
Servosila Device Reference
Device Type: Servo Controller (0xA020192)

Revision D (Sept 2022)

1 www.servosila.com

http://www.servosila.com/

Table of Contents
Servosila Device Reference...1

Configuration Parameters..4
Configuration - Datasheet..4
Configuration - Control Laws..12
Configuration - Features...18
Configuration - Brake...21
Configuration - Work Zone..22
Configuration - Fault Management..23
Configuration - Peripheral: GPIO..24
Configuration - Peripheral: Hall Sensors...24
Configuration - Peripheral: Quadrature Encoder...25
Configuration - Peripheral: SSI/BISS-C Encoder..28
Configuration - Peripheral: SPI Encoder..32
Configuration - Peripheral: PWM Encoder..36
Configuration - Peripheral: Gate Driver...37
Configuration - Networking...37
Configuration - Product Activation..38

Telemetry Parameters..39
Telemetry - System Status..39
Telemetry - Field Oriented Control (FOC)...41
Telemetry - Direct Drive Control...42
Telemetry - Sensorless Observer..42
Telemetry - Hall Sensors Observer...43
Telemetry - Peripheral: ADC..44
Telemetry - Peripheral: Hall Sensors..45
Telemetry - Peripheral: Quadrature Encoder..46
Telemetry - Peripheral: SSI/BISS-C Encoder..47
Telemetry - Peripheral: SPI Encoder..47
Telemetry - Peripheral: PWM Encoder..48
Telemetry - Peripheral: GPIO...49
Telemetry - Peripheral: Inverter (PWM)..50
Telemetry - Peripheral: Gate Driver...50
Telemetry - Networking...51
Telemetry - Device Information...51

Commands...53
Command - Electronic Speed Control (ESC), Hz..53
Command - Electronic Speed Control (ESC), RPM..53
Command - Servo...53
Command - Servo Stepper...54
Command - Current Control / Field Oriented Control (FOC)..54
Command - Electronic Torque Control (ETC)...55
Command - Direct Field Control: Rotation..55
Command - Direct Field Control: Electrical Position..56
Command - Kickstart...56
Command - Reset...57
Command - Reset Work Zone..57

2 www.servosila.com

http://www.servosila.com/

Command - Brake..57
Command - Stop...58
Command - Off...58
Command - GPIO: PWM output..58
Command - Testing: Field Oriented Control (FOC)..59
Command - Testing: Electronic Speed Control (ESC)...59
Command - Testing: Servo Control..60
Command - Brushed: Open Loop Control (1-2 motors)..60
Command - Autoconfiguration: Brushless Motor..61
Command - Autoconfiguration: Brushed Motor..62
Command - GPIO: Generic Output..63

Telemetry Mappings (TPDO)...64
Telemetry Message with COB-ID 0x180...64
Telemetry Message with COB-ID 0x280...64
Telemetry Message with COB-ID 0x380...64

3 www.servosila.com

http://www.servosila.com/

Configuration Parameters

Configuration - Datasheet

The "Datasheet" section contains parameters that characterize the key components of an electric drive: a motor,
encoder(s), and a gearbox. The information is either found in datasheets supplied by manufacturers of those
components, or measured using the controller's capabilities.

The "Datasheet" section is an input into computation of various parameters of control laws that determine performance
of the electric drive. Note that not all of the "Datasheet" parameters are mandatory for every configuration of electric
drives. Watch out for the units in which those parameters are defined since conversion of the units might be necessary
for proper configuration. Instead of filling out the "Datasheet" section directly, one might want to use a "Spreadsheet"
tool that comes with the "Servoscope" software. The tool properly provisions the "Datasheet" parameters into the
controller while also computing parameters of various control laws.

Start configuring an electric drive by filling-out the "Datasheet" section, manually or using the "Spreadsheet" tool, or
by launching the controller's auto-configuration procedure that fills out much of the section automatically.

Parameter Units Description CANopen

1

Motor Type
(Brushless or
Brushed)

- • 0: Brushless
• 1: Brushed

UINT16,
0x2000,
0x01,
rw

2 Maximum
Continuous
Current (Line-
to-Line)

A The "Maximum Continuous Current" is one of the most critical performance and
safety parameters in the "Datasheet" section. On one hand, the parameter defines
the maximum torque the electric drive can produce. The higher this limit is set,
the more electric current is allowed to be driven through the motor by the
controller, the more torque the motor produces, the better the dynamics of the
electric drive is. On the other hand, driving more current through the motor
means generating more heat in the motor's winding. The heat is what burns
electric motors. This means that making a mistake and setting this parameter too
high might have fatal consequences for the motor. Setting this parameter too low
would mean that the motor is not used to its full capacity in terms of torque. In
short, it is important to set this parameter right.

However, this parameter is not what can be experimentally determined or
measured by the controller itself during an auto-configuration procedure. Such a
procedure would have to burn a few motors to figure out what maximum phase-
to-phase electric current a particular model of the motor can handle continuously
with a stalled shaft. Obviously, this is not a practical approach. If one has to
guess the limit, start from a very conservative low value, and gradually increase
it until the motor starts heating up too much. Some of the motors will burn
before showing any signs of heating up. This means that this parameter has to be
taken from a datasheet supplied by the motor's manufacturer.

Note that if a particular application does not require all the torque the motor can
produce, it would be wise to set the limit lower than a nominal value suggested

FLOAT32,
0x2000,
0x02,
rw

4 www.servosila.com

http://www.servosila.com/

by the manufacturer. This would establish a safety margin at the expense of
torque. If the design goal is to push the motor to its limit in terms of torque and
dynamics, it is still wise to start the commissioning procedure at a lower limit,
and gradually raise the limit while observing how the motor handles the heat,
particularly in stalled situations such as braking or direct drive modes. Note that
a motor is operating in its worse possible situation as far as heat dissipation is
concerned whenever the motor is producing maximum torque (=maximum
current) while stalled (=no motion), for example, in a braking mode or in a low-
speed direct drive mode.

Note a difference between a "maximum current" and a "nominal
current/maximum continuous current" characteristics of motors. Since
manufacturers of the motors use varying terminology, it is easy to get confused
and make a mistake. The term "maximum current" is what manufacturers often
use to define an electric current the motor can handle for relatively short periods
of time, typically a few seconds. This is not what needs to be configured here.
What we are looking for is "continuous" maximum current, often defined as the
"nominal" or "rated" current in datasheets. This is a phase-to-phase electric
current that a stalled motor can handle indefinitely without any damage due to
heat. To summarize the point, be extra careful with datasheet entries called
"maximum current". Those entries might define a current that is way above a
"continuous current/nominal current" limit that we are looking for.

HINT: If a brushless motor's datasheet defines both "nominal power" and
"nominal voltage" parameters, it is possible to derive implied "nominal current"
using a formula given below. However, please do not confuse "maximum power"
with "nominal power" as those might differ by a factor of five or more.

Maximum Continuous Current (Line-to-Line) = Nominal Power (W) / Nominal
Voltage (V) * 1.414213562

3 Poles Number
(Rotor Poles)

- The Poles Number parameter should be taken from the motor's datasheet, or it
can be determined experimentally. Note that the number of rotor poles is always
an EVEN number since magnet poles always come in pairs.

Note that some motor manufacturers specify "Pole Pairs" instead of "Poles
Number" in their datasheets. However, it is easy to convert "pole pairs" to
"poles". Just multiple the number of pairs by 2 to get the number of poles. For
example, if a motor has 8 "Pole Pairs", then it means that Poles Number is
8*2=16 poles.

The number of poles can be determined by looking inside the motor. Just count
the number of coils in the motor, divide it by 3, and then multiply by 2. For
example, if a motor has 21 stator coils, this means that Poles Number = (21 / 3) *
2 = 14.

If one cannot peek inside the motor, there is a simple procedure that

UINT16,
0x2000,
0x03,
rw

5 www.servosila.com

http://www.servosila.com/

experimentally determines the Poles Number.

4

Phase
Resistance
(Line-to-Line)

Ohm The phase-to-phase electrical resistance parameter should be taken from the
motor's datasheet, or it can be measured using the controller itself. Even if the
parameter is provided in the motor's datasheet, it is still recommended to
measure it and re-confirm the value.

Electrical resistance generally increases as the temperature of the motor
increases. As such, do not be surprised if the measured value differs from a value
taken from the datasheet.

FLOAT32,
0x2000,
0x04,
rw

5

Phase
Inductance
(Line-to-Line)

H The phase-to-phase inductance parameter should be taken from the motor's
datasheet, or it can be measured using the controller itself.

Even if the parameter is provided in the motor's datasheet, it is still
recommended to measure it and re-confirm the value for a given motor.

FLOAT32,
0x2000,
0x05,
rw

6 Back-Emf
Constant (Ke)

V/
(rad/

s)

The Back-Emf Constant (Ke) parameter defines how much voltage a motor
generates whenever an external force spins its rotor thus turning the motor into
an electric generator.

Although not immediately apparent from the definition, the Back-Emf Constant
(Ke) tells how much torque the motor produces given an electric current that
flows through the motor. There is a well-known relationship between an electric
current flowing through a motor and a torque produced by the motor. The Ke
constant plays a prominent role in a formula that details the relationship.

The Back-Emf Constant (Ke) should generally be MEASURED using the
controller itself. It is usually not a good idea to take the value of Ke straight from
a motor's datasheet as there are so many ways the value can be measured by the
manufacturer, and there are so many units the value can be expressed in, that it is
very easy to make a mistake when configuring the controller. It is better to allow
the controller to measure the constant, than risking to misconfigure it.

