

LMV82x, LMV82xA

Datasheet — production data

Low power, high accuracy, general-purpose operational amplifier

Features

- Low power consumption: 400 µA max at 5 V
- Low power shutdown mode: 50 nA max
- Low offset voltage: 0.8 mV max at 25°C
- Tiny packages •
- Extended temperature range: -40°C to +125°C
- Low supply voltage: 2.5 V 5.5 V .
- Gain bandwidth product: 5.5 MHz
- Automotive qualification •

Benefits

- Longer lifetime in battery-powered applications •
- Higher accuracy without calibration
- Smaller form factor than equivalent competitor devices
- Application performances guaranteed over ٠ wide temperature range

Related products

See TSV85x series for lower power consumption (180 µA max at 5 V)

Applications

- Battery-powered applications
- Portable devices
- Automotive signal conditioning
- Active filtering
- Medical instrumentation

Description

April 2017

The LMV82x and LMV82xA series of single, dual, and quad operational amplifiers offer low voltage operation with rail-to-rail output swing. They outperform the industry standard LMV321, especially with regard to the gain bandwidth

1/32

www.st.com

This is information on a product in full production.

product (5.5 MHz). The LMV821, LMV822 and LMV824 are offered with standard pinouts.

The LMV820, LMV823, and LMV825 include a power-saving shutdown feature that reduces the supply current to a maximum of 50 nA at 25 °C.

The wide temperature range, high ESD tolerance, and automotive grade qualification make them particularly suitable for use in harsh automotive applications.

Table 1. Device summary

	Without shutdown With		With sh	nutdown
	Standard Vio	Enhanced Vio	Standard Vio	Enhanced Vio
Single	LMV821	LMV821A	LMV820	LMV820A
Dual	LMV822	LMV822A	LMV823	LMV823A
Quad	LMV824	LMV824A	LMV825	LMV825A

Contents

1	Pack	age pin connections
2	Abso	olute maximum ratings and operating conditions
3	Elect	rical characteristics6
4	Appl	ication information16
	4.1	Operating voltages
	4.2	Input common mode range 16
	4.3	Rail-to-rail output
	4.4	Input offset voltage drift over temperature 16
	4.5	PCB layouts
	4.6	Macromodel
	4.7	Shutdown function
5	Pack	age information
	5.1	SC70-5 (or SOT323-5) package information
	5.2	SOT23-5 package information
	5.3	SOT23-6 package information
	5.4	DFN8 2 x 2 mm package information 22
	5.5	MiniSO-8 package information
	5.6	MiniSO-10 package information 24
	5.7	TSSOP14 package information
	5.8	TSSOP16 package information
	5.9	SO-8 package information 27
	5.10	SO-14 package information 28
6	Orde	ring information
7	Revis	sion history

1 Package pin connections

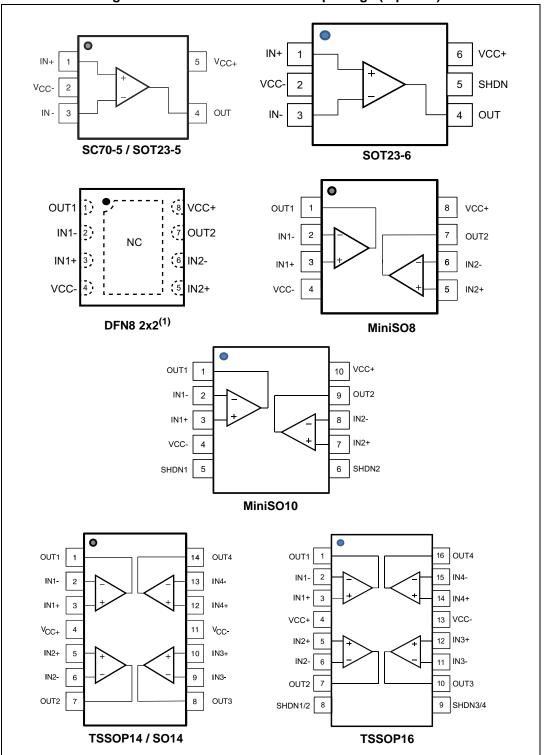


Figure 1. Pin connections for each package (top view)

1. The exposed pad of DFN8 2x2 can be connected to VCC- or left floating.

2 Absolute maximum ratings and operating conditions

Symbol	Parameter	Value	Unit		
V _{cc}	Supply voltage ⁽¹⁾	6			
V _{id}	Differential input voltage ⁽²⁾	±V _{cc}	V		
V _{in}	Input pins (IN+ and IN- pins) voltage ⁽³⁾	V_{cc-} - 0.3 to V_{cc+} + 0.3			
l _{in}	Input current ⁽⁴⁾	10	mA		
SHDN	Shutdown voltage ⁽⁵⁾	V_{cc-} - 0.2 to V_{cc+} + 0.2	V		
T _{stg}	Storage temperature	-65 to +150	°C		
	Thermal resistance junction to ambient ⁽⁶⁾⁽⁷⁾				
	– SC70-5	205			
	– SOT23-5	250			
	– DFN8 2x2	57	°C/W		
	– MiniSO8	190			
R _{thja}	- SO8	125			
	- TSSOP14	100	-		
	- SO14	105			
	– SOT23-6	240			
	– MiniSO10	113			
	- TSSOP16	95			
Тj	Maximum junction temperature	150	°C		
	HBM: human body model (except shutdown pin) ⁽⁸⁾	4			
	HBM: human body model (shutdown pin) ⁽⁸⁾	3.5	– kV		
ESD	MM: machine model ⁽⁹⁾	250	V		
	CDM: charged device model ⁽¹⁰⁾	1.3	kV		
	CDM: charged device model LMV825 ⁽¹⁰⁾	1	ĸv		
	Latch-up immunity	200	mA		

