

Order

Now

Support &

Community

20

TXB0304 4-Bit Bidirectional Level-Shifter/Voltage Translator with Automatic Direction Sensing

Technical

Documents

1 Features

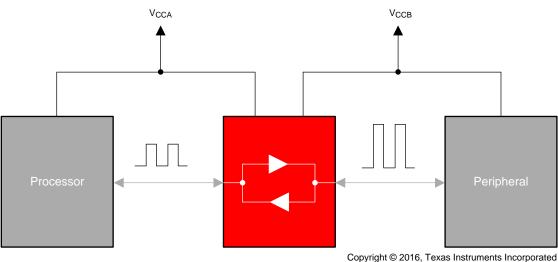
- Fully Symmetric Supply Voltages, 0.9 V to 3.6 V on A Port and 0.9 V to 3.6 V
- V_{CC} Isolation Feature If Either V_{CC} Input is at GND, all Outputs are in High-Impedance State
- OE Input Circuit Referenced to V_{CCA}
- Low Power Consumption, 5 µA Max (I_{CCA} or I_{CCB})
- Ioff Supports Partial-Power-Down Mode Operation
- Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
- ESD Protection Exceeds JESD 22
 - 8000-V Human-Body Model (A114-B)
 - 1000-V Charged-Device Model (C101)

2 Applications

- Personal Electronics
- Industrial
- Enterprise
- Telecom

3 Description

Tools &


Software

This 4-bit non-inverting translator uses two separate configurable power-supply rails. The A port is designed to track V_{CCA} . V_{CCA} accepts any supply voltage from 0.9 V to 3.6 V. The B port is designed to track V_{CCB} . V_{CCB} accepts any supply voltage from 0.9 V to 3.6 V. This allows for low Voltage bidirectional translation between 1 V, 1.2 V, 1.5 V, 1.8 V, 2.5 V and 3.3 V voltage nodes. For the TXB0304, when the output-enable (OE) input is low, all outputs are placed in the high-impedance state. To ensure the high-impedance state during power up or power down, OE should be tied to GND through a pull-down resistor; the minimum value of the resistor is determined by the current-sourcing capability of the driver. The OE device control pin input circuit is supplied by V_{CCA}. This device is fully specified for partial-power-down applications using Ioff. The Ioff circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down. The only difference between TXB0304 and TXBN0304 is the OE signal being active high and active low respectively.

Device Information⁽¹⁾

PART NUMBER	PACKAGE	BODY SIZE (NOM)
TYDODOA	RUT UQFN (12)	2.00 mm × 1.70 mm
TXB0304	RSV UQFN (16)	2.60 mm × 1.80 mm

(1) For all available packages, see the orderable addendum at the end of the datasheet.

Typical Application Block Diagram for TXB0304

Table of Contents

1	Feat	tures 1
2	Арр	lications 1
3	Des	cription 1
4	Rev	ision History 2
5	Pin	Configuration and Functions 3
6	Spe	cifications 4
	6.1	Absolute Maximum Ratings 4
	6.2	ESD Ratings 4
	6.3	Recommended Operating Conditions 4
	6.4	Thermal Information 5
	6.5	Electrical Characteristics5
	6.6	Timing Requirements 6
	6.7	Switching Characteristics 6
	6.8	Operating Characteristics7
	6.9	Typical Characteristics 7
7	Para	ameter Measurement Information
8	Deta	ailed Description 10
	8.1	Overview 10

	8.2	Functional Block Diagram	10
	8.3	Feature Description	11
	8.4	Device Functional Modes	11
9	Appl	ication and Implementation	12
	9.1	Application Information	12
	9.2	Typical Application	1 <mark>2</mark>
10	Pow	er Supply Recommendations	13
11	Layo	out	13
	11.1	Layout Guidelines	13
	11.2	Layout Example	14
12	Devi	ce and Documentation Support	15
	12.1	Device Support	15
	12.2	Documentation Support	15
	12.3	Community Resources	15
	12.4	Trademarks	15
	12.5	Electrostatic Discharge Caution	
	12.6	Glossary	15
13		hanical, Packaging, and Orderable	
	Infor	mation	15

4 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

CI	nanges from Revision F (May 2016) to Revision G	Page
•	Changed text in Power Supply Recomendations section.	13

Changes from Revision E (August 2014) to Revision F

Changes from Revision D (October 2012) to Revision E

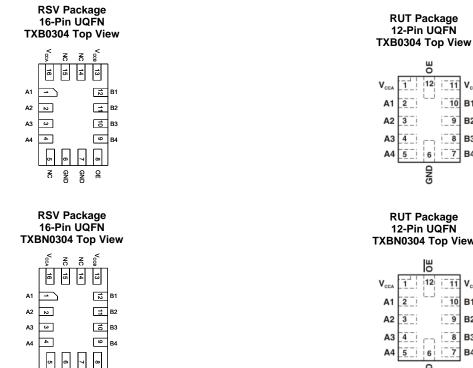
•	Added ESD Ratings table, Feature Description section, Device Functional Modes, Application and Implementation section, Power Supply Recommendations section, Layout section, Device and Documentation Support section, and Mechanical, Packaging, and Orderable Information section.	. 1
•	Changed VCCA and VCCB in the ABS MAX table to V_{CCA} and V_{CCB} in 3 places	. 4
•	Changed in ELEC CHARAC table the 0.9 x V_{CCA} and 0.9 x V_{CCB} from MAX column into the MIN column	. 5
•	Changed in ELEC CHARAC table 0.2 (2 places) in the MIN column to the MAX	. 5

Changes from Revision C (May 2012) to Revision D

•	Added Application Information section	. 12
Cł	hanges from Revision B (September 2011) to Revision C P	age

Added package pin out diagram notes

www.ti.com


Page

Page

Page

5 Pin Configuration and Functions

See Layout Guidelines for notes about Α. package pin out diagrams.

