0.5A/1A PWM/VFM Step-down DC/DC Converter with Synchronous Rectifier

No. EA-362-180919

OUTLINE

The RP509x is a low supply current PWM/VFM step-down DC/DC converter with synchronous rectifier featuring $0.5 \mathrm{~A} / 1$ A output current ${ }^{(1)}$. Internally, a single converter consists of a reference voltage unit, an error amplifier, a switching control circuit, a mode control circuit, a soft-start circuit, an undervoltage lockout (UVLO) circuit, a thermal shutdown circuit, and switching transistors. The RP509x is employing synchronous rectification for improving the efficiency of rectification by replacing diodes with built-in switching transistors. Using synchronous rectification not only increases circuit performance but also allows a design to reduce parts count. Output voltage controlling method is selectable between a PWM/VFM auto-switching control type and a forced PWM control type, which further reduces noise than a normal PWM control under a light load, and these types can be set by the MODE pin. Output voltage type is selectable between an internally fixed output voltage type and an externally adjustable output voltage type. Protection circuits in the RP509x is current limit circuit and thermal shutdown circuit. LX current limit value (Typ.) is selectable between 1.6 A and 1.0 A. The RP509Z is available in WLCSP-6-P6 which achieves high-density mounting on boards. Using capacitor of 0402-/1005-size (inch/mm) and inductor of 0603-/1608-size (inch/mm) as external parts help to save space for devices. The RP509N is available in SOT-23-6.

FEATURES

- Output Voltage Range (Fixed Output Voltage Type) $\ldots \ldots \ldots \ldots . .0 .6 \mathrm{~V}$ to 3.3 V , settable in 0.1 V steps
(Adjustable Output Voltage Type) $\cdots \cdots \cdot 0.6 \mathrm{~V}$ to 5.5 V
- Output Voltage Accuracy (Fixed Output Voltage Type) $\cdots \cdots \cdots \cdots \pm 1.5 \%\left(\mathrm{~V}_{\mathrm{SET}^{(2)}}{ }^{(2)} \geq 1.2 \mathrm{~V}\right), \pm 18 \mathrm{mV}\left(\mathrm{V}_{\mathrm{SET}}<1.2 \mathrm{~V}\right)$
- Feedback Voltage Accuracy (Adjustable Output Voltage Type) $\cdots \pm 9 \mathrm{mV}\left(\mathrm{V}_{\mathrm{FB}}=0.6 \mathrm{~V}\right)$
- Output Voltage/Feedback Voltage Temperature Coefficient $\cdots . \pm 100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
- Selectable Oscillator Frequency ... 6.0 MHz
- Oscillator Maximum Duty .. Min. 100\%
 Typ. Pch. 0.195Ω, Nch. 0.175Ω (RP509N)
- Standby Current... 0 A
- UVLO Detector Threshold ... Typ. 2.0 V
- Soft-start Time .. 0.15 ms
- Inductor Current Limit Circuit.. A/1.0 A, selectable Current Limit
- Package WLCSP-6-P6 ($1.28 \mathrm{~mm} \times 0.88 \mathrm{~mm} \times 0.64 \mathrm{~mm}$) SOT-23-6 ($2.9 \mathrm{~mm} \times 2.8 \mathrm{~mm} \times 1.1 \mathrm{~mm}$)

[^0]
RP509x

No. EA-362-180919

APPLICATIONS

- Portable Communication Equipment: Mobiles/Smartphones, Digital Cameras and Note-PCs
- Li-ion Battery-used Equipment

SELECTION GUIDE

The set output voltage, the output voltage type, the auto-discharge function ${ }^{(1)}$, and the LX current limit for the ICs are user-selectable options.

Selection Guide

Product Name	Package	Quantity per Reel	Pb Free	Halogen Free
RP509ZxxX\$-E2-F	WLCSP-6-P6	5,000 pcs	Yes	Yes
RP509NxxX\$-TR-FE	SOT-23-6	3,000 pcs	Yes	Yes

$x x$: Specify the set output voltage ($V_{\text {SET }}$)
Fixed Output Voltage Type: 06 to 33 (0.6 V to $3.3 \mathrm{~V}, 0.1 \mathrm{~V}$ steps)
The voltage in 0.05 V step is shown as follows.

$$
1.05 \text { V: RP509Z101B5 }
$$

1.15 V: RP509N111x5

Adjustable Output Voltage Type: 00 only

X: Specify the LX Current Limit (llxlim)
Typ. 1.6 A: 1
Typ. 1.0 A: 2
\$: Specify the version

Version	Output Voltage Type	Auto-discharge	Oscillator Frequency	$\mathrm{V}_{\text {SET }}$
A	Fixed	No	6.0 MHz	6 V to 3.3 V
B		Yes		V to 3.3 V
C	Adjustable	No		0.6 V to 5.5 V
D		Yes		0.6 V to 5.5 V

[^1]
BLOCK DIAGRAM

RP509ZxxXA/RP509ZxxXB, RP509NxxXA/RP509NxxXB (Fixed Output Voltage Type)

RP509xxxXA Block Diagram

RP509xxxXB Block Diagram

RP509x

No. EA-362-180919

RP509Z00XC/RP509Z00XD, RP509N00XC/RP509N00XD (Adjustable Output Voltage Type)

RP509x00XD Block Diagram

PIN DESCRIPTION

WLCSP-6 Pin Configurations

SOT-23-6 Pin Configurations

WLCSP-6 Pin Description

Pin No.	Symbol	Description
A1	MODE	Mode Control Pin (High: Forced PWM Control, Low: PWM/VFM Auto-switching Control)
B1	LX	Switching Pin
C1	VOUT/VFB	Output/Feedback Voltage Pin
A2	VIN	Input Voltage Pin
B2	CE	Chip Enable Pin, Active-high
C2	GND	Ground Pin

SOT-23-6 Pin Description

Pin No.	Symbol	Description
1	CE	Chip Enable Pin, Active-high
2	GND	Ground Pin
3	VIN	Input Voltage Pin
4	MODE	Mode Control Pin (High: Forced PWM Control, Low: PWM/VFM Auto-switching Control)
5	LX	Switching Pin
6	VOUT/VFB	Output/Feedback Voltage Pin

ABSOLUTE MAXIMUM RATINGS

Absolute M	mum Rating			(GND = 0 V)	
Symbol	Item			Rating	Unit
VIn	Input Voltage			-0.3 to 6.5	V
VLX	LX Pin Voltage			-0.3 to $\mathrm{V}_{\text {IN }}+0.3$	V
$V_{\text {CE }}$	CE Pin Voltage			-0.3 to 6.5	V
$V_{\text {mode }}$	MODE Pin Voltage			-0.3 to 6.5	V
Vout/ $\mathrm{V}_{\text {fb }}$	VOUT/VFB Pin Voltage			-0.3 to 6.5	V
Itx	LX Pin Output Current			1.6	A
PD	Power Dissipation ${ }^{(1)}$	WLCSP6-P6	JEDEC STD. 51-9 Test Land Pattern	910	mW
		SOT-23-6	JEDEC STD. 51-7 Test Land Pattern	892	mW
Tj	Junction Temperature			-40 to 125	${ }^{\circ} \mathrm{C}$
Tstg	Storage Temperature Range			-55 to 125	${ }^{\circ} \mathrm{C}$

ABSOLUTE MAXIMUM RATINGS

Electronic and mechanical stress momentarily exceeded absolute maximum ratings may cause the permanent damages and may degrade the lifetime and safety for both device and system using the device in the field. The functional operation at or over these absolute maximum ratings is not assured.

RECOMMENDED OPERATING CONDITIONS

Symbol	Item	Rating	Unit
V_{IN}	Input Voltage	2.3 to 5.5	V
Ta	Operating Temperature Range	-40 to 85	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

All of electronic equipment should be designed that the mounted semiconductor devices operate within the recommended operating conditions. The semiconductor devices cannot operate normally over the recommended operating conditions, even if when they are used over such conditions by momentary electronic noise or surge. And the semiconductor devices may receive serious damage when they continue to operate over the recommended operating conditions.