1. All voltage values, except the differential voltage are with respect to the network ground terminal.

- 2. Differential voltages are the non-inverting input terminal with respect to the inverting input terminal.
- 3. V_{cc} - V_{in} must not exceed 6 V, V_{in} must not exceed 6 V.
- 4. The input current must be limited by a resistor in series with the inputs.
- 5. V_{cc} - V_{shdn} must not exceed 6 V, V_{in} must not exceed 6 V.
- 6. Short-circuits can cause excessive heating and destructive dissipation.
- 7. R_{th} are typical values.
- 8. Human body model: a 100 pF capacitor is discharged through a 1.5 k Ω resistor between two pins of the device. This is done for all couples of pin combinations while other pins are floating.
- Machine model: a 200 pF capacitor is charged to the specified voltage, then discharged directly between two pins of the device with no external series resistor (internal resistor < 5 Ω). This is done for all couples of pin combinations while other pins are floating.
- 10. Charged device model: all pins and package are charged together to the specified voltage and then discharged directly to ground.

Symbol	Parameter	Value	Unit
V _{cc}	Supply voltage	2.5 to 5.5	V
V _{icm}	Common mode input voltage range	V_{cc-} - 0.2 to V_{cc+} - 1	v
T _{oper}	Operating free air temperature range	-40 to +125	°C

Table 3. Operating conditions

3 Electrical characteristics

Table 4. Electrical characteristics at V_{cc+} = 2.5 V with V_{cc-} = 0 V, V_{icm} = V_{cc}/2, T_{amb} = 25° C, and R_L connected to V_{cc}/2 (unless otherwise specified)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
	DC performance					
		LMV82xA			0.8	
N/	Input offect veltere	LMV82x			3.5	
V _{io}	Input offset voltage	LMV82xA, -40 °C < T< 125 °C			2	
		LMV82x, -40 °C < T< 125 °C			4	
		$R_L = 600 \Omega$			220	
V _{CC} -V _{OH}	High level output voltage	R _L = 600 Ω, -40 °C < T< 125 °C			320	mV
		$R_L = 2 k\Omega$			120	
		R _L = 2 kΩ, -40 °C < T< 125 °C			220	
		$R_L = 600 \Omega$			220	
N	Low level output voltage	R _L = 600 Ω, -40 °C < T< 125 °C			320	
V _{OL}		$R_L = 2 k\Omega$			120	
		R_L = 2 kΩ, -40 °C < T< 125 °C			200	
	$I_{sink} (V_{out} = V_{cc})$		5			
	$V_{id} = -1 V$	-40 °C < T< 125 °C	5			
l _{out}	I _{source} (V _{out} = 0 V)		5			mA
	$V_{id} = 1 V$	-40 °C < T< 125 °C	5			

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
DC perfo	rmance			•	•	
	Supply current in shutdown	T = 25 °C		2.5	50	nA
I _{CC}	mode (all operators)	-40°C < T< 85 °C			200	
	SHDN = V _{CC-}	-40°C < T< 125 °C			1.5	μA
t _{on}	Amplifier turn-on time ⁽¹⁾	$ \begin{array}{l} R_{L} = 2 \ k\Omega, \\ V_{out} = V_{CC^{-}} \ to \ V_{CC^{-}} + 0.2 \ V \end{array} $		300		
t _{off}	Amplifier turn-off time ⁽¹⁾	$R_L = 2 k\Omega$, Vout = V _{CC+} - 1 V to V _{CC+} - 1.2 V		20		ns
V_{IH}	SHDN logic high		V _{cc} -0.5			v
V _{IL}	SHDN logic low				0.5	V
I _{IH}	SHDN current high	$\overline{\text{SHDN}} = V_{\text{CC+}}$		10		
Ι _{ΙL}	SHDN current low	$\overline{\text{SHDN}} = V_{\text{CC}}$		10		pА
	Output leakage in shutdown	SHDN = V _{CC} .		50		1
I _{OLeak}	mode	-40°C < T< 125°C		1		nA