S

GND GND /OE

В \mathbf{V}_{cca} 12 1 2 10 B1 A1 A2 3 9 B2 4 8 B3 A3 **A**4 5 6 GND

12-Pin UQFN

RUT Package 12-Pin UQFN TXBN0304 Top View

Pin Functions

PIN									
	ТХВО	TXB0304		XBN0304 TYPE		TXBN0304			DESCRIPTION
NAME	RSV	RUT	RSV	RUT					
A1	1	2	1	2	I/O	Input/output 1			
A2	2	3	2	3	I/O	Input/output 2	Deferenced to)/		
A3	3	4	3	4	I/O	Input/output 3	Referenced to V _{CCA}		
A4	4	5	4	5	I/O	Input/output 4			
B1	12	10	12	10	I/O	Input/output 4			
B2	11	9	11	9	I/O	Input/output 3	Deferenced to)/		
B3	10	8	10	8	I/O	Input/output 2	Referenced to V _{CCB}		
B4	9	7	9	7	I/O	Input/output 1			
GND	6, 7	6	6,7	6	GND	Ground			
NC	5, 14, 15	_	5, 14, 15	—	—	No connection	; not internally connected		
OE	8	12	_	_	I	3-state output-mode enable. Pull OE (TXB0304) low to place all outputs in 3-state mode. Referenced to V_{CCA} .			
ŌĒ	_	—	8	12	I	3-state output-mode enable. Pull $\overline{\text{OE}}$ (TXBN0304) high to place all outputs in 3-state mode. Referenced to $V_{CCA}.$			
V _{CCA}	16	1	16	1		A-port supply voltage 0.9 V \leq V _{CCA} \leq 3.6 V			
V _{CCB}	13	11	13	11	_	B-port supply	voltage 0.9 V \leq V _{CCB} \leq 3.6 V		

Specifications 6

Absolute Maximum Ratings 6.1

over operating free-air temperature range (unless otherwise noted) ⁽¹⁾

			MIN	MAX	UNIT
V_{CCA}	Supply voltage		-0.5	4.6	V
V _{CCB}	Supply voltage		-0.5	4.6	V
v	Input voltage	A port	-0.5	4.6	V
VI		B port	-0.5	4.6	V
Vo	Voltage applied to any output in the high- impedance or power-off state	A port	-0.5	4.6	
		B port	-0.5	4.6	V
.,	Voltage applied to any output in the high or low state ⁽²⁾	A port	-0.5	V _{CCA} + 0.5	V
Vo		B port	-0.5	V _{CCB} + 0.5	
I _{IK}	Input clamp current	V ₁ < 0		-50	mA
I _{OK}	Output clamp current	V ₀ < 0		-50	mA
I _O	Continuous output current	•		±50	mA
	Continuous current through V _{CCA} , V _{CCB} , or	GND		±100	mA
T _{stg}	Storage temperature		-65	150	°C
TJ	Junction temperature		-40	125	°C

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. The value of V_{CCA} and V_{CCB} are provided in the recommended operating conditions table.

(2)

6.2 ESD Ratings

			VALUE	UNIT
		Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins ⁽¹⁾	±8000	
V _(ESD)	Electrostatic discharge	Charged device model (CDM), per JEDEC specification JESD22-C101, all $\ensuremath{pins^{(2)}}$	±1000	V

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. (2)

6.3 Recommended Operating Conditions⁽¹⁾⁽²⁾

			V _{CCA}	V _{CCB}	MIN	MAX	UNIT
V _{CCA} V _{CCB}	Supply voltage				0.9	3.6	V
V		Data inputs	0.9 V to 3.6 V	0.9 V to 3.6 V	$V_{CCI} \times 0.65$	V _{CCI}	V
VIH	High-level input voltage	OE/OE	0.9 V to 3.6 V	0.9 V to 3.6 V	$V_{CCA} \times 0.65$	3.6	v
		Data inputs	0.9 V to 3.6 V	0.9 V to 3.6 V	0	$V_{CCI} \times 0.35$	
VIL	Low-level input voltage	OE/OE	0.9 V to 1.2 V	0.9 V to 3.6 V	0	$V_{CCA} \times 0.3$	V
		OE/OE	1.2 V to 3.6 V	0.9 V to 3.6 V	0	$V_{CCA} \times 0.35$	
V	Voltage range applied to any output in	A-port	0.9 V to 3.6 V	0.9 V to 3.6 V	0	3.6	V
Vo	the high-impedance or power-off state	B-port	0.9 V to 3.6 V	0.9 V to 3.6 V	0	3.6	v
A #/ A	Input transition rise or fall rate	A-port inputs	0.9 V to 3.6 V	0.9 V to 3.6 V		40	20/1
$\Delta t / \Delta v$	Input transition rise or fall rate	B-port inputs	0.9 V to 3.6 V	0.9 V to 3.6 V		40	ns/V
T _A	Operating free-air temperature				-40	85	°C

(1) The A and B sides of an unused data I/O pair must be held in the same state, such as, both at V_{CCI} or both at GND.

(2) V_{CCI} is the supply voltage associated with the input port.

6.4 Thermal Information

			TXB03		
	THERMAL METRIC ⁽¹⁾		RUT (UQFN)	RSV (UQFN)	UNIT
			12 PINS	16 PINS	
R_{\thetaJA}	Junction-to-ambient thermal resistance		116.4	131.7	°C/W
R _{0JC(top)}	Junction-to-case (top) thermal resistance		45.7	55.8	°C/W
$R_{\theta JB}$	Junction-to-board thermal resistance		46.9	55.3	°C/W
ΨJT	Junction-to-top characterization parameter		0.6	1.4	°C/W
ΨЈВ	Junction-to-board characterization parameter		46.9	55.3	°C/W

(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.