[^2]
ELECTRICAL CHARACTERISTICS

Test circuit is operated with "Open Loop Control" (GND $=0 \mathrm{~V}$), unless otherwise specified.
RP509Zxx1A/RP509Zxx1B, RP509Nxx1A/RP509Nxx1B Electrical Characterisitcs
$\left(\mathrm{Ta}=25^{\circ} \mathrm{C}\right)$

Symbol	Item	Conditions			Min.	Typ.	Max.	Unit
	Output Voltage	$\begin{array}{\|l} \hline \mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CE }}=3.6 \mathrm{~V}\left(\mathrm{~V}_{\text {SET }} \leq\right. \\ 2.6 \mathrm{~V}), \\ \mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CE }}=\mathrm{V}_{\text {SET }}+1 \mathrm{~V} \\ \left(\mathrm{~V}_{\text {SET }}>2.6 \mathrm{~V}\right) \\ \hline \end{array}$		$\mathrm{V}_{\mathrm{SET}} \geq 1.2 \mathrm{~V}$	x 0.985		x 1.015	
Vout				$\mathrm{V}_{\mathrm{SET}}<1.2 \mathrm{~V}$	-0.018		+0.018	V
Δ Vout/ $\Delta \mathrm{Ta}$	Output Voltage Temperature Coefficient	$-40^{\circ} \mathrm{C} \leq \mathrm{Ta} \leq 85^{\circ} \mathrm{C}$				± 100		$\begin{gathered} \mathrm{ppm} / \\ { }^{\circ} \mathrm{C} \end{gathered}$
fosc	Oscillator Frequency	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CE }}=3.6 \mathrm{~V}, \mathrm{~V}_{\text {SET }}=1.8 \mathrm{~V}$, "Closed Loop Control"			4.8	6.0	7.2	MHz
IdD	Supply Current	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CE }}=\mathrm{V}_{\text {OUT }}=3.6 \mathrm{~V}$, $\mathrm{V}_{\text {MOde }}=0 \mathrm{~V}$				15		$\mu \mathrm{A}$
Istandby	Standby Current	$\mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {CE }}=0 \mathrm{~V}$				0	5	$\mu \mathrm{A}$
Ісен	CE "High" Input Current	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CE }}=5.5 \mathrm{~V}$			-1	0	1	$\mu \mathrm{A}$
Icel	CE "Low" Input Current	$\mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {CE }}=0 \mathrm{~V}$			-1	0	1	$\mu \mathrm{A}$
Імоden	MODE "High" Input Current	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {MOde }}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {CE }}=0 \mathrm{~V}$			-1	0	1	$\mu \mathrm{A}$
Imodel	MODE "Low" Input Current	$\mathrm{V}_{\mathrm{IN}}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {CE }}=\mathrm{V}_{\text {MODE }}=0 \mathrm{~V}$			-1	0	1	$\mu \mathrm{A}$
Ivouth	Vout "High" Input Current	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {OUt }}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {ce }}=0 \mathrm{~V}$			-1	0	1	$\mu \mathrm{A}$
Ivoutl	Vout "Low" Input Current	$\mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {CE }}=\mathrm{V}_{\text {OUt }}=0 \mathrm{~V}$			-1	0	1	$\mu \mathrm{A}$
Rdistr	On-resistance for Auto Discharger ${ }^{(1)}$	$\mathrm{V}_{\mathrm{IN}}=3.6 \mathrm{~V}, \mathrm{~V}_{\text {CE }}=0 \mathrm{~V}$				40		Ω
ILxLeakh	LX "High" Leakage Current	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{LX}}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {CE }}=0 \mathrm{~V}$			-1	0	5	$\mu \mathrm{A}$
IlxLeakl	LX "Low" Leakage Current	$\mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {CE }}=\mathrm{V}_{\text {LX }}=0 \mathrm{~V}$			-5	0	1	$\mu \mathrm{A}$
$V_{\text {Ceh }}$	CE "High" Input Voltage	$\mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}$			1.0			V
$V_{\text {cel }}$	CE "Low" Input Voltage	$\mathrm{V}_{\text {IN }}=2.3 \mathrm{~V}$					0.4	V
$V_{\text {modeh }}$	MODE "High" Input Voltage	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CE }}=5.5 \mathrm{~V}$			1.0			V
$V_{\text {model }}$	MODE "Low" Input Voltage	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CE }}=2.3 \mathrm{~V}$					0.4	V
Ronp	On-resistance of Pch. transistor	RP509Z	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=3.6 \mathrm{~V}, \\ & \mathrm{I} X X=-100 \mathrm{~mA} \end{aligned}$			0.175		Ω
		RP509N				0.195		Ω
Ronn	On-resistance of Nch. transistor	RP509Z	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=3.6 \mathrm{~V}, \\ & \mathrm{ILX}=-100 \mathrm{~mA} \end{aligned}$			0.155		Ω
		RP509N				0.175		Ω
Maxduty	Maximum Duty Cycle				100			\%
tstart	Soft-start Time	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {CE }}=3.6 \mathrm{~V}\left(\mathrm{~V}_{\text {SET }} \leq 2.6 \mathrm{~V}\right), \\ & \mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{CE}}=\mathrm{V}_{\text {SET }}+1 \mathrm{~V}\left(\mathrm{~V}_{\text {SET }}>2.6 \mathrm{~V}\right) \end{aligned}$				150	300	$\mu \mathrm{S}$
ILxLIM	LX Current Limit	$\begin{aligned} & \mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CE }}=3.6 \mathrm{~V}\left(\mathrm{~V}_{\text {SET }} \leq 2.6 \mathrm{~V}\right), \\ & \mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{CE}}=\mathrm{V}_{\text {SET }}+1 \mathrm{~V}\left(\mathrm{~V}_{\text {SET }}>2.6 \mathrm{~V}\right) \end{aligned}$			1200	1600		mA
Vuvlo1	UVLO Threshold Voltage	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CE, }}$, Falling			1.85	2.00	2.20	V
Vuvlo2		$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CE, }}$ Rising			1.90	2.05	2.25	V
TTSD	Thermal Shutdown Threshold Temperature	Tj, Rising				140		${ }^{\circ} \mathrm{C}$
TTSR		Tj, Falling				100		${ }^{\circ} \mathrm{C}$

All test items listed under Electrical Characteristics are done under the pulse load condition ($\mathrm{Tj} \approx \mathrm{Ta}=25^{\circ} \mathrm{C}$).

RP509x

No. EA-362-180919

Test circuit is operated with "Open Loop Control" (GND = 0 V), unless otherwise specified.
RP509Z001C/RP509Z001D, RP509N001C/RP509N001D Electrical Characterisitcs
$\left(\mathrm{Ta}=25^{\circ} \mathrm{C}\right)$

