

HIGH POWER SP4T SWITCH GaAs MMIC

■ GENERAL DESCRIPTION

The NJG1809ME7 is a high power SP4T switch MMIC suitable for LTE-U / LAA, WLAN, and LTE applications.

This switch features very low insertion loss and high isolation up to 6GHz and excellent linearity performance with 1.8V control voltage. This switch achieves high speed switching time for WLAN application. Integrated ESD protection device on each port achieves excellent ESD robustness. No DC Blocking capacitors are required for all RF ports unless DC is biased externally.

The small and thin EQFN18-E7 package is adopted.

adad pagas

NJG1809ME7

■ PACKAGE OUTLINE

LTE-U / LAA, WLAN (802.11a/b/g/n/ac), LTE multi-mode applications General purpose switching applications

■ FEATURES

P_{-0.1dB}

■ APPLICATIONS

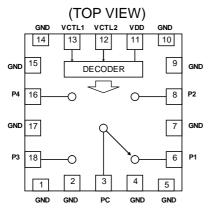
High isolation

■ Low voltage logic control
1.35 to 5.0V

● Low insertion loss 0.40dB typ. @f=2.7GHz, 3.5GHz, P_{IN}=+27dBm

0.50dB typ. @f=5.85GHz, P_{IN} =+27dBm 27dB typ. @f=2.7GHz, P_{IN} =+27dBm

25dB typ. @f=3.5GHz, P_{IN} =+27dBm 30dB typ. @f= 5.85GHz, P_{IN} =+27dBm


+32dBm min.

High speed switching time 250ns typ.

● Small and thin package EQFN18-E7 (2.0x2.0x0.397mm typ.)

RoHS compliant and Halogen Free, MSL1

■ PIN CONFIGURATION

	Pin	connection
--	-----	------------

1. GND	10. GND
2. GND	11. VDD
3. PC	12. VCTL2
4. GND	13. VCTL1
5. GND	14. GND
6. P1	15. GND
7. GND	16. P4
8. P2	17. GND
9. GND	18. P3
Exposed PAD: 0	SND

■ TRUTH TABLE

"H"= $V_{CTL(H)}$, "L"= $V_{CTL(L)}$				
VCTL1	VCTL2	Path		
L	L	PC-P1		
Н	L	PC-P2		
L	Н	PC-P3		
Н	Н	PC-P4		

NOTE: Please note that any information on this datasheet will be subject to change.

■ ABSOLUTE MAXIMUM RATINGS

 $(T_a=+25^{\circ}C, Z_s=Z_l=50\Omega)$

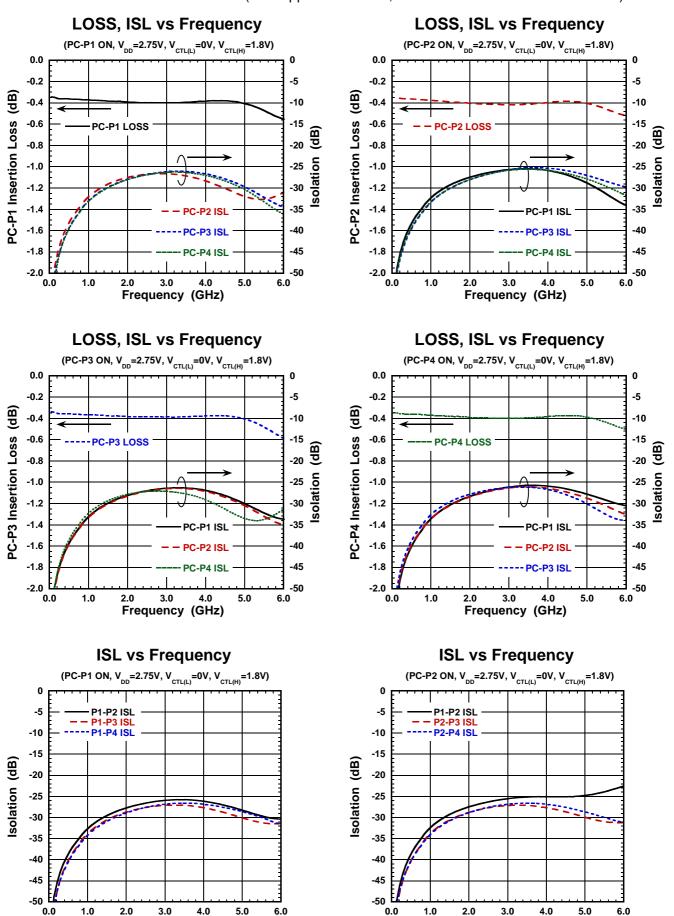
PARAMETER	SYMBOL	CONDITIONS	RATINGS	UNITS
RF Input Power	P _{IN}	V _{DD} =2.75V, V _{CTL} =0/1.8V	+33	dBm
Supply Voltage	V_{DD}	VDD terminal	5.0	V
Control Voltage	V _{CTL}	VCTL1, VCTL2 terminal	5.0	V
Power Dissipation	P_{D}	Four-layer FR4 PCB with through-hole (101.5x114.5mm), T _j =150°C	1400	mW
Operating Temp.	T_{opr}		-40 to +105	°C
Storage Temp.	T_{stg}		-55 to +150	°C