Many manufacturers of the motors provide alternative constants called Velocity
Constant (Kv) or Torque Constant (Kt) instead of the Back-Emf Constant (Ke)
that the controller expects. However, there is a simple way to convert one
constant into another (Ke, Kv, Kt). The "Servoscope" software comes with a tool
that performs the conversions. It is wise to first measure Ke using the controller,
and then compare it to a Ke value taken from a datasheet or derived from either
Kv or Kt constant, assuming that at least one of those constants is provided by
the manufacturer.

The controller expects that the Back-Emf Constant (Ke) is configured in units
called "V (peak, line-to-neutral) per electrical rad/s". The controller measures
Back-Emf Constant (Ke) in those units, so one do not have to worry about units
conversion. If one still wants to venture into converting between various units
used to define the Back-Emf (Ke) constant, the "Servoscope" software comes

FLOAT32,
0x2000,
0x06,
rw

6 www.servosila.com

http://www.servosila.com/

with a tool that helps with that.

To summarize, as the Back-Emf Constant (Ke) is something that can be easily
misunderstood or misconfigured, it is better to rely on the controller's own
capabilities to properly measure and auto-configure the parameter.

7

Payload:
Viscous
Damping
Constant

Nm/
Hz

Viscous damping refers to forces of friction that are proportional to the motor's
speed of rotation. An example of viscous damping would be water giving
mechanical resistance to a pump's motor. Note that viscous damping refers to
forces originated in both the motor and its payload, rather than just in the motor.
This means that the parameter needs to be determined experimentally, rather than
taken from the motor's datasheet.

If Viscous Damping is not a concern, set the parameter's value to 0, and just
proceed with commissioning the motor.

There is an experimental procedure that allows measuring the Viscous Damping
Constant using the controller's built-in capabilities.

The controller expects that the Viscous Damping Constant is provided in
"Newton-Meters per Electrical Revolution per Second (Hz)" units.

The Viscous Damping Constant is used by the controller in the following ways:

• Feed-Forward Optimization: Viscous Damping Compensation for
Electronic Speed Control and Servo Control.

• As an input into a procedure that measures "Moment of Inertia of Rotor
and Payload".

A Feed-Forward Optimization called "Viscous Damping Compensation"
improves the dynamics and efficiency of an electric drive in case the drive
experiences much viscous damping. The optimization can be enabled once the
Viscous Damping Constant has been measured using an experimental routine. By
default, the optimization is turned off, and thus the constant is not used for
anything other than as an input into a procedure that measures "Moment of
Inertia of Rotor and Payload".

To properly measure "Moment of Inertia of Rotor and Payload", another
parameter in this section, using the controller's built-in capabilities, one first
needs to properly measure "Viscous Damping Constant".

Typically, one would initially leave the Viscous Damping parameter as 0,
complete the first pass of the configuration, and later come back to the parameter
to measure it, refine the configuration, and enable an optimization feature that
utilizes the parameter.

FLOAT32,
0x2000,
0x07,
rw

8 Payload:
Moment of

kg*m
2

The "Moment of Inertia of Rotor and Payload" parameter is used by the
controller to determine parameters of control laws related to Electronic Speed

FLOAT32,
0x2000,

7 www.servosila.com

http://www.servosila.com/

Inertia (Rotor
and Payload)

Control (ESC) mode. If the moment of inertia is not measured correctly, the
electric drive might experience vibrations or noise whenever operated in a speed-
controlled mode. It is not required to be very precise in determining the moment
of inertia. It is enough to be "about right" since the control laws have significant
stability margins.

The controller can measure the Moment of Inertia directly. Note that before
invoking the procedure, one might have to measure "Viscous Damping
Constant", another "Datasheet" section's parameter.

The moment of inertia is automatically measured by the controller during an
auto-configuration procedure. In many cases, it is sufficient to just launch the
auto-configuration procedure that figures everything out. However, the
procedure assumes that Viscous Damping is not present. If that turns out to be
not the case, the auto-configuration procedure overestimates the moment of
inertia. This overestimation might lead to vibrations or noise in the drive,
whenever the drive is operated under Electronic Speed Control (ESC). In that
case, please refer to a tutorial that explains how to measure both Moment of
Inertia and Viscous Damping Constant together, and then rectify control laws.
The Moment of Inertia is needed to estimate an "ESC Kp" parameter of a control
law for Electronic Speed Control (ESC).

An initial value for the Moment of Inertia can be taken from the motor's
datasheet. The issue is that the datasheet provides the moment of inertia of the
motor's own rotor while what is needed is a combined moment of inertia of both
the rotor and its payload. Thus it is recommended to use the controller to directly
measure the combined moment of inertia instead of relying on the datasheet
value.

Typically, one would start commissioning a motor with a value taken from a
datasheet, and would come back later to refine the moment of inertia by
measuring it using the controller's built-in capabilities.

0x08,
rw

9 Hall Sensors 0 or 1 • 0: Sensorless
• 1: Sensored

The parameter "Hall Sensors" tells the controller whether or not the motor has
built-in Hall sensors. Many brushless motors come with Hall sensors. The
sensors help the controller improve an electric drive's performance at low or zero
speeds.

NOTE: Both this parameter and a corresponding section "Peripheral: Hall
Sensors" are automatically configured by the controller's auto-configuration
procedure. Typically, one would not edit these manually.

An advantage of having Hall sensors is that the motor works in a much more
stable way at low or zero speeds as compared to "sensorless" motors. With Hall
sensors, the motor can produce torque at zero speed or whenever the motor is

BOOL,
0x2000,
0x09,
rw

8 www.servosila.com

http://www.servosila.com/

stalled.

This is not the case with "sensorless" motors. If a motor does not have Hall
sensors or an encoder (or the sensors are not yet wired to the controller), the
controller operates the motor in a so-called "sensorless" mode. An issue with
"sensorless" mode is that it only works whenever the motor reaches a certain
speed. Getting a motor to that speed requires the controller to employ a special
technique called "Kickstart" (configured and enabled separately). The
"Kickstart" technique might cause ripples of torque at very low speeds, just like
a gasoline engine. The ripples are not a problem in a wide range of applications
such as pumps, propellers, or electric scooters that do not need to operate at very
low speeds. Other applications warrant a use of "sensored" motors or even better,
motors with encoders. To summarize the point, "sensorless" motors are cheaper
and easy to use, but might face challenges whenever operated at very low speeds.
Motors with Hall sensors ("sensored") have better performance at low speeds,
produce torque at zero speeds, but might cost a bit more, and require extra wiring
as well as extra configuration on the controller side.

Note that even if a brushless motor has built-in Hall sensors, it is absolutely legal
to initially run the motor as a "sensorless" one. The Hall sensors can be wired to
the controller later as a way to improve performance at low or zero speeds of an
already operational drive. In fact, it is recommended to do it that way since it
allows to gradually introduce complexity into the drive's wiring and
configuration.

The controller can also utilize an external encoder (a "Motor Encoder") instead
of Hall sensors when operating a "sensorless" motor. Such an encoder is even
better than Hall sensors, when it comes to performance at low or zero speeds. An
added benefit is that the encoder can be used for Servo Control and Direct Drive
Control functions. The issue is that an encoder is typically much more expensive
than built-in Hall sensors, and might require complicated mechanical installation,
unless the encoder is built into the motor itself. Set this parameter to
"Sensorless" and proceed to configuring the "Motor Encoder" parameter if you
are commissioning a drive with an encoder, but without Hall sensors.

The controller's auto-configuration procedure is capable of determining if the
motor has Hall sensors that are properly wired to the controller. If the sensors are
connected to the controller, but the auto-configuration procedure does not
identify the motor as a "Sensored" one, please check the cabling and connectors
between the controller and the Hall sensors of the motor.

10 Motor Encoder - • 0: No encoder
• 1: Quadrature Encoder
• 2: BISS-C/SSI Encoder
• 3: SPI Encoder
• 4: PWM Encoder

The controller is designed to interface to up to two absolute encoders integrated

UINT16,
0x2000,
0x0A,

rw

9 www.servosila.com

http://www.servosila.com/

into the same electric drive. For configuration purposes, the encoders are
identified as a "Motor Encoder" and a "Servo Encoder". The encoders play
different roles as explained below:

• A "Motor Encoder" is an encoder rigidly connected to the motor's rotor or
built into the motor itself. The place of mechanical installation must be
chosen in such a way that no gearbox or a belt could introduce a backlash
in the linkage between the rotor and the encoder. When rigidly attached to
the rotor, such an encoder can be used by the controller to accurately
measure the angular position of the rotor. The angular position of the
rotor is what the controller needs to manage magnetic fields inside the
motor in such a way that the motor generates torque. An added benefit is
that such an encoder can be used for Direct Drive Control, Servo Control,
or Brake functions.

• A "Servo Encoder" on the other hand is meant to be used for Servo
Control only, due to control issues related to backlash of a speed reducer.
An encoder playing this role might be linked to the rotor via backlash-
introducing mechanisms, such as a gearbox or a belt. The backlash
implies that some other means (Hall sensors, a motor encoder, or
sensorless control) is to be used by the controller to sense the angular
position of the rotor. Thus the distinction between the roles of a "Servo
Encoder" and a "Motor Encoder". Note that a "Servo Encoder" can be of
a ROTARY or a LINEAR type.