Symbol	Item		Conditions	Min.	Typ.	Max.	Unit
$V_{\text {Fb }}$	Feedback Voltage	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {CE }}=3.6 \mathrm{~V}$		0.591	0.600	0.609	V
$\begin{gathered} \Delta \mathrm{VFB}_{\mathrm{FB}} \\ \Delta \mathrm{Ta} \end{gathered}$	Feedback Voltage Temperature Coefficient	$-40^{\circ} \mathrm{C} \leq \mathrm{Ta} \leq 85^{\circ} \mathrm{C}$			± 100		$\begin{gathered} \mathrm{ppm} / \\ { }^{\circ} \mathrm{C} \end{gathered}$
fosc	Oscillator Frequency	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {CE }}=3.6 \mathrm{~V}$, $\mathrm{V}_{\text {SET }}=1.8 \mathrm{~V}$, "Closed Loop Control"		4.8	6.0	7.2	MHz
IDD	Supply Current	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CE }}=\mathrm{V}_{\text {OUT }}=3.6 \mathrm{~V}, \mathrm{~V}_{\text {MODE }}=0 \mathrm{~V}$			15		$\mu \mathrm{A}$
Istandby	Standby Current	$\mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {CE }}=0 \mathrm{~V}$			0	5	$\mu \mathrm{A}$
Icen	CE "High" Input Current	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CE }}=5.5 \mathrm{~V}$		-1	0	1	$\mu \mathrm{A}$
Icel	CE "Low" Input Current	$\mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {cE }}=0 \mathrm{~V}$		-1	0	1	$\mu \mathrm{A}$
Імоden	MODE "High" Input Current	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {MODE }}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {CE }}=0 \mathrm{~V}$		-1	0	1	$\mu \mathrm{A}$
Imodel	MODE "Low" Input Current	$\mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {ce }}=\mathrm{V}_{\text {MOde }}=0 \mathrm{~V}$		-1	0	1	$\mu \mathrm{A}$
Ivouth	Vout "High" Input Current	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {OUT }}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {CE }}=0 \mathrm{~V}$		-1	0	1	$\mu \mathrm{A}$
Ivoutl	Vout "Low" Input Current	$\mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {CE }}=\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$		-1	0	1	$\mu \mathrm{A}$
Rdistr	On-resistance for Auto Discharge ${ }^{(1)}$	$\mathrm{V}_{\mathrm{IN}}=3.6 \mathrm{~V}, \mathrm{~V}_{\text {CE }}=0 \mathrm{~V}$			40		Ω
ILXLEAKH	LX "High" Leakage Current	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{LX}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CE}}=0 \mathrm{~V}$		-1	0	5	$\mu \mathrm{A}$
IlxLeakl	LX "Low" Leakage Current	$\mathrm{V}_{\mathrm{IN}}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {CE }}=\mathrm{V}_{\mathrm{LX}}=0 \mathrm{~V}$		-5	0	1	$\mu \mathrm{A}$
$V_{\text {ceh }}$	CE "High" Input Voltage	$\mathrm{V}_{\mathrm{IN}}=5.5 \mathrm{~V}$		1.0			V
VceL	CE "Low" Input Voltage	$\mathrm{V}_{\mathrm{IN}}=2.3 \mathrm{~V}$				0.4	V
$\mathrm{V}_{\text {moden }}$	MODE "High" Input Voltage	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {CE }}=5.5 \mathrm{~V}$		1.0			V
Vmodel	MODE "Low" Input Voltage	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CE }}=2.3 \mathrm{~V}$				0.4	V
Ronp	On-resistance of Pch. Transistor	RP509Z	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=3.6 \mathrm{~V}, \\ & \mathrm{l}_{\mathrm{LX}}=-100 \mathrm{~mA} \end{aligned}$		0.175		Ω
		RP509N			0.195		Ω
Ronn	On-resistance of Nch. Transistor	RP509Z	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=3.6 \mathrm{~V}, \\ & \mathrm{lLX}=-100 \mathrm{~mA} \end{aligned}$		0.155		Ω
		RP509N			0.175		Ω
Maxduty	Maximum Duty Cycle			100			\%
tstart	Soft-start Time	$\begin{aligned} & \mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CE }}=3.6 \mathrm{~V}\left(\mathrm{~V}_{\text {SET }} \leq 2.6 \mathrm{~V}\right), \\ & \mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CE }}=\mathrm{V}_{\text {SET }}+1 \mathrm{~V}\left(\mathrm{~V}_{\text {SET }}>2.6 \mathrm{~V}\right) \end{aligned}$			150	300	$\mu \mathrm{S}$
ILxLim	LX Current Limit	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CE}}=3.6 \mathrm{~V}\left(\mathrm{~V}_{\text {SET }} \leq 2.6 \mathrm{~V}\right), \\ & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CE}}=\mathrm{V}_{\text {SET }}+1 \mathrm{~V}\left(\mathrm{~V}_{\text {SET }}>2.6 \mathrm{~V}\right) \end{aligned}$		1200	1600		mA
Vuvlo1	UVLO Threshold Voltage	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {CE, }}$, Falling		1.85	2.00	2.20	V
Vuvlo2		$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CE, }}$ Rising		1.90	2.05	2.25	V
TTSD	Thermal Shutdown Threshold Temperature	Tj, Rising			140		${ }^{\circ} \mathrm{C}$
TTSR		Tj, Falling			100		${ }^{\circ} \mathrm{C}$

All test items listed under Electrical Characteristics are done under the pulse load condition ($\mathrm{Tj} \approx \mathrm{Ta}=25^{\circ} \mathrm{C}$).

Test circuit is operated with "Open Loop Control" (GND $=0 \mathrm{~V}$), unless otherwise specified.
RP509Zxx2A/RP509Zxx2B, RP509Nxx2A/RP509Nxx2B Electrical Characterisitcs
($\mathrm{Ta}=25^{\circ} \mathrm{C}$)

Symbol	Item	Conditions			Min.	Typ.	Max.	Unit
Vout	Output Voltage	$\begin{aligned} & \mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CE }}=3.6 \mathrm{~V} \\ & \left(\mathrm{~V}_{\text {SET }} \leq 2.6 \mathrm{~V}\right), \\ & \mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CE }}=\mathrm{V}_{\text {SET }}+1 \mathrm{~V} \\ & \left(\mathrm{~V}_{\text {SET }}>2.6 \mathrm{~V}\right) \end{aligned}$		$\mathrm{V}_{\text {SET }} \geq 1.2 \mathrm{~V}$ $\mathrm{~V}_{\text {SET }}<1.2 \mathrm{~V}$	x 0.985		$\times 1.015$ +0.018	V
Δ Vout/ $\Delta \mathrm{Ta}$	Output Voltage Temperature Coefficient	$-40{ }^{\circ} \mathrm{C} \leq \mathrm{Ta} \leq 85^{\circ} \mathrm{C}$				± 100		$\begin{gathered} \mathrm{ppm} / \\ { }^{\circ} \mathrm{C} \end{gathered}$
fosc	Oscillator Frequency	$\begin{aligned} & \mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CE }}=3.6 \mathrm{~V}, \mathrm{~V}_{\text {SET }}=1.8 \mathrm{~V} \text {, } \\ & \text { "Closed Loop Control" } \\ & \hline \end{aligned}$			4.8	6.0	7.2	MHz
IdD	Supply Current	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {ce }}=\mathrm{V}_{\text {OUT }}=3.6 \mathrm{~V}$, $\mathrm{V}_{\text {MOde }}=0 \mathrm{~V}$				15		$\mu \mathrm{A}$
Istandby	Standby Current	$\mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {CE }}=0 \mathrm{~V}$				0	5	$\mu \mathrm{A}$
Icen	CE "High" Input Current	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CE }}=5.5 \mathrm{~V}$			-1	0	1	$\mu \mathrm{A}$
Icel	CE "Low" Input Current	$\mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {CE }}=0 \mathrm{~V}$			-1	0	1	$\mu \mathrm{A}$
Імoden	MODE "High" Input Current	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {MOde }}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {CE }}=0 \mathrm{~V}$			-1	0	1	$\mu \mathrm{A}$
Imodel	MODE "Low" Input Current	$\mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {CE }}=\mathrm{V}_{\text {MOde }}=0 \mathrm{~V}$			-1	0	1	$\mu \mathrm{A}$
Ivouth	Vout "High" Input Current	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {OUt }}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {CE }}=0 \mathrm{~V}$			-1	0	1	$\mu \mathrm{A}$
Ivoutl	Vout "Low" Input Current	$\mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {CE }}=\mathrm{V}_{\text {OUt }}=0 \mathrm{~V}$			-1	0	1	$\mu \mathrm{A}$
Rdistr	On-resistance for Auto Discharger ${ }^{(1)}$	$\mathrm{V}_{\text {IN }}=3.6 \mathrm{~V}, \mathrm{~V}_{\text {ce }}=0 \mathrm{~V}$				40		Ω
Ilxleakh	LX "High" Leakage Current	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{LX}}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {CE }}=0 \mathrm{~V}$			-1	0	5	$\mu \mathrm{A}$
IlxLeakl	LX "Low" Leakage Current	$\mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {CE }}=\mathrm{V}_{\text {LX }}=0 \mathrm{~V}$			-5	0	1	$\mu \mathrm{A}$
$V_{\text {ceh }}$	CE "High" Input Voltage	$\mathrm{V}_{\mathrm{IN}}=5.5 \mathrm{~V}$			1.0			V
$V_{\text {cel }}$	CE "Low" Input Voltage	$\mathrm{V}_{\mathrm{IN}}=2.3 \mathrm{~V}$					0.4	V
$\mathrm{V}_{\text {modeh }}$	MODE "High" Input Voltage	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CE }}=5.5 \mathrm{~V}$			1.0			V
Vmodel	MODE "Low" Input Voltage	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CE }}=2.3 \mathrm{~V}$					0.4	V
Ronp	On-resistance of Pch. transistor	RP509Z	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=3.6 \mathrm{~V}, \\ & \mathrm{ILX}=-100 \mathrm{~mA} \end{aligned}$			0.175		Ω
		RP509N				0.195		Ω
Ronn	On-resistance of Nch. transistor	RP509Z	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=3.6 \mathrm{~V}, \\ & \mathrm{ILX}^{2}=-100 \mathrm{~mA} \end{aligned}$			0.155		Ω
		RP509N				0.175		Ω
Maxduty	Maximum Duty Cycle				100			\%
tstart	Soft-start Time	$\begin{aligned} & V_{I N}=V_{C E}=3.6 \mathrm{~V}\left(\mathrm{~V}_{\text {SET }} \leq 2.6 \mathrm{~V}\right), \\ & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CE}}=\mathrm{V}_{\mathrm{SET}}+1 \mathrm{~V}\left(\mathrm{~V}_{\mathrm{SET}}>2.6 \mathrm{~V}\right) \end{aligned}$				150	300	$\mu \mathrm{S}$
ILxLIM	LX Current Limit	$\begin{aligned} & V_{I N}=V_{C E}=3.6 \mathrm{~V}\left(V_{S E T} \leq 2.6 \mathrm{~V}\right), \\ & V_{I N}=V_{C E}=V_{S E T}+1 \mathrm{~V}\left(V_{S E T}>2.6 \mathrm{~V}\right) \end{aligned}$			600	1000		mA
Vuvlo1	UVLO Threshold Voltage	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {ce }}$, Falling			1.85	2.00	2.20	V
Vuvloz		VIN $=\mathrm{V}_{\text {ce, }}$, Rising			1.90	2.05	2.25	V
T TSD	Thermal Shutdown Threshold Temperature	Tj, Rising				140		${ }^{\circ} \mathrm{C}$
TTSR		Tj, Falling				100		${ }^{\circ} \mathrm{C}$

