MOSFET – P-Channel, Small Signal, SOT-563

-20 V, -950 mA

Features

- Low R_{DS(on)} Improving System Efficiency
- Low Threshold Voltage
- Small Footprint 1.6 x 1.6 mm
- These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant

Applications

- Load/Power Switches
- Battery Management
- Cell Phones, Digital Cameras, PDAs, Pagers, etc.

MAXIMUM RATINGS (T_J = 25°C unless otherwise noted.)

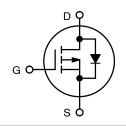
Parame	Symbol	Value	Unit		
Drain-to-Source Voltage	V _{DSS}	-20	V		
Gate-to-Source Voltage			V _{GS}	±8.0	V
Continuous Drain Current Steady T _A = 25°C			_	-860	mA
(Note 1)	State	T _A = 70°C	I _D	-690	
Power Dissipation (Note 1)	Stead	dy State	P _D	170	mW
Continuous Drain Current	t ≤ 5 s	$T_A = 25^{\circ}C$	I_	-950	mA
(Note 1)	1 2 3 3	T _A = 70°C	ID	-760	
Power Dissipation (Note 1)	t s	≤ 5 s	P _D	210	mW
Pulsed Drain Current	t _p =	10 μs	I _{DM}	-4.0	Α
Operating Junction and Sto	T _J , T _{STG}	–55 to 150	°C		
Source Current (Body Diod	IS	-360	mA		
Lead Temperature for Sold (1/8" from case for 10 s	T_L	260	°C		

THERMAL RESISTANCE RATINGS

Parameter	Symbol	Max	Unit
Junction-to-Ambient - Steady State (Note 1)	$R_{\theta JA}$	720	°C/W
Junction-to-Ambient – $t \le 5$ s (Note 1)	$R_{\theta JA}$	600	

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

1. Surface-mounted on FR4 board using 1 in. sq. pad size (Cu. area = 1.127 in. sq. [1 oz.] including traces).

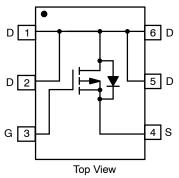


ON Semiconductor®

http://onsemi.com

V _{(BR)DSS}	R _{DS(on)} Typ	I _D Max
	120 mΩ @ -4.5 V	
-20 V	144 mΩ @ –2.5 V	–950 mA
	195 mΩ @ –1.8 V	

P-Channel MOSFET


MARKING DIAGRAM

TX M •

TX = Specific Device Code M = Date Code

= Pb-Free Package(Note: Microdot may be in either location)

PINOUT: SOT-563

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 4 of this data sheet.

ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise noted.)

Parameter	Symbol	Test Condition		Min	Тур	Max	Unit	
OFF CHARACTERISTICS								
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS} = 0 \text{ V}, I_D = -250 \mu\text{A}$		-20			V	
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} /T _J				-13		mV/°C	
Zero Gate Voltage Drain Current		V _{GS} = 0 V	T _J = 25°C			-1.0	μΑ	
	I _{DSS}	V _{DS} = -20 V	T _J = 125°C			-5.0	1	
Gate-to-Source Leakage Current	I _{GSS}	V _{DS} = 0 V, V _{GS}	s = ±8.0 V			±100	nA	
ON CHARACTERISTICS (Note 2)								
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}, I_D$	= -250 μA	-0.45		-1.0	٧	
Negative Threshold Temperature Coefficient	V _{GS(TH)} /T _J				2.4		mV/°C	
Drain-to-Source On Resistance		$V_{GS} = -4.5 \text{ V}, I_D = -950 \text{ mA}$			120	150	mΩ	
		V _{GS} = -4.5 V, I _D	, = −770 mA		112	142	1	
	R _{DS(on)}	$V_{GS} = -2.5 \text{ V}, I_D = -670 \text{ mA}$			144	200		
		V _{GS} = -1.8 V, I _D = -200 mA			195	240		
Forward Transconductance	9FS	$V_{DS} = -10 \text{ V}, I_{D} = -810 \text{ mA}$			3.1		S	
CHARGES AND CAPACITANCES								
Input Capacitance	C _{ISS}	$V_{GS} = 0 \text{ V, f} = 1.0 \text{ MHz,}$ $V_{DS} = -16 \text{ V}$			458		pF	
Output Capacitance	C _{OSS}				61		7	
Reverse Transfer Capacitance	C _{RSS}				38		1	
Total Gate Charge	Q _{G(TOT)}				5.6		nC	
Threshold Gate Charge	Q _{G(TH)}	$V_{GS} = -4.5 \text{ V, V}$	_{DS} = -10 V;		0.6		1	
Gate-to-Source Charge	Q_{GS}	I _D = –770 mA			0.9		1	
Gate-to-Drain Charge	Q_{GD}				1.2		1	
SWITCHING CHARACTERISTICS (Note	e 3)							
Turn-On Delay Time	t _{d(ON)}	V_{GS} = -4.5 V, V_{DD} = -10 V, I_{D} = -950 mA, R_{G} = 6.0 Ω			5.0		ns	
Rise Time	t _r				12			
Turn-Off Delay Time	t _{d(OFF)}				23.7			
Fall Time	t _f				18		1	
DRAIN-SOURCE DIODE CHARACTER	ISTICS							
Forward Diode Voltage	.,	V _{GS} = 0 V,	T _J = 25°C		-0.64	-0.9	V	
	V_{SD}	$I_S = -360 \text{ mA}$	T _J = 125°C		-0.5		1	
Reverse Recovery Time	t _{RR}	$V_{GS} = 0 \text{ V, } dI_{S}/dt = 100 \text{ A/}\mu\text{s,}$ $I_{S} = -360 \text{ mA}$			10.5		ns	

