

TPI offers a complete

CO, Combustibles &

Refrigerant Leak Netectors

Digital Manometers

Temperature Contact (IR Instruments

IAQ: Air Flow / Humidity

Handheld Oscilloscopes

Digital Multimeters & Clamp-on Meters

Accessories & Kits

Test Products International, Inc. Headquarters: 9615 SW Allen Blvd. Beaverton, OR 97005 USA 503-520-9197 Fax: 503-520-1225

Test Products International, Ltd. 342 Bronte St. South

info@tpi-thevalueleader.coi

email.

Unit 9 Milton, Ontario L9T 5B7 Canada

905-693-8558
Fax: 905-693-0888
email:

Test Products International UK Ltd.

Longley House, East Park Crawley, West Sussex RH10 6AP England Tel: +44 (0)1293 561212 Fax: +44 (0)1293813465 contactus@tpieurope.com

Terminology

Oscilloscope / Differential Probe Terminology

- >> **Attenuation:** Ratio of the output signal to the input signal. Attenuation should remain constant decreasing by 3dB only as the frequency increases to the maximum bandwidth.
- >> Bandwidth: The maximum -3dB frequency that can be expected.
- >> Cable Length: Length of the cable from the end of the probe to the end of the connector. It is important to use a probe with just enough cable length for your needs. Long cables increase the capacitance and propagation delay of the probe.
- >> **Compensation Range**: The range a probe can be compensated to match the input capacitance of the test equipment it is being used with.
- >> IEC 1010: Probes with the IEC 1010 category rating have been designed for safety.
- >> Input Impedance: The total resistance and capacitance as measured at the tip of the probe. This specification is used to define the loading effect of a probe. At frequencies under 1MHz the input resistance of the probe will have the most influence. At higher frequencies the input capacitance will have the most influence.
- >> Max Input Voltage: The maximum voltage the probe can be used at.
- >> Max Differential Voltage: The maximum differential voltage that can be measured by a differential probe
- >> **Readout**: Probes with this capability are compatible with readout function oscilloscopes that automatically detect and display the attenuation factor of the probe.
- >> **Rise Time**: The time required for the leading edge of a pulse to rise from 10% to 90% of its final value.
- >> **CMRR**: Common Mode Rejection Ratio. A measure of a differential probes ability to reject any signals common to both test points in a differential measurement

Distributed by:

To learn about the entire line of TPI products visit:

www.tpi-thevalueleader.com

L TAW OP 0705 Copyright © 2005 Test Products International, Inc.

Oscilloscope / Differential Probes

Oscilloscope / Differential Probe Selection

Use TPI Probes with:

Bench Top, Portable, Analog, and Oscilloscopes

MARKETS

Electronic

Communication

Commercial

Industrial

APPLICATIONS

Logic signal and waveform tests

Measure voice / data signals

Analyze power guality

Test motor control

Selecting the correct oscilloscope probe ensures accuracy and can improve the performance of your test instrument. TPI offers a

wide range of high quality oscilloscope probes designed to meet the most demanding applications.

The IP series monolithic probes have switchable attenuation and are available in 60 and 250MHz. These probes are ideal for technicians that need a basic oscilloscope

The slimline design P and SP series probes are available in fixed or switchable attenuation. These series of probes are perfect for the technician needing additional features such as replaceable cable and interchangeable probe tip. The compensation adjustment for these probes is located in the BNC to eliminate noise pickup.

TPI also offers three models of high voltage differential probes all with high common mode rejection, wide bandwidth, and fast rise times. Differential probes enable the viewing of signals not referenced to earth ground and provide better performance than a matched pair of single ended oscilloscope probes when measuring these types of signals.

Several important factors must be taken into account when selecting the proper probe.

- The probe should have sufficient bandwidth and rise time for the test instrument and application. Choose a probe with at least an equal bandwidth as the scope it will be used with. For best performance a probe with twice the bandwidth as the scope should be selected.
- For oscilloscope probes, the input capacitance of your oscilloscope should be within the compensation range specification of the probe. In addition, if your oscilloscope has readout function, select a probe with this capability.
- For differential probes, make sure the maximum differential voltage is adequate for your application and the common mode rejection specification meets the requirements of the tests being performed.

probe.