6.5 Electrical Characteristics

over operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDI	TIONS	V _{CCA}	V _{CCB}	MIN	TYP	MAX	UNIT
V _{OHA}	High-level output voltage	I _{OH} = -20 μA	T _A = 25°C	0.9 V to 3.6 V		0.9 x V _{CCA}			V
V _{OLA}	Low-level output voltage	I _{OL} = 20 μA	–40°C to 85°C	0.9 V to 3.6 V				0.2	V
V _{OHB}	High-level output voltage	I _{OH} = -20 μA	T _A = 25°C		0.9 V to 3.6 V	0.9 х V _{ССВ}			V
V _{OLB}	Low-level output voltage	I _{OL} = 20 μA	-40°C to 85°C		0.9 V to 3.6 V			0.2	V
		$V_{I} = V_{CCI}$ or GND	$T_A = 25^{\circ}C$	0.9 V to 3.6 V	0.9 V to 3.6 V			±1	μA
I _I	OE		-40°C to 85°C	0.9 V 10 3.6 V	0.9 V 10 3.6 V			±2	μA
	A port	V_{I} or V_{O} = 0 to 3.6 V	$T_A = 25^{\circ}C$	- 0 V	0 V to 3.6 V			±1	
	A poir		-40°C to 85°C	0 v	0 0 10 3.6 0			±2	
l _{off}	P port	$V_{1} \text{ or } V_{0} = 0 \text{ to } 3.6 \text{ V}$	$T_A = 25^{\circ}C$	0.9 V to 3.6 V	0 V			±1	μA
	B port	$v_1 \text{ or } v_0 = 0 \text{ to } 3.6 \text{ v}$	-40°C to 85°C	0.9 V 10 3.6 V	0 0			±2	
	A or B port	OE = GND	$T_A = 25^{\circ}C$	0.9 V to 3.6 V	0.9 V to 3.6 V			±1	μA
I _{OZ}	A OF B POIL	OE = GND	-40°C to 85°C	0.9 V 10 3.6 V	0.9 V 10 3.6 V			±2	μA
I _{CCA}		$V_I = V_{CCI}$ or GND, $I_O = 0$	-40°C to 85°C	0.9 V to 3.6 V	0.9 V to 3.6 V			5	μA
I _{CCB}		$V_I = V_{CCI}$ or GND, $I_O = 0$	-40°C to 85°C	0.9 V to 3.6 V	0.9 V to 3.6 V			5	μA
I _{CCA} +	I _{CCB}	$V_{I} = V_{CCI}$ or GND, $I_{O} = 0$	-40°C to 85°C	0.9 V to 3.6 V	0.9 V to 3.6 V			10	μA
I _{CCZA}	High-Z state supply current	$V_{I} = V_{CCI}$ or GND, $I_{O} = 0$, OE = GND	–40°C to 85°C	0.9 V to 3.6 V	0.9 V to 3.6 V			5	μΑ
I _{CCZB}	High-Z state supply current	$V_{I} = V_{CCI}$ or GND, $I_{O} = 0$, OE = GND	-40°C to 85°C	0.9 V to 3.6 V	0.9 V to 3.6 V			5	μΑ
Ci	OE	$T_A = 25^{\circ}C$		0.9 V to 3.6 V	0.9 V to 3.6 V		3		pF
C _{io}	A port B port	T _A = 25°C, OE = GND		0.9 V to 3.6 V	0.9 V to 3.6 V		6.7 6.7		pF

6.6 Timing Requirements

over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	LOAD	V _{CCA}	V _{CCB}	MIN MAX	UNIT
	C _L = 15 pF	0.9 to 3.6 V	0.9 to 3.6 V	50	Mbps
	C _L = 15 pF	1.2 to 3.6 V	1.2 to 3.6 V	100	Mbps
	C _L = 15 pF	1.8 to 3.6 V	1.8 to 3.6 V	140	Mbps
	C _L = 30 pF	0.9 to 3.6 V	0.9 to 3.6 V	40	Mbps
Data rata	C _L = 30 pF	1.2 to 3.6 V	1.2 to 3.6 V	90	Mbps
Data rate	C _L = 30 pF	1.8 to 3.6 V	1.8 to 3.6 V	130	Mbps
	C _L = 50 pF	1.2 to 3.6 V	1.2 to 3.6 V	80	Mbps
	C _L = 50 pF	1.8 to 3.6 V	1.8 to 3.6 V	120	Mbps
	C _L = 100 pF	1.2 to 3.6 V	1.2 to 3.6 V	70	Mbps
	C _L = 100 pF	1.8 to 3.6 V	1.8 to 3.6 V	100	Mbps