To summarize, a "Motor Encoder" is a functional substitute for Hall sensors or
sensorless control, with further benefits related to that it can be used for Direct
Drive Control, Servo Control, or Brake functions. Such an encoder is much
better than Hall sensors when it comes to controlling a brushless motor at low or
zero speeds, due to higher resolution of shaft position sensing, but is more
expensive in terms of hardware. Typical Direct Drive motor features such an
encoder employed for both spinning the motor and for servo positioning, thus
killing two birds with one stone.

Besides a zero backlash requirement, the motor encoder's interface to the
controller must be of a low latency. This is especially true for encoders with
digital interfaces such as SPI or SSI. High latency or high backlash of an encoder
makes it impossible for the controller to use the encoder for the purpose of
spinning a brushless motor. In such a case, the controller shall be configured to
use Hall sensors (if present) or sensorless control instead.

Note that some types of encoders share pins and thus cannot be used together at
the same time.

After enabling an encoder here, proceed to configuring an associated encoder
peripheral in a corresponding section.

It usually makes sense to first run a brushless motor in a sensorless mode, and
only later connect an encoder to the controller. This approach helps gradually

10 www.servosila.com

http://www.servosila.com/

introduce complexity into the controller's configuration. Note that even if a
motor is equipped with an encoder, it is possible to run it as a plain sensorless
brushless motor.

CAUTION: If you enable a "motor encoder" here, make sure the configuration
parameter "encoder bias vs. electrical position" of the corresponding encoder
peripheral is properly set. The parameter defines an angular offset of the rotor vs.
motor encoder readings. The parameter is important for proper positioning of
magnetic field inside the motor. Failing to do so may cause the motor to
unexpectedly accelerate out of control once given a motion command.

11

Servo Encoder - • 0: No encoder
• 1: Quadrature Encoder
• 2: BISS-C/SSI Encoder
• 3: SPI Encoder
• 4: PWM Encoder

A "Servo Encoder" is dedicated for use with "Servo Control" only, since the
encoder that plays this role is allowed to be linked to the motor via backlash-
introducing mechanisms such as a gearbox or a belt. The implies that some other
means (Hall sensors, a "Motor Encoder", or sensorless control) shall be used by
the controller to sense the angular position of the rotor.

Note that a "Servo Encoder" can be of a ROTARY or a LINEAR type.

Note that some types of encoders share pins and thus cannot be used together at
the same time. After enabling an encoder here, proceed to configuring an
associated encoder peripheral in a corresponding section.

It usually makes sense to first run a brushless motor in a sensorless mode, and
only later connect an encoder to the controller. This approach helps gradually
introduce complexity into the controller's configuration. Note that even if a
motor is equipped with an encoder, it is possible to run it as a plain sensorless
brushless motor.

UINT16,
0x2000,
0x0B,

rw

12 Gearbox:
Reduction
Ratio

- The "Gearbox: Reduction Ratio" parameter is used whenever a servo drive is
equipped with a gearbox, a belt, or any other type of a speed reducer. Otherwise
set this parameter to 1.0.

For ROTARY servos, set the parameter to match a reduction ratio of the servo
mechanism's gearbox or belt. For example, if the reduction ratio is 100:1, then
set this parameter to 100. If there is a multi-stage speed reducing mechanism
(such as a belt driving a harmonic gear set), make sure a combined reduction
ratio is used.

For LINEAR servo mechanisms, determine how many rotor revolutions it takes
the motor to move the linear encoder from its initial position (such as a leftmost
one) to the furthest end position (such as a rightmost one). It might turn out to be

FLOAT32,
0x2000,
0x0C,

rw

11 www.servosila.com

http://www.servosila.com/

a fractional number. Use this number as the reduction ratio here.

If an electric drive does not have a "Servo Encoder", a gearbox or a belt, just set
this parameter to 1.0.

Configuration - Control Laws

The "Control Laws" section defines settings for various control laws implemented in the firmware of the controller. The
"Control Laws" section defines how the drive responds to commands given by a parent control system. Note that the
parameters within this section are automatically computed by the "Spreadsheet" tool or by an auto-configuration
procedure of the controller. The parameters are automatically derived from parameters configured in the "Datasheet"
section. In most cases, one should not enter the "Control Laws" parameters manually, but instead use one of the
provided automated tools to generate the an initial set of parameters. After an initial set of control laws has been
generated by a tool, minor adjustments can be made manually for tuning purposes.

Parameter Units Description CANopen

1 Speed Filter: T sec The "Speed Filter: T" parameter, a time constant, plays a role in
determining what perturbations in speed readings the electric drive needs to
respond to. Note that the speed perturbation might be caused by sudden
changes in payload characteristics ("bumps on the road"), or may turn out
to be a noise in speed measurements due discrete nature of an encoder or
an ADC.

The speed filter smooths out speed readings, thus hiding some of the noise
coming to the control laws. The goal is to choose a value for the "Speed
Filter: T" parameter in such a way that the noise is removed, while relevant
information about changes in speed readings caused by payload forces, is
allowed to pass through the filter.

The "Spreadsheet" tool and an auto-configuration routine of the controller
both analytically compute a proper value for this parameter by analyzing
the information provided in the "Datasheet" section. Nevertheless, a
manual adjustment might be required, especially when performance-
boosting optimizations such as "D-Q Coupling Compensation" are enabled.

Tuning intuition:

• DECREASING the time constant TOO MUCH causes the
controller to filter LESS noise in speed readings. This often
manifests itself as an audible "white" noise coming from the drive,
as the drive starts overreacting to unfiltered noise in speed readings.

• INCREASING the time constant TOO MUCH causes the drive to
filter out not just the noise, but also useful changes in speed
readings caused by external payload forces. This causes the drive to
experience difficulties in maintaining a commanded speed under an
influence of external forces. This might manifest itself in speed
oscillations or in longer times that take the drive to arrive to a

FLOAT32,
0x2002,
0x02,
rw

12 www.servosila.com

http://www.servosila.com/

commanded speed.

NOTE: An initial value for this parameter is automatically computed by the
"Spreadsheet" tool or by an auto-configuration procedure of the controller.
The initial value may turn out to be just right, or may require manual
tuning during a drive commissioning process.

2

Field Oriented
Control (FOC): Kp

V/A The term "Field Oriented Control (FOC)" refers to an efficient method of
controlling brushless motors. The controller uses the method, when getting
brushless motors to produce a commanded torque.

The FOC Kp parameter is a proportional gain of two similar PI controllers
that manage Iq and Id electrical currents within a brushless motor under
Field-Oriented Control (FOC). The higher the gain, the stronger the
controller responds to perturbations in the electrical currents by managing
Ud and Uq output voltages.

NOTE: The value for this parameter is automatically computed by the
"Spreadsheet" tool or by an auto-configuration procedure of the controller.

FLOAT32,
0x2002,
0x12,
rw

3

Field Oriented
Control (FOC): T

sec The FOC T parameter is an integral time constant of two similar PI
controllers that manage Iq and Id electrical currents within a brushless
motor under Field-Oriented Control (FOC).

The higher the time constant, the slower the PI controllers responds to
perturbations in the electrical currents.

NOTE: The value for this parameter is automatically computed by the
"Spreadsheet" tool or by an auto-configuration procedure of the controller.

FLOAT32,
0x2002,
0x13,
rw

4 Electronic Speed
Control (ESC): Kp

A/Hz Electronic Speed Control (ESC) is a function of the controller that
maintains a constant speed of the motor by automatically increasing or
decreasing torque in response to changes in speed. Note that the speed
readings are filtered by Speed Filter prior to being processed by Electronic
Speed Control (ESC) function.

The ESC Kp parameter is a proportional gain of a PI controller that
commands torque to maintain a constant speed. The parameter defines how
much electrical current needs to be driven through the motor to adjust
torque in order to compensate for a change in speed. The higher a
combined "Moment of Inertia of Rotor and Payload" is, the higher ESC Kp
parameter should be.

Tools:

• The "Spreadsheet" tool computes a correct value for this parameter,
whenever given a correct value of "Moment of Inertia of Rotor and
Payload".

FLOAT32,
0x2002,
0x22,
rw

13 www.servosila.com

http://www.servosila.com/

• The controller automatically measures the "Moment of Inertia"
during an auto-configuration procedure, and uses the measurement
to compute a correct value for ESC Kp parameter.

Note that measuring the moment of inertia requires that "Viscous Damping
Constant" is measured first.

Since ESC Kp parameter depends on a combined "Moment of Inertia of
Rotor and Payload", it is important that the moment is properly measured,
estimated, or even guessed. Note that direct measurements of the moment
of inertia by the controller can be quite imprecise, especially when a
complex payload is connected to the electrical drive. As errors in the
estimates directly translate into errors in ESC Kp parameter, some manual
adjustments to the ESC Kp parameter might be required.

Tuning intuition:

• The higher a combined "Moment of Inertia of Rotor and Payload"
is, the higher ESC Kp parameter should be.

• INCREASING the parameter too much might causes the motor to
produce an audible "white" noise when running under Electronic
Speed Control (ESC).

• DECREASING the parameter too much causes the drive to arrive to
a commanded speed too slowly, or experience difficulties in
maintaining a constant speed.

If manual adjustments are to be performed, it is recommended to use the
"Spreadsheet" tool for this purpose. Note that when using the tool, it is
better to manually adjust the "Moment of Inertia" and then re-compute the
ESC Kp parameter, rather than adjusting the ESC Kp parameter itself.

Note that the speed here is defined in electrical revolutions per second
(Hz). To convert Hz to motor shaft's revolutions per second, just divide it
by the number of pole pairs. For example, assuming the speed is 20 Hz
(electrical), and Poles Number is 8, then the corresponding speed in motor
shaft's revolutions per second is 20 / (8/2)= 5.0 Hz (revolutions per
second), which is 5 * 60 = 300 RPM.