■ ELECTRICAL CHARACTERISTICS 1 (DC)

 $(General\ conditions:\ T_a=+25^{\circ}C,\ V_{DD}=2.75V,\ V_{CTL(H)}=1.8V,\ V_{CTL(L)}=0V,\ with\ application\ circuit)$

PARAMETERS	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Supply Voltage	V_{DD}	VDD Terminal	2.5	2.75	5.0	V
Operating Current	I _{DD}	No RF input	-	350	700	μА
Control Voltage (LOW)	V _{CTL(L)}	VCTL1, VCTL2 Terminal	0	1	0.45	V
Control Voltage (HIGH)	V _{CTL(H)}	VCTL1, VCTL2 Terminal	1.35	1.8	5.0	V
Control Current	I _{CTL}	V _{CTL(H)} =1.8V	-	4	10	μА

■ ELECTRICAL CHARACTERISTICS 2 (RF) (General conditions: T.=+25°C, Z.=Z=500, Vpp=2.75V, Vpp=2.75V

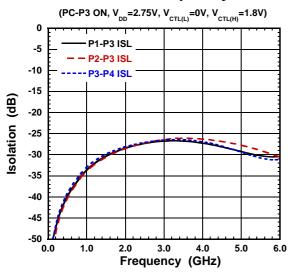

(General conditions: T_a =+25°C, Z_s = Z_l =50 Ω , V_{DD} =2.75 V , $V_{CTL(H)}$ =1.8 V , $V_{CTL(L)}$ =0 V , with application circuit					circuit)		
PARAMETERS	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
Insertion Loss 1	LOSS1	f=0.7GHz, P _{IN} =+27dBm		-	0.35	0.55	dB
Insertion Loss 2	LOSS2	f=2.0GHz, P _{IN} =+27dBm		-	0.40	0.60	dB
Insertion Loss 3	LOSS3	f=2.7GHz, P _{IN} =+27dBm		-	0.40	0.60	dB
Insertion Loss 4	LOSS4	f=3.5GHz, P _{IN} =+27dBm		-	0.40	0.60	dB
Insertion Loss 5	LOSS5	f=5.85GHz, P _{IN} =+27dBm		-	0.50	0.75	dB
Isolation 1	ISL1	f=0.7GHz, P _{IN} =+27dBm		32	36	-	dB
Isolation 2	ISL2	f=2.0GHz, P _{IN} =+27dBm		25	28	-	dB
Isolation 3	ISL3	f=2.7GHz, P _{IN} =+27dBm		24	27	-	dB
Isolation 4	ISL4	f=3.5GHz, P _{IN} =+27dBm		22	25	-	dB
Isolation 5	ISL5	f=5.85GHz, P _{IN} =+27dBm	PC-Pn*1	26	30	-	dB
isolation 5	ISLS		Pm-Pn*2	20	23	ı	uв
Input Power at 0.1 dB Compression Point	P _{-0.1dB}	f=5.85GHz		+32	ı	ı	dBm
2nd Harmonics 1	2fo(1)	f=5.18GHz, 5.85GHz, P _{IN} =+27dBm		-	ı	-70	dBc
2nd Harmonics 2	2fo(2)	f=2.69GHz, P _{IN} =0dBm		-	ı	-95	dBc
3rd Harmonics 1	3fo(1)	f=5.18GHz, 5.85GHz, P _{IN} =+27dBm		-	ı	-70	dBc
3rd Harmonics 2	3fo(2)	f=1.732GHz, 1.91GHz, P _{IN} =0dBm		-	1	-95	dBc
4th Harmonics	4fo	f=5.18GHz, 5.85GHz, P _{IN} =+27dBm		-	ı	-70	dBc
Input 2 nd order intercept point	IIP2	f=2.48+2.69GHz, f _{meas} =5.17GHz, P _{IN} =+10dBm each		+100	-	-	dBm
Input 3 rd order intercept point	IIP3	f=1.71+2.40GHz, f _{meas} =5.82 GHz, P _{IN} =+10dBm each		+60	-	-	dBm
VSWR1	VSWR1	On-state ports, f=2.7GHz		-	1.2	1.5	-
VSWR2	VSWR2	On-state ports, f=5.85GHz		-	1.3	1.6	-
Switching time	T_SW	50% V _{CTL} to 10/90% RF		-	250	400	ns