6.7 Switching Characteristics

over operating free-air temperature range (unless otherwise noted). (For parameter descriptions, see Figure 2 and Figure 3.)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	LOAD	V _{CCA}	V _{CCB}	MIN	TYP ⁽¹⁾	МАХ	UNIT	
	A	В	C _L = 15	0.9-3.6	0.9-3.6		18.9	30		
	A	В	C _L = 15	1.2-3.6	1.2-3.6		7.5	11.5		
	A	В	C _L = 15	1.8-3.6	1.8-3.6		3.7	4.8		
	A	В	C _L = 30	0.9-3.6	0.9-3.6		19.5	34		
	A	В	C _L = 30	1.2-3.6	1.2-3.6		7.8	11.9		
	A	В	C _L = 30	1.8-3.6	1.8-3.6		3.8	5.2	ns	
	A	В	C _L = 50	1.2-3.6	1.2-3.6		8	12.3		
	A	В	C _L = 50	1.8-3.6	1.8-3.6		4	5.4		
	A	В	C _L = 100	1.2-3.6	1.2-3.6		8.6	13.5		
	A	В	C _L = 100	1.8-3.6	1.8-3.6		4.5	6		
t _{pd}	В	А	C _L = 15	0.9-3.6	0.9-3.6		18.9	30		
	В	А	C _L = 15	1.2-3.6	1.2-3.6		7.5	11.5		
	В	А	C _L = 15	1.8-3.6	1.8-3.6		3.7	5		
	В	А	C _L = 30	0.9-3.6	0.9-3.6		19.5	34		
	В	А	C _L = 30	1.2-3.6	1.2-3.6		7.8	11.9	9	
	В	A	C _L = 30	1.8-3.6	1.8-3.6		3.8	5.2	ns	
	В	А	C _L = 50	1.2-3.6	1.2-3.6		8	12.3		
	В	A	C _L = 50	1.8-3.6	1.8-3.6		4	5.4		
	В	А	C _L = 100	1.2-3.6	1.2-3.6		8.6	13.5		
	В	А	C _L = 100	1.8-3.6	1.8-3.6		4.5	6		
				0.9-3.6	0.9-3.6			262		
		А	C _L = 15	1.2-3.6	1.2-3.6			64		
•	OE			1.8-3.6	1.8-3.6			37	20	
t _{en}	UE			0.9-3.6	0.9-3.6			332	ns	
		В	C _L = 15	1.2-3.6	1.2-3.6			76		
				1.8-3.6	1.8-3.6			41	1	
	OE	A	C _L = 15	0.9-3.6	0.9-3.6			172	ns	
t _{dis}	UE	В	C _L = 15	0.9-3.6	0.9-3.6			169	ns	
t _{rB} , t _{fB}	B-port rise and fall times		C _L = 15	0.9-3.6	0.9-3.6		2.95		ns	
t _{sA} , t _{sA}	A-port rise and fall times		C _L = 15	0.9-3.6	0.9-3.6		3.1		ns	
t _{SK(O)}	Channel-to-channel skew		C _L = 15	0.9-3.6	0.9-3.6			0.15	ns	

(1) $T_A = 25^{\circ}C$

6.8 Operating Characteristics

 C_{pd} - power dissipation capacitance measured at $T_A = 25^{\circ}C$.

	PARAMETER	TEST CONDITIONS	TYP ⁽¹⁾	UNIT
C	A-port input, B-port output		34	pF
C _{pdA}	B-port input, A-port output	$C_1 = 0$, f = 10 MHz, t _r = t _f = 1 ns, OE = V_{CCA} (outputs enabled)	34	рг
<u> </u>	A-port input, B-port output	$C_L = 0, T = T0 \text{ IMPZ}, t_r = t_f = T \text{ INS}, OE = V_{CCA} (butputs enabled)$	34	<u>،</u> ۲
C _{pdB}	B-port input, A-port output		34	pF
<u> </u>	A-port input, B-port output		0.01	<u>،</u> ۲
C _{pdA}	B-port input, A-port output	$C_1 = 0$, f = 10 MHz, t _r = t _r = 1 ns, OE = GND (outputs disabled)	0.01	pF
6	A-port input, B-port output	$O_L = 0, i = 10$ MHz, $i_r = i_f = 1$ Hs, $O_L = GND$ (outputs disabled)	0.01	ΣL
C _{pdB}	B-port input, A-port output		0.01	pF

(1) $~V_{CCA},\,V_{CCB}$ 0.9 V to 3.6 V

6.9 Typical Characteristics

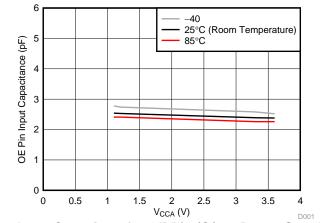
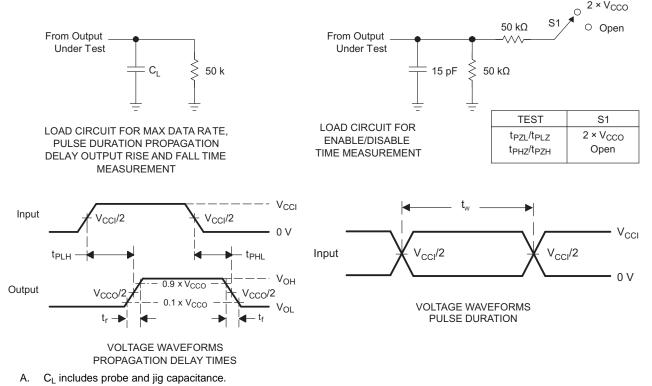
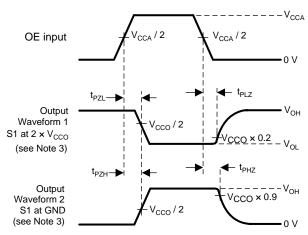



Figure 1. Input Capacitors for OE Pin (C_I) vs Power Supply (V_{CCA})

7 Parameter Measurement Information



- B. All input pulses are supplied by generators having the following characteristics: PRR 10 MHz, $Z_0 = 50 \Omega$, $dv/dt \ge 1 V/ns$.
- C. The outputs are measured one at a time, with one transition per measurement.
- D. t_{PLH} and t_{PHL} are the same as t_{pd} .
- E. V_{CCI} is the V_{CC} associated with the input port.
- F. V_{CCO} is the V_{CC} associated with output port.
- G. All parameters and waveforms are not applicable to all devices.