5

Electronic Speed
Control (ESC): T

sec The "ESC: T" parameter is an integral time constant of a PI controller that
commands torque to maintain a constant speed.

The higher the time constant, the slower the ESC controller reacts to small
perturbations in speed readings.

This parameter should generally be computed using the "Spreadsheet"
software tool. The controller itself can also determine an appropriate value
for this parameter during an auto-configuration procedure.

FLOAT32,
0x2002,
0x23,
rw

14 www.servosila.com

http://www.servosila.com/

6

Servo: Kp Hz/
rad

The "Servo: Kp" parameter defines a proportional relationship between a
speed of servo motion and a distance to a target position the servo is
commanded to move to. The closer the servo approaches the target
position, the slower it moves. This proportional relationship is governed by
the "Servo: Kp" parameter. The speed becomes 0.0 whenever the target
position is reached, and the motor stops.

Example: lets assume that "Servo: Kp" is configured as 20 Hz/rad. If the
current distance to the target is 2.0 rad, the servo starts traveling with a
speed of 20 * 2.0 = 40 Hz. As the servo's shaft travels along, the distance to
the target position eventually gets reduced to 0.5 rad, so the speed at that
point drops to 20 * 0.5 = 10 Hz. Whenever the servo reaches its
destination, the distance to the target becomes 0.0 rad, so the speed drops to
0.0 Hz, and the motor stops.

The distance to the destination (measured in encoder counts), is first
normalized by dividing it by the encoder's resolution and then by
multiplying it by (2*PI) rad. This is done for both ROTARY and LINEAR
encoders. For example, if a servo encoder has a resolution of 65536 counts,
and the distance to the destination is 1000 counts, then the normalized
distance would be 1000 / 65536 * (2*PI) = 0.095873799 rad. This
normalized distance is multiplied by the pre-configured "Servo: Kp" factor
to determine the speed with which the servo should travel at that point (as
explained above).

The speed is then clamped by comparing it to "Servo: Speed Limit",
another configuration parameter. For example, if the "Servo: Speed Limit"
is set to be 20Hz, then the speed with which the servo travels never gets
higher than 20Hz. In fact, most of the time, the servo travels at this speed
limit until the speed starts dropping linearly upon approaching a target.

All the speeds here are defined in electrical revolutions per second (Hz). To
convert the electrical revolutions per second to servo shaft's revolutions per
second, divide it by the number of pole pairs and then divide it by the
gearbox's reduction ratio. For example, assuming the speed is 20 Hz
(electrical), Poles Number is 8, and the gearbox reduction ratio is 100, then
the corresponding speed in servo shaft's revolutions per second is 20 / (8/2)
/ 100 = 0.05 revolutions per second, which is 0.05 * 60 = 3.0 RPM.

FLOAT32,
0x2002,
0x32,
rw

7

Servo: Speed Limit
(Electrical
Frequency)

Hz The "Servo: Speed Limit" parameter sets a maximum speed with which the
servo travels to its target position. The servo moves at this speed limit most
of the time, only linearly reducing the speed before arriving to its target
destination. The period when servo is moving with this maximum speed is
called a "constant speed" segment of the servo motion. The limit is used to
clamp the speed computed using "Servo: Kp" parameter. Note that the
speed is defined in electrical Hz (electrical revolutions per second).

FLOAT32,
0x2002,
0x34,
rw

8 Direct Drive & Hz The "Direct Drive: Speed Limit" parameter defines a speed at which the FLOAT32,

15 www.servosila.com

http://www.servosila.com/

Micro-Speeding:
Speed Limit
(Electrical
Frequency)

controller switches between Field Oriented Control (FOC) and Direct
Drive Control algorithms. If a commanded speed is less than the limit, the
controller uses Direct Drive algorithm. Otherwise, it uses Field Oriented
Control (FOC) method.

The reason this parameter exists is that Field Oriented Control (FOC)
algorithm does not work well at low speeds. This is so because of a range
of issues related to inaccuracies of sensing at low speeds. Various control
instabilities start manifesting themselves whenever a user issues a low
speed command to a drive operating under Field Oriented Control (FOC).
On the other hand, Direct Drive Control works reliably at low speeds, but
does not work well at high speeds. Thus the need to switch between the
control methods that compliment each other.

However, Direct Drive Control is far less energy efficient than Field
Oriented Control (FOC) in terms of heat generated by the motor. To enable
or disable Direct Drive Control, use a parameter named "Feature: Direct
Drive". If your application does not require operating the motor at very low
speeds, avoid turning on the feature.

NOTE: The value for this limit is automatically computed by the
"Spreadsheet" tool or by an auto-configuration procedure of the controller.

0x2002,
0x72,
rw

9 Kickstart: Speed
Limit (Electrical
Frequency)

Hz "Kickstart" refers to a method of starting sensorless brushless motors. The
term "sensorless" means that such a motor is not equipped with Hall
sensors or an encoder.

The controller uses a clever mathematical method called "Sensorless
Observer" to deduce information about the rotor's position from seemingly
unrelated electric current measurements. The "Sensorless Observer"
method is only used whenever controlling a sensorless brushless motor
since no other source of information about the rotor's position is available.
Note that the position of the rotor has to be known to the controller to
properly position magnetic fields inside the motor using Field Oriented
Control (FOC) method, so that the motor produces torque instead of just
heat.

However, a magic behind the "Sensorless Observer" method works only
when the rotor is moving. If the rotor is not moving or not moving fast
enough, the controller does not know the position of the rotor, and thus
cannot properly position the magnetic fields inside the motor. The issue is a
kind of a "chicken or egg" problem. To move the rotor, the controller needs
to know the position of the rotor, but to know the position of the rotor, the
rotor needs to be already moving. This challenge only pertains to
"sensorless" motors, and does not apply to motors equipped with Hall
sensors or encoders that give the controller a usable reading of the rotor's
position at any speed. That's why the Hall sensors are used in the first
place. The "Kickstart" method solves the "chicken or egg" problem by

FLOAT32,
0x2002,
0x52,
rw

16 www.servosila.com

http://www.servosila.com/

initiating a motion of the rotor in a way that does not require any
knowledge of the rotor's position. Once the rotor starts moving under
Kickstart Control, then the physics behind the "Sensorless Observer" kicks
in, and the controller switches into the efficient Field Oriented Control
(FOC) method to proceed with acceleration of the rotor. It typically takes a
fraction of a second for the Kickstart Control to do its thing, and hand over
the control to Field Oriented Control (FOC) function. A side effect is that
the "Kickstart" procedure might create ripples of torque while accelerating
the motor. As those start-up ripples are not a problem for many
applications, the sensorless motors are popular due to simplicity and low
cost, albeit at the expense of complexity of the controller.

The parameter "Kickstart: Speed Limit" defines a speed which the
Kickstart procedure accelerates the rotor to, before attempting to hand over
control to Field Oriented Control (FOC). An implied assumption is that the
magic behind the "Sensorless Observer" method starts producing reliable
estimates of the rotor's position at that speed, so that it becomes possible
for Field Oriented Control (FOC) to take over.

NOTE: The value for this limit is automatically computed by the
"Spreadsheet" tool or by an auto-configuration procedure of the controller.

10

Kickstart: T sec The parameter "Kickstart: T" defines a timeframe within which the
"Kickstart" procedure accelerates a motor towards a pre-configured
"Kickstart: Speed Limit". If the kickstart procedure does not succeed
within the given timeframe, the controller makes another attempt, and
keeps making attempts until it successfully hands over control of the motor
to Field Oriented Control (FOC).

Tuning intuition:

• INCREASE the "Kickstart: T" parameter if the kickstart procedure
does not reliably start the sensorless motor each time. This might
happen, for example, if a payload attached to the motor has a
moment of inertia too large to be accelerated to "Kickstart: Speed
Limit" within the specified time.

• DECREASE the "Kickstart: T" parameter if a torque ripple caused
by the "Kickstart" procedure becomes a problem in a given
application. Shorter kickstart times makes the torque ripples shorter
in time too.

NOTE: The value for this parameter is automatically computed by the
"Spreadsheet" tool or by an auto-configuration procedure of the controller.

FLOAT32,
0x2002,
0x53,
rw

11 Sensorless Observer:
EMF Zero Speed
Voltage (high
watermark)

V The "Sensorless Observer" method works by measuring voltages generated
by the motor. Whenever the rotor is moving, permanent magnets of the
rotor happen to interact with coils of the stator in such a way that
measurable voltages are generated on phase lines (just like in an electric

FLOAT32,
0x2002,
0x62,
rw

17 www.servosila.com

http://www.servosila.com/

generator). A physical phenomena behind this effect is called "Back-Emf".
The phenomena is a foundation for the "sensorless" sensing of the rotor's
position. The controller continuously measures the Back-Emf voltages
using its electronic circuits, and applies some math to the measurements to
derive a position of the rotor. The math is what is actually called the
"Sensorless Observer" method.

The method works well at medium and high speeds. However, at low
speeds, the Back-Emf voltages turn out to be too low to be reliably
separated from a noise present in the electronic circuits. To counter the
noise issue, the "Sensorless Observer" discards voltage readings that are
lower than a certain voltage threshold. Effectively, the Sensorless Observer
is designed to wait until the Kickstart procedure manages to accelerate the
rotor to a speed high enough for the voltages to be reliably separated from
the noise.

