.33	-	0.4	V
Voltage TTL Loads			5.2	6	-	-	0.26	-	0.33	-	0.4	V
Input Leakage Current	l _l	V _{CC} or GND	-	6	-	-	±0.1	-	±1	-	±1	μА

DC Electrical Specifications (Continued)

			ST ITIONS			25°C		-40°C T	O 85°C	-55°C T	O 125°C	
PARAMETER	SYMBOL	V _I (V)	I _O (mA)	V _{CC} (V)	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNITS
Quiescent Device Current	Icc	V _{CC} or GND	0	6	-	-	8	-	80	-	160	μА
HCT TYPES												
High Level Input Voltage	V _{IH}	-	-	4.5 to 5.5	2	-	-	2	-	2	-	V
Low Level Input Voltage	V _{IL}	-	-	4.5 to 5.5	-	-	0.8	-	0.8	-	0.8	٧
High Level Output Voltage CMOS Loads	V _{OH}	V _{IH} or V _{IL}	-0.02	4.5	4.4	-	-	4.4	-	4.4	-	V
High Level Output Voltage TTL Loads			-4	4.5	3.98	-	-	3.84	-	3.7	-	V
Low Level Output Voltage CMOS Loads	V _{OL}	V _{IH} or V _{IL}	0.02	4.5	-	-	0.1	-	0.1	-	0.1	V
Low Level Output Voltage TTL Loads			4	4.5	-	-	0.26	-	0.33	-	0.4	V
Input Leakage Current	lį	V _{CC} to GND	0	5.5	-	-	±0.1	-	±1	-	±1	μА
Quiescent Device Current	Icc	V _{CC} or GND	0	5.5	-	-	8	-	80	-	160	μА
Additional Quiescent Device Current Per Input Pin: 1 Unit Load	ΔI _{CC} (Note 2)	V _{CC} -2.1	-	4.5 to 5.5	-	100	360	-	450	-	490	μА

NOTE:

HCT Input Loading Table

INPUT	UNIT LOADS
DS, D0-D7	0.2
PE	0.35
CP, CE	0.5
MR	0.2

NOTE: Unit Load is ΔI_{CC} limit specified in DC Electrical Specifications table, e.g., 360µA max at 25°C.

Prerequisite For Switching Specifications

			25°C		-40°C TO 85°C		-55°C TO 125°C		
PARAMETER	SYMBOL	V _{CC} (V)	MIN	MAX	MIN	MAX	MIN	MAX	UNITS
HC TYPES									
Clock Frequency	f _{MAX}	2	6	-	5	-	4	-	MHz
(Figure 1)		4.5	30	-	25	-	20	-	MHz
		6	35	-	29	-	23	-	MHz

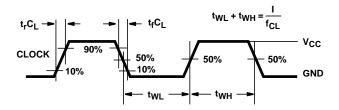
^{2.} For dual-supply systems theoretical worst case (V_I = 2.4V, V_{CC} = 5.5V) specification is 1.8mA.

Prerequisite For Switching Specifications (Continued)

			25	°C	-40°C T	O 85°C	-55°C T	O 125°C	
PARAMETER	SYMBOL	V _{CC} (V)	MIN	MAX	MIN	MAX	MIN	MAX	UNITS
MR Pulse Width	t _w	2	100	-	125	-	150	-	ns
(Figure 1)		4.5	20	-	25	-	30	-	ns
		6	17	-	21	-	26	-	ns
Clock Pulse Width	t _W	2	80	-	100	-	120	-	ns
(Figure 1)		4.5	16	-	20	-	24	-	ns
		6	14	-	17	-	20	-	ns
Set-up Time	t _{SU}	2	80	-	100	-	120	-	ns
Data and $\overline{\text{CE}}$ to Clock (Figure 5)		4.5	16	-	20	-	24	-	ns
(3)		6	14	-	17	-	20	-	ns
Hold Time	t _H	2	1	-	1	-	1	-	ns
Data to Clock (Figure 5)		4.5	1	-	1	-	1	-	ns
(1.3		6	1	-	1	-	1	-	ns
Removal Time	t _{REM}	2	0	-	0	-	0	-	ns
MR to Clock (Figure 5)		4.5	0	-	0	-	0	-	ns
(1.3		6	0	-	0	-	0	-	ns
Set-up Time	t _{SU}	2	145	-	180	-	220	-	ns
PE to CP (Figure 5)		4.5	29	-	36	-	44	-	ns
(1.3		6	25	-	31	-	38	-	ns
Hold Time	t _H	2	0	-	0	-	0	-	ns
PE to CP or CE (Figure 5)		4.5	0	-	0	-	0	-	ns
(1.3		6	0	-	0	-	0	-	ns
HCT TYPES									
Clock Frequency (Figure 2)	f_{MAX}	4.5	25	-	20	-	16	-	MHz
MR Pulse Width (Figure 2)	t _W	4.5	35	-	44	-	53	-	ns
Clock Pulse Width (Figure 2)	t _w	4.5	20	-	25	-	30	-	ns
Set-up Time Data and $\overline{\text{CE}}$ to Clock (Figure 6)	tsu	4.5	16	-	20	-	24	-	ns
Hold Time Data to Clock (Figure 6)	t _H	4.5	0	-	0	-	0	-	ns
Removal Time MR to Clock (Figure 6)	^t REM	4.5	0	-	0	-	0	-	ns
Set-up Time PE to CP (Figure 6)	tsu	4.5	30	-	38	-	45	-	ns
Hold Time \overline{PE} to CP or \overline{CE} (Figure 6)	t _H	4.5	0	-	0	-	0	-	ns