Pulse Test: pulse width ≤ 300 μs, duty cycle ≤ 2%.
 Switching characteristics are independent of operating junction temperatures.

TYPICAL PERFORMANCE CURVES (T $_{J}$ = 25°C unless otherwise noted)

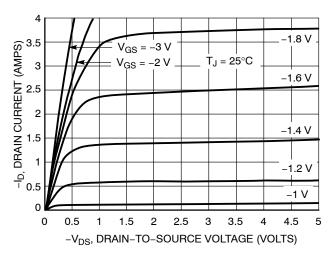


Figure 1. On-Region Characteristics

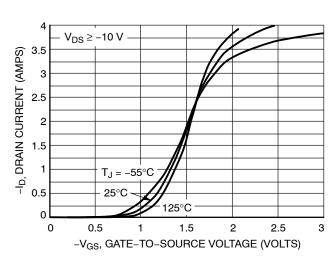


Figure 2. Transfer Characteristics

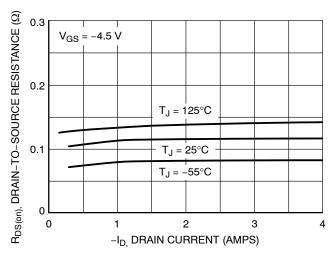


Figure 3. On-Resistance vs. Drain Current and Temperature

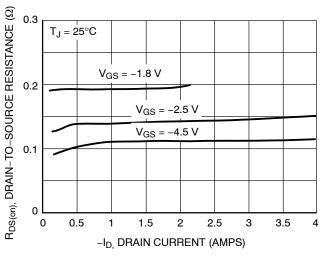


Figure 4. On-Resistance vs. Drain Current and Gate Voltage

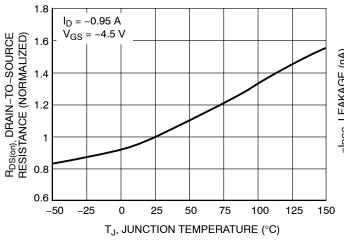


Figure 5. On–Resistance Variation with Temperature

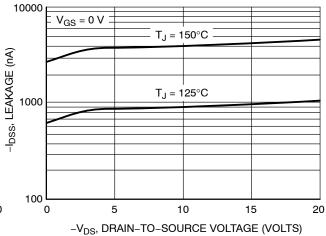
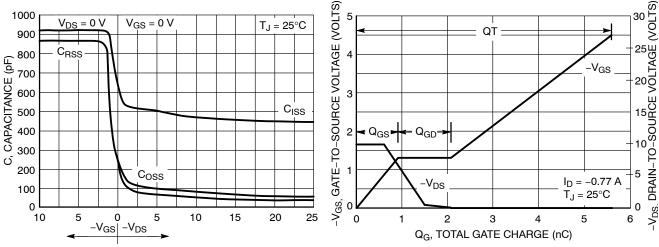



Figure 6. Drain-to-Source Leakage Current vs. Voltage

TYPICAL PERFORMANCE CURVES (T_J = 25°C unless otherwise noted)