The parameter "EMF Zero Speed Voltage (high watermark)", measured in
volts, specifies a threshold that the Back-Emf readings should reach in
order for Sensorless Observer to start providing reliable estimates of the
rotor position. The threshold should be aligned with "Kickstart: Speed
Limit" parameter since at that speed limit the motor is supposed to generate
Back-Emf voltages that are higher than the noise.

NOTE: The value for this parameter is automatically computed by the
"Spreadsheet" tool or by an auto-configuration procedure of the controller.

12

Sensorless Observer:
EMF Zero Speed
Voltage (low
watermark)

V The parameter "EMF Zero Speed Voltage (low watermark)", measured in
volts, specifies a threshold that Back-Emf readings should drop to in order
for Sensorless Observer to declare that its rotor position estimates are no
longer reliable.

NOTE: The value for this parameter is automatically computed by the
"Spreadsheet" tool or by an auto-configuration procedure of the controller.

FLOAT32,
0x2002,
0x63,
rw

Configuration - Features

The "Features" section provides means to customize the motor control laws to meet requirements of a specific
application.

Parameter Units Description CANopen

1 Feature: Direct Drive
& Micro-Speeding

0 or 1 "Direct Drive" refers to an advanced technique of controlling brushless
motors at low speeds. The technique turns a brushless motor into a servo,
whenever an absolute encoder is attached to the motor (no speed reducer is
required). A typical direct drive motor is equipped with an encoder, but no
gearbox, yet it still provides a high precision of motion control.

Enabling the "Direct Drive" feature changes the way the controller manages
motion at low speeds. The motion at low speeds becomes much more

BOOL,
0x2004,
0x62,
rw

18 www.servosila.com

http://www.servosila.com/

precise, but at the same time not as energy efficient. Note that more heat is
generated by a motor under Direct Drive Control, than the same motor under
Field Oriented Control (FOC). This is not a problem in many applications
where energy efficiency can be traded for high precision and mechanical
simplicity of Direct Drive Control.

If the feature is enabled, the controller begins to dynamically switch
between Field Oriented Control (FOC) and Direct Drive Control when
executing commands coming from a parent control system. The controller
automatically determines which method of control is the most appropriate
when executing a given command. This switching behavior is influenced by
a "Direct Drive: Speed Limit" parameter, configured in the "Control Laws"
section.

2

Feature: Kickstart 0 or 1 "Kickstart" refers to a method of starting "sensorless" brushless motors, the
ones that do not have Hall sensors or encoders. Since the "Kickstart"
procedure might create ripples of torque at start-up, there is a way to disable
the function altogether by toggling the "Feature: Kickstart" parameter.

If the Kickstart function is disabled, but a "sensorless" motor is used, then
an external application-specific method of starting up the motor needs to be
employed (e.g. pushing an electric scooter to kickstart its motor).

The kickstart function is generally not needed or used for motors with Hall
sensors or encoders, so disabling it does not change anything in that case.

An exception are drives equipped with absolute quadrature encoders. A
challenge with absolute quadrature encoders is that they use an INDEX
signal to identify a zero position each time the drive starts up. The controller
uses the same Kickstart routine to initially rotate such a motor until its
quadrature encoder stumbles upon an INDEX signal. The controller then
switches to Field Oriented Control (FOC) or Direct Drive Control since the
quadrature encoder is then providing an absolute position of the rotor.

BOOL,
0x2004,
0x02,
rw

3 Feature: Field
Weakening

0 or 1 "Field Weakening" is an advanced motor control technique that allows
reaching speeds higher than a rated speed of a brushless motor. It is like
shifting the drive to a higher gear, but electromagnetically. Note that the
higher speeds are reached at the expense of energy efficiency of the
electrical drive.

In normal circumstances, a maximum speed of a permanent magnet
synchronous motor (PMSM) is limited by the voltage of its power supply.
The higher the voltage of power supply is, the higher maximum speed a
brushless motor can reach. The permanent magnets of the rotor produce
Back-Emf voltage in stator coils (just like an electric generator). As the
speed grows, the generated Back-Emf voltage grows too. Whenever the
Back-Emf voltage matches the voltage of power supply, the brushless motor
reaches its maximum speed and cannot accelerate any further. It might be

BOOL,
0x2004,
0x22,
rw

19 www.servosila.com

http://www.servosila.com/

not immediately obvious why it is so, but just know that it is so due to some
laws of physics: input voltage limits maximum reachable speed.

The permanent magnets of the rotor come with a magnetic field attached to
them, the one that interacts with coils and produces the Back-Emf voltage
(as well as torque). What "Field Weakening" technique does is that it drives
an additional electric current through the stator coils in such a way that it
creates a magnetic field in the coils that cancels out some of the magnetic
field attached to the permanent magnets of the rotor. In other words, the
coils are used as electromagnets to cancel out a portion of the permanent
magnets' field. The net effect is that the permanent magnets become
"weaker". Weaker magnets generate weaker Back-Emf voltage in coils. This
means that higher speeds can be reached before the "weaker" Back-Emf
voltage matches the voltage of a power supply and the motor stops
accelerating.

To summarize, by enabling the Field Weakening feature, the permanent
magnets of the motor are instantly made "weaker" as some of their magnetic
field is canceled out by an opposing magnetic field generated by the coils.
This reduces the torque of the motor, but increases the maximum reachable
speed. This transformation is made instantly by toggling this configuration
parameter, just like shifting a gear in a car.

A drawback of Field Weakening is its energy inefficiency due excessive heat
generated by the coils. What happens is that the additional electric current
driven through the coils to weaken the field of permanent magnets, is not
used for producing useful torque, but instead is heating the motor. This
wastes some of the energy on heating rather than torque.

If higher speeds are needed for a particular application, it is might be a
better design decision to either increase the voltage of power supply, or
swap the motor for one with a lower Back-Emf (Ke) constant. However,
using the "Field Weakening" technique is appropriate for many applications.

4 Feature: D-Q
Coupling
Compensation (Feed-
Forward)

0 or 1 "D-Q Coupling Compensation" is an advanced motor control technique that
facilitates smooth transitions between modes of operation of an electrical
drive.

For example, if an electric drive is running under Electronic Speed Control
(ESC), and then is given a command to switch to Electronics Torque Control
(ETC), such a transition might cause a sudden change in electric currents
flowing through the motor due to a difference in control laws. This change
might cause a ripple in torque, mechanically stress the drive, or produce an
audible jolt. The "D-Q Coupling Compensation" feature, when enabled,
facilitates a smooth transition between various modes of operation.

The reason the feature is not enabled by default is because the feature
requires that the speed of the motor is correctly measured by the controller.

BOOL,
0x2004,
0x42,
rw

20 www.servosila.com

http://www.servosila.com/

As that might not be the case during initial phases of controller
configuration, the feature is disabled by default, so that it does not cause
random oscillations or a noise early on. The feature needs to be enabled at
later phases to improve performance of the electrical drive once an initial
pass of configuring its controller has been completed, and the drive is
already operational.

Tuning intuition:

• If a drive starts experiencing speed oscillations under Electronic
Speed Control (ESC) whenever the feature is enabled, DECREASE
"Speed Filter: T" parameter using the "Spreadsheet" tool.

• If the drive starts producing excessive noise under Electronic Speed
Control (ESC) whenever the feature is enabled, INCREASE "Speed
Filter: T" parameter using the "Spreadsheet" tool.

5

Feature: Viscous
Damping
Compensation (Feed-
Forward)

0 or 1 The feature "Viscous Damping Compensation" improves dynamics and
efficiency of an electric drive if the drive experiences much viscous
damping in its payload such as the mechanical resistance of water to a
pump's motor.

Note that "Viscous Damping Constant" needs to be experimentally
measured using the controller's means, and configured prior to enabling the
feature.

BOOL,
0x2004,
0x52,
rw

Configuration - Brake

The "Brake" function uses a drive's own electric motor to prevent a motion of the drive's shaft under influence of
external forces. The controller dynamically positions electromagnetic fields inside the motor in such a way that any
significant motion of the shaft is countered by an electromagnetic force working in the opposite direction. This is like
applying a brake to the shaft, but without an actual physical braking device. If there is no external force, the "Brake"
function does not trigger any countering electromagnetic forces, and thus does not draw energy from the power supply.

Note that the "Brake" function allows for an amount of "backlash" of the shaft. The backlash helps reduce consumption
of energy. Consider using Servo Control function if the goal is to firmly hold the shaft at a given position. For the
"Brake" function to work efficiently, the controller uses Hall sensors or a "Motor Encoder" to detect that the shaft is
moving due to external forces, and to dynamically apply a countering electromagnetic force.

Note that if a motor does not have Hall sensors or a "Motor Encoder", then the controller defaults to using a statically
positioned magnetic field when holding the shaft of the motor. The statically positioned magnetic field requires an
electric current to be continuously driven through the coils of the motor regardless of the presence of any external
forces. This electric current might cause excessive heating of the sensorless motor, and cause a continuous drain of
energy from its power supply. In short, special care needs given to heat management when using the "Brake" function
with sensorless motors.

Parameter Units Description CANopen

1 Brake: rad The controller applies a countering force that is proportional to displacement of the FLOAT32,

21 www.servosila.com

http://www.servosila.com/

Backlash
Threshold

shaft from a braking position. The "Brake: Backlash Threshold" parameter,
expressed in electrical radians, specifies how far the shaft of the motor is allowed
move under the influence of external forces before the controller applies a
maximum countering electromagnetic force to bring the shaft back to its original
braking position.