Table 5. Shutdown characteristics V_{CC} = 2.5 V

1. See Section 4.7: Shutdown function on page 17.

Table 6. Electrical characteristics at $V_{cc+} = 2.7$ V with $V_{cc-} = 0$ V, $V_{icm} = V_{cc}/2$, $T_{amb} = 25^{\circ}$ C, and R_L
connected to V _{cc} /2 (unless otherwise specified)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
	DC performance					
	Input offect voltage	LMV82xA			0.8	
		LMV82x			3.5	~\/
V _{io}	Input offset voltage	LMV82xA, -40 °C < T< 125 °C			2	mV
		LMV82x, -40 °C < T< 125 °C			4	
$\Delta V_{io}/\Delta T$	Input offset voltage drift ⁽¹⁾	-40 °C < T< 125 °C		1		μV/°C
1	Input offset current			0.5	30	
l _{io}	$(V_{out} = V_{cc}/2)$	-40 °C < T< 125 °C		1	50	n (
1				60	120	nA
l _{ib}	Input bias current ($V_{out} = V_{cc}/2$)	-40 °C < T< 125 °C			180	
	Common mode rejection ratio		70	75		
CMR	$ \begin{array}{l} 20 \mbox{ log } (\Delta V_{icm} / \Delta V_{io}) \\ V_{ic} = 0 \mbox{ V to } V_{cc} \mbox{-} 1 \mbox{ V}, V_{out} = V_{cc} / 2 \end{array} $	-40 °C < T< 125 °C	68			
	Large signal voltage gain $V_{out} = 0.5V$ to (V_{cc} -0.5V)	R _L = 600 Ω	90	100		dB
		R _L = 600 Ω, -40 °C < T< 125 °C	85			
A _{vd}		$R_L = 2 k\Omega$	95	100		
		R _L = 2 kΩ, -40 °C < T< 125 °C	90			
		R _L = 600 Ω			200	
	High level output voltage	R _L = 600 Ω, -40 °C < T< 125 °C			300	
VCC-VOH		$R_L = 2 k\Omega$			100	
		R _L = 2 kΩ, -40 °C < T< 125 °C			200	mV
		R _L = 600 Ω			200	IIIV
M		R _L = 600 Ω, -40 °C < T< 125 °C			300	
V _{OL}	Low level output voltage	$R_L = 2 k\Omega$			120	
		R _L = 2 kΩ, -40 °C < T< 125 °C			200	
	I_{sink} (V _{out} = V _{cc})		15	26		
	$ I_{sink (V_{out} = V_{cc}) } \\ V_{id} = -1 V $	-40 °C < T< 125 °C	12			m ^
l _{out}	I _{source} (V _{out} = 0 V)		15	21		mA
	$V_{id} = 1 V$	-40 °C < T< 125 °C	12			
Le :	Supply current (per channel)			220	300	
I _{CC}	No load, $V_{out} = V_{cc}/2$	-40 °C < T< 125 °C			500	μΑ

Table 6. Electrical characteristics at $V_{cc+} = 2.7 \text{ V}$ with $V_{cc-} = 0 \text{ V}$, $V_{icm} = V_{cc}/2$, $T_{amb} = 25^{\circ} \text{ C}$, and R_{L} connected to $V_{cc}/2$ (unless otherwise specified) (continued)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit		
	AC performance							
GBP	Gain bandwidth product			5.5		MHz		
Fu	Unity gain frequency	- R _L > 1 MΩ, C _L = 22 pF		4.5		IVITIZ		
$\Phi_{\sf m}$	Phase margin			60		degrees		
G _m	Gain margin			10		dB		
SR	Slew rate	$\label{eq:RL} \begin{array}{l} R_{L} > 1 \ M\Omega, \ C_{L} = 22 \ pF, \\ V_{out} = 0.5 \ V \ to \ V_{CC} - 0.5 V \end{array}$	1.2	1.7		V/µs		
e _n	Equivalent input noise voltage	f = 1 kHz f = 10 kHz		18 15		<u>_nV</u> √Hz		
i _n	Equivalent input noise current	f = 1 kHz		0.30		<u>pA</u> √Hz		
THD+N	Total harmonic distortion + noise	$ f_{in} = 1 \ \text{kHz}, \ \text{A}_{\text{CL}} = 1, \ \text{R}_{\text{L}} = 100 \ \text{k}\Omega \\ Vicm = \text{Vcc/2}, \ \text{BW} = 22 \ \text{kHz}, \\ Vout = 3 \ \text{Vpp} $		0.001		%		

Table 7. Shutdown characteristics V_{CC} = 2.7 V

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit		
DC perfo	DC performance							
		SHDN = V _{CC-}		2.5	50	۳A		
I _{CC}	I _{CC} Supply current in shutdown mode (all operators)	-40°C < T< 85°C			200	nA		
		-40°C < T< 125°C			1.5	μΑ		
t _{on}	Amplifier turn-on time ⁽¹⁾	$\begin{aligned} R_{L} &= 2 \ k\Omega, \\ V_{out} &= V_{CC^-} \ \text{to} \ V_{CC^-} + 0.2 \ V \end{aligned}$		300		20		
t _{off}	Amplifier turn-off time ⁽¹⁾	$R_L = 2 k\Omega$, Vout = V _{CC+} - 1 V to V _{CC+} - 1.2 V		20		ns		
V _{IH}	SHDN logic high		V _{cc} - 0.5			V		
V _{IL}	SHDN logic low				0.5			
I _{IH}	SHDN current high	$\overline{\text{SHDN}} = V_{\text{CC+}}$		10				
I _{IL}	SHDN current low	SHDN = V _{CC} .		10		pА		
1	Output leakage in shutdown	SHDN = V _{CC-}		50				
IOLeak	mode	-40°C < T< 125°C		1		nA		