^{*1:} Pn=P1, P2, P3, P4

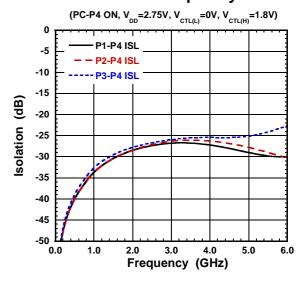
^{*2:} Pm=P1, P2, P3, P4. Pn=P1, P2, P3, P4. m≠n

■ TERMINAL INFORMATION

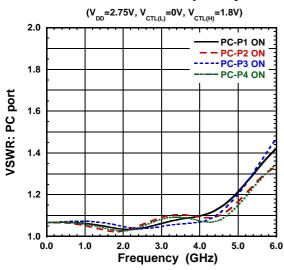
No.	SYMBOL	DESCRIPTION
1	GND	Ground terminal. Please connect this terminal with ground plane as close as possible for excellent RF performance.
2	GND	Ground terminal. Please connect this terminal with ground plane as close as possible for excellent RF performance.
3	PC	Common RF terminal. No DC blocking capacitor is required for this port unless DC is biased externally.
4	GND	Ground terminal. Please connect this terminal with ground plane as close as possible for excellent RF performance.
5	GND	Ground terminal. Please connect this terminal with ground plane as close as possible for excellent RF performance.
6	P1	RF terminal. No DC blocking capacitor is required for this port unless DC is biased externally.
7	GND	Ground terminal. Please connect this terminal with ground plane as close as possible for excellent RF performance.
8	P2	RF terminal. No DC blocking capacitor is required for this port unless DC is biased externally.
9	GND	Ground terminal. Please connect this terminal with ground plane as close as possible for excellent RF performance.
10	GND	Ground terminal. Please connect this terminal with ground plane as close as possible for excellent RF performance.
11	VDD	Positive voltage supply terminal. The positive voltage (+2.5 to +5V) has to be supplied. Please connect a bypass capacitor with ground plane for excellent RF performance.
12	VCTL2	Control signal input terminal. This terminal is set to High-Level (+1.35 to \pm 5.0V) or Low-Level (0 to \pm 0.45V).
13	VCTL1	Control signal input terminal. This terminal is set to High-Level (+1.35 to +5.0V) or Low-Level (0 to +0.45V).
14	GND	Ground terminal. Please connect this terminal with ground plane as close as possible for excellent RF performance.
15	GND	Ground terminal. Please connect this terminal with ground plane as close as possible for excellent RF performance.
16	P4	RF terminal. No DC blocking capacitor is required for this port unless DC is biased externally.
17	GND	Ground terminal. Please connect this terminal with ground plane as close as possible for excellent RF performance.
18	P3	RF terminal. No DC blocking capacitor is required for this port unless DC is biased externally.
Exposed Pad	GND	Ground pad of IC bottom side. Please connect this pad with ground plane as close as possible for excellent RF performance.

