

TCPP02-M18

Datasheet

USB type-C protection for source application

QFN-18L 3.5 x 3.5 x 0.55 mm

Features

- Externally programmable VBUS over current protection (OCP)
- Integrated charge pump and gate driver for external N-channel MOSFET
- · VBUS current sense and amplifier with analog output
- Integrated discharge on VBUS and VCONN
- Over temperature protection
- Over voltage protection (OVP) on CC lines against short-to-V_{BUS}
- V_{CONN} OCP (100 mW max), OVP (6 V max)
- ESD protection for CC1, CC2, compliant with IEC 61000-4-2 Level 4 (±8 kV contact discharge, ±15 kV air discharge)
- Compliant with PPS (programmable power supply)
- I²C communication, with two I²C addresses available
- Junction temperature from -40 °C to 125 °C
- Compliant with USB-C power delivery standard 3.1, standard power range (SPR), up to 100 W
- ECOPACK2 compliant

Applications

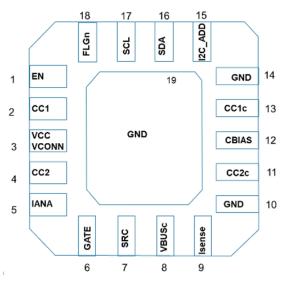
- USB-C chargers, adapters, power sharing adapters, battery charger
- Wall plugs, car charger, PoE to USB-C adapter, power bank
- Desktop, monitor, docking, USB hub, dual-port charger

Description

The TCPP02-M18 is a MCU companion chip enabling cost-effective USB-C source solution. It provides protections and functionalities to safely comply with the USB-C specification.

On provider path, TCPP02-M18 drives external N-channel MOSFET to ensure overcurrent protection on VBUS pin, as well as a discharge path. It features an analog current sense and amplifier with an output accessible for a MCU ADC, thus minimizing system cost.

The TCPP02-M18 features 24 V tolerant ESD protection as per IEC61000-4-2 level 4 on USB type-C connector communication channel pins (CC). Also, it provides overvoltage protection on CC1 and CC2 pins when these pins are subjected to short circuit with the VBUS pin that may happen when removing the USB type-C cable from its receptacle.


TCPP02-M18 embeds I2C slave registers with two possible addresses, ideal for dual-port chargers or multiple port applications.

Product status link
TCPP02-M18
Expansion board
X-NUCLEO-SRC1M1
Software example code
X-CUBE-TCPP
I2C address

0110 10x (LSB = 'x')

1 Pinout and functions

57

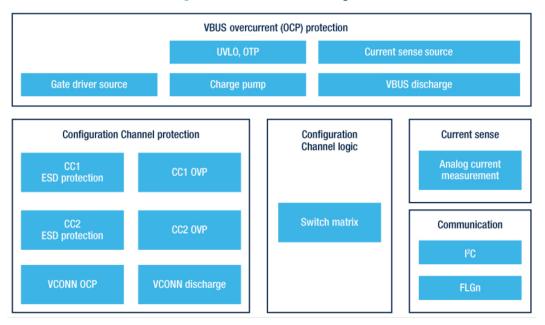
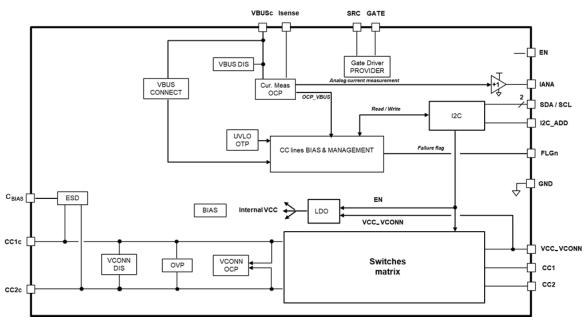

Figure 1. QFN-18L 3.5 x 3.5 x 0.55 mm (top view)