1. See Section 4.7: Shutdown function on page 17.

Table 8. Electrical characteristics at $V_{cc+} = 5$ V with $V_{cc-} = 0$ V, $V_{icm} = V_{cc}/2$, $T_{amb} = 25^{\circ}$ C, and R_L
connected to V _{cc} /2 (unless otherwise specified)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
	DC performance			L		
		LMV82xA			0.8	
		LMV82x			3.5	
V _{io}	Input offset voltage	LMV82xA, -40 °C < T< 125 °C			2	mV
		LMV82x, -40 °C < T< 125 °C			4	
$\Delta V_{io} / \Delta T$	Input offset voltage drift ⁽¹⁾	-40 °C < T< 125 °C		1		μV/°C
1	Input offset surrent $(1/2)$			0.5	30	
I _{io}	Input offset current ($V_{out} = V_{cc}/2$)	-40 °C < T< 125 °C		1	50	nA
1	Input biog ourrest $(1/2)$			60	120	ΠA
l _{ib}	Input bias current ($V_{out} = V_{cc}/2$)	-40 °C < T< 125 °C			180	
0.115	Common mode rejection ratio 20		72	90		
CMR	$ log (\Delta V_{icm} / \Delta V_{io}) \\ V_{ic} = 0 \ V \ to \ V_{cc} - 1V, \ V_{out} = V_{cc} / $	-40 °C < T< 125 °C	70			
		V_{cc} = 2.5 to 5 V				_
SVR	SVR Supply voltage rejection ratio 20 $\log (\Delta V_{cc}/\Delta V_{io})$		70	75		
	109 (40,00,40)	-40 °C < T< 125 °C	65		dB	
		R _L = 600 Ω	95	100		
٨	Large signal voltage gain	R _L = 600 Ω, -40 °C < T< 125 °C	90			
A _{vd}	$V_{out} = 0.5V$ to $(V_{cc}-0.5V)$	$R_L = 2 k\Omega$	95	100		
		R _L = 2 kΩ, -40 °C < T< 125 °C	90			
		R _L = 600 Ω			250	
	High level output voltage	R _L = 600 Ω, -40 °C < T< 125 °C			400	
V _{CC} -V _{OH}	nightievel output voltage	$R_L = 2 k\Omega$			150	
		R _L = 2 kΩ, -40 °C < T< 125 °C			200	mV
		$R_L = 600 \ \Omega$			250	IIIV
V	Low level output voltage	R _L = 600 Ω, -40 °C < T< 125 °C			300	
V _{OL}	Low level output voltage	$R_L = 2 k\Omega$			150	
		$R_L = 2 \text{ k}\Omega$, -40 °C < T< 125 °C			200	
	I_{sink} (V _{out} = V _{cc})		35	43		
L. c	$V_{id} = -1 V$ $I_{source} (V_{out} = 0 V)$	-40 °C < T< 125 °C	25			mA
l _{out}			60	70		
	$V_{id} = 1 V$	-40 °C < T< 125 °C	50			
	Supply current (per channel)			300	400	μA
I _{CC}	No load, $V_{out} = V_{cc}/2$	-40°C < T< 125°C			600	РЛ

Table 8. Electrical characteristics at $V_{cc+} = 5 V$ with $V_{cc-} = 0 V$, $V_{icm} = V_{cc}/2$, $T_{amb} = 25^{\circ}$ C, and R_{L} connected to $V_{cc}/2$ (unless otherwise specified) (continued)

	$\frac{1}{2} = \frac{1}{2} = \frac{1}$									
Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit				
	AC performance									
GBP	Gain bandwidth product			5.5						
Fu	Unity gain frequency			4.5		MHz				
Φ_{m}	Phase margin	$R_{L} > 1 M\Omega, C_{L} = 22 pF$		60		degree s				
G _m	Gain margin			10		dB				
SR	Slew rate	$R_L > 1 MΩ$, $C_L = 22 pF$, $V_{out} = 0.5 V$ to V_{CC} - 0.5 V	1.4	1.9		V/µs				
e _n	Equivalent input noise voltage	f = 1 kHz f = 10 kHz		16 13		<u>nV</u> √Hz				
i _n	Equivalent input noise current	f = 1 kHz		0.30		<u>pA</u> √Hz				
THD+N	Total harmonic distortion + noise			0.001		%				

1. See Section 4.4: Input offset voltage drift over temperature.

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
DC perfo	mance					
	Supply current in shutdown	T= 25°C		2.5	50	nA
I _{CC}	mode (all operators)	-40°C < T< 85°C			200	ΠA
	SHDN = V_{CC} -	-40°C < T< 125°C			1.5	μA
t _{on}	Amplifier turn-on time ⁽¹⁾			300		ns
t _{off}	Amplifier turn-off time ⁽¹⁾	R_L = 2 kΩ, Vout = V _{CC+} - 1 V to V _{CC+} - 1.2 V		20		115
V _{IH}	SHDN logic high		V _{cc} - 0.5			V
V _{IL}	SHDN logic low				0.5	
I _{IH}	SHDN current high	$\overline{\text{SHDN}} = V_{\text{CC+}}$		10		
۱ _{IL}	SHDN current low	SHDN = V _{CC} .		10		pА
	Output leakage in shutdown	SHDN = V _{CC} .		50		
I _{OLeak}	mode	-40°C < T< 125°C		1		nA