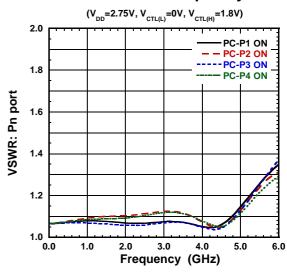


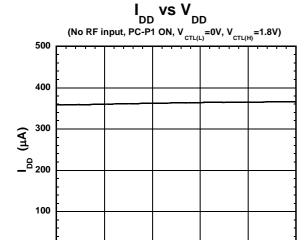
New Japan Radio Co., Ltd.


Frequency (GHz)

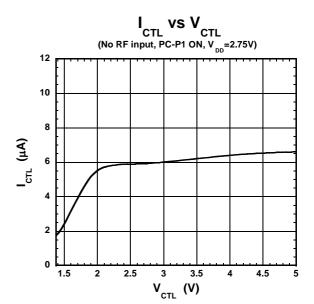
Frequency (GHz)


ISL vs Frequency

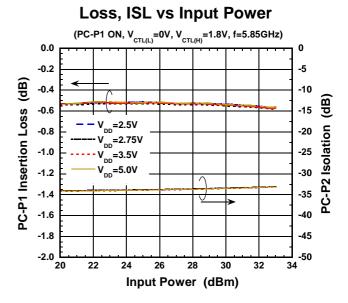

ISL vs Frequency

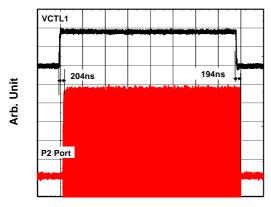


VSWR vs Frequency

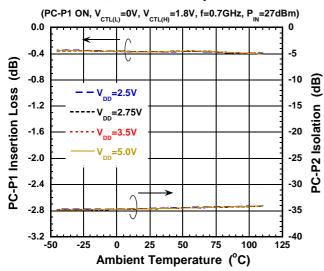


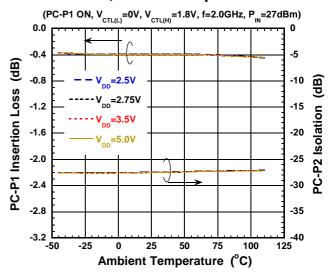
VSWR vs Frequency



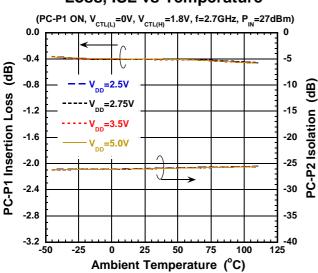

V_{DD} (V)

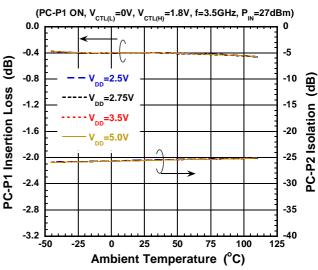
Output Power, $I_{\rm DD}$ vs Input Power (PC-P1 ON, V_{CTL(L)}=0V, V_{CTL(H)}=1.8V, f=5.85GHz) 34 700 $V_{_{\mathrm{DD}}}$ =2.5V V_{DD}=2.75V 32 600 V_{DD}=3.5V Output Power (dBm) 500 30 **Operating Current** 400 28 26 300 24 200 100 22 20 <u>-</u> 20 0 22 26 28 30 32 Input Power (dBm)

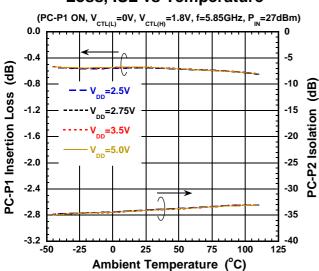


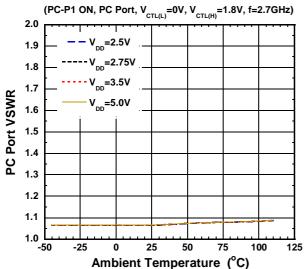


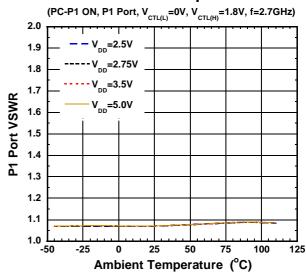
Time (1µs/div)