Table 1. Pinout and functions

Name	Pin #	Туре	Description			
EN	1	Input	Enable pin.			
CC1	2	Input / Output	Configuration channel 1 pin on USB-C controller side.			
VCC_VCONN	3	Power	Power supply for V_{CONN} power pin. Connect to 3.3 V or 5.5 V.			
CC2	4	Input / Output	Configuration channel 2 pin on USB-C controller side.			
I _{ANA}	5	Output	V _{BUS} current analog measurement.			
GATE	6	Output	Gate driver provider: gate pin of external N-channel MOSFET.			
SRC	7	Input	Gate driver provider: source pin of external N-channel MOSFET.			
VBUSc	8	Input	VBUS connector side.			
I _{sense}	9	Input	VBUS current measurement.			
GND	10	GND	Ground.			
CC2c	11	Input / Output	Configuration channel 2 pin on USB-C connector side.			
C _{BIAS}	12	Output	ESD capacitor.			
CC1c	13	Input / Output	Configuration channel 1 pin on USB-C connector side.			
GND	14	GND	Ground.			
I2C_ADD	15	Input	Least significant bit on I2C address. Connected to GND or 1.8 V / 3.3 V.			
SDA	16	Input / Output	Serial data line on I2C bus.			
SCL	17	Input / Output	Serial clock line on I2C bus.			
FLGn	18	Output	Open-drain output flag (active low). Floating when not connected.			
GND	EP	GND	Ground exposed pad.			


2 Block diagram

57

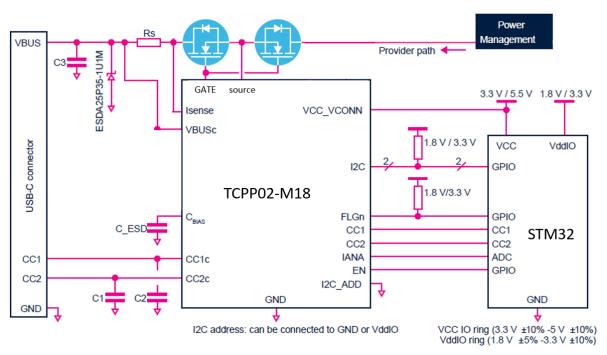


Figure 2. Functional block diagram

3 Typical USB-C source application block diagram

Figure 4. Application block diagram example

Note:

57

UCPD stands for USB type-C and power delivery interface.

External components are described in External components description.

Please refer to TA0357 for an overview of USB type-C and power delivery technologies.

Please refer to AN5225 for more informations related to USB type-C power delivery using STM32xx Series MCUs and STM32xxx series MPUs.

For more information on EMI filtering and ESD protection of USB datalines, please refer to AN4871: USB type-C protection and filtering.

4 Electrical specification

4.1 Parameter conditions

57/

Unless otherwise specified:

- All voltages are referenced to GND
- The minimum and maximum values are guaranteed in the worst conditions of operating temperature, supply voltage and frequencies, by tests in production on 100 % of the devices
- Typical values are given only as design guidelines and are not tested

4.2 Absolute maximum ratings

Stresses above the absolute maximum ratings listed in the tables below, may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Symbol	Parameter	Pin name	Value	Unit	
V _{POWER}	Voltage for power pins	pins VCC_VCONN			
M		EN, I2C_ADD	7	V	
V _{IN}	Voltage for input pins	VBUSc, Isense, SRC	24	V _{DC}	
M		I _{ANA} , FLGn		V _{DC}	
V _{OUT}	Voltage for output pins	C _{BIAS} , GATE	24		
		SDA,SCL, CC1,CC2			
V _{I/O}	Voltage for input, output pins	24	V _{DC}		
R _{thj-a}	Junction to ambient thermal resistance	· · · · · · · · · · · · · · · · · · ·	150	°C/W	
TJ	Junction temperature range	Junction temperature range			
T _{STG}	Storage temperature range	-55 to +150	°C		

Table 2. Absolute maximum ratings (across junction temperature range)

Table 3. ESD ratings (across junction temperature range)

Symbol	Description	Pins	Value	Unit
	System level ESD robustness on USB Type-C connector side ⁽¹⁾			
V_{ESD_c}	IEC61000-4-2 Level 4, contact discharge	CC1c, CC2c	8	kV
	IEC61000-4-2 Level 4, air discharge		15	
V _{HBM}	V _{ESD} ratings human body model (JESD22-A114D, level 2)	All pins	2	kV

1. Internal ESD protection functionality is associated with external capacitor connected on pin C_{BIAS}.

for more information on IEC61000-4-2 standard testing, please refer to AN3353.

Note:

4.3 Recommended operating conditions

57

Table 4. Recommended operating condition, across junction temperature range

Pin name	Min.	Тур.	Max.	Unit
VCC_VCONN, CC1, CC2	2.7		5.5	V
EN, I _{ANA} , I2C_ADD, SDA, SCL, FLGn	1.7		3.6	V
CC1c, CC2c, VBUSc, I _{SENSE} , SRC	0		22	V

4.4 Power supply (VCC_VCONN, VBUSc)

Table 5. Electrical characteristics – Power supply (VCC_VCONN, VBUSc) across T_j

Symbol	Parameter	Test condition across T _{OP}		Unit		
Symbol	Falainetei		Min.	Тур.	Max.	Unit
	V _{cc} supply current	Normal mode		-	2.7	mA
ICC_VCONN	V _{CC} supply current	Low power mode		-	1	μA
1	Supply ourrant of EN pip	Low power mode 1,7 V - 2,7 V		-	3	μA
lenable	Supply current of EN pin	Low power mode 2,7 V - 3,6 V		-	10	μA
T _{DIS_VBUSc}	VBUSc discharge time ⁽¹⁾			-	220	ms

1. Equivalent discharge resistor is $2.5 k\Omega$ typical.

4.5 VBUS OCP

Table 6. Electrical characteristics for V_{BUS} (OCP, gate driver, current monitoring) across T_j

Symbol	Devementer	Test condition across T _{OP}		Unit			
Symbol	Parameter	Min.	Тур.	Max.			
V _{GS}	Gate to source voltage consumer VBL	JSc = 5 V - 20 V	4.5	5	5.5	V	
V _{TH_OCP_VBUS}	V _{BUS} OCP threshold voltage	35	42	45	mV		
T _{OFF_OCP_VBUS}	V _{BUS} OCP response time	·		3	8	μs	
l _{ana_gain}	Current sensing gain		39	42	45	V/V	
V _{IANA}	IANA pin typical voltage during OCP e	ANA pin typical voltage during OCP event on VBUS line					
T _{ON}	V _{BUS} turn-on time			1	3	ms	

4.6 CC lines OVP and ESD

Table 7. Electrical characteristics: CC lines OVP (CC refers to CC1 and CC2) across Tj

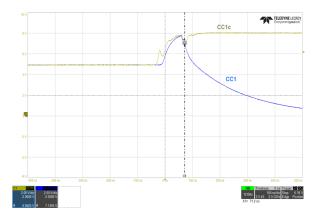
Symbol	Parameter	Test condition across T _{OP}		Unit		
Symbol	Falametei		Min.	Тур.	Max.	Unit
Pour oo	ON resistance of CC OVP FET	Normal mode		0.7	1.5	Ω
R _{ON_CC}	ON resistance of CC OVP FET	Low power mode	8	17	28	12
C _{ON_CC}	Equivalent ON capacitance of CCx line in normal mode	(1 - 12)/f = 4(0)/kHZ		60	100	pF
V _{TH_CC}	CC OVP threshold voltage		5.5	5.75	6	V
T _{OVP_CC}	OVP response time on the CC pins		60	100	ns	
BW _{CCx}	Bandwidth on CCx pins	at -3dB and 0 - 1.2 V		10		MHz