Table 9. Shutdown characteristics $V_{CC} = 5 V$

1. See Section 4.7: Shutdown function on page 17.

Figure 2. Supply current vs. supply voltage at Vicm = $V_{CC}/2$

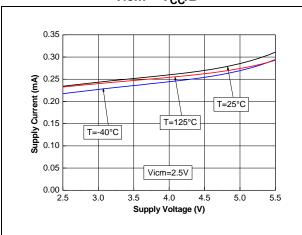


Figure 4. Vio distribution at $V_{CC} = 5 V$

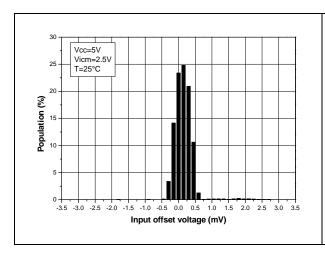


Figure 6. Output current vs. output voltage at V_{CC} = 2.7 V

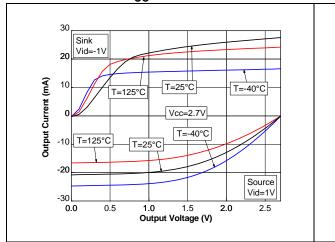
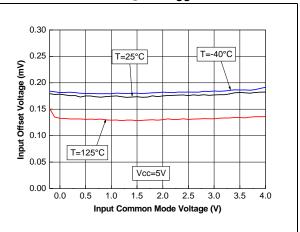
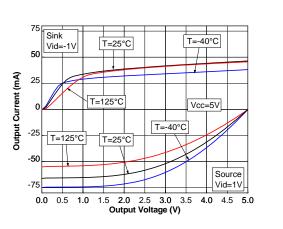
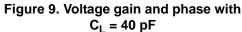


Figure 3. Supply current vs. Vicm at V_{CC} = 5 V



Figure 5. Input offset voltage vs. input common mode voltage at V_{CC} = 5 V


Figure 7. Output current vs. output voltage at $V_{CC} = 5 V$

90 Sink T=-40°C Vid=-1V T=25°C 60 T=125°C Output Current (mA) 30 0 Vicm=Vcc/2 -30 T=125°C -60 T=25°C Source Vid=1V T=-40°C -90 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 Supply Voltage (V)

Figure 8. Output current vs. supply voltage at Vicm = $V_{CC}/2$

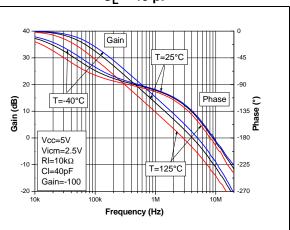


Figure 10. Voltage gain and phase with $C_L = 100 \text{ pF}$

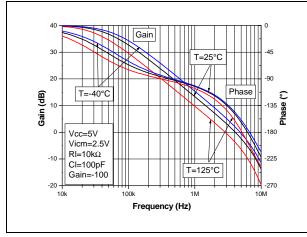


Figure 12. Phase margin vs. output current at $V_{CC} = 5 V$

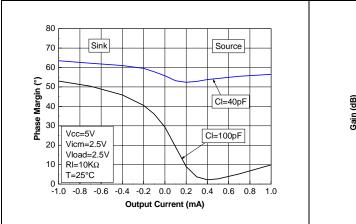


Figure 11. Voltage gain and phase with $C_L = 200 \text{ pF}$

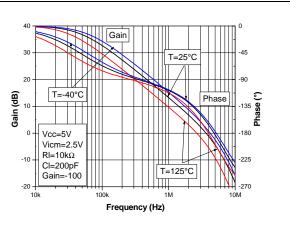


Figure 13. Stability in follower configuration

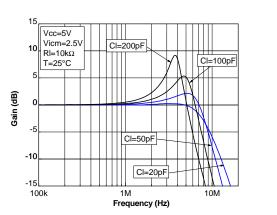


Figure 14. Positive and negative slew rate vs. supply voltage

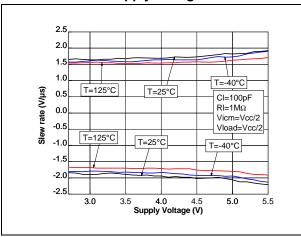


Figure 16. Negative slew rate at $V_{CC} = 5 V$ with $C_L = 100 \text{ pF}$



Figure 18. 0.1 Hz to 10 Hz noise at V_{CC} = 5 V

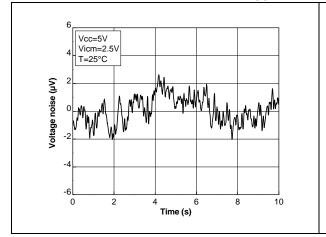


Figure 15. Positive slew rate at $V_{CC} = 5 V$ with $C_L = 100 \text{ pF}$

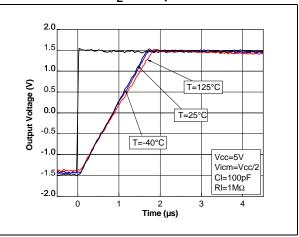


Figure 17. Noise vs. frequency at V_{CC} = 5 V

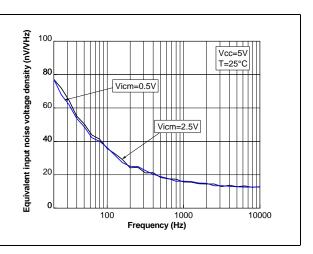
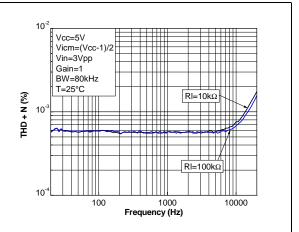
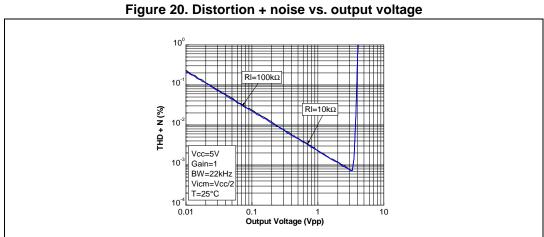




Figure 19. Distortion + noise vs. frequency

4 Application information

4.1 Operating voltages

The LMV82x and LMV82xA can operate from 2.5 to 5.5 V. The devices' parameters are fully specified for 2.5, 2.7, and 5 V power supplies. Additionally, the main specifications are guaranteed at extended temperature ranges from -40° C to +125° C.

