

FDS8958A

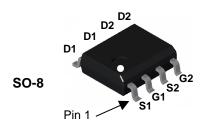
Dual N & P-Channel PowerTrench® MOSFET

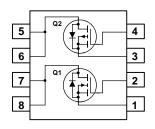
General Description

These dual N- and P-Channel enhancement mode power field effect transistors are produced using Fairchild Semiconductor's advanced PowerTrench process that has been especially tailored to minimize on-state ressitance and yet maintain superior switching performance.

These devices are well suited for low voltage and battery powered applications where low in-line power loss and fast switching are required.

Features


• Q1: N-Channel


7.0A, 30V
$$R_{DS(on)} = 0.028\Omega$$
 @ $V_{GS} = 10V$ $R_{DS(on)} = 0.040\Omega$ @ $V_{GS} = 4.5V$

Q2: P-Channel

-5A, -30V
$$R_{DS(on)} = 0.052\Omega @ V_{GS} = -10V$$

$$R_{DS(on)} = 0.080\Omega @ V_{GS} = -4.5V$$

- Fast switching speed
- High power and handling capability in a widely used surface mount package

Absolute Maximum Ratings T_A = 25°C unless otherwise noted

Symbol	Parameter	Q1	Q2	Units	
V _{DSS}	Drain-Source Voltage	30	30	V	
V _{GSS}	Gate-Source Voltage	±20	±20	V	
I_D	Drain Current - Continuous	(Note 1a)	7	-5	Α
	- Pulsed		20	-20	
P _D	Power Dissipation for Dual Operation			2	W
	Power Dissipation for Single Operation	(Note 1a)	1		
		(Note 1c)	C	.9	
T _J , T _{STG}	Operating and Storage Junction Temperat	-55 to	+150	°C	

Thermal Characteristics

$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient	(Note 1a)	78	°C/W
R _{θJC}	Thermal Resistance, Junction-to-Case	(Note 1)	40	°C/W

Package Marking and Ordering Information

-		<u>_</u>						
Device Marking		Device	Reel Size	Tape width	Quantity			
	FDS8958A	FDS8958A	13"	12mm	2500 units			

Symbol	Parameter	Test Conditions	Type	Min	Тур	Max	Units
Off Cha	racteristics						
BV _{DSS}	Drain-Source Breakdown Voltage	$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$ $V_{GS} = 0 \text{ V}, I_D = -250 \mu\text{A}$	Q1 Q2	30 -30			V
<u>ΔBV_{DSS}</u> ΔT _J	Breakdown Voltage Temperature Coefficient	I_D = 250 μA, Referenced to 25°C I_D = -250 μA, Referenced to 25°C	Q1 Q2		25 -22		mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = 24 \text{ V}, V_{GS} = 0 \text{ V}$ $V_{DS} = -24 \text{ V}, V_{GS} = 0 \text{ V}$	Q1 Q2			1 -1	μА
I _{GSSF}	Gate-Body Leakage, Forward	$V_{GS} = 20 \text{ V}, V_{DS} = 0 \text{ V}$	All			100	nA
I _{GSSR}	Gate-Body Leakage, Reverse	$V_{GS} = -20 \text{ V}, V_{DS} = 0 \text{ V}$	All			-100	nA
On Cha	racteristics (Note 2)				•	•	•
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_D = 250 \mu A$ $V_{DS} = V_{GS}, I_D = -250 \mu A$	Q1 Q2	1 -1	1.6 -1.7	3 -3	V
$\Delta V_{GS(th)} \over \Delta T_J$	Gate Threshold Voltage Temperature Coefficient	I_D = 250 μA, Referenced to 25°C I_D = -250 μA, Referenced to 25°C	Q1 Q2		-4.3 4		mV/°C
R _{DS(on)}	Static Drain-Source On-Resistance	$V_{GS} = 10 \text{ V}, I_D = 7 \text{ A}$ $V_{GS} = 10 \text{ V}, I_D = 7 \text{ A}, T_J = 125^{\circ}\text{C}$ $V_{GS} = 4.5 \text{ V}, I_D = 6 \text{ A}$	Q1		21 32 27	28 42 40	mΩ
		$V_{GS} = -10 \text{ V}, I_D = -5 \text{ A}$ $V_{GS} = -10 \text{ V}, I_D = -5 \text{ A}, T_J = 125^{\circ}\text{C}$ $V_{GS} = -4.5 \text{ V}, I_D = -4 \text{ A}$	Q2		41 58 58	52 78 80	
$I_{D(on)}$	On-State Drain Current	$V_{GS} = 10 \text{ V}, V_{DS} = 5 \text{ V}$ $V_{GS} = -10 \text{ V}, V_{DS} = -5 \text{ V}$	Q1 Q2	20 -20			Α
g FS	Forward Transconductance	$V_{DS} = 5 \text{ V}, I_D = 7 \text{ A}$ $V_{DS} = -5 \text{ V}, I_D = -5 \text{ A}$	Q1 Q2		19 11		Ø
Dynami	c Characteristics						
C _{iss}	Input Capacitance	Q1 $V_{DS} = 10 \text{ V}, V_{GS} = 0 \text{ V}, f = 1.0 \text{ MHz}$	Q1 Q2		789 690		pF
Coss	Output Capacitance	Q2	Q1 Q2		173 306		pF
C _{rss}	Reverse Transfer Capacitance	$V_{DS} = -10 \text{ V}, V_{GS} = 0 \text{ V}, f = 1.0 \text{ MHz}$	Q1 Q2		66 77		pF