Refer to the oscilloscope and differential probe specification tables to select the correct probe for your application.

Refer to pages 2-3 for specifications.

Oscilloscope Probe Specifications

SPECIFICATIONS

_												
Model	Bandwidth	Attenuation	Cable Length	Input Im R	pedance L	Max Input V DC + peak AC	Rise Time	Compensation Range	Readout	IEC1010		
				I	IP SERIES	S, SWITCHABLE						
IP060	60MHz	x1	1.5M	1Meg	200pF	150V	6ns	20 ~ 45 pF	NA	CAT II		
		x10		10Meg	22pF	300V		· ·				
IP250	250MHz	x1	1.5M	1Meg	200pF	150V	1.5ns	10 ~ 60pF	NA	CAT II		
		x10		10Meg	22pF	300V						
SP SERIES, SWITCHABLE												
SP 60B	60MHz	x1	1.2M	1Meg	47pF	150V	5.8ns	10 ~ 30pF	NA	CAT II		
		x10		10Meg	18pF	300V						
SP 100B	100MHz	x1	1.2M	1Meg	47pF	150V	3.5ns	10 ~ 35pF	NA	CAT II		
		x10		10Meg	16pF	300V		·				
SP150B	150MHz	x1	1.2M	1Meg	47pF	150V	2.3ns	10 ~ 35pF	NA	CAT II		
		x10		10Meg	15pF	300V						
SP 200B	200MHz	x1	1.2M	1Meg	47pF	150V	1.8ns	10 ~ 35pF	NA	CAT II		
		x10		10Meg	15pF	300V						
SP 250B	250MHz	x1	1.2M	1Meg	47pF	150V	1.4ns	10 ~ 35pF	NA	CAT II		
		x10		10Meg	14pF	300V						
SP 300B	300MHz	x1	1.2M	1Meg	47pF	150V	1.1ns	10 ~ 35pF	NA	CAT II		
		x10		10Meg	13pF	300V						
NON-SWITCHABLE												
1P20B	15MHz	x1	1.2M	1Meg	47pF	150V	23ns		NA			
P100B	100MHz	x10	1.2M	10Meg	16pF	300V	3.5ns	10 ~ 35pF	NA	CAT II		
P100BR	100MHz	x10	1.2M	10Meg	16pF	300V	3.5ns	10 ~ 35pF	Yes	CAT II		
P200B	200MHz	x10	1.2M	10Meg	15pF	300V	1.8ns	10 ~ 35pF	NA	CAT II		
P250	250MHz	x100	1.2M	100Meg	6.5pF	1,500V	1.4ns	10 ~ 35pF	NA	CAT II		
P250R	250MHz	x100	1.2M	100Meg	6.5pF	1,500V	1.4ns	10 ~ 35pF	Yes	CAT II		
P250B	250MHz	x10	1.2M	10Meg	14pF	300V	1.4ns	10 ~ 35pF	NA	CAT II		
P250BR	250MHz	x10	1.2M	10Meg	14pF	300V	1.4ns	10 ~ 35pF	Yes	CAT II		

OSCILLOSCOPE PROBES

Can TPI oscilloscope probes be used with Tektronix and Hewlett Packard scopes?

Yes, TPI oscilloscope probes can be used with most major brands of scopes.

Why is selecting a probe with the correct bandwidth important? Choosing a probe with the correct bandwidth enables you to use

Choosing a probe with the correct bandwidth enables you to use your scope to its full potential.

Why do TPI oscilloscope probes have a compensation range and compensation adjustment?

Since the input of every oscilloscope is different our probes have a compensation adjustment so the capacitance of the probe can be adjusted to match the capacitance of the scope input. The compensation range is the range of adjustment available.

Matching probe and scope capacitance is important to prevent waveform distortion.

What is the benefit of a probe with X1 and X10 switchable attenuation?