4.2 Input common mode range

The LMV82x and LMV82xA devices have an input common mode range that includes ground. The input common mode range is extended from V_{cc-} - 0.2 V to V_{cc+} - 1 V, with no output phase reversal.

4.3 Rail-to-rail output

The operational amplifiers' output levels can go close to the rails: 150 mV maximum above and below the rail when connected to a 2 k Ω resistive load to V_{cc}/2.

4.4 Input offset voltage drift over temperature

The maximum input voltage drift over temperature variation is defined in *Equation 1*.

Equation 1

$$\frac{\Delta Vio}{\Delta T} = max \left| \frac{Vio(T) - Vio(25^{\circ}C)}{T - 25^{\circ}C} \right|$$

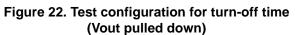
for Tmin < T < Tmax.

4.5 PCB layouts

For correct operation, it is advised to add 10 nF decoupling capacitors as close as possible to the power supply pins.

4.6 Macromodel

Accurate macromodels of the LMV82x and LMV82xA are available on STMicroelectronics' web site at www.st.com. These models are a trade-off between accuracy and complexity (that is, time simulation) of the LMV82x and LMV82xA operational amplifiers. They emulate the nominal performances of a typical device within the specified operating conditions mentioned in the datasheet. They also help to validate a design approach and to select the right operational amplifier, *but they do not replace on-board measurements*.



4.7 Shutdown function

The operational amplifier is enabled when the \overline{SHDN} pin is pulled high. To disable the amplifier, the \overline{SHDN} pin must be pulled down to V_{CC-} . When in shutdown mode, the amplifier output is in a high impedance state. The \overline{SHDN} pin must never be left floating but tied to V_{CC+} or V_{CC-} .

The turn-on and turn-off times are calculated for an output variation of ± 200 mV. *Figure 21* and *Figure 22* show the test configurations. *Figure 23* and *Figure 24* show the respective results with these test configurations.

Figure 21. Test configuration for turn-on time (Vout pulled down)

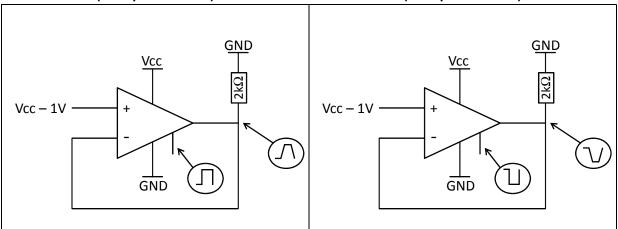
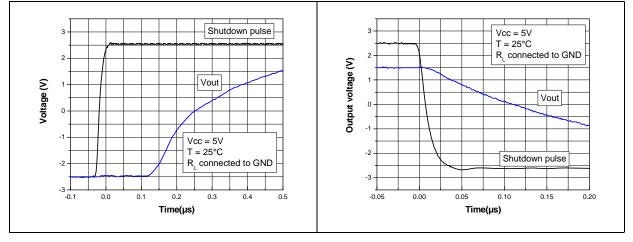
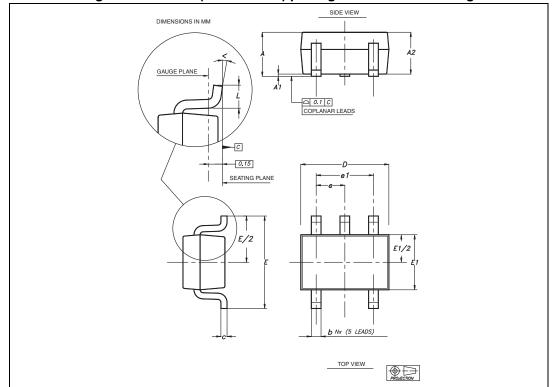



Figure 23. Turn-on time, V_{CC} = 5 V, Vout pulled down, T = 25 °C

Figure 24. Turn-off time, $V_{CC} = 5 V$, Vout pulled down, T = 25 °C


5 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

18/32

5.1 SC70-5 (or SOT323-5) package information

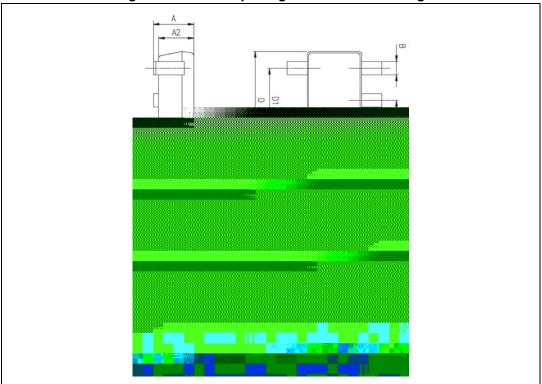

Figure 25. SC70-5 (or SOT323-5) package mechanical drawing

Table 10. SC70-5 (or SOT323-5) package mechanical data

	Dimensions									
Ref		Millimeters								
	Min	Тур	Мах	Min	Тур	Max				
А	0.80		1.10	0.032		0.043				
A1			0.10			0.004				
A2	0.80	0.90	1.00	0.032	0.035	0.039				
b	0.15		0.30	0.006		0.012				
С	0.10		0.22	0.004		0.009				
D	1.80	2.00	2.20	0.071	0.079	0.087				
E	1.80	2.10	2.40	0.071	0.083	0.094				
E1	1.15	1.25	1.35	0.045	0.049	0.053				
е		0.65			0.025					
e1		1.30			0.051					
L	0.26	0.36	0.46	0.010	0.014	0.018				
<	0 °		8 °	0 °		8 °				