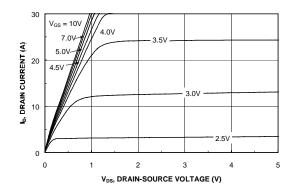
Electrical Characteristics (continued) T_A = 25°C unless otherwise noted **Symbol Parameter Test Conditions Type** Min Typ Max Units Switching Characteristics (Note 2) $t_{\text{d(on)}} \\$ Turn-On Delay Time Q1 Q1 2.2 4.4 ns $V_{DD} = 10 \text{ V}, I_D = 1 \text{ A},$ Q2 6.7 13.4 t_r Turn-On Rise Time $V_{GS} = 10V, R_{GEN} = 6 \Omega$ Q1 7.5 15 ns Q2 9.7 19.4 Turn-Off Delay Time Q1 11.8 21.3 ns $t_{d(off)}$ $V_{DD} = -10 \text{ V}, I_{D} = -1 \text{ A},$ Q2 19.8 35.6 $t_{\rm f}$ Turn-Off Fall Time $V_{GS} = -10V, R_{GEN} = 6 \Omega$ Q1 3.7 7.4 ns Q2 12.3 22.2 Qa Total Gate Charge Q1 16 26 nC $V_{DS} = 15 \text{ V}, I_{D} = 7 \text{ A}, V_{GS} = 10 \text{ V}$ Q2 14 23 Q_{gs} 2.5 Gate-Source Charge Q1 nC Q2 Q2 2.4 $V_{DS} = -15 \text{ V}, I_{D} = -5 \text{ A}, V_{GS} = -10 \text{ V}$ Q_{gd} Gate-Drain Charge Q1 2.6 nC Q2 4.8 **Drain-Source Diode Characteristics and Maximum Ratings** Maximum Continuous Drain-Source Diode Forward Current Q1 1.3 Α Q2 -1.3 V_{SD} Drain-Source Diode Forward $V_{GS} = 0 \text{ V}, I_S = 1.3 \text{ A}$ Q1 0.74 1.2 V (Note 2) -1.2 Voltage $V_{GS} = 0 \text{ V}, I_{S} = -1.3 \text{ A}$ Q2 -0.76 (Note 2)

Notes:

^{1.} R_{8JA} is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. R_{8JC} is guaranteed by design while R_{8CA} is determined by the user's board design.

a) 78°/W when mounted on a 0.5 in² pad of 2 oz copper

b) 125°/W when mounted on a .02 in² pad of 2 oz copper



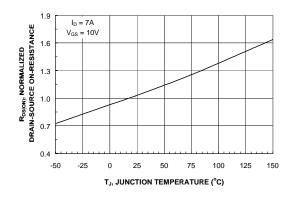
c) 135°/W when mounted on a minimum pad.