All test items listed under Electrical Characteristics are done under the pulse load condition $\left(\mathrm{Tj} \approx \mathrm{Ta}=25^{\circ} \mathrm{C}\right)$.
${ }^{(1)}$ RP509xxx2B only

RP509x

No. EA-362-180919

Test circuit is operated with "Open Loop Control" (GND $=0 \mathrm{~V}$), unless otherwise specified.
RP509Z002C/RP509Z002D, RP509N002C/RP509N002D Electrical Characterisitcs
$\left(\mathrm{Ta}=25^{\circ} \mathrm{C}\right)$

Symbol	Item		Conditions	Min.	Typ.	Max.	Unit
$V_{\text {FB }}$	Feedback Voltage	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {CE }}=3.6 \mathrm{~V}$		0.591	0.600	0.609	V
$\begin{gathered} \Delta \mathrm{V}_{\mathrm{FB}} / \\ \Delta \mathrm{Ta} \end{gathered}$	Feedback Voltage Temperature Coefficient	$-40^{\circ} \mathrm{C} \leq \mathrm{Ta} \leq 85{ }^{\circ} \mathrm{C}$			± 100		$\begin{gathered} \mathrm{ppm} / \\ { }^{\circ} \mathrm{C} \end{gathered}$
fosc	Oscillator Frequency	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CE}}=3.6 \mathrm{~V}$, $\mathrm{V}_{\text {SET }}=1.8 \mathrm{~V}$, "Closed Loop Control"		4.8	6.0	7.2	MHz
IdD	Supply Current	$\mathrm{V}_{\text {In }}=\mathrm{V}_{\text {ce }}=\mathrm{V}_{\text {Out }}=3.6 \mathrm{~V}$, $\mathrm{V}_{\text {Mode }}=0 \mathrm{~V}$			15		$\mu \mathrm{A}$
Istandby	Standby Current	$\mathrm{V}_{\mathrm{IN}}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {CE }}=0 \mathrm{~V}$			0	5	$\mu \mathrm{A}$
Icen	CE "High" Input Current	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CE }}=5.5 \mathrm{~V}$		-1	0	1	$\mu \mathrm{A}$
Icel	CE "Low" Input Current	$\mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {CE }}=0 \mathrm{~V}$		-1	0	1	$\mu \mathrm{A}$
Іmodeh	MODE "High" Input Current	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {MOde }}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {CE }}=0 \mathrm{~V}$		-1	0	1	$\mu \mathrm{A}$
Imodel	MODE "Low" Input Current	$\mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {CE }}=\mathrm{V}_{\text {MOde }}=0 \mathrm{~V}$		-1	0	1	$\mu \mathrm{A}$
Ivouth	Vout "High" Input Current	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {OUt }}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {CE }}=0 \mathrm{~V}$		-1	0	1	$\mu \mathrm{A}$
Ivoutl	Vout "Low" Input Current	$\mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {CE }}=\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$		-1	0	1	$\mu \mathrm{A}$
Roistr	On-resistance for Auto Discharge ${ }^{(1)}$	$\mathrm{V}_{\mathrm{IN}}=3.6 \mathrm{~V}, \mathrm{~V}_{\text {CE }}=0 \mathrm{~V}$			40		Ω
IlxLeakh	LX "High" Leakage Current	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {LX }}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {CE }}=0 \mathrm{~V}$		-1	0	5	$\mu \mathrm{A}$
ILxLeakl	LX "Low" Leakage Current	$\mathrm{V}_{\mathrm{IN}}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {CE }}=\mathrm{V}_{\mathrm{LX}}=0 \mathrm{~V}$		-5	0	1	$\mu \mathrm{A}$
$V_{\text {ceh }}$	CE "High" Input Voltage	$\mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}$		1.0			V
$V_{\text {cel }}$	CE "Low" Input Voltage	$\mathrm{V}_{\text {IN }}=2.3 \mathrm{~V}$				0.4	V
Vmodeh	MODE "High" Input Voltage	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CE }}=5.5 \mathrm{~V}$		1.0			V
Vmodel	MODE "Low" Input Voltage	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CE }}=2.3 \mathrm{~V}$				0.4	V
Ronp	On-resistance of Pch. Transistor	RP509Z	$\begin{aligned} & V_{\mathrm{IN}}=3.6 \mathrm{~V}, \\ & \mathrm{ILX}^{2}=-100 \mathrm{~mA} \end{aligned}$		0.175		Ω
		RP509N			0.195		Ω
Ronn	On-resistance of Nch. Transistor	RP509Z	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=3.6 \mathrm{~V}, \\ & \mathrm{LLX}^{2}=-100 \mathrm{~mA} \end{aligned}$		0.155		Ω
		RP509N			0.175		Ω
Maxduty	Maximum Duty Cycle			100			\%
tstart	Soft-start Time	$\begin{aligned} & V_{\text {IN }}=V_{\text {CE }}=3.6 \mathrm{~V}\left(\mathrm{~V}_{\text {SET }} \leq 2.6 \mathrm{~V}\right), \\ & \mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CE }}=\mathrm{V}_{\text {SET }}+1 \mathrm{~V}\left(\mathrm{~V}_{\text {SET }}>2.6 \mathrm{~V}\right) \end{aligned}$			150	300	$\mu \mathrm{S}$
ILxLim	LX Current Limit	$\begin{aligned} & \mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CE }}=3.6 \mathrm{~V}\left(\mathrm{~V}_{\text {SET }} \leq 2.6 \mathrm{~V}\right), \\ & \mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CE }}=\mathrm{V}_{\text {SET }}+1 \mathrm{~V}\left(\mathrm{~V}_{\text {SET }}>2.6 \mathrm{~V}\right) \end{aligned}$		600	1000		mA
Vuvio1	UVLO Threshold Voltage	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CE, }}$, Falling		1.85	2.00	2.20	V
Vuvio2		$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CE, }}$, Rising		1.90	2.05	2.25	V
TTsD	Thermal Shutdown Threshold Temperature	Tj, Rising			140		${ }^{\circ} \mathrm{C}$
TTSR		Tj, Falling			100		${ }^{\circ} \mathrm{C}$

All test items listed under Electrical Characteristics are done under the pulse load condition ($\mathrm{Tj} \approx \mathrm{Ta}=25^{\circ} \mathrm{C}$).
(1) RP509x002D only

Electrical Characteristics by Different Output Voltage

RP509x

No. EA-362-180919

OPERATING DESCRIPTIONS

Soft-start Time

Starting-up with CE Pin

The IC starts to operate when the CE pin voltage (V_{CE}) exceeds the threshold voltage. The threshold voltage is preset between CE " H " input voltage ($\mathrm{V}_{\text {Ceh }}$) and CE "Low" input voltage ($\mathrm{V}_{\text {Cel }}$).
After the start-of the start-up of the IC, soft-start circuit starts to operate. Then, after a certain period of time, the reference voltage ($V_{\text {REF }}$) in the IC gradually increases up to the specified value.
Notes: Soft start time (tstart) ${ }^{(1)}$ is not always equal to the turn-on speed of the step-down DC/DC converter. Please note that the turn-on speed could be affected by the power supply capacity, the output current, the inductance value and the Cout value.

Timing Chart when Starting-up with CE Pin

Starting-up with Power Supply

After the power-on, when Vin exceeds the UVLO released voltage (VuvLoz), the IC starts to operate. Then, softstart circuit starts to operate and after a certain period of time, $\mathrm{V}_{\text {REF }}$ gradually increases up to the specified value.

Notes: Please note that the turn-on speed of Vout could be affected by the power supply capacity, the output current, the inductance value, the Cout value and the turn-on speed of Vin determined by Cin.

Timing Chart when Starting-up with Power Supply

[^3]
Undervoltage Lockout (UVLO) Circuit

If $\mathrm{V}_{\text {IN }}$ becomes lower than $\mathrm{V}_{\text {SET }}$, the step-down DC/DC converter stops the switching operation and ON duty becomes 100%, and then Vout gradually drops according to V_{IN}.