5.2 SOT23-5 package information

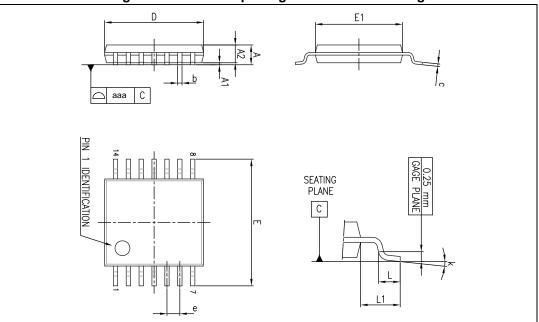

Figure 26. SOT23-5 package mechanical drawing

Table 11. SOT23-5 package mechanical data

	Dimensions								
Ref.		Millimeters			Inches				
	Min.	Тур.	Max.	Min.	Тур.	Max.			
А	0.90	1.20	1.45	0.035	0.047	0.057			
A1			0.15			0.006			
A2	0.90	1.05	1.30	0.035	0.041	0.051			
В	0.35	0.40	0.50	0.013	0.015	0.019			
С	0.09	0.15	0.20	0.003	0.006	0.008			
D	2.80	2.90	3.00	0.110	0.114	0.118			
D1		1.90			0.075				
е		0.95			0.037				
Е	2.60	2.80	3.00	0.102	0.110	0.118			
F	1.50	1.60	1.75	0.059	0.063	0.069			
L	0.10	0.35	0.60	0.004	0.013	0.023			
К	0 °		10 °	0 °		10 °			

5.7 TSSOP14 package information

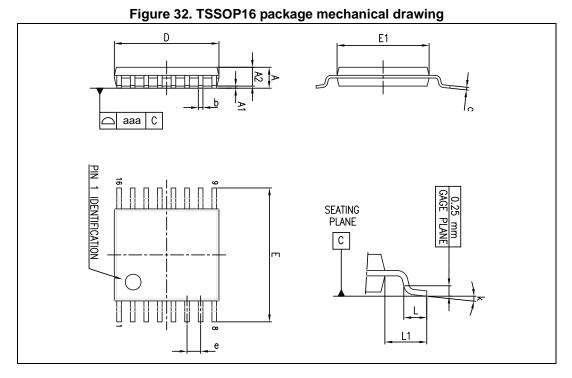

Figure 31. TSSOP14 package mechanical drawing

Table 16. TSSOP14 package mechanical data

		Dimensions								
Ref.		Millimeters			Inches					
	Min.	Тур.	Max.	Min.	Тур.	Max.				
А			1.20			0.047				
A1	0.05		0.15	0.002	0.004	0.006				
A2	0.80	1.00	1.05	0.031	0.039	0.041				
b	0.19		0.30	0.007		0.012				
С	0.09		0.20	0.004		0.0089				
D	4.90	5.00	5.10	0.193	0.197	0.201				
E	6.20	6.40	6.60	0.244	0.252	0.260				
E1	4.30	4.40	4.50	0.169	0.173	0.176				
е		0.65			0.0256					
L	0.45	0.60	0.75	0.018	0.024	0.030				
L1		1.00			0.039					
k	0 °		8 °	0 °		8 °				
aaa			0.10			0.004				

5.8 TSSOP16 package information

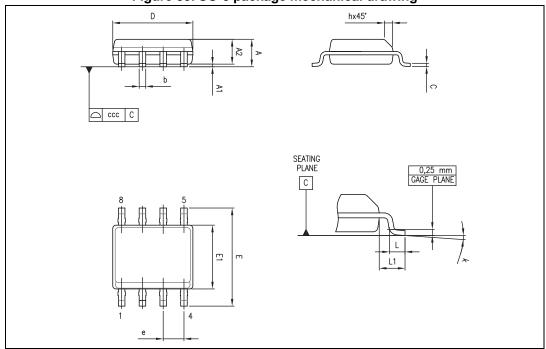


Table 17. TSSOP16 package mechanical data

	Dimensions								
Ref.		Millimeters			Millimeters Inches			Inches	
	Min.	Тур.	Max.	Min.	Тур.	Max.			
А			1.20			0.047			
A1	0.05		0.15	0.002		0.006			
A2	0.80	1.00	1.05	0.031	0.039	0.041			
b	0.19		0.30	0.007		0.012			
С	0.09		0.20	0.004		0.008			
D	4.90	5.00	5.10	0.193	0.197	0.201			
Е	6.20	6.40	6.60	0.244	0.252	0.260			
E1	4.30	4.40	4.50	0.169	0.173	0.177			
е		0.65			0.0256				
k	0 °		8 °	0 °		8 °			
L	0.45	0.60	0.75	0.018	0.024	0.030			
L1		1.00			0.039				
aaa			0.10			0.004			