Note that the backlash value is no less than (2*PI / 6) radians (electrical) for motors
with Hall sensors as this is the finest angular resolution the sensors are capable of.

Tuning intuition:

• REDUCE this value to reduce backlash of the motor when on a "Brake".
• INCREASE the parameter to reduce power consumption in the "Brake"

mode.

0x2024,
0x03,
rw

2

Brake: T
rising

sec The parameter "Brake: T rising" specifies how quickly the motor responds to
sudden increases in external disturbing forces that move the shaft.

Tuning intuition:

• DECREASE the parameter to improve responsiveness of the "Brake"
function to sudden jolts of external forces.

• INCREASE the parameter to reduce power consumption in the "Brake"
mode.

FLOAT32,
0x2024,
0x04,
rw

3

Brake: T
falling

sec The parameter "Brake: T falling" defines how quickly the motor reduces a
countering electromagnetic force once an external disturbing force disappears.

Tuning intuition:

• DECREASE the parameter to reduce power consumption in the "Brake"
mode.

• INCREASE the parameter if shaft oscillations or an excessive noise are
observed in the "Brake" mode.

FLOAT32,
0x2024,
0x05,
rw

4

Feature:
Brake on Idle

0 or 1 The parameter "Feature: Brake on Idle" instructs the controller to automatically
apply the "Brake" function whenever the motor is in the "Idle" mode.

This feature helps prevent the force of gravity from moving the joints of machines
in an event of a sudden loss of connectivity with a parent control system.

BOOL,
0x2024,
0x10,
rw

Configuration - Work Zone

The term "Work Zone" defines a sector which a servo drive's shaft is allowed to move within. The controller makes an
effort to prevent the servo's shaft from leaving the "Work Zone" even if an erroneous command is given by a parent
control system. The "Work Zone" is meant to define boundaries of safe operation of a servo mechanism, so that the

22 www.servosila.com

http://www.servosila.com/

mechanism does not hit itself or anything else. The "Work Zone" is applicable to both ROTARY and LINEAR servo
drives.

The work zone is a "multi-turn" one when a ROTARY encoder is used. In other words, the work zone is not limited to
just 360 degrees of the rotary encoder's resolution. Instead, it logically spans in both positive or negative directions as
many encoder counts as needed. Both Servo Control and Direct Drive Control use the logical work zone's counts at
their references instead of a physical servo encoder's readings. This makes it easier to develop "multi-turn" servo
applications.

Parameter Units Description CANopen

1

Work Zone: zero
offset

servo
counts

The "Work Zone: zero offset" parameter defines a bias measured in servo
encoder's counts, that is subtracted from a servo encoder's readings to
determine a position within the work zone. This parameter is used to correct
for an offset in the servo encoder's mechanical installation.

FLOAT32,
0x2034,
0xA0,

rw

2

Work Zone: start servo
counts

The parameter "Work Zone: start", measured in servo encoder's counts,
defines a leftmost boundary of the work zone.

FLOAT32,
0x2034,
0xA2,

rw

3

Work Zone: end servo
counts

The parameter "Work Zone: end", measured in servo encoder's counts,
defines a rightmost boundary of the work zone.

FLOAT32,
0x2034,
0xA3,

rw

4

Feature: Enforce
Work Zone
Boundaries

0 or 1 The "Feature: Enforce Work Zone Boundaries" forces the controller to stop
the motion of a servo drive whenever the servo is about to leave the
boundaries of the work zone.

BOOL,
0x2034,
0xA1,

rw

Configuration - Fault Management

The controller automatically stops the electric drive whenever a hardware problem (a fault) is detected. After stopping
the drive, the controller raises one or more "Fault Bits" flags in telemetry, and waits for a "Reset" command to come
from an a parent control system. The controller keeps the motor powered off until the "Reset" command comes.

Parameter Units Description CANopen

1

Hide Faults bitmask The bit mask hides selected faults thus preventing the faults from stopping the
electric drive whenever the faults occur. Use this feature with high care since
ignored faults might cause troubles. Look for a description of parameter "Fault
Bits" in the telemetry section to know meanings of each of the bits.

UINT16,
0x2044,
0x02,
rw

2 Overcurrent
Limit: Factor

- The controller raises an Overcurrent Fault signal whenever electric current in
any of the motor's phases exceeds a pre-configured "Maximum Continuous
Current" by "Overcurrent Limit: Factor".

For example, if the "Maximum Continuous Current" parameter is 7 A, and the
"Overcurrent Limit: Factor" is 4.0, the controller raises an Overcurrent Fault
signal in "Fault Bits" whenever electrical current in any of the phases reaches

FLOAT32,
0x2044,
0x04,
rw

23 www.servosila.com

http://www.servosila.com/

7A*4=28A.

Configuration - Peripheral: GPIO

Parameter Units Description CANopen

1

Emergency Stop GPIO This parameter specifies which GPIO pin is to be used as an Emergency Stop
input.

Refer to datasheet for a list of avaiable input GPIO pins. If this parameter is
set to 0, this means Emergency Stop function is disabled.

UINT16,
0x3020,
0x10,
rw

2

Limit Switch
(Negative Speed)

GPIO This parameter specifies which GPIO pin is connected to a limit switch acting
in NEGATIVE speed direction.

Refer to datasheet for a list of available input GPIO pins. If this parameter is
set to 0, this means the function is disabled.

UINT16,
0x3020,

0x11,
rw

3

Limit Switch
(Positive Speed)

GPIO This parameter specifies which GPIO pin is connected to a limit switch acting
in POSITIVE speed direction.

Refer to datasheet for a list of available input GPIO pins. If this parameter is
set to 0, this means the function is disabled.

UINT16,
0x3020,
0x12,
rw

4

Generic Output GPIO This parameter tells which GPIO pin is to be used to output command-
controlled descrete or PWM signal. This signal is typically used to control a
solenoid of a brake.

Refer to datasheet for a list of available output GPIO pins. If this parameter is
set to 0, this means the function is disabled.

UINT16,
0x3020,
0x20,
rw

5

Generic Input GPIO This parameter tells which GPIO pin is to be used as a general-purpose input
that can be read out via a telemetry interface.

Refer to datasheet for a list of available input GPIO pins. If this parameter is
set to 0, this means the function is disabled.

UINT16,
0x3020,
0x30,
rw

Configuration - Peripheral: Hall Sensors

Many brushless motors come with built-in Hall sensors. The sensors help the controller improve the electric drive's
efficiency at low or zero speeds. With Hall sensors, the motor produces torque at zero speed or whenever the motor is
stalled.

Note that the controller automatically configures this section when an appropriate auto-configuration procedure is
launched. Typically, one would not edit this section manually.

Parameter Units Description CANopen

24 www.servosila.com

http://www.servosila.com/

1

physical sensor for
logical sensor 0

0/1/2 If phase "A" is positively energized, and phases "B" and "C" are negatively
energized, this logical sensor reads as "1", while others read as "0".

UINT16,
0x3004,
0x06,
rw

2

physical sensor for
logical sensor 1

0/1/2 If phase "B" is positively energized, and phases "A" and "C" are negatively
energized, this logical sensor reads as "1", while others read as "0".

UINT16,
0x3004,
0x07,
rw

3

physical sensor for
logical sensor 2

0/1/2 If phase "C" is positively energized, and phases "A" and "B" are negatively
energized, this logical sensor reads as "1", while others read as "0".

UINT16,
0x3004,
0x08,
rw

4

Hall signals inverted 0 or 1 This parameter instructs the controller to invert readings of all Hall sensors
before mapping them to logical sensors.

BOOL,
0x3004,
0x05,
rw

Configuration - Peripheral: Quadrature Encoder

This section needs to be configured only if either "Motor Encoder" or "Servo Encoder" parameter in the "Datasheet"
section is set to "Quadrature Encoder". Otherwise, leave this section unchanged. The controller comes with dedicated
hardware, a silicon peripheral, for interfacing quadrature encoders. The peripheral has peculiarities of configuration that
are addressed in this section.

A challenge with absolute quadrature encoders is that they need to use an INDEX signal to search for a zero position
each time the drive is powered up. The controller uses the "Kickstart" procedure to initially rotate such a motor until its
quadrature encoder stumbles up the INDEX signal. The controller then switches to Field Oriented Control (FOC) or
Direct Drive Control until it gets powered off again. The search is commenced upon receiving the first motion
command from a parent control system. The direction of search is derived from the received command.

Note that quadrature encoders allow the controller to measure not just shaft position, but also speed. There are two
distinct methods of how the controller computes the speed:

1. Method #1 "UNIT DISTANCE": The controller records how much time it takes the quadrature encoder's disk to
travel a pre-configured UNIT DISTANCE measured in encoder counts (quadrature edges). By dividing the
UNIT DISTANCE by the recorded time, the controller arrives to the first estimate of speed. The parameter
UNIT DISTANCE is configured in this section. However, at higher speeds the recorded time becomes too short
thus creating a quantization issue.

2. Method #2 "UNIT TIME": The controller records a distance (measured in encoder counts) that the encoder
travels in a UNIT TIME period. By dividing the recorded distance by the UNIT TIME, the controller arrives to
the second estimate of speed. The parameter UNIT TIME is configured in this section. However, at lower
speeds the number of edges counted within the UNIT TIME could be too small thus creating a quantization
issue.

3. Since Method #1 gives reliable estimates at lower speeds, while Method #2 gives reliable estimates at higher
speeds, the controller chooses one estimate or the other by comparing the estimates to a SPEED SELECTION
THRESHOLD configured in this section.