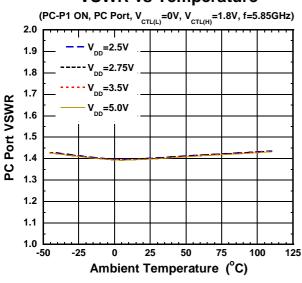


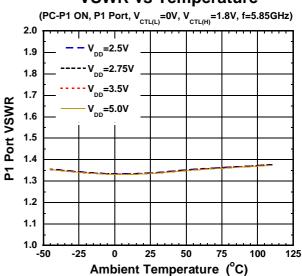

Loss, ISL vs Temperature

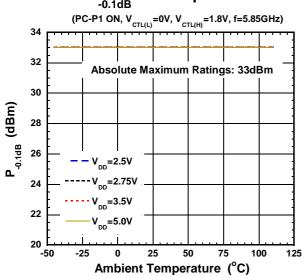

Loss, ISL vs Temperature

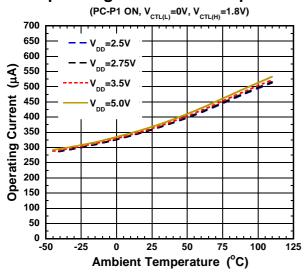

Loss, ISL vs Temperature

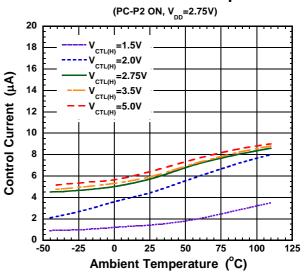

Loss, ISL vs Temperature

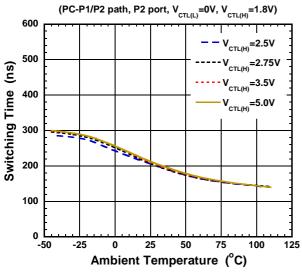

VSWR vs Temperature ON, PC Port, V_{CT(4)}=0V, V_{CT(4)}=1.8V, f=2

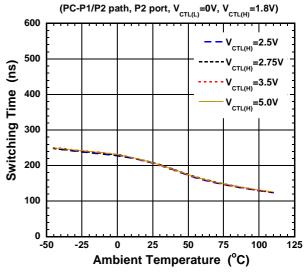

VSWR vs Temperature

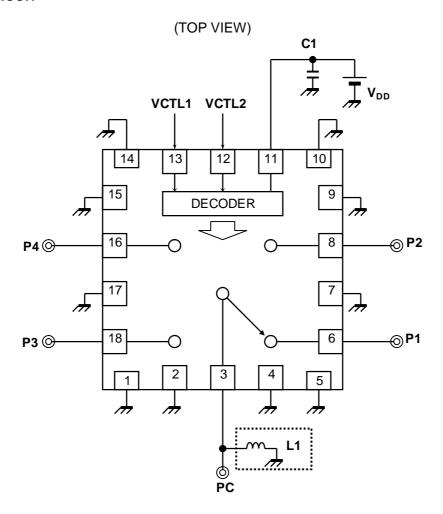

VSWR vs Temperature


VSWR vs Temperature


P_{-0.1dB} vs Temperature

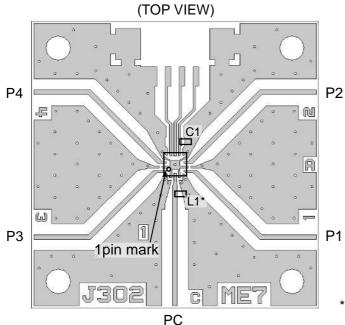

Operating Current vs Temperature


Control Current vs Temperature


Switching Time(rise) vs Temperature

Switching Time(fall) vs Temperature

■ APPLICATION CIRCUIT


Note:

- [1] No DC blocking capacitors are required on all RF ports, unless DC is biased externally.
- [2] The inductor L1 is optional in order to achieve enhancing ESD protection level. L1 is also recommended in order to keep the DC bias level of each RF port at ground level tightly.