4.7 VCONN OCP, discharge

Table 8. Electrical characteristics V_{CONN} switch (OCP, discharge) across T_j

Symbol	Parameter	Test condition across TOP		Unit			
Symbol			Min.	Тур.	Max.	Unit	
R _{ON_VCONN}	ON resistance of VCONN FET	ON resistance of VCONN FET					
I _{VCONN}	Current thru $V_{\mbox{CONN}}$ FET max operating current			40	mA		
R _{dis-vconn}	V _{CONN} discharge resistor		2.5	4	5	kΩ	
OCP _{TH_VCONN}	OCP threshold on V _{CONN}	40	47	55	mA		
T _{OCP_VCONN}	V _{CONN} OCP response time			0.9	2	μs	

4.8 I2C slave


Table 9. Electrical characteristics I2C adressing across T_{j}

Symbol	Parameter	Test condition across T _{OP}		Value		Unit
Symbol	Farameter		Min.	Тур.	Max.	Unit
I2C speed				-	1	Mbps

5 Typical electrical characteristics curves

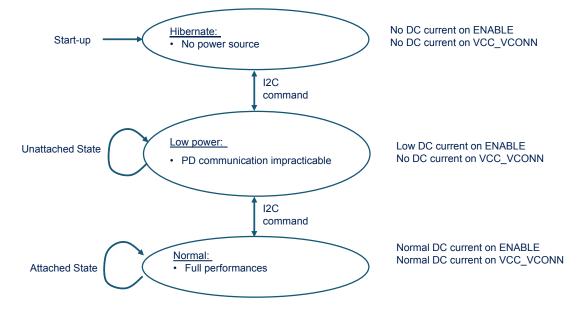
57

Figure 5. CC line (CC1 or CC2) OVP response time

Note: Test conditions for Figure 5: TCPP02-M18 in normal mode VCC_VCONN = +5 V, ENABLE = 3.3 V, VBUS = 0 V.

6 Functional description

6.1 Overview


The TCPP02-M18 is a cost effective solution to protect microcontrollers featuring built-in USB-C power delivery (UCPD) controller or other low voltage power delivery controller.

Please refer to TA0357 for an overview of USB type-C and power delivery technologies.

Please refer to AN5225 for more informations related to USB type-C power delivery using STM32xx Series MCUs and STM32xxx series MPUs.

6.2 Power modes

The TCPP02-M18 embeds three distinct power modes controlled by the UCPD controller via the I2C bus.

Figure 6. Power modes process

VCC_VCONN	ENABLE	I _{DC} VCC_VCONN	I _{DC} ENABLE	Mode	Comments
x	0 V	0 µA ⁽²⁾	0 µA ⁽¹⁾⁽²⁾	OFF (reset)	Gate driver OFF / CC switches OFF FLGn inactive I2C inactive / I2C registers reset
x	1.8 V ±5% 3.3 V ±10%	0 µA ⁽²⁾	0 µA ⁽¹⁾⁽²⁾	Hibernate	I2C active Default state at start-up
x	1.8 V ±5% 3.3 V ±10%	0 µA ⁽²⁾	< 10 µA ⁽¹⁾⁽²⁾ (3)	Low power	High ohmic CC => PD communication not possible OVP protection by clamping I2C active
3.3 V ±10% 5 V ±10%	1.8 V ±5% 3.3 V ±10%	2.7 mA	< 30 µA ⁽¹⁾⁽²⁾	Normal	Full performance mode I2C active FLGn indicates failures

Table 10. Power mode versus power supply

1. Dynamic current of I2C interface have to be added to the values indicated when the I2C bus is used.

2. ESD leakage current have to be added to the values indicated.

3. For pin EN voltage between 1.7 V and 3.6 V.

Table 11. TCPP02-M18 states versus power modes

Power mode	CC switches	OVP CC	Gate driver provider	FLGn	I2C	I _{ANA}	OCP VBUS	V _{CONN} VBUS Dis.	Comment
OFF	OFF	NA	OFF	VBUS connect	OFF	OFF	OFF	OFF	TCPP not powered
Hibernate	OFF	NA	OFF	VBUS connect	ON	OFF	OFF	OFF	Default state at start-up
Low power	High ohmic	5 V clamp	OFF	VBUS connect	ON	OFF	OFF	OFF	Signaling only
Normal	Full perf.	Active OVP	Controlled by I2C	Failure flags	ON	ON	ON	Controlled by I2C	PD communication active