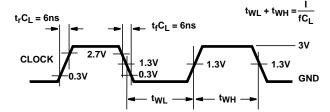
Switching Specifications Input t_r , $t_f = 6ns$

		TEST		25	°C	-40°C TO 85°C	-55°C TO 125°C	
PARAMETER	SYMBOL	CONDITIONS	V _{CC} (V)	TYP	MAX	MAX	MAX	UNITS
HC TYPES	-							
Propagation Delay, Clock to Output (Figure 3)	t _{PLH} , t _{PHL}	C _L = 50pF	2	-	160	200	240	ns
			4.5	-	32	40	48	ns
		C _L = 15pF	5	13	-	-	-	ns
		CL = 50pF	6	-	27	34	41	ns


Switching Specifications Input t_r , $t_f = 6ns$ (Continued)

		TEST		25	°C	-40°C TO 85°C	-55°C TO 125°C	
PARAMETER	SYMBOL	CONDITIONS	V _{CC} (V)	TYP	MAX	MAX	MAX	UNITS
Output Transition Time	t _{TLH} , t _{THL}	C _L = 50pF	2	-	75	95	110	ns
(Figure 3)			4.5	-	15	19	22	ns
			6	-	13	16	19	ns
Propagation Delay	tPHL	C _L = 50pF	2	-	160	200	240	ns
MR to Output (Figure 3)			4.5	-	32	40	48	ns
(riguic o)			6	-	27	34	41	ns
Input Capacitance	CI	-	-	-	10	10	10	pF
Power Dissipation Capacitance (Notes 3, 4)	C _{PD}	-	5	41	-	-	-	pF
HCT TYPES					•			
Propagation Delay, Clock to Output (Figure 4)	t _{PLH} , t _{PHL}	C _L = 50pF	4.5	-	40	50	60	ns
Output Transition Time (Figure 4)	t _{TLH} , t _{THL}	C _L = 50pF	4.5	-	15	19	22	ns
Propagation Delay MR to Output (Figure 4)	t _{PHL}	C _L = 50pF	4.5	-	40	50	60	ns
Input Capacitance	Cl	-	-	-	10	10	10	pF

NOTES:


- 3. C_{PD} is used to determine the dynamic power consumption, per gate.
- 4. $P_{D} = C_{PD} V_{CC}^2 f_i + \sum (C_L V_{CC}^2 + f_O)$ where f_i = Input Frequency, f_O = Output Frequency, C_L = Output Load Capacitance, V_{CC} = Supply Voltage.

Test Circuits and Waveforms

NOTE: Outputs should be switching from 10% V $_{CC}$ to 90% V $_{CC}$ in accordance with device truth table. For f_{MAX} , input duty cycle = 50%.

FIGURE 1. HC CLOCK PULSE RISE AND FALL TIMES AND PULSE WIDTH

NOTE: Outputs should be switching from 10% V_{CC} to 90% V_{CC} in accordance with device truth table. For f_{MAX} , input duty cycle = 50%.

FIGURE 2. HCT CLOCK PULSE RISE AND FALL TIMES AND PULSE WIDTH

Test Circuits and Waveforms (Continued)

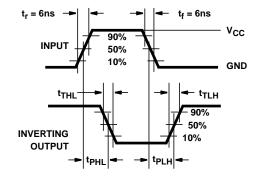


FIGURE 3. HC AND HCU TRANSITION TIMES AND PROPAGA-TION DELAY TIMES, COMBINATION LOGIC

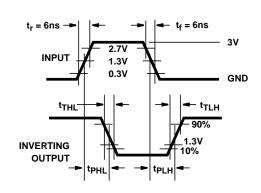


FIGURE 4. HCT TRANSITION TIMES AND PROPAGATION DELAY TIMES, COMBINATION LOGIC

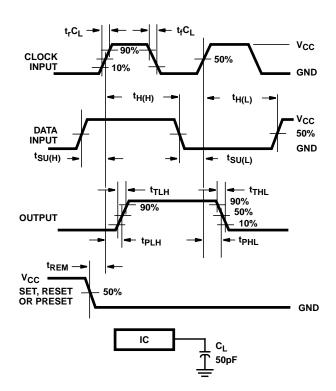


FIGURE 5. HC SETUP TIMES, HOLD TIMES, REMOVAL TIME, AND PROPAGATION DELAY TIMES FOR EDGE TRIGGERED SEQUENTIAL LOGIC CIRCUITS