Passive X10 probes allow you to read a signal 10 times the amplitude of that viewed with a X1 probe. Example: an eight-division graticule on 5V/Div setting would display a 40 volt peak-to-peak signal using the X1 setting. You can view a 400 volt signal using the X10 setting.

What is readout?

Readout is an activator pin that protrudes out of the BNC connector of an X10 or X100 probe that completes a circuit. There are contacts around the BNC connector on the front of the oscilloscope and the attenuation is automatically set. If your scope does not have contacts around the BNC connector, it does not need this feature.

What probe should I buy?

Select a probe that is at least the same bandwidth as the oscilloscope you intend to use; however, for optimum performance, select a probe with two times the bandwidth of your test instrument.

Differential Probe Specifications

SPECIFICATIONS

FUNCTION	ADF25	ADF25A	ADF25C
Bandwidth	DC -25 MHz (-3dB)	DC -25 MHz (-3dB)	DC -70 MHz (-3dB)
Accuracy	± 2%	± 2%	± 2%
Risetime	14nS	14nS	14nS
CMRR (Typical)			
50Hz	-80dB	-86dB	-80dB
20kHz -60dB		-66dB	-60dB
200kHz	-50dB	-56dB	-50dB
Input Impedance	4M/10pf each	4M/10pf each	10M/10pf each
	side to ground	side to ground	side to ground
	8M/5pF	8M/5pF	20M/5pF
	between inputs	between inputs	between inputs
Input Voltage	±140V DC Inc.Pk AC@	±170V DC Inc.Pk AC@	±700V DC Inc.Pk AC@
	20:1 or 100V RMS	10:1 or 50V RMS	100:1 or 400V RMS
Maximum Differential	± 1,400VDC Inc. Pk AC	± 1,400VDC Inc. Pk AC	± 7,000VDC Inc. Pk AC
	200:1 or 1,000V RMS	100:1 or 500V RMS	1,000:1 or 5,000V RMS
Output Voltage	\pm 7V minimum 2K Ω load	\pm 7V minimum 2K Ω load	\pm 7V minimum 50K Ω load
Offset (typical)		<± 5mV -10° C to + 40° C	
Common Mode	± 1,400V DC Inc. Pk AC	± 1,400V DC Inc. Pk AC	± 7,000V DC Inc. Pk AC
	or 1,000V RMS	or 1,000V RMS	or 2,500V RMS
Noise (typical)	0.7mV RMS	0.7mV RMS	0.9mV RMS
Output Source			
Impedance	1Ω @ 1kHz. 8Ω @1 MHz	1 Ω @ 1kHz. 8 Ω @1 MHz	50Ω
Operating Temperature		-10° C to + 40° C (14°F to 104°F)	
Power Requirements		4 AA cell or 6V main adapters: DC/600mA or DC/800mA	
Power Supply		Not included	
Input Leads	45 cm double insulated	45 cm double insulated	60 cm double insulated
	PVC terminated in	PVC terminated in	Rubber terminated
	44 mm safety plugs	44 mm safety plugs	in sprung hooks
IEC1010	CAT III	CATIII	CATII

DIFFERENTIAL PROBES

What can you measure with a differential probe?

With 20 MHz bandwidth, a switchable attenuation of 20:1, and 200:1 (part no. ADF25), you can measure high-voltage circuits, motor speed controls, power supply design, and high-power electronic converters.

What comes in the probe set?

You will receive one differential probe, 2 probe tips, and 2 retractable sprung probes for accessing small wires for measurements.

Why is common rejection ratio (CMMR) important for differential probes?

CMMR is a measure of how well a differential probe will reject signals common to both test points, leaving the desired signal to be displayed by the scope

What does the maximum differential voltage specification tell me?

This specification provides you with the maximum voltage between the inputs the differential probe can be subjected to. This is important because the maximum voltage should never be exceeded.

What is input impedance?

Impedance is a measure of how much a signal will be restricted. In general, it is best to have high resistance and low capacitance to ensure signal quality, accuracy of tests, and to ensure the probe doesn't load down the circuit under test.