25 www.servosila.com

http://www.servosila.com/

Parameter Units Description CANopen

1

counts per
revolution

counts The parameter defines a maximum resolution of the quadrature encoder. The
resolution is defined in quadrature edge counts per revolution. This parameter is
to be taken from the encoder's datasheet.

UINT32,
0x3011,
0x02,
rw

2

encoder bias vs.
electrical
position

counts This parameter needs to be set only if the encoder is used for motor control (a
"Motor Encoder"). Otherwise, keep this parameter as 0.

This parameter specifies a zero offset of the encoder's mechanical installation
vs. an electrical position defined by an order in which the motor's phase lines
are connected to the controller.

The bias can be experimentally determined as the following:

• Positively energize phase "A".
• Negatively energize both phases "B" and "C".
• Let the motor's rotor settle at a position.
• The encoder's reading at that position is the bias.

The procedure needs to be performed after correcting for a possible inversion of
a mechanical installation of the encoder (see "inverted installation" parameter in
this section).

UINT32,
0x3011,
0x03,
rw

3

inverted
installation
(swap A and B
signals)

0 or 1 The direction of the motor's rotation should match the direction of the encoder's
rotation. If that's not the case due to an inverted way the encoder is
mechanically installed, this parameter helps correct the mismatch.

BOOL,
0x3011,
0x04,
rw

4

polarity
inversion

0 or 1 This parameter causes the electronic circuits of the controller to invert A, B, and
I signals of the quadrature encoder before feeding the signals into the software
for analysis.

BOOL,
0x3011,
0x11,
rw

5 UNIT
DISTANCE:
UPPS

0-15 This parameter is used in "UNIT DISTANCE" method of computing speed. The
controller records how much time it takes the encoder to travel a pre-configured
UNIT DISTANCE measured in encoder counts (quadrature edges). By dividing
the UNIT DISTANCE by the recorded time, the controller arrives to an estimate
of speed. This method of computing speed gives reliable results at lower speeds.
However, at higher speeds the recorded time becomes too short thus creating a
quantization issue.

The UNIT DISTANCE is configured as the following silicon-specific way:

UNIT DISTANCE = 2^UPPS

For example, if UPPS is 4, then UNIT DISTANCE is 2^4 = 16 (counts).

Note: increasing UNIT DISTANCE too much introduces latency in speed
measurement since the controller has to wait longer before it can compute

UINT16,
0x3011,
0x13,
rw

26 www.servosila.com

http://www.servosila.com/

speed.

6

UNIT
DISTANCE:
Divider CCPS

0-7 This parameter is used in "UNIT DISTANCE" method of computing speed.
When computing speed using the UNIT DISTANCE method, the controller has
to precisely measure time as explained above. The way the controller's silicon
peripheral measures the time is by counting ticks of the CPU clock using a
16bits counter. The ticks arrive at the frequency of CPU which is 90 MHz
(double-check this for your controller). The frequency is then divided by a
prescaler circuit configured here in the following silicon-specific way:

PRESCALER = 2^CCPS

For example, if CCPS is 7, then PRESCALER is 2^7 = 128. This translates to
counter's frequency of 90 000 00 / 128 = 703125 Hz.

The reason the pre-scaler is needed is because the 16bit counter in silicon that
measures time might overflow if the CPU ticks are routed to it at the full CPU
frequency. Note that if the encoder's speed is too low, it takes the encoder longer
time to travel the UNIT DISTANCE, thus there is a risk that the counter might
overflow within that longer time. Thus the need for this pre-scaler parameter.

UINT16,
0x3011,
0x14,
rw

7

UNIT TIME sec This parameter is used in "UNIT TIME" method of computing speed. The
controller records a distance (measured in encoder counts) that the encoder
travels in a UNIT TIME period. By dividing the recorded distance by the UNIT
TIME, the controller arrives to an estimate of speed. This method of computing
speed gives reliable results at higher speeds. However, at lower speeds the
number of edges counted within the UNIT TIME could be too small thus
creating a quantization issue.

ATTENTION: UNIT TIME must be equal or less than 1/Max_speed, where
Max_speed is the maximum expected speed to be measured by the encoder,
expressed in revolutions per second.

FLOAT32,
0x3011,
0x12,
rw

8

speed selection
threshold

Hz The threshold tells when to dynamically switch from UNIT DISTANCE ("lower
speeds") to UNIT TIME ("higher speeds") method.

• If the speed is lower than the threshold, then the controller uses the
"UNIT DISTANCE" method.

• If the speed is higher than the threshold, then the controller uses the
"UNIT TIME" method.

FLOAT32,
0x3011,
0x15,
rw

9 incremental
encoder

0 or 1 • 0: an absolute encoder with an index signal ("I" or "Z" signal is present)
• 1: an incremental encoder (no index signal)

BOOL,
0x3011,
0x16,
rw

27 www.servosila.com

http://www.servosila.com/

Configuration - Peripheral: SSI/BISS-C Encoder

This section needs to be configured only if either "Motor Encoder" or "Servo Encoder" parameter in the "Datasheet"
section is set to "SSI/BISS-C Encoder". Otherwise leave this section unchanged.

The controller reads out data from an SSI/BISS-C encoder by sending a train of pulses via CLOCK line. The encoder
sends a single bit of data back to the controller via DATA line each time it receives a pulse from the controller. By
sending the train of pulses, the controller reads out all the data bits (a packet) from the encoder.

If an encoder puts a CRC field into the packet, then the controller uses a CRC verification function to detect and
discard corrupted packets. If the CRC verification fails, the controller discards the packet as a corrupted one, but DOES
NOT raise a "Fault Bits" flag. The controller supports a limited number of CRC formulae. If an encoder implements a
CRC formula that is not supported by the controller, then the CRC verification feature needs to be turned off.

If the encoder sends an ERROR bit in a data packet, the controller stops the motor and raises a corresponding "Fault
Bits" flag. The motor remains powered off until the controller receives a "Reset" command from a parent control
system. A WARN bit can also be extracted from the packet for telemetry purposes. However, the WARN bit is not used
by the controller itself, and does not trigger any fault-handling logic.

Parameter Units Description CANopen

1

counts per
revolution

counts The parameter defines a maximum resolution of the encoder. This parameter is to
be taken from the encoder's datasheet.

UINT32,
0x3013,
0x02,
rw

2

encoder bias
vs. electrical
position

counts This parameter needs to be set only if the encoder is used for motor control (a
"Motor Encoder"). Otherwise keep this parameter as 0.

This parameter specifies a zero offset of the encoder's mechanical installation vs.
an electrical position defined by an order in which the motor's phase lines are
connected to the controller.

The bias can be experimentally determined as the following:

• Positively energize phase "A".
• Negatively energize both phases "B" and "C".
• Let the motor's rotor settle at a position.
• The encoder's reading at that position is the bias.

The procedure needs to be performed after correcting for a possible inversion of
the mechanical installation of the encoder (see "inverted installation" parameter
in this section).

UINT32,
0x3013,
0x03,
rw

3

inverted
installation

0 or 1 The direction of the motor's rotation should match the direction of the encoder's
rotation. If that's not the case due to a way the encoder is mechanically installed,
this parameter helps correct the mismatch.

BOOL,
0x3013,
0x04,
rw

4 request
frequency:

- The parameter defines how often the controller reads out data from the encoder.
Specifically, this parameters specifies how often pulse trains are sent by the

UINT16,
0x3013,

28 www.servosila.com

http://www.servosila.com/

divider controller to the encoder via CLOCK line. Note that the encoder sends a single
bit of data back to the controller via DATA line each time it receives a pulse from
the controller. By sending a train of pulses, the controller reads out all the data
bits (a packet) from the encoder.

The parameter specifies a divider for the controller's sampling frequency.

For example:

The controller has a sampling frequency of 15 kHz or 15 000 samples per second
(check this for your controller in "Device Information" telemetry section). If the
divider is specified as 4, then the request frequency is 15 000 / 4 = 3750 Hz =
3.75kHz. This means that the controller reads out the data from the encoder 3750
times a second.

Note that the request frequency should be aligned with a maximum request
frequency specified in the encoder's datasheet.

0x10,
rw

5

clock
frequency:
divider

- This parameter characterizes pulses within a train of pulses that are sent by the
controller to the encoder via CLOCK line to read out a data packet. The pulses
are generated by a silicon peripheral that has peculiarities of configuration as
explained below.

The parameter specifies a divider for CPU frequency of the controller. The
formula for the pulse's frequency is the following:

clock frequency = [Half of CPU frequency] / (divider + 1)

Example:

If the controller's CPU frequency is 90 MHz, and "clock frequency: divider" is
configured as 89, then this results in the following clock frequency: 90 MHz / 2 /
(89 + 1) = 45 Mhz / 90 = 500kHz.

Intuition for selecting the clock frequency:

• The clock frequency should not be higher than a maximum clock
frequency defined in the encoder's datasheet.

• On the other hand, the clock frequency should be high enough, so that the
entire pulse train fits in a time window between subsequent data reads.
Note that the frequency of data reads is defined by "request frequency:
divider" parameter in this section.

• Note that the encoder may require a timeout period at the end of each
pulse train. This period shall also fit in the time window between
subsequent data reads in addition to the pulse train itself.

• The higher the frequency, the better (lower latency).

UINT16,
0x3013,

0x11,
rw

6 clock polarity 0 or 1 The parameter tells the controller to electrically invert output signals on the UINT16,

29 www.servosila.com

http://www.servosila.com/

CLOCK line. The parameter is rarely changed. Leave the default setting unless
an application-specific need arises.