If the Vin drops more and becomes lower than the UVLO detector threshold (VUVLO1), the UVLO circuit starts to operate, $\mathrm{V}_{\text {Ref }}$ stops, and Pch. and Nch. built-in switch transistors turn "OFF". As a result, Vout drops according to the Cout capacitance value and the load.
To restart the operation, VIN needs to be higher than Vuvloz. The timing chart below shows the voltage shifts of $\mathrm{V}_{\text {Ref }} \mathrm{V}_{\mathrm{Lx}}$ and $\mathrm{V}_{\text {out }}$ when $\mathrm{V}_{\text {IN }}$ value is varied.

Notes: Falling edge (operating) and rising edge (releasing) waveforms of Vout could be affected by the initial voltage of Cout and the output current of Vout.

Timing Chart with Variations in Input Voltage (VIN)

RP509x

No. EA-362-180919

Current Limit Circuit

Current limit circuit supervises the inductor peak current (the peak current flowing through Pch. Tr.) in each switching cycle, and if the current exceeds the LX current limit (lıxLim), it turns off Pch. Tr. ILxLIm of the RP509x is set to Typ.1.6 A or Typ.1.0 A.
Notes: Ilxum could be easily affected by self-heating or ambient environment. If the VIN drops dramatically or becomes unstable due to short-circuit, protection operation could be affected.

Over-Current Protection Operation

Operation of Step-down DC/DC Converter and Output Current

The step-down DC/DC converter charges energy in the inductor when LX Tr. turns "ON", and discharges the energy from the inductor when LX Tr. turns "OFF" and controls with less energy loss, so that a lower output voltage ($\mathrm{V}_{\mathrm{OUT}}$) than the input voltage $\left(\mathrm{V}_{\mathbb{N}}\right)$ can be obtained. The operation of the step-down DC/DC converter is explained in the following figures.

Basic Circuit

Inductor Current (IL) flowing through Inductor (L)

Step1. Pch. Tr. turns "ON" and $I_{L}(i 1)$ flows, L is charged with energy. At this moment, i1 increases from the minimum inductor current (llmin), which is 0 A , and reaches the maximum inductor current (llmax) in proportion to the on-time period (ton) of Pch. Tr.
Step2. When Pch. Tr. turns "OFF", L tries to maintain IL at llmax, so L turns Nch Tr. "ON" and IL (i2) flows into L.
Step3. i2 decreases gradually and reaches llmin after the open-time period (topen) of Nch. Tr., and then Nch. Tr. turns "OFF". This is called discontinuous current mode.
As the output current (lout) increases, the off-time period (toff) of Pch. Tr. runs out before IL reaches ILmin. The next cycle starts, and Pch. Tr. turns "ON" and Nch. Tr. turns "OFF", which means IL starts increasing from lımin. This is called continuous current mode.

In PWM mode, Vout is maintained by controlling ton. The oscillator frequency (fosc) is maintained constant during PWM mode.
When the step-down DC/DC operation is constant, Ilmin and Ilmax during ton of Pch. Tr. would be same as during toff of Pch. Tr. The current differential between llmax and llmin is described as ΔI, as the following equation 1.
$\Delta I=\operatorname{llmax}-\mathrm{I}_{\text {LMIN }}=$ Vout \times topen $/ \mathrm{L}=\left(\mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {OUT }}\right) \times$ ton $/ \mathrm{L}$
Equation 1

The above equation is predicated on the following requirements.
$\mathrm{T}=1 / \mathrm{fosc}=\mathrm{ton}+\mathrm{toFF}$
duty (\%) $=$ ton $/ T \times 100=$ ton \times fosc $\times 100$
topen \leq toff

In Equation 1, "Vout \times topen / L" shows the amount of current change in "OFF" state. Also, " $\left(\mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {OUt }}\right) \times$ ton $/$ L" shows the amount of current change at "ON" state.

RP509x

No. EA-362-180919

Discontinuous Mode and Continuous Mode

As illustrated in Figure A., when lout is relatively small, topen < toff. In this case, the energy charged into L during ton will be completely discharged during toff, as a result, llmin $=0$. This is called discontinuous mode. When lout is gradually increased, eventually topen $=$ toff and when lout is increased further, eventually llmin $>$ 0 as illustrated in Figure B. This is called continuous mode.

Figure A. Discontinuous Mode

Figure B. Continuous Mode

In the continuous mode, the solution of Equation 1 is described as tonc.
tonc $=T \times V_{\text {OUT }} / V_{\text {IN }}$.
Equation 2

When ton < tonc, it is discontinuous mode, and when ton $=$ tonc, it is continuous mode.

Forced PWM Mode and VFM Mode

Output voltage controlling method is selectable between a forced PWM control type and a PWM/VFM autoswitching control type, and can be set by the MODE pin. The forced PWM control switches at fixed frequency rate in order to reduce noise in low output current. The PWM/VFM auto-switching control automatically switches from PWM mode to VFM mode in order to achieve high efficiency in low output current.

Forced PWM Mode

By setting the MODE pin to " H ", the IC switches the frequency at the fixed rate to reduce noise even when the output load is light. Therefore, when lout is $\Delta \mathrm{IL} / 2$ or less, lımin becomes less than " 0 ". That is, the accumulated electricity in $C L$ is discharged through the IC side while I_{L} is increasing from ILmin to " 0 " during ton, and also while I_{L} is decreasing from " 0 " to Ilmin $^{\text {during toff. }}$

VFM Mode

By setting the MODE pin to "Low", in low output current, the IC automatically switches into VFM mode in order to achieve high efficiency. In VFM mode, ton is determined depending on Vin and Vout.

Forced PWM Mode

VFM Mode

RP509x

No. EA-362-180919

APPLICATION INFORMATION

Typical Application Circuits

MODE = High: Forced PWM Control, MODE = Low: PWM/VFM Auto-switching Control

RP509xxxXA/RP509xxxXB (Fixed Output Voltage Type)

MODE = High: Forced PWM Control, MODE = Low: PWM/VFM Auto-switching Control

RP509x00XC/RP509x00XD (Adjustable Output Voltage Type)

Recommended External Components

Symbol	Descriptions
C_{IN}	$4.7 \mu \mathrm{~F}$ and more, Ceramic Capacitor, See the table of "Input Voltage vs. Capacitance" in the following page.
Cout	$10 \mu \mathrm{~F}$, Ceramic Capacitor, See the table of "Set Output Voltage (VSET) vs. Capacitance" in the following page.
L	$0.47 \mu \mathrm{H}$ to $0.56 \mu \mathrm{H}$, See the table of "Inductance Range vs. PWM Frequency" in the following page.

Input Voltage vs. Capacitance

VIN [V]	Size [mm]	$\begin{gathered} \mathrm{C}_{\mathrm{IN}} \\ {[\mu \mathrm{~F}]} \end{gathered}$	Rated Voltage [V]	Model
Up to 4.5	1005	4.7	6.3	JMK105BBJ475MV (Taiyo Yuden)
		10	6.3	C1005X5R0J106M050BC (TDK)
	1608	4.7	6.3	GRM188R60J475ME84 (Murata) GRM188R60J475ME19 (Murata) C1608X5R0J475M080AB (TDK) JMK107BJ475MA (Taiyo Yuden)
		10	6.3	$\begin{aligned} & \text { GRM188R60J106ME47 (Murata) } \\ & \text { C1608X5R0J106M080AB (TDK) } \\ & \text { JMK107ABJ106MA (Taiyo Yuden) } \end{aligned}$
Up to 5.5	1005	10	6.3	C1005X5R0J106M050BC (TDK)
	1608	4.7	6.3	GRM188R60J475ME84 (Murata) GRM188R60J475ME19 (Murata) JMK107BJ475MA (Taiyo Yuden)
		10	6.3	$\begin{aligned} & \text { GRM188R60J106ME47 (Murata) } \\ & \text { C1608X5R0J106M080AB (TDK) } \\ & \text { JMK107ABJ106MA (Taiyo Yuden) } \end{aligned}$