57

I2C registers

The I2C address used by TCPP02-M18 is 0110 10x, with LSB = 'x'. The LSB bit of the I2C address is set when connecting TCPP02-M18 pin I2C_ADD to GND (for LSB = '0') or to 1.8 V or 3.3 V (for LSB = '1').

Figure 7. I2C registers

			<u>12</u>	C add	r <u>ess :</u> 0110 10	x, x=LSB]				
					Damas					VCONN	switch
			PM2	PM1	Power Mode			V2	V1 -	VC2	VC1
	VCONND=1: • VCONN	VBUSD=1: • VBUS	0	0	Hibernate		GDP=1: • Switch load	0	0	Open	Open
	discharge ON VCONND=0:	discharge ON VBUSD=0:	1	0	Low power		closed	1	0	Close	Open
	 VCONN 	 VBUS 	0	1	Normal		GDP=0: • Switch load	0	1	Open	Close
discharge OFF	discharge OFF	1	1	Not Used		opened	1	1	Open	Open	
Writing register (address = 0)	VCONN DISCHARGE (VCONND)	VBUS DISCHARGE (VBUSD)	PM2 Power Mo	-	PM1 Power Mode 1	1	Gate Driver Provider (GDP)	V	/2	,	/1
Reading register n°1 (address = 1) Flags are set to '1' when active	VCONN DISCHARGE Acknowledge	VBUS DISCHARGE Acknowledge	PM2 Acknow	-	PM1 Acknowledge	0 at start-up else acknowledge	Gate Driver Provider Acknowledge		ONN2 wledge	VCC Ackr	0NN1 Iowledge
Reading register n°2 (address = 2) Flags are set to '1'	0 => TCPP03 1 => TCPP02	0	FLG VBUS_		FLGn OVP_CC	FLGn OTP	Not used		LGn _VBUS		_Gn VCONN
when active	Bit 7	Bit 6	Bit 5		Bit 4	Bit 3	Bit 2	Bit	:1	Bi	t 0

Rea (add Flag whe

7 Protection features

TCPP02-M18 embeds protection features for source applications, as required by:

- USB-C specification
- USB power delivery specification 3.1
- International electrotechnical commission (IEC)

7.1 FLGn pin description

FLGn pin is an open-drain output flag in steady state, it must be left floating when not connected. In normal mode, FLGn indicates an error (OVP, OCP or OTP): I2C registers must be read to identify the error. Recovery for each error type is described in each section of below paragraphs.

7.2 How to protect against ESD (electrostatic discharge) applied on the USB-C connector ?

Electrostatic discharges can be conducted by the USB Type-C connector and damage the electronic circuitry of the application.

The ESD surge waveform is modelized by the international electrotechnical commission in the specification IEC61000-4-2.

The TCPP02-M18 integrates ESD protection for CC1 and CC2 lines up to +8 kV contact discharge , associated with an external 100 nF - 50 V capacitor on C_{BIAS} pin.

Please refer to AN4871 USB type-C protection and filtering to apply required protections to comply with the IEC61000-4-2 specification.

For more information on IEC61000-4-2 standard testing, please refer to STMicroelectronics application note AN3353.

7.3 VBUS management

Until now, it was common to find the protection circuit inside a controller dedicated to USB-C power delivery. However, by supporting USB-C PD with an embedded module inside an MCU and a companion Type-C port protection device, you can lower your bill of material and facilitate the transition , without requiring an expensive USB-C PD ASIC controller. One of the reasons the MCU and TCPP02-M18 bundle is such a compelling financial proposition is that the latter device integrates the VBUS gate drivers, which enables the use of cheaper and smaller N-MOSFETs, instead of the P-MOSFETs usually used by ASIC controllers.

7.4 VBUS current sense (I_{ANA} pin)

The I_{ANA} output pin is active only in normal mode.

The I_{ANA} output can be connected directly to the STM32 ADC input because it is internally biased by EN pin. The I_{ANA} output voltage level is about 1.7 V at the OCP tripping level allowing connection to 1.8 V MCU I/O pin.

7.5 V_{BUS} analog current measurement and OCP


57/

VBUS OCP threshold is set by external serial resistor on VBUS. The gain for the analog reading is set to 42 V/V. The OCP threshold is set to 0.042 V across Rs.

The OCP VBUS is biased by VCC_VCONN and works only in normal mode.

Equivalent block diagram in TCPP02-M18 for V_{BUS} analog current measurement and OCP is given here after:

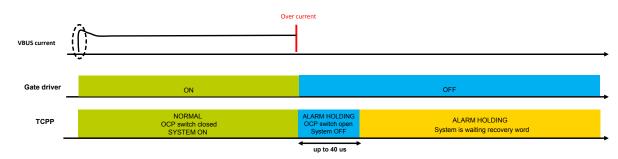
Figure 8. Equivalent block diagram in TCPP02-M18

Table 12. Recommende

Typical current	VBUS OCP threshold	Rs - Sense resistor (normalized values)
0.5 A	0.9 A	47 mΩ
1.5 A	1.9 A	22 mΩ
3.0 A	4.2 A	10 mΩ
5.0 A	6.0 A	7 mΩ

The OCP is biased continuously: inrush current magnitude is controlled by the user through an external capacitor. Please refer to the X-NUCLEO-SRC1M1 user manual for more informations on external capacitor to control the insrush current magnitude.

If an OCP event occurs:


- V_{CONN} switches, CC switches and gate drivers are shutting down
- During up to 40 µs typ., this OCP alarm is held (no recovery is possible)
- After this delay, CC switches are turned ON but V_{CONN} switches and gate drivers are held OFF

The system can be restarted only with a recovery word send by the MCU via the I2C bus.

• The FLGn signal stays low while the recovery word has not been sent

The recovery word is described in next paragraph

Figure 9. Typical chronograms of TCPP02-M18 VBUS OCP

Note:

In case of VBUS OCP event, the TCPP02-M18 switches OFF all active functions except CC switches:

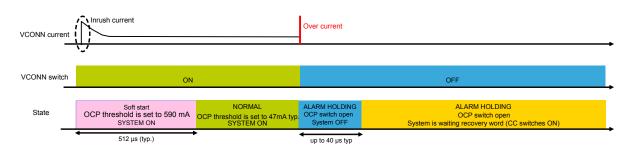

- V_{CONN} switches
- VBUS gate driver
- V_{CONN} and V_{BUS} discharge paths are activated
- It is signaled to the user by several ways:
 - I2C corresponding state bits are cleared (i.e. VCONN1_ACK = 0, VCONN2_ACK = 0...)
 - I2C relevant OCP flag is set (FLGn_OCP_VBUS is the OCP event coming from VBUS switch for example)
 - Failure flag pin (FLGn) is active (i.e. in LowZ state)
- After a delay of up to 40 μs, to recover, the below bit sequence has to be written and after recovery, the user can resume a start-up procedure:

Table 13. VBUS OCP recovery bit sequence table

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0	0	PM2	PM1	1	0	0	0

- At start-up, a soft start sets the tripping current to about 590 mA during 512 µs min. (1ms max.)
- After this delay, the soft start is ended and the normal OCP threshold occurs (50 mA).
- If an OCP event occurs:
 - $\,$ V_{CONN} switches, CC switches and gate drivers are shutting down
 - During up to 40 µs typical, this OCP alarm is held (no recovery is possible)
 - After this delay, CC switches are turned ON but V_{CONN} switches and gate drivers are held OFF. The system can be restarted only with a recovery word send by the MCU via the I2C bus.
 - The FLGn signal stays low as long as the recovery word has not been sent

Figure 10. V_{CONN} OCP chronograms

To recover, the below bit sequence has to be written and after recovery, the user can resume a start-up procedure:

Table 14. VBUS OCP recovery bit sequence table

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0	0	PM2	PM1	1	0	0	0

7.7 V_{CONN} CC line OVP

7.7.1 CC lines short to VBUS

This happens when VBUS high voltage short circuit to the CC lines when hot unplug is done with a poor mechanical quality connector. Over voltage protection is needed on the CC lines because VBUS typical voltage can be as high as 20 V when CC pins are usually 5 V tolerant I/Os on low voltage USB-PHY controllers. TCPP02-M18 integrate this protection against CC lines short to VBUS thanks to an overvoltage protection (integrated FET).

When the voltage on CC line goes above V_{TH_CC} , the OVP on CC line turns-on in less than 60ns (T_{OVP_CC} typical value) and FLGn pin goes to '0' state.

When the OVP event disappear, OVP on CC line is turned-off and the FLGn pin goes back to 'Hi-Z' state.

7.8 VBUS discharge

VBUS discharge is activated via I2C bus and controlled via firmware by the USB-C power delivery controller. The VBUS discharge feature integrated in TCPP02-M18 allows to discharge 10 μ F in less than 220 ms (T_{DIS_VBUS}).

This discharge time is in line with USB-C specification, extracted below for VBUS discharge:

Parameter	Description	Min.	Тур.	Max.	Units
tSafe0V	Time to reach vSafe0V max.	-	-	650	ms
tSafe5V	Time to reach vSafe5V max.	-	-	275	ms

Table 15. Common source electrical parameters from USB-C specification

7.9 V_{CONN} discharge

 V_{CONN} discharge is activated via I2C bus and controlled via firmware by the USB-C power delivery controller. The V_{CONN} discharge feature integrated in TCPP02-M18 allows to discharge V_{CONN} in $R_{DIS_VCONN} < 5.5 \text{ k}\Omega$, as per USB-C specification table extracted below:

Table 16. V_{CONN} source characteristics from USB-C power delivery specification

	Minimum	Maximum	Notes
R _{dch}	30 Ω	6120 Ω	Discharge resistance applied in UnattachedWait.SRC between the CC pin being discharged and GND.

Note:

V_{CONN} discharge is activated and stopped via I2C commands from USB-PD controller

To avoid short-circuit, V_{CONN} discharge cannot be activated if V_{CONN} switch are closed

The CCxc pin discharged is the last one acting as V_{CONN}

7.10 OTP (over temperature protection)

Above 150°C typ., the OTP triggers the FLGn pin. OVP and OCP on VCONN, CC lines, VBUS are shut down. Auto recovery is ensured when the temperature goes back below OTP threshold.

8 PCB design recommendation

8.1 PCB routing

•

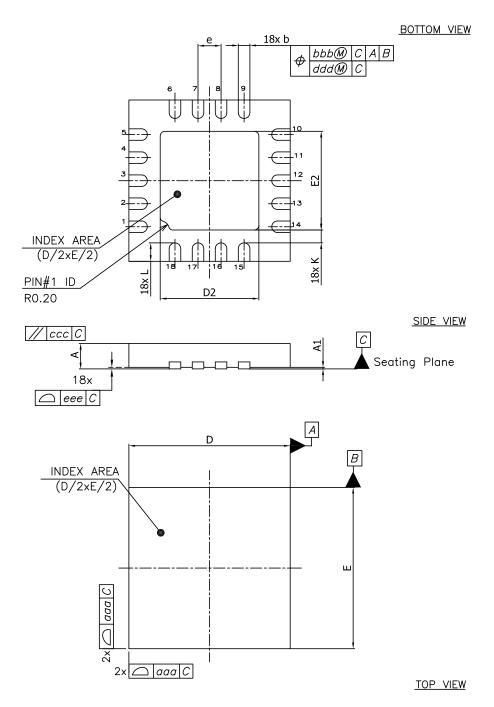
When routing the TCPP02-M18, please respect the following recommendation:

- Place the circuit as close as possible to the USB-C connector in order to maximize the efficiency of the ESD protection for CC lines
- Place the ESD capacitor as close as possible to the TCPP02-M18

9 USB type-C port protection (TCPP) comparison table

Table 17. Device comparison table

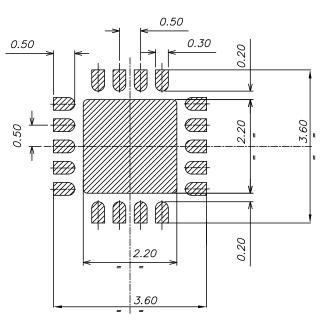
Part number	Expansion board	SW expansion board	USB type-C application	Package
TCPP01-M12	X-NUCLEO-SNK1M1		Sink, UFP, consumer	µQFN-12L
TCPP02-M18	X-NUCLEO-SRC1M1		Source, DFP, provider	µQFN-18L
		X-CUBE-TCPP	DRP, dual role power	
TCPP03-M20 X-NUCLEO-DRP1M	X-NUCLEO-DRP1M1		DRD, dual role data	µQFN-20L
			Sink requiring current sense and OCP	


57

10 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

10.1 QFN18L 3.5x3.5 mm package information



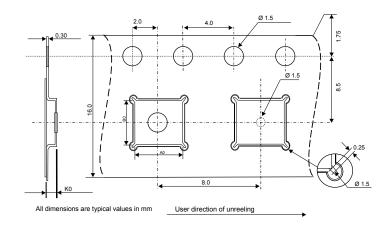

		Dimensions				
Ref.	Millimeters					
	Min.	Тур.	Max.			
А	0.51	0.55	0.60			
A1	0.00	0.02	0.05			
b	0.18	0.25	0.30			
D		3.50				
D2	1.99	2.14	2.24			
E		3.50				
E2	1.99	2.14	2.24			
е		0.50				
L	0.30	0.40	0.50			
К	0.20					
ааа		0.05				
bbb		0.10				
ccc		0.10				
ddd		0.05				
eee		0.08				

Table 18. QFN18L 3.5x3.5 mm mechanical data

Figure 12. recommended footprint (dimensions are in mm)

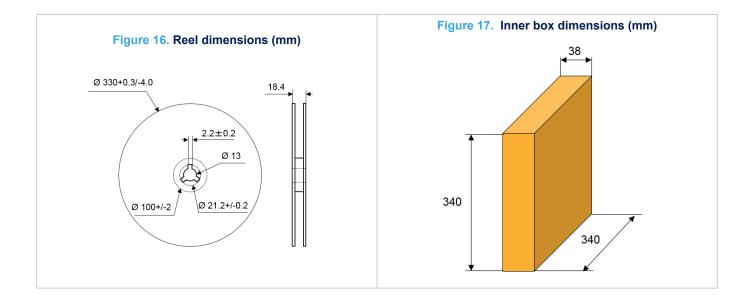

Figure 13. Tape and reel outline

Table 19. Tape and reel mechanical data

	Dimensions				
Ref.	Millimeters				
	Min.	Тур.	Max.		
A0	3.76	3.81	3.86		
B0	3.76	3.81	3.86		
КО	0.71	0.76	0.81		

57

11 Ordering information

Table 20. Ordering information

Order code	Marking	Package	Weight	Base qty.	Delivery mode
TCPP02-M18	TCPP02	QFN-18L 3.5 x 3.5 x 0.55 mm	21.7 mg	3000	Tape and reel

Revision history

Table 21. Document revision history

Date	Revision	Changes	
30-Aug-2021	1	Initial release.	
04-Oct-2021	2	Updated Features, Table 6, Table 7 and Table 20.	

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2021 STMicroelectronics - All rights reserved