Scale 1:1 on letter size paper

2. Pulse Test: Pulse Width $< 300 \mu s$, Duty Cycle < 2.0%

Typical Characteristics: Q1

2.4


QUANTITIES STATE

QUANTITIES

QUANTIT

Figure 1. On-Region Characteristics.

Figure 2. On-Resistance Variation with Drain Current and Gate Voltage.

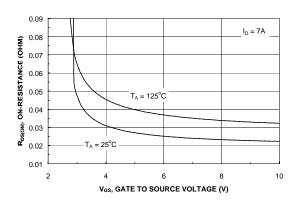
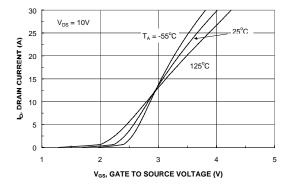



Figure 3. On-Resistance Variation with Temperature.

Figure 4. On-Resistance Variation with Gate-to-Source Voltage.

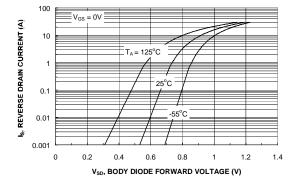
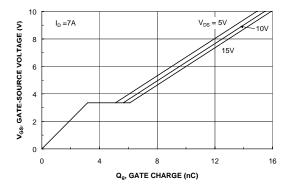



Figure 5. Transfer Characteristics.

Figure 6. Body Diode Forward Voltage Variation with Source Current and Temperature.

Typical Characteristics: Q1

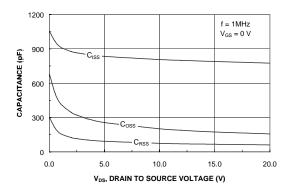
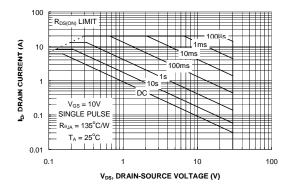



Figure 7. Gate Charge Characteristics.

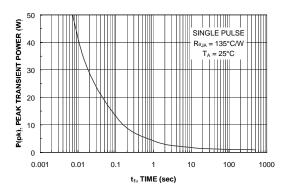


Figure 9. Maximum Safe Operating Area.

Figure 10. Single Pulse Maximum Power Dissipation.

Typical Characteristics Q2

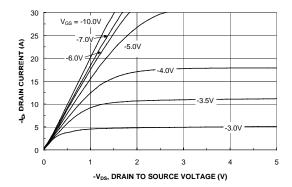


Figure 11. On-Region Characteristics.

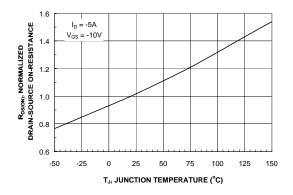


Figure 13. On-Resistance Variation with Temperature.

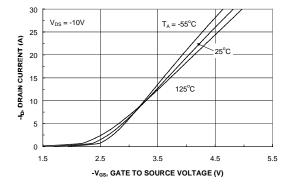


Figure 15. Transfer Characteristics.

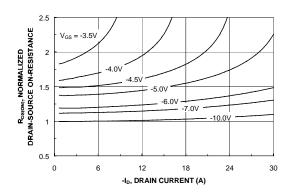


Figure 12. On-Resistance Variation with Drain Current and Gate Voltage.

Figure 14. On-Resistance Variation with Gate-to-Source Voltage.

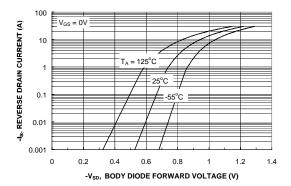
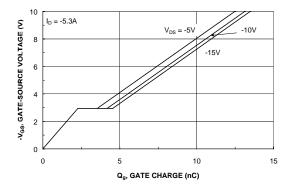



Figure 16. Body Diode Forward Voltage Variation with Source Current and Temperature.