Set Output Voltage ($\mathrm{V}_{\text {SET }}$) vs. Capacitance

Version	$\mathrm{V}_{\text {set }}$ [V]	$\begin{gathered} \text { Size } \\ {[\mathrm{mm}]} \end{gathered}$	$\begin{gathered} \text { Cout } \\ {[\mu \mathrm{F}]} \end{gathered}$	Rated Voltage [V]	Model
RP509xxxXA RP509xxxXB or RP509x00XC RP509x00XD	0.6 to 1.8	1005	10	4	GRM155R60G106ME44 (Murata) C1005X5R0G106M050BB (TDK) AMK105CBJ106MV (Taiyo Yuden)
			10	6.3	C1005X5R0J106M050BC (TDK)
		1608	10	6.3	GRM188R60J106ME47 (Murata) C1608X5R0J106M080AB (TDK) JMK107ABJ106MA (Taiyo Yuden)
	1.9 to 3.3	1005	10	4	GRM155R60G106ME44(Murata) C1005X5R0G106M050BB (TDK) AMK105CBJ106MV (Taiyo Yuden)
			10	6.3	C1005X5R0J106M050BC (TDK)
		1608	10	6.3	GRM188R60J106ME47 (Murata) C1608X5R0J106M080AB (TDK) JMK107ABJ106MA (Taiyo Yuden)
$\begin{aligned} & \text { RP509x00XC } \\ & \text { RP509x00XD } \end{aligned}$	3.4 to 4.5	1608	10	6.3	GRM188R60J106ME47 (Murata) C1608X5R0J106M080AB (TDK) JMK107ABJ106MA (Taiyo Yuden)

RP509x

No. EA-362-180919

Inductance Range vs. PWM Frequency

Version	PWM Frequency [MHz]	Size [mm]	Height(Max) [mm]	$\begin{gathered} \mathrm{L} \\ {[\mu \mathrm{H}]} \end{gathered}$	$\begin{aligned} & \text { Rdc (Typ) } \\ & {[\mathrm{m} \Omega]} \end{aligned}$	Model
RP509xxxXA RP509xxxXB or RP509x00XC RP509x00XD	[6.0	1608	0.95	0.47	110	MDT1608-CHR47M (TOKO)
		1608	0.95	0.47	90	MDT1608-CRR47M (TOKO)
		2012	1.0	0.5	60	MIPSZ2012D0R5 (FDK)
				0.56	65	MDT2012-CRR56N (TOKO)
				0.47	70	MLP2012HR47MT (TDK)
				0.54	65	MLP2012HR54MT (TDK)
				0.47	60	CKP2012NR47M-T (Taiyo Yuden)
				0.47	48	BRL2012TR47M6 (Taiyo Yuden)
				0.47	75	LQM21PNR47MG0 (Murata)

Precautions for the Selection of External Parts

- Choose a low ESR ceramic capacitor. The capacitance of CIN between Vin and GND should be more than or equal to $4.7 \mu \mathrm{~F}$. The capacitance of a ceramic capacitor (Cout) should be $10 \mu \mathrm{~F}$. Also, choose the capacitor with consideration for bias characteristics and input/output voltages. See the above tables of "Input Voltage vs. Capacitance" and "Set Output Voltage vs. Capacitance".
- The phase compensation of this device is designed according to the Cout and L values. The inductance range of an inductor should be between $0.47 \mu \mathrm{H}$ to $0.56 \mu \mathrm{H}$ in order to gain stability. See the above table of "Inductance Range vs. PWM Frequency".
- Choose an inductor that has small DC resistance, has enough permissible current and is hard to cause magnetic saturation. If the inductance value of the inductor becomes extremely small under the load conditions, the peak current of LX may increase along with the load current. As a result, over current protection circuit may start to operate when the peak current of LX reaches to LX limit current. Therefore, choose an inductor with consideration for the value of Ilxmax. See the following page of "Calculation Conditions of LX Pin Maximum Output Current (ILxMax)".
- As for the adjustable output voltage type (RP509x00XC/RP509x00XD), the set output voltage (Vset) can be arbitrarily set by changing the vales of R 1 and R 2 using the following equation: $\mathrm{V}_{\mathrm{SET}}=\mathrm{V}_{\mathrm{FB}} \times(\mathrm{R} 1+\mathrm{R} 2) /$ R2

Refer to the following table for the recommended values for $\mathrm{R} 1, \mathrm{R} 2$ and C 1 .

Set Output Voltage (Vset) vs. R1/R2/C1 (Adjustable Output Voltage Type)

V ${ }_{\text {SEt }}$ [V]	R1 [k@]	R2 [k@]	C1 [pF]
0.6	0	220	Open
$0.6<\mathrm{V}_{\text {SET }} \leq 0.9$	$\mathrm{R} 1=\left(\mathrm{V}_{\text {SET }} / \mathrm{V}_{\text {Fb }}-1\right) \times \mathrm{R} 2$	220	47
$0.9<\mathrm{V}_{\text {SET }} \leq 1.8$		220	33
$1.8<\mathrm{V}_{\text {SET }} \leq 2.1$		150	10
$2.1<\mathrm{V}_{\text {SET }} \leq 2.4$		100	10
$2.4<\mathrm{V}_{\text {SET }} \leq 2.7$		68	10
$2.7<\mathrm{V}_{\text {SET }} \leq 3.0$		47	10
$3.0<\mathrm{V}_{\text {SET }} \leq \mathrm{V}_{\text {IN }}$		47	6.8

Calculation Conditions of LX Pin Maximum Output Current (llxmax)

The following equations explain the relationship to determine llxmax at the ideal operation of the ICs in continuous mode.

Ripple Current P-P value is described as I_{RP}, ON resistance of Pch. Tr. is described as RonP, ON resistance of Nch. Tr. is described as Ronn, and DC resistor of the inductor is described as RL.

First, when Pch. Tr. is "ON", Equation 1 is satisfied.
$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {OUT }}+\left(\right.$ RONP $\left.+\mathrm{R}_{\mathrm{L}}\right) \times$ IOUT $+\mathrm{L} \times \mathrm{I}_{\text {RP }} /$ ton
Equation 1

Second, when Pch. Tr. is "OFF" (Nch. Tr. is "ON"), Equation 2 is satisfied.
$\mathrm{L} \times \mathrm{I}_{\text {RP }} /$ toff $=\mathrm{R}_{\text {ONN }} \times$ IOUT $+\mathrm{V}_{\text {OUT }}+\mathrm{R}_{\mathrm{L}} \times$ IoUT
Equation 2

Put Equation 2 into Equation 1 to solve ON duty of Pch. Tr. (Don $=$ ton $/($ toff + ton $)$):

Don $=($ VOUT + RONN \times IOUT + RL \times lout $) /($ VIN + RONN \times IOUT - RONP \times lout $) \cdots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$ Equation 3

Ripple Current is described as follows:
$I_{R P}=\left(V_{\text {IN }}-V_{\text {OUT }}-R_{\text {ONP }} \times l_{\text {OUT }}-R_{L} \times\right.$ lout $) \times D_{\text {ON }} / f_{\text {OSc }} / L \ldots$
Equation 4

Peak current that flows through L, and LX Tr. is described as follows:
$I_{\text {LXMAX }}=$ lout $+I_{\text {RP }} / 2$
Equation 5

RP509x

No. EA-362-180919

TECHNICAL NOTES

The performance of a power source circuit using this device is highly dependent on a peripheral circuit. A peripheral component or the device mounted on PCB should not exceed its rated voltage, rated current or rated power. When designing a peripheral circuit, please be fully aware of the following points.

- Set the external components as close as possible to the IC and minimize the wiring between the components and the IC. Especially, place a capacitor (C / N) as close as possible to the VIN pin and GND.
- Ensure the VIN and GND lines are sufficiently robust. If their impedance is too high, noise pickup or unstable operation may result.
- The VIN line, the GND line, the VOUT line, an inductor, and LX should make special considerations for the large switching current flows.
- The wiring between the VOUT pin and an inductor (L) (RP509xxxXA/RP509xxxXB) or between a resistor for setting output voltage (R1) and L (RP509x00XC/RP509x00XD) should be separated from the wiring between L and Load.
- Over current protection circuit may be affected by self-heating or power dissipation environment.
- For any setting type of output voltage, the input/output voltage ratio must meet the following requirement to achieve a stable VFM mode at light load when the MODE pin is "Low" (at PWM/VFM Auto Switching):

Vout / $\mathrm{V}_{\text {IN }}<0.7$
$\mathrm{V}_{\text {mode }}=$ Low, PWM/VFM Auto Switching

Available Voltage Area with Stable VFM Mode

PCB LAYOUT

Fixed Output Voltage Type (RP509ZxxXA/B)

Top Layer

Bottom Layer

Adjustable Output Voltage Type (RP509Z00XC/D)

Bottom Layer

RP509x

No. EA-362-180919

Adjustable Output Voltage Type (RP509N00XC/D)

TYPICAL CHARACTERISTICS

Note: Typical Characteristics are intended to be used as reference data; they are not guaranteed.