5.9 SO-8 package information

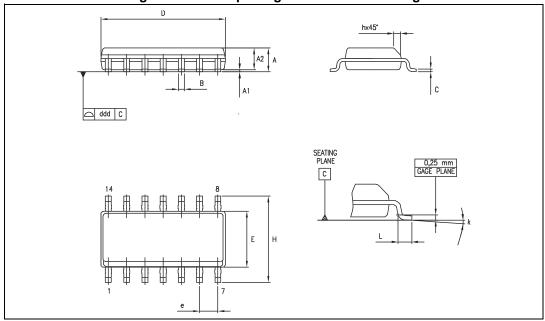

Figure 33. SO-8 package mechanical drawing

Table 18. SO-8 package mechanical data

	Dimensions								
Ref.		Millimeters			Inches				
	Min.	Тур.	Max.	Min.	Тур.	Max.			
А			1.75			0.069			
A1	0.10		0.25	0.004		0.010			
A2	1.25			0.049					
b	0.28		0.48	0.011		0.019			
С	0.17		0.23	0.007		0.010			
D	4.80	4.90	5.00	0.189	0.193	0.197			
E	5.80	6.00	6.20	0.228	0.236	0.244			
E1	3.80	3.90	4.00	0.150	0.154	0.157			
е		1.27			0.050				
h	0.25		0.50	0.010		0.020			
L	0.40		1.27	0.016		0.050			
L1		1.04			0.040				
k	1 °		8 °	1 °		8 °			
CCC			0.10			0.004			

5.10 SO-14 package information

Figure 34. SO-14 package mechanical drawing

Table 19. SO-14 package mechanical data

			Dimensions			
Def	Millimeters				Inches	
Ref.	Min.	Тур.	Max.	Min.	Тур.	Max.
А	1.35		1.75	0.05		0.068
A1	0.10		0.25	0.004		0.009
A2	1.10		1.65	0.04		0.06
В	0.33		0.51	0.01		0.02
С	0.19		0.25	0.007		0.009
D	8.55		8.75	0.33		0.34
Е	3.80		4.0	0.15		0.15
е		1.27			0.05	
Н	5.80		6.20	0.22		0.24
h	0.25		0.50	0.009		0.02
L	0.40		1.27	0.015		0.05
k			8 ° (max.)		•
ddd			0.10			0.004

6 Ordering information

Order code	Temperature range	Package	Packing	Marking
LMV821ICT		SC70-5		K1S
LMV821ILT		SOT23-5		K155
LMV822IQ2T		DFN8 2x2		K1S
LMV822IST	-40 °C to +125 °C	MiniSO8	Tape & reel	K155
LMV822IDT		SO8		LMV822I
LMV824IPT		TSSOP14		LMV824I
LMV824IDT		SO14		LMV824I
LMV821AICT		SC70-5		K1T
LMV821AILT		SOT23-5		K156
LMV822AIST	-40 °C to +125 °C	MiniSO8		K156
LMV822AIDT	-40 C 10 +125 C	SO8	Tape & reel	LMV822AI
LMV824AIPT		TSSOP14]	LMV824AI
LMV824AIDT		SO14]	LMV824AI

Table 20. Order codes

Table 21. Order codes (with shutdown pin)

Order code	Temperature range	Package	Packing	Marking
LMV820ILT		SOT23-6		K155
LMV823IST	-40 °C to +125 °C	MiniSO10	Tape & reel	K155
LMV825IPT		TSSOP16		LMV825I
LMV820AILT	-40 °C to +125 °C	SOT23-6		K156
LMV823AIST		MiniSO10	Tape & reel	K156
LMV825AIPT		TSSOP16		LMV825AI

Table 22. Order codes (automotive grade parts)					
Order code	Temperature range	Package	Packing	Marking	
LMV821IYLT	-40 ° C to +125 ° C Automotive grade ⁽¹⁾	SOT23-5	Tape & reel	K167	
LMV822IYST		MiniSO8		K167	
LMV822IYDT		SO8		LMV822IY	
LMV824IYDT		SO14		LMV824IY	
LMV824IYPT		TSSOP14			
LMV821AIYLT	-40 ° C to +125 ° C Automotive grade ⁽¹⁾	SOT23-5	Tape & reel	K168	
LMV822AIYST		MiniSO8		K168	
LMV822AIYDT		SO8		LMV822AY	
LMV824AIYDT		SO14		LMV824AIY	
LMV824AIYPT		TSSOP14			

Table 22. Order codes (automotive grade parts)

1. Qualification and characterization according to AEC Q100 and Q003 or equivalent, advanced screening according to AEC Q001 & Q002 or equivalent.

30/32

7 Revision history

Date	Revision	Changes	
10-Nov-2011	1	Initial release.	
06-Jul-2012	2	Addition of automotive grade parts.	
29-Jan-2013	3	Description and Section 4.6: Macromodel: small text changes. Updated Figure 1. Updated titles of Figure 3, Figure 13, and Figure 27. Updated Table 10, Table 11, Table 12, and Table 22: Order codes (automotive grade parts). Section 4.7: Shutdown function: added explanation of Figure 23 and Figure 24.	
10-Apr-2017	4	Updated <i>Table 13</i> : "L" dimension changed from 0.5 mm to 0.425 mm. Minor text revisions throughout the document,	

Table 23. Document revision history

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2017 STMicroelectronics – All rights reserved