Figure 2. Load Circuits and Voltage Waveforms

8

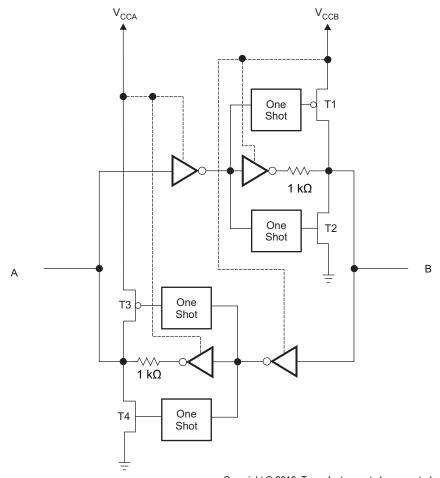
Parameter Measurement Information (continued)

- (1) t_{PLZ} and t_{PHZ} are the same as t_{dis} .
- (2) t_{PZL} and t_{PZH} are the same as t_{en} .
- (3) Waveform 1 is for an output with internal such that the output is high, except when OE is high. Waveform 2 is for an output with conditions such that the output is low, except when OE is high.

Figure 3. Enable and Disable Times

TEXAS INSTRUMENTS

8 Detailed Description


8.1 Overview

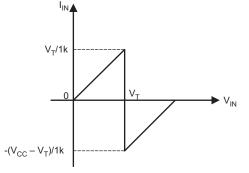
The TXB0304 and TXBN0304 can be used in level-translation applications for interfacing devices or systems operating at different interface voltages with one another.

8.1.1 Architecture

The TXB0304 and TXBN0304 architecture (see Figure 4) does not require a direction-control signal to control the direction of data flow from A to B or from B to A. In a dc state, the output drivers of the TXB0304 can maintain a high or low, but are designed to be weak, so that they can be overdriven by an external driver when data on the bus starts flowing the opposite direction. The output one shots detect rising or falling edges on the A or B ports. During a rising edge, the one shot turns on the PMOS transistors (T1, T3) for a short duration, which speeds up the low-to-high transition. Similarly, during a falling edge, the one shot turns on the NMOS transistors (T2, T4) for a short duration, which speeds up the high-to-low transition. The typical output impedance during output transition is 30Ω at V_{CCO} = 0.9 V to 1 V, 10Ω at V_{CCO} = 1.1 V to 1.7 V, and 5Ω at V_{CCO} = 1.8 V to 3.3 V.

8.2 Functional Block Diagram

Copyright © 2016, Texas Instruments Incorporated


Figure 4. Architecture of TXB0304 I/O Cell

8.3 Feature Description

8.3.1 Input Driver Requirements

Typical I_{IN} vs V_{IN} characteristics of the TXB0304//TXBN0304 are shown in Figure 5. For proper operation, the device driving the data I/Os of the TXB0304 must have drive strength of at least ±3 mA.

- (1) V_{CC} is power supply of TXB0304.
- (2) V_T is the input threshold voltage of TXB0304 (typically it is $V_{CC}/2$).

8.4 Device Functional Modes

8.4.1 Enable and Disable

The TXB0304 has an OE input that is used to disable the device by setting OE = low (\overline{OE} = high for TXBN0304), which places all I/Os in the high-impedance (Hi-Z) state. The disable time (t_{dis}) indicates the delay between when OE goes low and when the outputs actually get disabled (Hi-Z). The enable time (t_{en}) indicates the amount of time the user must allow for the one-shot circuitry to become operational after OE is high.

8.4.2 Pullup or Pulldown Resistor on I/O Lines

The TXB0304/TXBN0304 is designed to drive capacitive loads of up to 100 pF. The output drivers of the TXB0304 have low dc drive strength. If pull-up or pull-down resistors are connected externally to the data I/Os, their values must be kept higher than 20 k Ω to ensure that they do not contend with the output drivers of the TXB0304. but if the receiver is integrated with the smaller pull down or pull up resistor, below formula can be used for estimation to evaluate the V_{OH} and V_{OL}.

$$V_{ol} = V_{CCout} \times \frac{1.5 k\Omega}{1.5 k\Omega + R_{pu}}$$

$$V_{oh} = V_{CCout} \times \frac{R_{pd}}{1.5 k\Omega + R_{pd}}$$
(1)

where

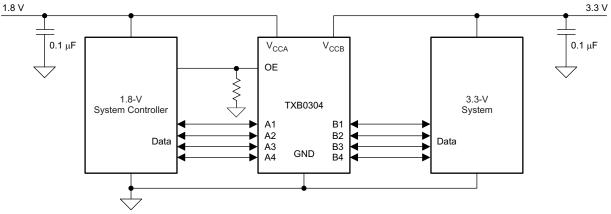
- V_{CCOUT} is the output port supply voltage on either V_{CCA} or V_{CCB}
- R_{PD} is the value of the external pull down resistor
- R_{PU} is the value of the external pull up resistor
- 1.5 k Ω is the counting the variation of the serial resistor 1k Ω in the I/O line. (2)

Because of this restriction on external resistors, the TXB0304 should not be used in applications such as I²C or 1-Wire where an open-drain driver is connected on the bidirectional data I/O. For these applications, use a device from the TI TXS010X series of level translators.

Texas Instruments

www.ti.com

9 Application and Implementation


NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

9.1 Application Information

The TXB0304 can be used in level-translation applications for interfacing devices or systems operating at different interface voltages with one another. It can only translate push-pull CMOS logic outputs. If for open-drain signal translation, please refer to TI TXS010X products. Any external pull-down or pull-up resistors are recommended larger than 20 k Ω .

9.2 Typical Application

Copyright © 2016, Texas Instruments Incorporated

Figure 6. Typical Application Schematic

9.2.1 Design Requirements

For this design example, use the parameters listed in Table 1.

Table	1. Desig	n Parameters
-------	----------	--------------

DESIGN PARAMETERS	EXAMPLE VALUE			
Input voltage range	0.9 V to 3.6 V			
Output voltage range	0.9 V to 3.6 V			

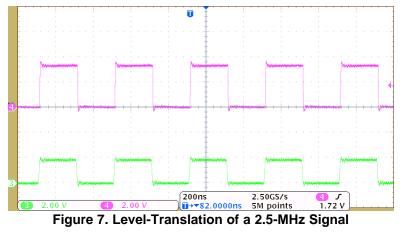
9.2.2 Detailed Design Procedure

To begin the design process, determine the following:

• Input voltage range

- Use the supply voltage of the device that is driving the TXB0304 device to determine the input voltage range. For a valid logic high the value must exceed the V_{IH} of the input port. For a valid logic low the value must be less than the V_{IL} of the input port.

Output voltage range


- Use the supply voltage of the device that the TXB0304 device is driving to determine the output voltage range.

- Don't recommend to have the external pull-up or pull-down resistors. If mandatory, it is recommended the value should be larger than 20 k Ω .

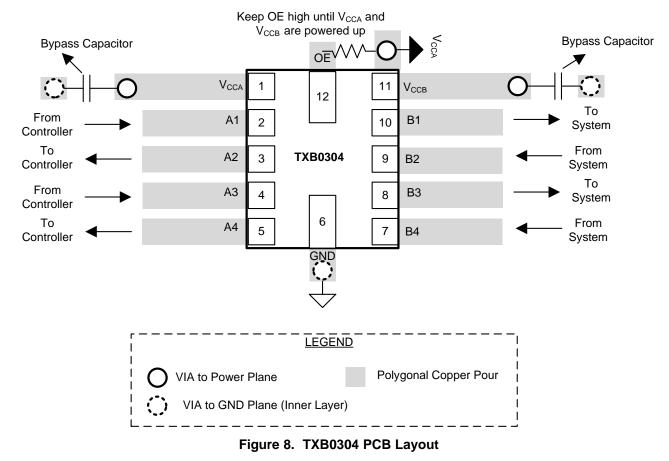
• An external pull-down or pull-up resistor decreases the output V_{OH} and V_{OL}. Use the below equations in section 8.5.2 to draft estimate the V_{OH} and V_{OL} as a result of an external pull-down and pull-up resistor.

9.2.3 Application Curve

10 Power Supply Recommendations

During operation, TXB0304 can work at both VCCA \leq VCCB and VCCA \geq VCCB. During power-up sequencing, any power supply can be ramped up first. Both the supplies are recommended to be powered down together. The TXB0304 has circuitry that disables all input/output ports when either VCC is switched off (VCCA/B = 0 V).

11 Layout


11.1 Layout Guidelines

To ensure reliability of the device, following common printed-circuit board layout guidelines is recommended.

- Bypass capacitors should be used on power supplies. And should be placed as close as possible to the $V_{\rm CCA},$ $V_{\rm CCB}$ pin and GND pin
- Short trace-lengths should be used to avoid excessive loading.
- For long transmission lines, place a series resistor equivalent to the impedance of the transmission lines to avoid signal integrity issues
- PCB signal trace-lengths must be kept short enough so that the round-trip delay of any reflection is less than the one-shot duration, approximately 10 ns, ensuring that any reflection encounters low impedance at the source driver.
- Pullup resistors are not required on both sides for Logic I/O.
- If pullup or pulldown resistors are needed, the resistor value must be over 20 k Ω .
- 20 k Ω is a safe recommended value, if the customer can accept higher Vol or lower Voh, smaller pull up or pull down resistor is allowed, the draft estimation is Vol = Vccout × 1.5k/(1.5k + Rpu) and Voh = Vccout × Rpd/(1.5k + Rpd).
- If pullup resistors are needed, please refer to the TXS0104 or contact TI.
- For detailed information, refer to application note SCEA043.

11.2 Layout Example

12 Device and Documentation Support

12.1 Device Support

12.1.1 Development Support

For TI TXS010X products, go to www.ti.com/product/txs0101.

For the TXB0304 IBIS Model, see SCEM544.

12.2 Documentation Support

12.2.1 Related Documentation

For related documentation see the following:

- Application Report, A Guide to Voltage Translation With TXB-Type Translators, SCEA043
- User's Guide, TXB0304 Evaluation Module, SCEU003

12.3 Community Resources

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E[™] Online Community *TI's Engineer-to-Engineer (E2E) Community.* Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and contact information for technical support.

12.4 Trademarks

E2E is a trademark of Texas Instruments. All other trademarks are the property of their respective owners.

12.5 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

12.6 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

13 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Gly	(2)	(6)	(3)		(4/5)	
TXB0304RSVR	ACTIVE	UQFN	RSV	16	3000	RoHS & Green	NIPDAUAG	Level-1-260C-UNLIM	-40 to 85	ZTJ	Samples
TXB0304RUTR	ACTIVE	UQFN	RUT	12	3000	RoHS & Green	NIPDAU NIPDAUAG	Level-1-260C-UNLIM	-40 to 85	(737, 73R, 73V)	Samples
TXBN0304RSVR	ACTIVE	UQFN	RSV	16	3000	RoHS & Green	NIPDAU NIPDAUAG	Level-1-260C-UNLIM	-40 to 85	ΖТК	Samples
TXBN0304RUTR	ACTIVE	UQFN	RUT	12	3000	RoHS & Green	NIPDAUAG	Level-1-260C-UNLIM	-40 to 85	74R	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

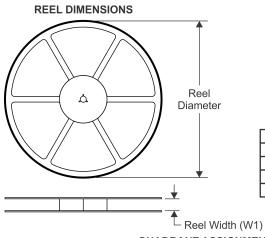
⁽⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

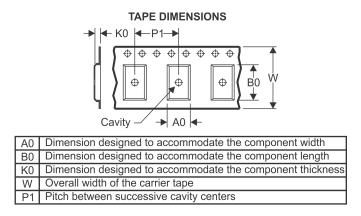
⁽⁶⁾ Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and

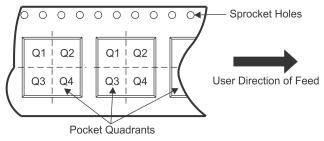
10-Dec-2020

continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

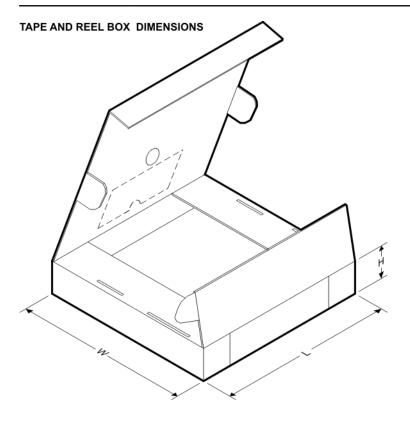

PACKAGE MATERIALS INFORMATION

www.ti.com


Texas Instruments

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE


Device		Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TXB0304RSVR	UQFN	RSV	16	3000	177.8	12.4	2.0	2.8	0.7	4.0	12.0	Q1
TXB0304RUTR	UQFN	RUT	12	3000	180.0	9.5	1.9	2.3	0.75	4.0	8.0	Q1
TXBN0304RSVR	UQFN	RSV	16	3000	177.8	12.4	2.0	2.8	0.7	4.0	12.0	Q1
TXBN0304RSVR	UQFN	RSV	16	3000	330.0	12.4	2.1	2.9	0.75	4.0	12.0	Q1
TXBN0304RUTR	UQFN	RUT	12	3000	180.0	8.4	1.95	2.3	0.75	4.0	8.0	Q1

TEXAS INSTRUMENTS

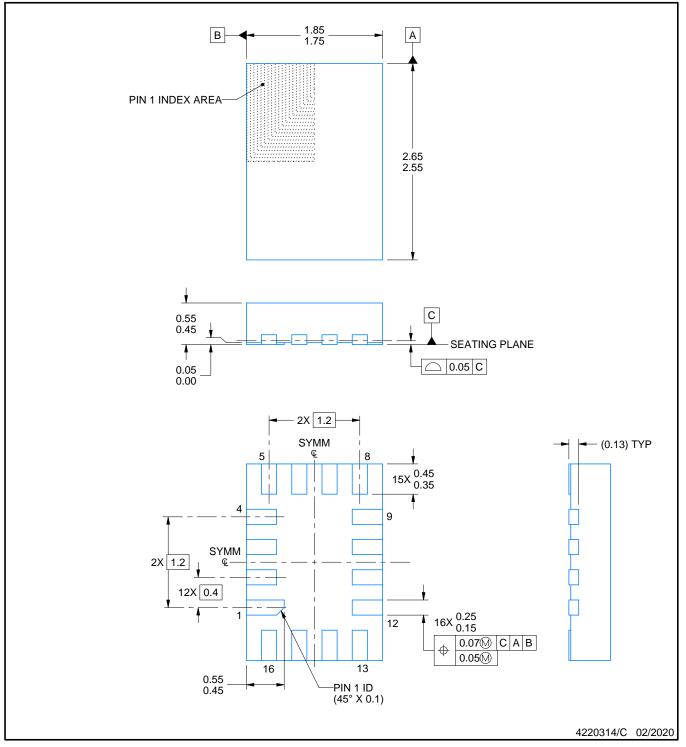
www.ti.com

PACKAGE MATERIALS INFORMATION

24-Jul-2020

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TXB0304RSVR	UQFN	RSV	16	3000	202.0	201.0	28.0
TXB0304RUTR	UQFN	RUT	12	3000	184.0	184.0	19.0
TXBN0304RSVR	UQFN	RSV	16	3000	202.0	201.0	28.0
TXBN0304RSVR	UQFN	RSV	16	3000	184.0	184.0	19.0
TXBN0304RUTR	UQFN	RUT	12	3000	202.0	201.0	28.0


RSV0016A

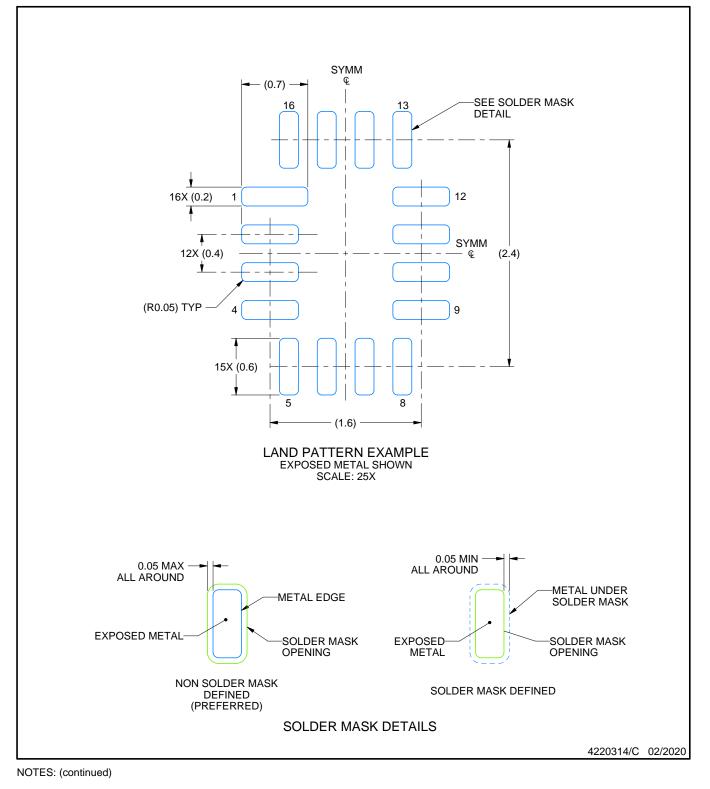
PACKAGE OUTLINE

UQFN - 0.55 mm max height

ULTRA THIN QUAD FLATPACK - NO LEAD

NOTES:

All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
 This drawing is subject to change without notice.