1) Efficiency vs. Output Current (RP509Z)

Vout $=1.0 \mathrm{~V}$

$V_{\text {MODE }}=$ "L" PWM/VFM Auto Switching L = MIPSZ2012D0R5

$V_{\text {OUt }}=1.8 \mathrm{~V}$
Vmode = "L" PWM/VFM Auto Switching L = MIPSZ2012DOR5

$V_{\text {out }}=1.2 \mathrm{~V}$
$V_{\text {MODE }}=$ "L" PWM/VFM Auto Switching L = MIPSZ2012D0R5

$V_{\text {out }}=3.3 \mathrm{~V}$ (Fixed Output Voltage Type)
Vmode = "L" PWM/VFM Auto Switching L = MIPSZ2012D0R5

$V_{\text {OUt }}=1.8 \mathrm{~V}$
Vmode = "H" Forced PWM Mode
L = MIPSZ2012D0R5

RP509x

No. EA-362-180919

Efficiency vs. Output Current (RP509N)

$V_{\text {out }}=1.0 \mathrm{~V}$
Vmode = "L" PWM/VFM Auto Switching
L = MIPSZ2012D0R5

Vout $=1.8 \mathrm{~V}$
$V_{\text {mode }}=$ "L" PWM/VFM Auto Switching
L = MIPSZ2012D0R5

Vout $=1.8 \mathrm{~V}$
Vmode = "H" Forced PWM Mode
L = MIPSZ2012D0R5

$V_{\text {out }}=1.2 \mathrm{~V}$
Vmode = "L" PWM/VFM Auto Switching L = MIPSZ2012DOR5

Vout $=3.3 \mathrm{~V}$ (Fixed Output Voltage Type)
$\mathrm{V}_{\text {MODE }}=$ "L" PWM/VFM Auto Switching
L = MIPSZ2012DOR5

Small Mount Solution (RP509Z)

$V_{\text {out }}=1.0 \mathrm{~V}$
Vmode = "L" PWM/VFM Auto Switching L = MDT1608-CRR47M

Vout $=1.8 \mathrm{~V}$
Vmode = "L" PWM/VFM Auto Switching
L = MDT1608-CRR47M

$V_{\text {оut }}=1.8 \mathrm{~V}$
$\mathrm{V}_{\text {mode }}=$ "H" Forced PWM Mode
L = MDT1608-CRR47M

$\mathrm{V}_{\text {out }}=1.2 \mathrm{~V}$
VMode $=$ "L" PWM/VFM Auto Switching L = MDT1608-CRR47M

Vout $=3.3 \mathrm{~V}$ (Fixed Output Voltage Type)
$V_{\text {mode }}=$ "L" PWM/VFM Auto Switching L = MDT1608-CRR47M

RP509x

No. EA-362-180919

2) Output Voltage vs. Output Current (RP509Z)

$\mathrm{V}_{\text {IN }}=3.6 \mathrm{~V}$, $\mathrm{V}_{\text {out }}=1.8 \mathrm{~V}$
$\mathrm{V}_{\text {mode }}=$ "L" PWM/VFM Auto Switching

Output Voltage vs. Output Current (RP509N)
$\mathrm{V}_{\text {IN }}=3.6 \mathrm{~V}$, $\mathrm{V}_{\text {out }}=1.8 \mathrm{~V}$
$V_{\text {mode }}=$ "L" PWM/VFM Auto Switching

3) Oscillator Frequency vs. Input Voltage lout $=1.0 \mathrm{~mA}$
$\mathrm{V}_{\text {MODE }}=$ "L" PWM/VFM Auto Switching

$\mathrm{V}_{\text {IN }}=3.6 \mathrm{~V}$, $\mathrm{V}_{\text {out }}=1.8 \mathrm{~V}$
Vmode = "H" Forced PWM Mode

$\mathrm{V}_{\text {IN }}=3.6 \mathrm{~V}$, $\mathrm{V}_{\text {OUt }}=1.8 \mathrm{~V}$
$\mathrm{V}_{\text {MODE }}=$ "H" Forced PWM Mode

lout $=1.0 \mathrm{~mA}$
$\mathrm{V}_{\text {MODe }}=$ "H" Forced PWM Mode

lout $=500 \mathrm{~mA}$
Vmode $=$ "H" Forced PWM Mode

4) Load Transient Response Waveform

VIN $=3.6 \mathrm{~V}$, Vout $=1.8 \mathrm{~V}$
Vmode = "L" PWM/VFM Auto Switching lout $=1.0->500 \mathrm{~mA}$

$\mathrm{V}_{\text {IN }}=3.6 \mathrm{~V}$, $\mathrm{V}_{\text {OUT }}=1.8 \mathrm{~V}$
Vmode = "H" Forced PWM Mode
lout $=1.0$-> 500 mA

$\mathrm{V}_{\text {IN }}=3.6 \mathrm{~V}$, Vout $=1.8 \mathrm{~V}$
$V_{\text {mode }}=$ "L" PWM/VFM Auto Switching lout $=500$-> 1.0 mA

$\mathrm{V}_{\text {IN }}=3.6 \mathrm{~V}$, $\mathrm{V}_{\text {OUT }}=1.8 \mathrm{~V}$
Vmode $=$ "H" Forced PWM Mode
lout $=500$-> 1.0 mA

RP509x

No. EA-362-180919
$\mathrm{V}_{\text {IN }}=3.6 \mathrm{~V}$, $\mathrm{V}_{\text {OUt }}=1.8 \mathrm{~V}$
$\mathrm{V}_{\text {mode }}=$ "L" PWM/VFM Auto Switching lout $=300$-> 600 mA

$\mathrm{V}_{\text {In }}=3.6 \mathrm{~V}$, $\mathrm{V}_{\text {out }}=1.8 \mathrm{~V}$
$\mathrm{V}_{\text {mode }}=$ "H" Forced PWM Mode
lout $=300$-> 600 mA

5) Mode Switching Waveform

$\mathrm{V}_{\text {IN }}=3.6 \mathrm{~V}$, $\mathrm{V}_{\text {out }}=1.8 \mathrm{~V}$
lout $=1.0 \mathrm{~mA}$
Vmode = "L" -> "H"

$\mathrm{V}_{\text {IN }}=3.6 \mathrm{~V}$, $\mathrm{V}_{\text {out }}=1.8 \mathrm{~V}$
$\mathrm{V}_{\text {mode }}=$ "L" PWM/VFM Auto Switching lout $=600$-> 300 mA

$\mathrm{V}_{\text {in }}=3.6 \mathrm{~V}$, $\mathrm{V}_{\text {out }}=1.8 \mathrm{~V}$
Vmode $=$ "H" Forced PWM Mode
lout = 600 -> 300 mA

$\mathrm{V}_{\text {IN }}=3.6 \mathrm{~V}$, $\mathrm{V}_{\text {OUt }}=1.8 \mathrm{~V}$
lout $=1.0 \mathrm{~mA}$
VMODe $=$ "H" -> "L"

6) Output Voltage Waveform

$\mathrm{V}_{\text {IN }}=3.6 \mathrm{~V}$, $\mathrm{V}_{\text {out }}=1.8 \mathrm{~V}$
$\mathrm{V}_{\text {mode }}=$ "L" PWM/VFM Auto Switching lout $=1.0 \mathrm{~mA}$

$\mathrm{V}_{\text {IN }}=3.6 \mathrm{~V}$, $\mathrm{V}_{\text {OUT }}=1.8 \mathrm{~V}$
$V_{\text {mode }}=$ "L" PWM/VFM Auto Switching
lout $=500 \mathrm{~mA}$

$\mathrm{V}_{\text {IN }}=3.6 \mathrm{~V}$, $\mathrm{V}_{\text {OUt }}=1.8 \mathrm{~V}$
Vmode = "H" Forced PWM Mode lout $=1.0 \mathrm{~mA}$

$\mathrm{V}_{\text {IN }}=3.6 \mathrm{~V}$, $\mathrm{V}_{\text {out }}=1.8 \mathrm{~V}$
$V_{\text {mode }}=$ "H" Forced PWM Mode
lout $=500 \mathrm{~mA}$

(\forall) $\times 7$ łue」ung łndłno u!d $X 7$

The power dissipation of the package is dependent on PCB material, layout, and environmental conditions. The following measurement conditions are based on JEDEC STD. 51-9.