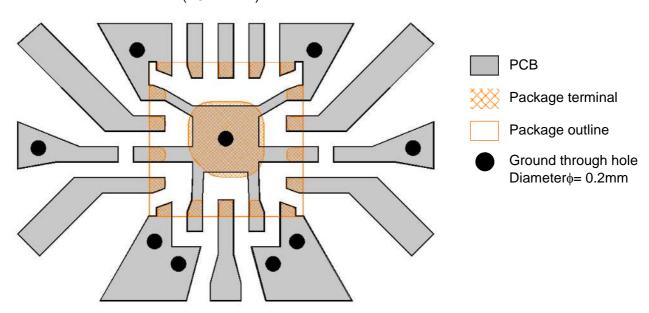
PARTS LIST

No.	Parameters	Note
C1	1000pF	MURATA (GRM15)
L1	68nH	TAIYO-YUDEN (HK1005)

■ PCB LAYOUT

PCB: FR-4, t=0.2mm

Capacitor size: 1005
Strip line width: 0.4mm
PCB size: 26x26mm²


Losses of PCB and connectors, Ta=+25 °C

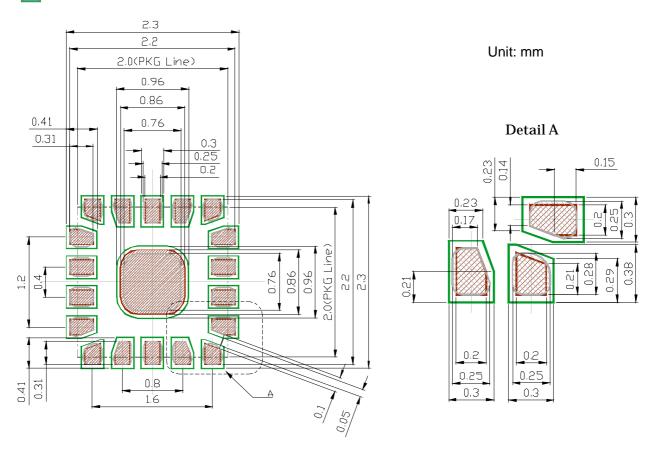
Frequency (GHz)	Loss (dB)
0.7	0.16
2.0	0.43
2.7	0.56
3.5	0.68
5.85	1.02

* L1 is optional.

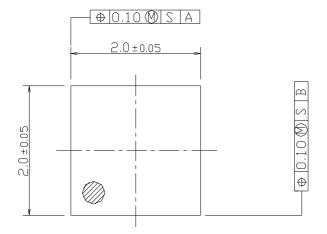
<PCB LAYOUT GUIDELINE>

(TOP VEIW)

■ PRECAUTIONS


- [1] No DC block capacitors are required for RF ports unless DC is biased externally. When other device biased at certain voltage is connected to the NJG1809ME7, a DC block capacitor is required between the device and this switch IC. This is because the each RF port of this switch is biased at ground level.
- [2] For avoiding the degradation of RF performance, the bypass capacitor (C1) should be placed as close as possible to VDD terminal.
- [3] For good RF performance, all GND terminals are must be connected to PCB ground plane of substrate, and through holes for GND should be placed near the IC.
- [4] Please connect Exposed PAD to PCB ground plane of substrate, and through holes for ground should be placed under the IC.

■ RECOMMENDED FOOTPRINT PATTERN (EQFN18-E7 PACKAGE REFERENCE)


: Land

: Mask (Open area) *Metal mask thickness: 100μm PKG: 2.0x2.0mm² Pin pitch: 0.4mm

: Resist (Open area)

■ PACKAGE OUTLINE (EQFN18-E7)

Terminal Treat : SnBi
Board : Copper
Molding Material : Epoxy resin

Weight : 5.0mg

Unit : mm

Cautions on using this product

Exposed PAD

This product contains Gallium-Arsenide (GaAs) which is a harmful material.

- Do NOT eat or put into mouth.
- Do NOT dispose in fire or break up this product.

Ground connection is required.

- Do NOT chemically make gas or powder with this product.
- To waste this product, please obey the relating law of your country.

This product may be damaged with electric static discharge (ESD) or spike voltage. Please handle with care to avoid these damages.

[CAUTION]

The specifications on this databook are only given for information, without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights.