- Advanced LinCMOS ${ }^{\text {™ }}$ Silicon-Gate

Technology

- 8-Bit Resolution
- Differential Reference Inputs
- Parallel Microprocessor Interface
- Conversion and Access Time Over Temperature Range Read Mode . . . 2.5 us Max
- No External Clock or Oscillator Components Required
- On-Chip Track and Hold
- Single 5-V Supply
- TLC0820A Is Direct Replacement for National Semiconductor ADC0820C/CC and Analog Devices AD7820K/B/T

description

The TLC0820AC and the TLC0820AI are Advanced LinCMOSTM 8-bit analog-to-digital converters each consisting of two 4-bit flash converters, a 4-bit digital-to-analog converter, a summing (error) amplifier, control logic, and a result latch circuit. The modified flash technique allows low-power integrated circuitry to complete an 8 -bit conversion in 1.18μ s over temperature. The on-chip track-and-hold circuit has a 100 -ns sample window and allows these devices to convert continuous analog signals having slew rates of up to $100 \mathrm{mV} / \mu \mathrm{s}$ without external sampling components. TTL-compatible 3 -state output drivers and two modes of operation allow interfacing to a variety of microprocessors. Detailed information on interfacing to most popular microprocessors is readily available from the factory.

AVAILABLE OPTIONS

$\mathrm{T}_{\text {A }}$	TOTAL UNADJUSTED ERROR	PACKAGE			
		$\begin{aligned} & \text { SSOP } \\ & \text { (DB) } \end{aligned}$	PLASTIC SMALL OUTLINE (DW)	PLASTIC CHIP CARRIER (FN)	PLASTIC DIP (N)
$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	± 1 LSB	TLC0820ACDB	TLC0820ACDW	TLC0820ACFN	TLC0820ACN
$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	± 1 LSB	-	TLC0820AIDW	TLC0820AIFN	TLC0820AIN

TLC0820AC, TLC0820AI

Advanced LinCMOS ${ }^{\text {T }}$ HIGH-SPEED 8-BIT ANALOG-TO-DIGITAL CONVERTERS USING MODIFIED FLASH TECHNIQUES
SLAS064A - SEPTEMBER 1986 - REVISED JUNE 1994
functional block diagram

Terminal Functions

TERMINAL		I/O	DESCRIPTION
NAME	NO.		
ANLG IN	1	I	Analog input
$\overline{\overline{C S}}$	13	1	Chip select. $\overline{\mathrm{CS}}$ must be low in order for $\overline{\mathrm{RD}}$ or $\overline{\mathrm{WR}}$ to be recognized by the ADC.
D0	2	0	Digital, 3-state output data, bit 1 (LSB)
D1	3	0	Digital, 3-state output data, bit 2
D2	4	0	Digital, 3-state output data, bit 3
D3	5	0	Digital, 3-state output data, bit 4
D4	14	0	Digital, 3-state output data, bit 5
D5	15	0	Digital, 3-state output data, bit 6
D6	16	0	Digital, 3-state output data, bit 7
D7	17	0	Digital, 3-state output data, bit 8 (MSB)
GND	10		Ground
$\overline{\text { INT }}$	9	0	Interrupt. In the write-read mode, the interrupt output (INT) going low indicates that the internal count-down delay time, $\mathrm{t}_{\mathrm{d}(\mathrm{int})}$, is complete and the data result is in the output latch. The delay time $\mathrm{t}_{\mathrm{d} \text { (int) }}$ is typically 800 ns starting after the rising edge of $\overline{\mathrm{WR}}$ (see operating characteristics and Figure 3). If $\overline{\mathrm{RD}}$ goes low prior to the end of t_{d} (int), $\overline{\operatorname{INT}}$ goes low at the end of $\mathrm{t}_{\mathrm{d}}(\mathrm{RLL})$ and the conversion results are available sooner (see Figure 2). $\overline{\mathrm{NT}}$ is reset by the rising edge of either $\overrightarrow{\mathrm{RD}}$ or $\overline{\mathrm{CS}}$.
MODE	7	I	Mode select. MODE is internally tied to GND through a $50-\mu \mathrm{A}$ current source, which acts like a pulldown resistor. When MODE is low, the read mode is selected. When MODE is high, the write-read mode is selected.
NC	19		No internal connection
$\overline{\text { OFLW }}$	18	0	Overflow. Normally $\overline{\mathrm{OFLW}}$ is a logical high. However, if the analog input is higher than $\mathrm{V}_{\text {ref }}, \overline{\mathrm{OFLW}}$ will be low at the end of conversion. It can be used to cascade two or more devices to improve resolution (9 or 10 bits).
$\overline{\mathrm{RD}}$	8	1	Read. In the write-read mode with $\overline{\mathrm{CS}}$ low, the 3-state data outputs D0 through D7 are activated when $\overline{\mathrm{RD}}$ goes low. $\overline{\mathrm{RD}}$ can also be used to increase the conversion speed by reading data prior to the end of the internal count-down delay time. As a result, the data transferred to the output latch is latched after the falling edge of $\overline{\mathrm{RD}}$. In the read mode with $\overline{\mathrm{CS}}$ low, the conversion starts with $\overline{\mathrm{RD}}$ going low. $\overline{\mathrm{RD}}$ also enables the 3 -state data outputs on completion of the conversion. RDY going into the high-impedance state and INT going low indicate completion of the conversion.
REF-	11	1	Reference voltage. REF-is placed on the bottom of the resistor ladder.
REF+	12	1	Reference voltage. REF + is placed on the top of the resistor ladder.
V_{CC}	20		Power supply voltage
$\overline{\text { WR/RDY }}$	6	I/O	Write ready. In the write-read mode with $\overline{\mathrm{CS}}$ low, the conversion is started on the falling edge of the $\overline{\mathrm{WR}}$ input signal. The result of the conversion is strobed into the output latch after the internal count-down delay time, $\mathrm{t}_{\mathrm{d}(\mathrm{int})}$, provided that the $\overline{\mathrm{RD}}$ input does not go low prior to this time. The delay time $t_{d}(\mathrm{int})$ is approximately 800 ns . In the read mode, RDY (an open-drain output) goes low after the falling edge of $\overline{\mathrm{CS}}$ and goes into the high-impedance state when the conversion is strobed into the output latch. It is used to simplify the interface to a microprocessor system.

TLC0820AC, TLC0820AI

Advanced LinCMOS ${ }^{\text {TM }}$ HIGH-SPEED 8-BIT ANALOG-TO-DIGITAL CONVERTERS USING MODIFIED FLASH TECHNIQUES

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \dagger

Supply voltage, V_{CC} (see Note 1) ... 10 V

Output voltage range, all outputs (see Note 1) ... 0.2 V to $\mathrm{V}_{\mathrm{CC}}+0.2 \mathrm{~V}$
Operating free-air temperature range: TLC0820AC .. $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
TLC0820AI .. $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Storage temperature range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Case temperature for 10 seconds: FN package .. $260^{\circ} \mathrm{C}$
Lead temperature $1,6 \mathrm{~mm}$ ($1 / 16 \mathrm{inch}$) from case for 10 seconds: DB, DW or N package $260^{\circ} \mathrm{C}$
\dagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTE 1: All voltages are with respect to network GND.

recommended operating conditions

			MIN	NOM	MAX	UNIT
Supply voltage, V_{CC}			4.5	5	8	V
Analog input voltage			-0.1		$\mathrm{V}_{\mathrm{CC}}+0.1$	V
Positive reference voltage, $\mathrm{V}_{\text {ref }+}$			$\mathrm{V}_{\text {ref- }}$		V_{CC}	V
Negative reference voltage, $\mathrm{V}_{\text {ref }}$ -			GND		$\mathrm{V}_{\text {ref+ }}$	V
High-level input voltage, V_{IH}	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$ to 5.25 V	$\overline{\mathrm{CS}}, \overline{\mathrm{WR}} / \mathrm{RDY}, \overline{\mathrm{RD}}$	2			V
		MODE	3.5			
Low-level input voltage, $\mathrm{V}_{\text {IL }}$	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$ to 5.25 V	$\overline{\mathrm{CS}}, \overline{\mathrm{WR}} / \mathrm{RDY}, \overline{\mathrm{RD}}$			0.8	V
		MODE			1.5	
Pulse duration, write in write-read mode, $\mathrm{t}_{\mathrm{w}}(\mathrm{W})$ (see Figures 2, 3, and 4)			0.5		50	$\mu \mathrm{s}$
Operating free-air temperature, T_{A}	TLC0820AC		0		70	${ }^{\circ} \mathrm{C}$
	TLC0820AI		-40		85	

electrical characteristics at specified operating free-air temperature, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ (unless otherwise noted)

PARAMETER			TEST CONDITIONS	TA ${ }^{\dagger}$	MIN	TYP	MAX	UNIT	
V_{OH}	High-level output voltage	$\frac{\text { D0-D7, }}{\text { OFLWT, or }}$	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \\ & \mathrm{lOH}=-360 \mu \mathrm{~A} \end{aligned}$	Full range	2.4			V	
			$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \\ & \mathrm{IOH}=-10 \mu \mathrm{~A} \end{aligned}$	Full range	4.5				
				$25^{\circ} \mathrm{C}$	4.6				
VOL	Low-level output voltage	D0-D7, OFLW, INT, or $\overline{W R} / R D Y$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \\ & \mathrm{lOL}=1.6 \mathrm{~mA} \end{aligned}$	Full range			0.4	V	
				$25^{\circ} \mathrm{C}$			0.34		
IIH	High-level input current	$\overline{\mathrm{CS}}$ or $\overline{\mathrm{RD}}$	$\mathrm{V}_{\mathrm{IH}}=5 \mathrm{~V}$	Full range		0.005	1	$\mu \mathrm{A}$	
		WR/RDY		Full range			3		
		,RDY		$25^{\circ} \mathrm{C}$		0.1	0.3		
		MODE		Full range			200		
				$25^{\circ} \mathrm{C}$		50	170		
IIL	Low-level input current	$\overline{\mathrm{CS}}, \overline{\mathrm{WR}} / \mathrm{RDY}, \overline{\mathrm{RD}}$, or MODE	V IL $=0$	Full range		-0.005	-1	$\mu \mathrm{A}$	
IOZ	Off-state (high-impedance-state) output current	D0-D7 or $\overline{\mathrm{WR}} / \mathrm{RDY}$	$\mathrm{V}_{\mathrm{O}}=5 \mathrm{~V}$	Full range			3	$\mu \mathrm{A}$	
				$25^{\circ} \mathrm{C}$		0.1	0.3		
			$\mathrm{V}_{\mathrm{O}}=0$	Full range			-3		
				$25^{\circ} \mathrm{C}$		-0.1	-0.3		
II Analog input current			CS at $5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{I}}=5 \mathrm{~V}$	Full range			3	$\mu \mathrm{A}$	
				$25^{\circ} \mathrm{C}$			0.3		
			CS at $5 \mathrm{~V}, \quad \mathrm{~V}=0$	Full range			-3		
				$25^{\circ} \mathrm{C}$			-0.3		
Ios	Short-circuit output current	D0-D7, $\overline{O F L W}, \overline{I N T}$, or $\overline{W R} / R D Y$	$\mathrm{V}_{\mathrm{O}}=5 \mathrm{~V}$	Full range	7			mA	
				$25^{\circ} \mathrm{C}$	8.4	14			
		7 or	$\mathrm{V}_{\mathrm{O}}=0$	Full range	-6				
		D0-D7 or OFL		$25^{\circ} \mathrm{C}$	-7.2	-12			
		INT		Full range	-4.5				
				$25^{\circ} \mathrm{C}$	-5.3	-9			
Rref	Reference resistance			Full range	1.25		6	k Ω	
				$25^{\circ} \mathrm{C}$	1.4	2.3	5.3		
ICC	Supply current		$\overline{\mathrm{CS}}, \overline{\mathrm{WR}} / \mathrm{RDY}$, and $\overline{R D}$ at 0 V	Full range			15	mA	
			$25^{\circ} \mathrm{C}$		7.5	13			
C_{i}	Input capacitance	D0-D7			Full range		5		pF
		ANLG IN				45			
C_{0}	Output capacitance	D0-D7		Full range			5	pF	

\dagger Full range is as specified in recommended operating conditions.

TLC0820AC, TLC0820AI

Advanced LinCMOS ${ }^{\text {TM }}$ HIGH-SPEED 8-BIT ANALOG-TO-DIGITAL CONVERTERS USING MODIFIED FLASH TECHNIQUES
SLAS064A - SEPTEMBER 1986 - REVISED JUNE 1994
operating characteristics, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~V}_{\text {ref }+}=5 \mathrm{~V}, \mathrm{~V}_{\text {ref- }}=0, \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (unless otherwise

PARAMETER		TEST CONDITIONS \dagger		MIN	TYP	MAX	$\begin{gathered} \hline \text { UNIT } \\ \hline \text { LSB } \end{gathered}$
kSVS	Supply-voltage sensitivity	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%$,	$\mathrm{T}_{\mathrm{A}}=\mathrm{MIN}$ to MAX		$\pm 1 / 16$	$\pm 1 / 4$	
	Total unadjusted error \ddagger	MODE at 0 V ,	$\mathrm{T}_{\mathrm{A}}=\mathrm{MIN}$ to MAX			1	LSB
$\mathrm{t}_{\operatorname{conv}(\mathrm{R})}$	Conversion time, read mode	MODE at 0 V ,	See Figure 1		1.6	2.5	$\mu \mathrm{s}$
$\mathrm{ta}_{\mathrm{a}}(\mathrm{R})$	Access time, $\overline{\mathrm{RD}} \downarrow$ to data valid	MODE at 0 V ,	See Figure 1		$\begin{gathered} \mathrm{t}_{\mathrm{conv}(\mathrm{R})}^{+20} \end{gathered}$	$\begin{array}{r} \mathrm{t}_{\mathrm{Conv}(\mathrm{R})}+50 \end{array}$	ns
$\mathrm{ta}_{\text {(R1) }}$	Access time, $\overline{\mathrm{RD}} \downarrow$ to data valid	MODE at 5 V ,	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		190	280	ns
		$\mathrm{t}_{\mathrm{d}}(\mathrm{WR})<\mathrm{t}_{\mathrm{d}}($ int $)$, See Figure 2	$C_{L}=100 \mathrm{pF}$		210	320	
$\mathrm{ta}_{\mathrm{a}}(\mathrm{R} 2)$	Access time, RD \downarrow to data valid	MODE at 5 V , $\mathrm{t}_{\mathrm{d}}(\mathrm{WR})>\mathrm{t}_{\mathrm{d}}(\mathrm{int})$, See Figure 3	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		70	120	ns
			$C_{L}=100 \mathrm{pF}$		90	150	
$\mathrm{ta}_{\mathrm{a}}($ INT $)$	Access time, $\overline{\text { INT }} \downarrow$ to data valid	MODE at 5 V ,	See Figure 4		20	50	ns
${ }^{\text {dis }}$	Disable time, RD \uparrow to data valid	$R_{L}=1 \mathrm{k} \Omega, \quad C_{L}=10 \mathrm{pF}$, See Figures 1, 2, 3, and 5			70	95	ns
$\mathrm{t}_{\mathrm{d} \text { (int) }}$	Delay time, WR/RDY个 to INT \downarrow	MODE at $5 \mathrm{~V}, \quad \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$, See Figures 2, 3, and 4			800	1300	ns
$\mathrm{td}(\mathrm{NC})$	Delay time, to next conversion	See Figures 1, 2, 3, and 4		500			ns
$\mathrm{t}_{\mathrm{d}(\mathrm{WR})}$	Delay time, $\overline{\mathrm{WR}} / \mathrm{RDY} \uparrow$ to $\overline{\mathrm{RD}} \downarrow$ in write-read mode	See Figure 2		0.4			$\mu \mathrm{S}$
$\mathrm{t}_{\mathrm{d} \text { (RDY) }}$	Delay time, CS \downarrow to WR/RDY \downarrow	MODE at 0 V , See Figure 1	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF},$		50	100	ns
$\mathrm{t}_{\mathrm{d}(\mathrm{RIH})}$	Delay time, $\overline{\mathrm{RD}} \uparrow$ to $\overline{\mathrm{NT} T} \uparrow$	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$,	See Figures 1, 2, and 3		125	225	ns
t_{d} (RIL)	Delay time, RD \downarrow to $\mathrm{INT} \downarrow$	MODE at 5 V , See Figure 2	$\mathrm{t}_{\mathrm{d}}(\mathrm{WR})<\mathrm{t}_{\mathrm{d}(\mathrm{int})},$		200	290	ns
$\mathrm{t}_{\mathrm{d}}(\mathrm{WIH})$	Delay time, $\overline{\mathrm{WR}} / \mathrm{RDY} \uparrow$ to $\overline{\mathrm{INT}} \uparrow$	MODE at 5 V , See Figure 4	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF},$		175	270	ns
	Slew-rate tracking				0.1		V/us

\dagger For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
\ddagger Total unadjusted error includes offset, full-scale, and linearity errors.

PARAMETER MEASUREMENT INFORMATION

Figure 1. Read-Mode Waveforms (MODE Low)

Figure 2. Write-Read-Mode Waveforms [MODE High and $\mathrm{t}_{\mathrm{d}(\mathrm{WR})}<\mathrm{t}_{\mathrm{d}(\mathrm{int})}$]

Figure 3. Write-Read-Mode Waveforms
[MODE High and $\mathrm{t}_{\mathrm{d}(\mathrm{WR})}>\mathrm{t}_{\mathrm{d}(\text { int })}$]

PARAMETER MEASUREMENT INFORMATION

Figure 4. Write-Read-Mode Waveforms (Stand-Alone Operation, MODE High, and RD Low)

Figure 5. Test Circuit and Voltage Waveforms

PRINCIPLES OF OPERATION

The TLC0820AC and TLC0820AI each employ a combination of sampled-data comparator techniques and flash techniques common to many high-speed converters. Two 4-bit flash analog-to-digital conversions are used to give a full 8 -bit output.
The recommended analog input voltage range for conversion is -0.1 V to $\mathrm{V}_{\mathrm{CC}}+0.1 \mathrm{~V}$. Analog input signals that are less than $\mathrm{V}_{\text {ref }-+}+1 / 2$ LSB or greater than $\mathrm{V}_{\text {ref }+}-1 / 2$ LSB convert to 00000000 or 11111111 , respectively. The reference inputs are fully differential with common-mode limits defined by the supply rails. The reference input values define the full-scale range of the analog input. This allows the gain of the ADC to be varied for ratiometric conversion by changing the $\mathrm{V}_{\text {ref+ }}$ and $\mathrm{V}_{\text {ref- }}$ voltages.
The device operates in two modes, read (only) and write-read, that are selected by MODE. The converter is set to the read (only) mode when MODE is low. In the read mode, $\overline{W R} / R D Y$ is used as an output and is referred to as the ready terminal. In this mode, a low on $\overline{W R} / R D Y$ while $\overline{C S}$ is low indicates that the device is busy. Conversion starts on the falling edge of $\overline{\mathrm{RD}}$ and is completed no more than $2.5 \mu \mathrm{~s}$ later when $\overline{\mathrm{NT}}$ falls and $\overline{\mathrm{WR} / R D Y}$ returns to the high-impedance state. Data outputs also change from high-impedance to active states at this time. After the data is read, $\overline{\mathrm{RD}}$ is taken high, $\overline{\mathrm{INT}}$ returns high, and the data outputs return to their high-impedance states.
When MODE is high, the converter is set to the write-read mode and $\overline{W R} / R D Y$ is referred to as the write terminal. Taking $\overline{\mathrm{CS}}$ and $\overline{\mathrm{WR} / R D Y ~ l o w ~ s e l e c t s ~ t h e ~ c o n v e r t e r ~ a n d ~ i n i t i a t e s ~ m e a s u r e m e n t ~ o f ~ t h e ~ i n p u t ~ s i g n a l . ~ A p p r o x i m a t e l y ~}$ 600 ns after $\overline{\mathrm{WR}} / \mathrm{RDY}$ returns high, the conversion is completed. Conversion starts on the rising edge of $\overline{W R} / R D Y$ in the write-read mode.

The high-order 4-bit flash ADC measures the input by means of 16 comparators operating simultaneously. A high-precision 4-bit DAC then generates a discrete analog voltage from the result of that conversion. After a time delay, a second bank of comparators does a low-order conversion on the analog difference between the input level and the high-order DAC output. The results from each of these conversions enter an 8-bit latch and are output to the 3 -state output buffers on the falling edge of $\overline{\mathrm{RD}}$.