GATE-TO-SOURCE OR DRAIN-TO-SOURCE VOLTAGE (VOLTS)

Figure 7. Capacitance Variation

Figure 8. Gate-to-Source and Drain-to-Source Voltage vs. Total Charge

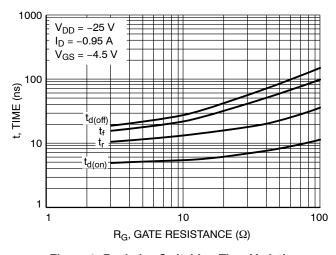
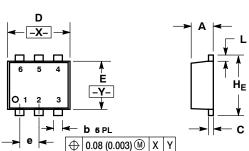


Figure 9. Resistive Switching Time Variation vs. Gate Resistance

Figure 10. Diode Forward Voltage vs. Current

ORDERING INFORMATION


Device	Package	Shipping
NTZS3151PT1G	SOT-563 (Pb-Free)	4000 / Tape & Reel
NTZS3151PT1H	SOT-563 (Pb-Free)	4000 / Tape & Reel
NTZS3151PT5G	SOT-563 (Pb-Free)	8000 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

SOT-563, 6 LEAD CASE 463A ISSUE G

DATE 23 SEP 2015

STYLE 1: PIN 1. EMITTER 1 2. BASE 1 3. COLLECTOR 2

- 4. EMITTER 2 5 BASE 2
- 6. COLLECTOR 1

STYLE 4:

- PIN 1. COLLECTOR COLLECTOR
 BASE

 - 4. EMITTER 5. COLLECTOR
- 6. COLLECTOR

STYLE 7:

- PIN 1. CATHODE 2. ANODE 3. CATHODE
 - CATHODE
 ANODE
 - 6. CATHODE
- STYLE 10:

- PIN 1. CATHODE 1
 - 2. N/C 3. CATHODE 2 4. ANODE 2
 - 5 N/C
 - 6. ANODE 1

- STYLE 2: PIN 1. EMITTER 1 2. EMITTER2
 - 3. BASE 2
 - 4. COLLECTOR 2
 - 5 BASE 1
 - 6. COLLECTOR 1

STYLE 5:

- PIN 1. CATHODE
 - CATHODE
 ANODE
 - 4. ANODE 5. CATHODE

6. CATHODE

STYLE 8: PIN 1. DRAIN 2. DRAIN

3. GATE

4. SOURCE 5. DRAIN

6. DRAIN

2. ANODE 3. CATHODE 4. CATHODE 5. CATHODE 6. CATHODE

STYLE 9: PIN 1. SOURCE 1 2. GATE 1

STYLE 6: PIN 1. CATHODE

STYLE 3: PIN 1. CATHODE 1 2. CATHODE 1 3. ANODE/ANODE 2

4. CATHODE 2 5. CATHODE 2

6. ANODE/ANODE 1

3. DRAIN 2

4. SOURCE 2 5. GATE 2

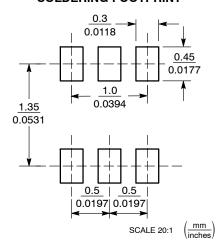
6. DRAIN 1

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. CONTROLLING DIMENSION: MILLIMETERS
- MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL.

	MILLIMETERS			INCHES		
DIM	MIN	NOM	MAX	MIN	NOM	MAX
Α	0.50	0.55	0.60	0.020	0.021	0.023
b	0.17	0.22	0.27	0.007	0.009	0.011
С	0.08	0.12	0.18	0.003	0.005	0.007
D	1.50	1.60	1.70	0.059	0.062	0.066
Е	1.10	1.20	1.30	0.043	0.047	0.051
е		0.5 BSC		(0.02 BS0	
L	0.10	0.20	0.30	0.004	0.008	0.012
He	1.50	1 60	1 70	0.059	0.062	0.066

GENERIC MARKING DIAGRAM*


XX = Specific Device Code

= Month Code

= Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ■", may or may not be present.

SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

DOCUMENT NUMBER:	98AON11126D	Electronic versions are uncontrolled except when accessed directly from the Document Repositor Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	SOT-563, 6 LEAD		PAGE 1 OF 1		

ON Semiconductor and un are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

ON Semiconductor and ware trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor and seven earnathy, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com

ON Semiconductor Website: www.onsemi.com

TECHNICAL SUPPORT
North American Technical Support:
Voice Mail: 1 800-282-9855 Toll Free USA/Canada

Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative

 \Diamond