Typical Characteristics Q2

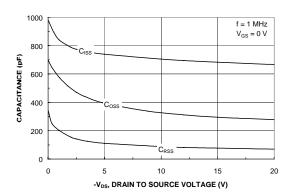


Figure 17. Gate Charge Characteristics.

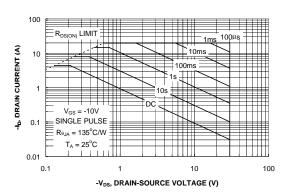


Figure 18. Capacitance Characteristics.

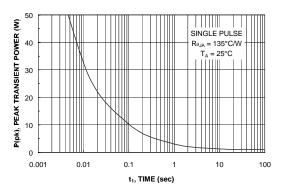
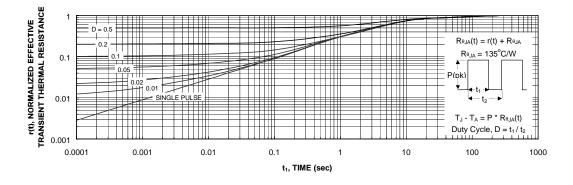
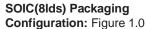
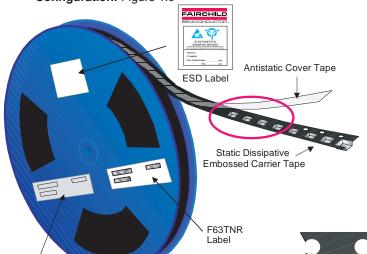


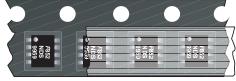
Figure 19. Maximum Safe Operating Area.


Figure 21. Transient Thermal Response Curve.

Thermal characterization performed using the conditions described in Note 1c. Transient thermal response will change depending on the circuit board design.

SOIC-8 Tape and Reel Data



Packaging	Description

Packaging Description:

SOIC-8 parts are shipped in tape. The carrier tape is made from a dissipative (carbon filled) polycarbonate resin. The cover tape is a multilayer film (Heat Activated Adhesive in nature) primarily composed of polyester film, adhesive layer, sealant, and anti-static sprayed agent. These reeled parts in standard option are shipped with 2,500 units per 13° or 330cm diameter reel. The reels are dark blue in color and is made of polystyrene plastic (anti-static coated). Other option comes in 500 units per 7° or 177cm diameter reel. This and some other options are further described in the Packaging Information table.

These full reels are individually barcode labeled and placed inside a standard intermediate box (illustrated in figure 1.0) made of recyclable corrugated brown paper. One box contains two reels maximum. And these boxes are placed inside a barcode labeled shipping box which comes in different sizes depending on the number of parts shipped.

TNR TNR 4.000 500 13" Dia 7" Dia 343x64x343 184x187x47

D84Z

F011

Box Dimension (mm) 343x64x343 530x130x83 Max qty per Box 5,000 30,000 8,000 1,000 Weight per unit (gm) 0.0774 0.0774 0.0774 0.0774 0.1182 Weight per Reel (kg) 0.6060 0.9696 Note/Comments

SOIC (8lds) Packaging Information

L86Z

Rail/Tube

Standard no flow code)

TNR

2.500

13" Dia

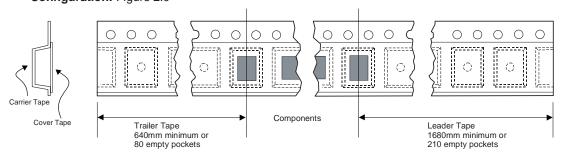
SOIC-8 Unit Orientation

F63TNR Label sample

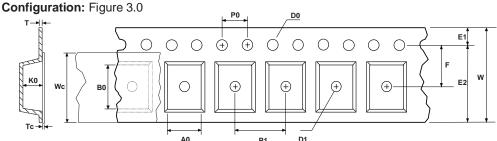
Customized Label

Packaging Option

Qty per Reel/Tube/Bag

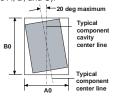

Packaging type

Reel Size


343mm x 342mm x 64mm Standard Intermediate box **ESD Label** F63TNI F63TN Label

SOIC(8lds) Tape Leader and Trailer Configuration: Figure 2.0

SOIC(8lds) Embossed Carrier Tape

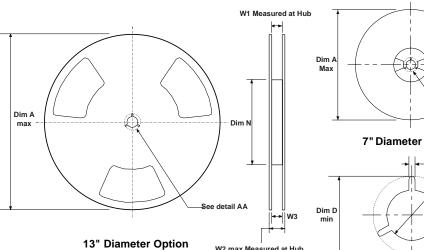


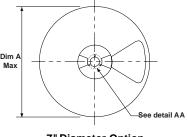
	Dimensions are in millimeter													
Pkg type	A0	В0	w	D0	D1	E1	E2	F	P1	P0	K0	т	Wc	Тс
SOIC(8lds) (12mm)	6.50 +/-0.10	5.30 +/-0.10	12.0 +/-0.3	1.55 +/-0.05	1.60 +/-0.10	1.75 +/-0.10	10.25 min	5.50 +/-0.05	8.0 +/-0.1	4.0 +/-0.1	2.1 +/-0.10	0.450 +/- 0.150	9.2 +/-0.3	0.06 +/-0.02

Notes: A0, B0, and K0 dimensions are determined with respect to the EIA/Jedec RS-481 rotational and lateral movement requirements (see sketches A, B, and C).

Sketch A (Side or Front Sectional View)
Component Rotation

Sketch B (Top View)


Component Rotation

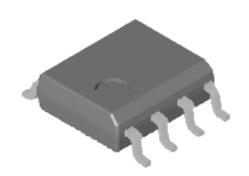


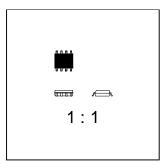
Sketch C (Top View)

Component lateral movement

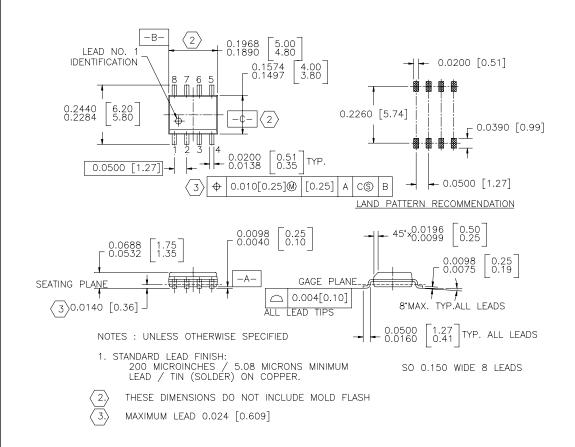
SOIC(8lds) Reel Configuration: Figure 4.0

7" Diameter Option Dim C DETAIL AA


Dimensions are in inches and millimeters									
Tape Size	Reel Option	Dim A	Dim B	Dim C	Dim D	Dim N	Dim W1	Dim W2	Dim W3 (LSL-USL)
12mm	7" Dia	7.00 177.8	0.059 1.5	512 +0.020/-0.008 13 +0.5/-0.2	0.795 20.2	2.165 55	0.488 +0.078/-0.000 12.4 +2/0	0.724 18.4	0.469 - 0.606 11.9 - 15.4
12mm	13" Dia	13.00 330	0.059 1.5	512 +0.020/-0.008 13 +0.5/-0.2	0.795 20.2	7.00 178	0.488 +0.078/-0.000 12.4 +2/0	0.724 18.4	0.469 - 0.606 11.9 - 15.4


W2 max Measured at Hub

SOIC-8 Package Dimensions


SOIC-8 (FS PKG Code S1)

Scale 1:1 on letter size paper
Dimensions shown below are in:
inches [millimeters]

Part Weight per unit (gram): 0.0774

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

 $ACEx^{TM}$ FASTr™ PowerTrench® SyncFET™ Bottomless™ QFET™ TinyLogic™ GlobalOptoisolator™ QSTM UHC™ CoolFET™ GTO™ **VCX**TM $CROSSVOLT^{TM}$ QT Optoelectronics™ HiSeC™

DOME™ ISOPLANAR™ Quiet Series™

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition					
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.					
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.					
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.					
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.					