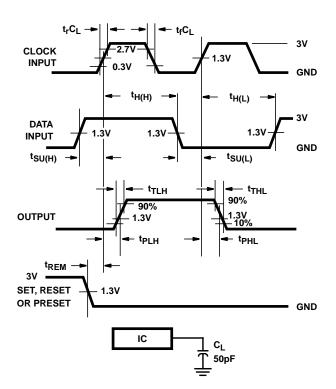


FIGURE 6. HCT SETUP TIMES, HOLD TIMES, REMOVAL TIME, AND PROPAGATION DELAY TIMES FOR EDGE TRIGGERED SEQUENTIAL LOGIC CIRCUITS

www.ti.com 14-Aug-2021

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
CD54HC166F3A	ACTIVE	CDIP	J	16	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	CD54HC166F3A	Samples
CD54HCT166F3A	ACTIVE	CDIP	J	16	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	CD54HCT166F3A	Samples
CD74HC166E	ACTIVE	PDIP	N	16	25	RoHS & Green	NIPDAU	N / A for Pkg Type	-55 to 125	CD74HC166E	Samples
CD74HC166M	ACTIVE	SOIC	D	16	40	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-55 to 125	HC166M	Samples
CD74HC166M96	ACTIVE	SOIC	D	16	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-55 to 125	HC166M	Samples
CD74HC166MG4	ACTIVE	SOIC	D	16	40	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-55 to 125	HC166M	Samples
CD74HCT166E	ACTIVE	PDIP	N	16	25	RoHS & Green	NIPDAU	N / A for Pkg Type	-55 to 125	CD74HCT166E	Samples
CD74HCT166EE4	ACTIVE	PDIP	N	16	25	RoHS & Green	NIPDAU	N / A for Pkg Type	-55 to 125	CD74HCT166E	Samples
CD74HCT166M	ACTIVE	SOIC	D	16	40	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-55 to 125	HCT166M	Samples
CD74HCT166M96	ACTIVE	SOIC	D	16	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-55 to 125	HCT166M	Samples
CD74HCT166MT	ACTIVE	SOIC	D	16	250	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-55 to 125	HCT166M	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

PACKAGE OPTION ADDENDUM

www.ti.com 14-Aug-2021

- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead finish/Ball material Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

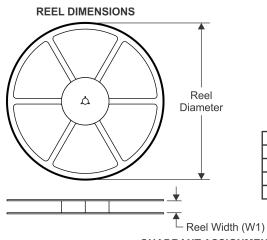
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

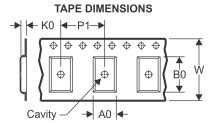
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF CD54HC166, CD54HCT166, CD74HC166, CD74HCT166:

Catalog: CD74HC166, CD74HCT166

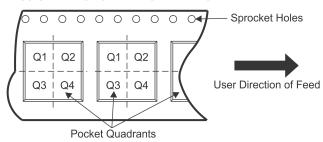
Military: CD54HC166, CD54HCT166


NOTE: Qualified Version Definitions:

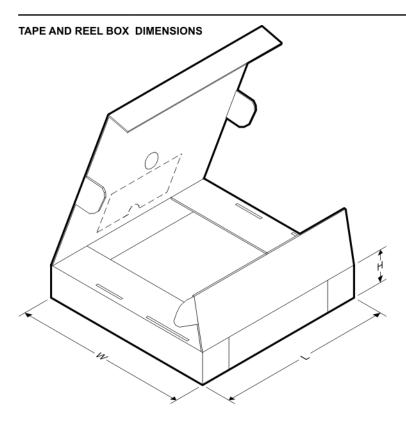

- Catalog TI's standard catalog product
- Military QML certified for Military and Defense Applications

PACKAGE MATERIALS INFORMATION

www.ti.com 27-Jul-2021


TAPE AND REEL INFORMATION

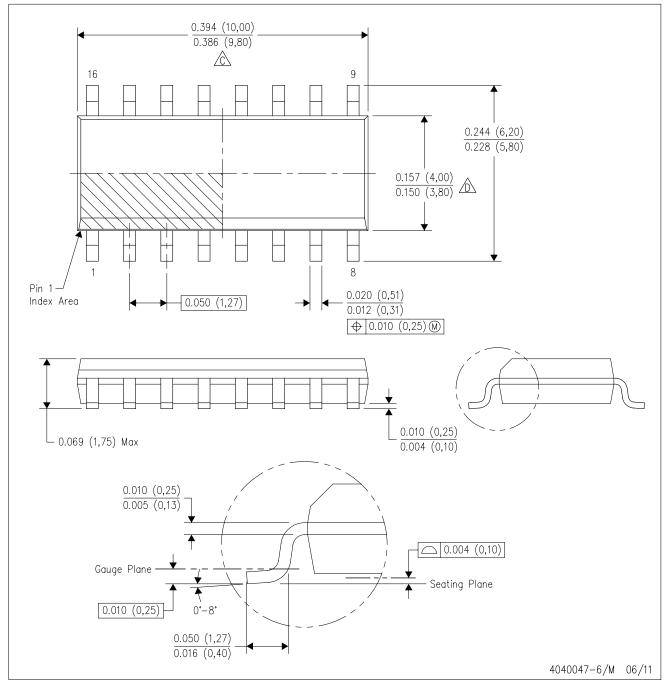
	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
CD74HC166M96	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.1	8.0	16.0	Q1
CD74HCT166M96	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.1	8.0	16.0	Q1

www.ti.com 27-Jul-2021

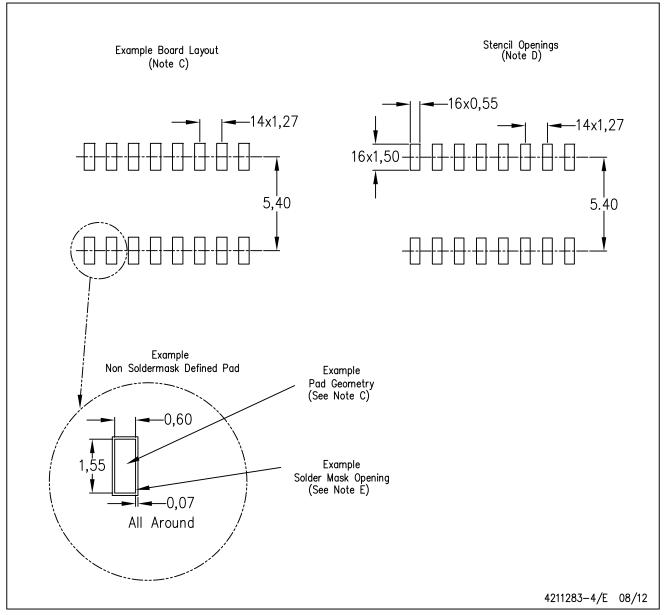


*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)	
CD74HC166M96	SOIC	D	16	2500	340.5	336.1	32.0	
CD74HCT166M96	SOIC	D	16	2500	340.5	336.1	32.0	

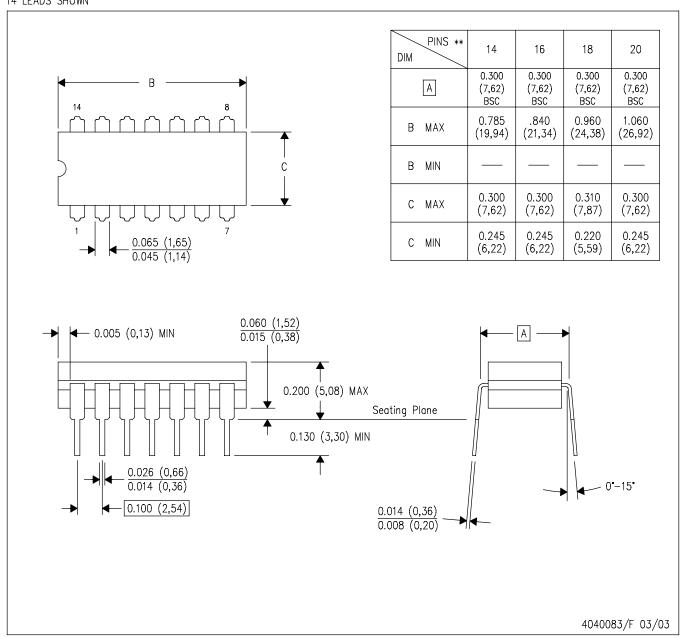
D (R-PDS0-G16)

PLASTIC SMALL OUTLINE



- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AC.

D (R-PDSO-G16)


PLASTIC SMALL OUTLINE

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

14 LEADS SHOWN

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. This package is hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
- E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.

N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

16 PINS SHOWN

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- The 20 pin end lead shoulder width is a vendor option, either half or full width.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale (https://www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2021, Texas Instruments Incorporated