TLC0820AC, TLC0820AI

Advanced LinCMOS ${ }^{\text {TM }}$ HIGH-SPEED 8-BIT ANALOG-TO-DIGITAL CONVERTERS USING MODIFIED FLASH TECHNIQUES

APPLICATION INFORMATION

Figure 6. Configuration for 9-Bit Resolution

Texas
PACKAGE OPTION ADDENDUM
INSTRUMENTS

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead finish/ Ball material (6)	MSL Peak Temp (3)	Op Temp (${ }^{\circ} \mathrm{C}$)	Device Marking (4/5)	Samples
TLC0820ACDB	ACTIVE	SSOP	DB	20	70	RoHS \& Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	P0820A	Samples
TLC0820ACDBR	ACTIVE	SSOP	DB	20	2000	RoHS \& Green	NIPDAU	Level-1-260C-UNLIM		P0820A	Samples
TLC0820ACDW	ACTIVE	SOIC	DW	20	25	RoHS \& Green	NIPDAU	Level-1-260C-UNLIM		TLC0820A	Samples
TLC0820ACDWG4	ACTIVE	SOIC	DW	20	25	RoHS \& Green	NIPDAU	Level-1-260C-UNLIM		TLC0820A	Samples
TLC0820ACDWR	ACTIVE	SOIC	DW	20	2000	RoHS \& Green	NIPDAU	Level-1-260C-UNLIM		TLC0820A	Samples
TLC0820ACDWRG4	ACTIVE	SOIC	DW	20	2000	RoHS \& Green	NIPDAU	Level-1-260C-UNLIM		TLC0820A	Samples
TLC0820ACFN	ACTIVE	PLCC	FN	20	46	RoHS \& Green	SN	Level-1-260C-UNLIM		TLC0820AC	Samples
TLC0820ACN	ACTIVE	PDIP	N	20	20	RoHS \& Non-Green	NIPDAU	N/ A for Pkg Type		TLC0820ACN	Samples
TLC0820AIDW	ACTIVE	SOIC	DW	20	25	RoHS \& Green	NIPDAU	Level-1-260C-UNLIM		TLC0820AI	Samples
TLC0820AIDWR	ACTIVE	SOIC	DW	20	2000	RoHS \& Green	NIPDAU	Level-1-260C-UNLIM		TLC0820AI	Samples
TLC0820AIFN	ACTIVE	PLCC	FN	20	46	RoHS \& Green	SN	Level-1-260C-UNLIM		TLC0820AI	Samples
TLC0820AIN	ACTIVE	PDIP	N	20	20	 Non-Green	NIPDAU	N / A for Pkg Type		TLC0820AIN	Samples

${ }^{(1)}$ The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
${ }^{(2)}$ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free"
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.
${ }^{(3)}$ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
${ }^{(4)}$ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
${ }^{(5)}$ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a " \sim " will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
${ }^{(6)}$ Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer:The information provided on this page represents Tl's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

TAPE AND REEL INFORMATION

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter $(\mathbf{m m})$	Reel Width W1 $(\mathbf{m m})$	A0 $(\mathbf{m m})$	B0 $(\mathbf{m m})$	K0 $(\mathbf{m m})$	P1 $(\mathbf{m m})$	W $(\mathbf{m m})$	Pin1 Quadrant
TLC0820ACDBR	SSOP	DB	20	2000	330.0	16.4	8.2	7.5	2.5	12.0	16.0	Q1
TLC0820ACDWR	SOIC	DW	20	2000	330.0	24.4	10.8	13.3	2.7	12.0	24.0	Q1
TLC0820AIDWR	SOIC	DW	20	2000	330.0	24.4	10.8	13.3	2.7	12.0	24.0	Q1

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TLC0820ACDBR	SSOP	DB	20	2000	350.0	350.0	43.0
TLC0820ACDWR	SOIC	DW	20	2000	350.0	350.0	43.0
TLC0820AIDWR	SOIC	DW	20	2000	350.0	350.0	43.0

N (R-PDIP-T**)
PLASTIC DUAL-IN-LINE PACKAGE
16 PINS SHOWN

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C) Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).

D The 20 pin end lead shoulder width is a vendor option, either half or full width.

NOTES:

1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm per side.
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.43 mm per side
5. Reference JEDEC registration MS-013.

NOTES: (continued)
6. Publication IPC-7351 may have alternate designs.
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SOLDER PASTE EXAMPLE BASED ON 0.125 mm THICK STENCIL

SCALE:6X

NOTES: (continued)
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
9. Board assembly site may have different recommendations for stencil design.

NOTES:

1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm per side.
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
5. Reference JEDEC registration MO-150.

NOTES: (continued)
6. Publication IPC-7351 may have alternate designs.
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SOLDER PASTE EXAMPLE
BASED ON 0.125 mm THICK STENCIL SCALE: 10X

NOTES: (continued)
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
9. Board assembly site may have different recommendations for stencil design.

Images above are just a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

NOTES:

1. All linear dimensions are in inches. Any dimensions in brackets are in millimeters. Any dimensions in parenthesis are for reference only. Controlling dimensions are in inches. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. Dimension does not include mold protrusion. Maximum allowable mold protrusion .01 in [0.25 mm$]$ per side.
4. Reference JEDEC registration MS-018.

SOLDER MASK DETAILS

NOTES: (continued)
5. Publication IPC-7351 may have alternate designs.
6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

NOTES: (continued)
7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
8. Board assembly site may have different recommendations for stencil design.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.
Tl's products are provided subject to TI's Terms of Sale (https:www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. Tl's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