Measurement Conditions

Item	Measurement Conditions
Environment	Mounting on Board (Wind Velocity $=0 \mathrm{~m} / \mathrm{s}$)
Board Material	Glass Cloth Epoxy Plastic (Four-Layer Board)
Board Dimensions	$101.5 \mathrm{~mm} \times 114.5 \mathrm{~mm} \times 1.6 \mathrm{~mm}$
Copper Ratio	Outer Layers (First and Fourth Layers): 60% Inner Layers (Second and Third Layers): 100%

Measurement Result
$\left(\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{Tjmax}=125^{\circ} \mathrm{C}\right)$

Item	Measurement Result
Power Dissipation	910 mW
Thermal Resistance $(\theta \mathrm{ja})$	$\theta \mathrm{ja}=109^{\circ} \mathrm{C} / \mathrm{W}$

өja: Junction-to-Ambient Thermal Resistance

Power Dissipation vs. Ambient Temperature

Measurement Board Pattern

WLCSP-6-P6 Package Dimensions (Unit: mm)

No.	Inspection Items	Inspection Criteria	
1	Package chipping	$\begin{array}{l}\text { A } \geq 0.2 \mathrm{~mm} \text { is rejected } \\ \text { B } \geq 0.2 \mathrm{~mm} \text { is rejected } \\ \text { C } \geq 0.2 \mathrm{~mm} \text { is rejected } \\ \text { And, Package chipping to Si surface } \\ \text { and to bump is rejected. }\end{array}$	
2	Si surface chipping	$\begin{array}{l}\text { A } \geq 0.2 \mathrm{~mm} \text { is rejected } \\ \text { B } \geq 0.2 \mathrm{~mm} \text { is rejected } \\ \text { C } \geq 0.2 \mathrm{~mm} \text { is rejected }\end{array}$	
But, even if A a 0.2 mm , B $\leq 0.1 \mathrm{~mm}$ is			
acceptable.			

The power dissipation of the package is dependent on PCB material, layout, and environmental conditions. The following measurement conditions are based on JEDEC STD. 51-7.

Measurement Conditions

Item	Measurement Conditions
Environment	Mounting on Board (Wind Velocity $=0 \mathrm{~m} / \mathrm{s}$)
Board Material	Glass Cloth Epoxy Plastic (Four-Layer Board)
Board Dimensions	$76.2 \mathrm{~mm} \times 114.3 \mathrm{~mm} \times 0.8 \mathrm{~mm}$
Copper Ratio	Outer Layer (First Layer): Less than 95\% of 50 mm Square Inner Layers (Second and Third Layers): Approx. 100\% of 50 mm Square Outer Layer (Fourth Layer): Approx. 100% of 50 mm Square
Through-holes	$\phi 0.3 \mathrm{~mm} \times 7$ pcs

Measurement Result
$\left(\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{Tjmax}=125^{\circ} \mathrm{C}\right)$

Item	Measurement Result
Power Dissipation	892 mW
Thermal Resistance ($\theta \mathrm{ja}$)	$\theta \mathrm{ja}=112^{\circ} \mathrm{C} / \mathrm{W}$
Thermal Characterization Parameter $(\psi j \mathrm{t})$	$\psi j \mathrm{t}=51^{\circ} \mathrm{C} / \mathrm{W}$

Өja: Junction-to-Ambient Thermal Resistance
$\psi j \mathrm{j}$: Junction-to-Top Thermal Characterization Parameter

SOT-23-6 Package Dimensions

1. The products and the product specifications described in this document are subject to change or discontinuation of production without notice for reasons such as improvement. Therefore, before deciding to use the products, please refer to Ricoh sales representatives for the latest information thereon.
2. The materials in this document may not be copied or otherwise reproduced in whole or in part without prior written consent of Ricoh.
3. Please be sure to take any necessary formalities under relevant laws or regulations before exporting or otherwise taking out of your country the products or the technical information described herein.
4. The technical information described in this document shows typical characteristics of and example application circuits for the products. The release of such information is not to be construed as a warranty of or a grant of license under Ricoh's or any third party's intellectual property rights or any other rights.
5. The products listed in this document are intended and designed for use as general electronic components in standard applications (office equipment, telecommunication equipment, measuring instruments, consumer electronic products, amusement equipment etc.). Those customers intending to use a product in an application requiring extreme quality and reliability, for example, in a highly specific application where the failure or misoperation of the product could result in human injury or death (aircraft, spacevehicle, nuclear reactor control system, traffic control system, automotive and transportation equipment, combustion equipment, safety devices, life support system etc.) should first contact us.
6. We are making our continuous effort to improve the quality and reliability of our products, but semiconductor products are likely to fail with certain probability. In order to prevent any injury to persons or damages to property resulting from such failure, customers should be careful enough to incorporate safety measures in their design, such as redundancy feature, fire containment feature and fail-safe feature. We do not assume any liability or responsibility for any loss or damage arising from misuse or inappropriate use of the products.
7. Anti-radiation design is not implemented in the products described in this document.
8. The X-ray exposure can influence functions and characteristics of the products. Confirm the product functions and characteristics in the evaluation stage.
9. WLCSP products should be used in light shielded environments. The light exposure can influence functions and characteristics of the products under operation or storage.
10. There can be variation in the marking when different AOI (Automated Optical Inspection) equipment is used. In the case of recognizing the marking characteristic with AOI, please contact Ricoh sales or our distributor before attempting to use AOI.
11. Please contact Ricoh sales representatives should you have any questions or comments concerning the products or the technical information.

Ricoh is committed to reducing the environmental loading materials in electrical devices with a view to contributing to the protection of human health and the environment.
Ricoh has been providing RoHS compliant products since April 1, 2006 and Halogen-free products since April 1, 2012.

RICOH RICOH ELECTRONIC DEVICES CO., LTD.

https://www.e-devices.ricoh.co.jp/en/

Sales \& Support Offices

Ricoh Electronic Devices Co., Ltd.
Shin-Yokohama Office (International Sales)
2-3, Shin-Yokohama 3-chome, Kohoku-ku, Yokohama-shi, Kanagawa, 222-8530, Japan Phone: +81-50-3814-7687 Fax: +81-45-474-0074
Ricoh Americas Holdings, Inc.
675 Campbell Technology Parkway, Suite 200 Campbell, CA 95008, U.S.A.
Phone: $+1-408-610-3105$
Ricoh Europe (Netherlands) B.V.
Semiconductor Support Centre
Prof. W.H. Keesomlaan 1, 1183 DJ Amstelveen, The Netherlands
Phone: +31-20-5474-309
Ricoh International B.V. - German Branch
Semiconductor Sales and Support Centre
Oberrather Strasse 6, 40472 Düsseldorf, Germany
Phone: +49-211-6546-0
Ricoh Electronic Devices Korea Co., Ltd. 3F, Haesung Bldg, 504, Teheran-ro, Gangnam-gu, Seoul, 135-725, Korea Phone: +82-2-2135-5700 Fax: +82-2-2051-5713
Ricoh Electronic Devices Shanghai Co., Ltd.

Ricoh Electronic Devices Shanghai Co., Ltd.
Shenzhen Branch
1205, Block D(Jinlong Building), Kingkey 100, Hongbao Road, Luohu District
Shenzhen, China
Ricoh Electronic Devices Co., Ltd.
Taipei office
Room 109, 10F-1, No.51, Hengyang Rd., Taipei City, Taiwan
Phone: +886-2-2313-1621/1622 Fax: +886-2-2313-1623

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery \& Lifecycle Information:

Ricoh Electronics:
RP509Z002D-E2-F RP509Z202B-E2-F RP509Z121B-E2-F RP509Z001C-E2-F RP509Z001D-E2-F RP509Z071B-
E2-F RP509Z072B-E2-F RP509Z101B5-E2-F RP509Z102B-E2-F RP509Z222B-E2-F RP509Z252B-E2-F
RP509Z282B-E2-F RP509Z331B-E2-F RP509Z111B-E2-F RP509Z131B-E2-F RP509Z151A-E2-F RP509Z181B-E2-
F RP509Z182B-E2-F RP509Z201B-E2-F RP509N001D-TR-FE RP509Z161B-E2-F RP509Z312B-E2-F
RP509Z251B-E2-F RP509Z301B-E2-F RP509Z281B-E2-F RP509Z112B5-E2-F RP509N111B5-TR-FE RP509N331B-TR-FE

[^0]: ${ }^{(1)}$ This is an approximate value. The output current is dependent on conditions and external components.
 ${ }^{(2)} V_{\text {SET }}=$ Set Output Voltage

[^1]: ${ }^{(1)}$ Auto-discharge function quickly lowers the output voltage to 0 V , when the chip enable signal is switched from the active mode to the standby mode, by releasing the electrical charge accumulated in the external capacitor.

[^2]: ${ }^{(1)}$ Refer to POWER DISSIPATION for detailed information.

[^3]: ${ }^{(1)}$ Soft-start time (tstart) indicates the duration until the reference voltage ($\mathrm{V}_{\text {REF }}$) reaches the specified voltage after softstart circuit's activation.