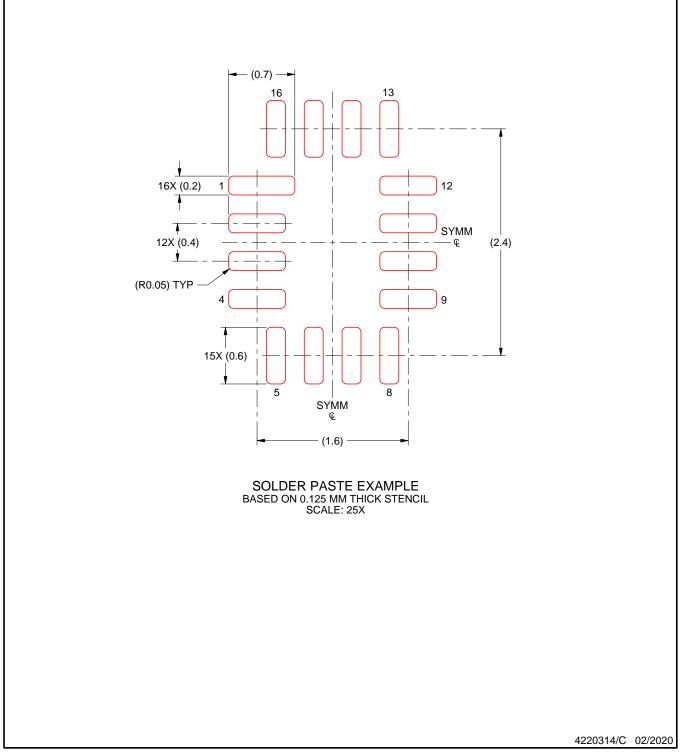
RSV0016A

EXAMPLE BOARD LAYOUT

UQFN - 0.55 mm max height

ULTRA THIN QUAD FLATPACK - NO LEAD

3. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).

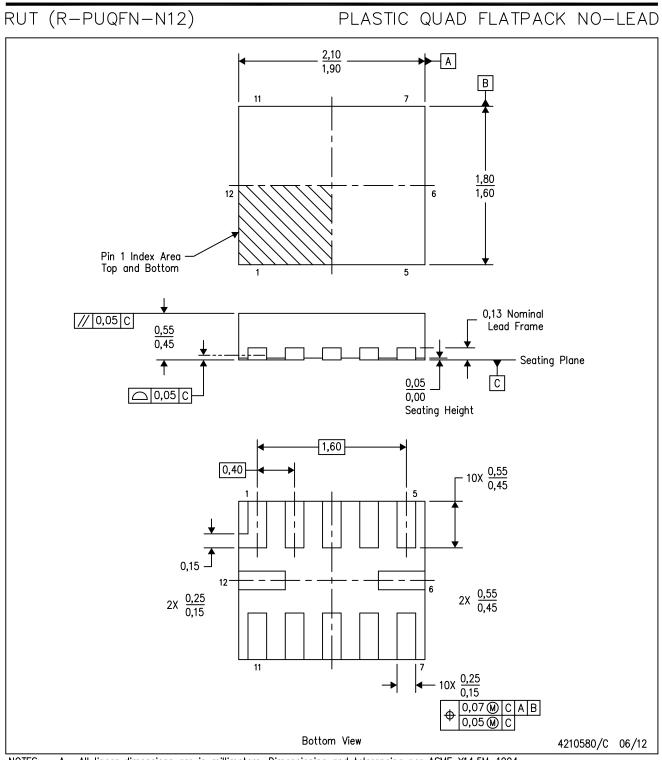


RSV0016A

EXAMPLE STENCIL DESIGN

UQFN - 0.55 mm max height

ULTRA THIN QUAD FLATPACK - NO LEAD

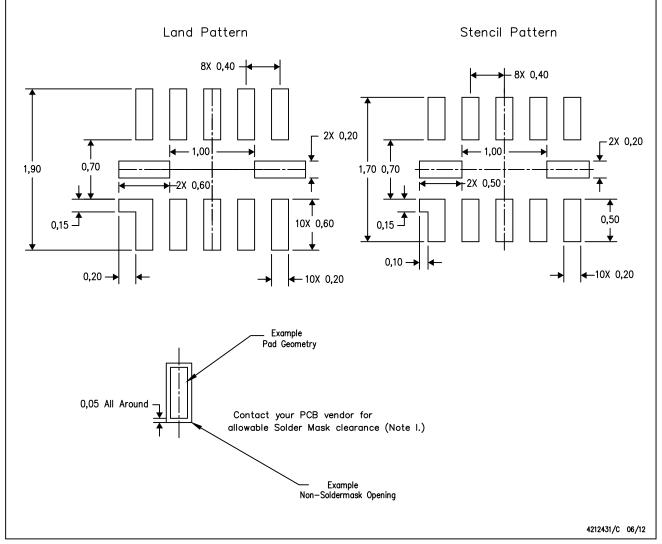


NOTES: (continued)

4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

MECHANICAL DATA

NOTES: All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994. Α.


This drawing is subject to change without notice. QFN (Quad Flatpack No-Lead) package configuration. Β.

C.

LAND PATTERN DATA

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Customers should contact their board fabrication site for minimum solder mask web tolerances between signal pads.
- E. Maximum stencil thickness 0,1016 mm (4 mils). All linear dimensions are in millimeters.
- F. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations.
- G. Over-printing land for larger area ratio is not advised due to land width and bridging potential. Exersize extreme caution.
- H. Suggest stencils cut with lasers such as Fiber Laser that produce the greatest positional accuracy.
- I. Component placement force should be minimized to prevent excessive paste block deformation.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2020, Texas Instruments Incorporated