0x3013,
0x12,
rw

7

clock phase 0 or 1 The parameter tells the controller to delay the moment when the DATA line is
sampled vs. output pulse on the CLOCK line. The parameter is rarely changed.
Leave the default setting unless an application-specific need arises.

UINT16,
0x3013,
0x13,
rw

8

total number
of bits in
packet

- The parameter specifies the number of pulses the controller clocks out via the
CLOCK line each time the controller reads the a data packet from the encoder.
This parameter should be taken from the encoder's datasheet. The number of
pulses matches the number of bits read out from the encoder.

Note that there are 2 "empty" bits at the beginning of every SSI packet followed
by an encoder-specific number of ACK bits as well as Start and CDS bits. Those
empty bits, the ACK bits as well as the Start and CDS bits should be included
when counting the total number of pulses to be clocked out via the CLOCK line.

Furthermore, due to peculiarities of a silicon peripheral, the number of clocked
out pulses is rounded up to the nearest 16. For example, if this parameter is set as
25 bits (16+9), the actual number of clocked out pulses is going to be 32
(16+16).

UINT16,
0x3013,
0x14,
rw

9

POSITION
field: start bit

- This parameter defines a format of the data packet. The parameter needs to be
taken from the encoder's datasheet.

UINT16,
0x3013,
0x20,
rw

10

POSITION
field: length

- This parameter defines a format of the data packet. The parameter needs to be
taken from the encoder's datasheet.

UINT16,
0x3013,
0x21,
rw

11

POSITION
field: is
inverted

0 or 1 This parameter defines a format of the data packet. The parameter needs to be
taken from the encoder's datasheet.

BOOL,
0x3013,
0x22,
rw

12

CRC field: is
used

0 or 1 This parameter enables or disables CRC verification for received packets. Note
that the controller supports a limited number of CRC formulae. If an encoder
implements a CRC formula that is not supported by the controller, then the CRC
verification function has to be turned off. Note that if CRC verification fails, the
controller discards the packet as a corrupted one, but DOES NOT raise a "Fault
Bits" flag.

BOOL,
0x3013,
0x23,
rw

13

CRC field:
start bit

- This parameter defines a format of the data packet. The parameter needs to be
taken from the encoder's datasheet.

UINT16,
0x3013,
0x24,
rw

14 CRC field:
length

- This parameter defines a format of the data packet. The parameter needs to be UINT16,
0x3013,

30 www.servosila.com

http://www.servosila.com/

taken from the encoder's datasheet. 0x25,
rw

15

CRC field: is
inverted

0 or 1 This parameter defines a format of the data packet. The parameter needs to be
taken from the encoder's datasheet.

BOOL,
0x3013,
0x26,
rw

16

CRC input:
start bit

- The CRC is computed over a particular portion of the packet as specified in the
encoder's datasheet. For the purpose of this configuration procedure, the portion
is called "CRC input". The CRC input may span multiple data fields across the
packet.

This parameter defines a format of the data packet. The parameter needs to be
taken from the encoder's datasheet.

UINT16,
0x3013,
0x27,
rw

17

CRC input:
length

- This parameter defines a format of the data packet. The parameter needs to be
taken from the encoder's datasheet.

UINT16,
0x3013,
0x28,
rw

18

CRC input: is
inverted

0 or 1 This parameter defines a format of the data packet. The parameter needs to be
taken from the encoder's datasheet.

BOOL,
0x3013,
0x29,
rw

19

ERROR bit: is
used

0 or 1 This parameter specifies if the controller should analyze and react to an ERROR
bit in received packets. If the parameter is enabled, the controller stops the motor
and raises a "Fault Bits" flag upon receiving an ERROR bit. The motor remains
powered off until the controller receives a "Reset" command from a parent
control system.

BOOL,
0x3013,
0x2A,

rw

20

ERROR bit:
bit position

- This parameter defines a format of the data packet. UINT16,
0x3013,
0x2B,

rw

21

ERROR bit: is
inverted

0 or 1 This parameter defines a format of the data packet. BOOL,
0x3013,
0x2C,

rw

22

WARN bit: is
used

0 or 1 The WARN bit can be extracted from the data packet. However, it is not used for
anything other than telemetry.

BOOL,
0x3013,
0x2D,

rw

23

WARN bit: bit
position

- This parameter defines a format of the data packet. The parameter needs to be
taken from the encoder's datasheet.

UINT16,
0x3013,
0x2E,

rw

24 WARN bit: is
inverted

0 or 1 This parameter defines a format of the data packet. The parameter needs to be BOOL,
0x3013,

31 www.servosila.com

http://www.servosila.com/

taken from the encoder's datasheet. 0x2F,
rw

Configuration - Peripheral: SPI Encoder

This section needs to be configured only if either "Motor Encoder" or "Servo Encoder" parameter in the "Datasheet"
section is set to "SPI Encoder". Otherwise leave this section unchanged.

The controller reads out data from the encoder by sending a train of pulses via SCK line. This line is sometimes called
SCLK or CLOCK. The encoder sends a single bit of data back to the controller via MISO line each time it receives a
pulse from the controller. By sending a train of pulses, the controller reads out all the data bits (a packet) from the
encoder.

If an encoder puts a CRC field into the packet, then the controller uses a CRC verification function to detect and
discard corrupted packets. If the CRC verification fails, the controller discards the packet as a corrupted one, but DOES
NOT raise a "Fault Bits" flag. The controller supports a limited number of CRC formulae. If an encoder implements a
CRC formula that is not supported by the controller, then CRC verification feature needs to be turned off.

If the encoder sends an ERROR bit in a data packet, the controller stops the motor and raises a corresponding "Fault
Bits" flag. The motor remains powered off until the controller receives a "Reset" command from a parent control
system. A WARN bit can also be extracted from the packet for telemetry purposes, but the bit is not used by the
controller, and does not trigger any fault-handling logic.

Parameter Units Description CANopen

1

counts per
revolution

counts The parameter defines a maximum resolution of the encoder. This parameter is to
be taken from the encoder's datasheet.

UINT32,
0x3014,
0x02,
rw

2

encoder bias
vs. electrical
position

counts This parameter needs to be set only if the encoder is used for motor control (a
"Motor Encoder"). Otherwise, keep this parameter as 0.

This parameter specifies a zero offset of the encoder's mechanical installation vs.
an electrical position defined by an order in which the motor's phase lines are
connected to the controller.

The bias can be experimentally determined as the following:

• Positively energize phase "A".
• Negatively energize both phases "B" and "C".
• Let the motor's rotor settle at a position.
• The encoder's reading at that position is the bias.

The procedure needs to be performed after correcting for a possible inversion of
the mechanical installation of the encoder (see "inverted installation" parameter
in this section).

UINT32,
0x3014,
0x03,
rw

3 inverted
installation

0 or 1 The direction of the motor's rotation should match the direction of the encoder's
rotation. If that's not the case due to a way the encoder is mechanically installed,

BOOL,
0x3014,

32 www.servosila.com

http://www.servosila.com/

this parameter helps correct the mismatch. 0x04,
rw

4

request
frequency:
divider

- The parameter defines how often the controller reads out data from the encoder.
Specifically, this parameters specifies how often pulse trains are sent by the
controller to the encoder via SCK line. This line is sometimes called SCLK or
CLOCK. Note that the encoder sends a single bit of data back to the controller
via MISO line each time it receives a pulse from the controller. By sending a
train of pulses, the controller reads out all the data bits (a packet) from the
encoder.

The parameter specifies a divider for the controller's sampling frequency.

For example:

The controller has a sampling frequency of 15 kHz or 15 000 samples per second
(check this for your controller in "Device Information" telemetry section). If the
divider is specified as 4, then the request frequency is 15 000 / 4 = 3750 Hz =
3.75kHz. This means that the controller reads out the data from the encoder 3750
times a second.

Note that the request frequency should be aligned with a maximum request
frequency specified in the encoder's datasheet.

UINT16,
0x3014,
0x10,
rw

5 clock
frequency:
divider

- This parameter characterizes pulses within a train of pulses that are sent by the
controller to the encoder via SCK line to read out a data packet. This line is
sometimes called SCLK or CLOCK. The pulses are generated by a silicon
peripheral that has peculiarities of configuration as explained below.

The parameter specifies a divider for CPU frequency of the controller. The
formula for the pulse's frequency is the following:

clock frequency = [Half of CPU frequency] / (divider + 1)

Example:

If the controller's CPU frequency is 90 MHz, and "clock frequency: divider" is
configured as 89, then this results in the following clock frequency: 90 MHz / 2 /
(89 + 1) = 45 Mhz / 90 = 500kHz.

Intuition for selecting the clock frequency:

• The clock frequency should not be higher than a maximum clock
frequency defined in the encoder's datasheet.

• On the other hand, the clock frequency should be high enough, so that the
entire pulse train fits in a time window between subsequent data reads.
Note that the frequency of data reads is defined by "request frequency:
divider" parameter.

UINT16,
0x3014,

0x11,
rw

33 www.servosila.com

http://www.servosila.com/

• The higher the frequency, the better (lower latency).

6

clock polarity 0 or 1 The parameter tells the controller to electrically invert output signals on the SCK
line. This line is sometimes called SCLK or CLOCK.

Leave the default setting unless an application-specific need arises.

UINT16,
0x3014,
0x12,
rw

7

clock phase 0 or 1 The parameter tells the controller to delay the moment when the MISO line is
sampled vs. output pulse on the SCK line.

Leave the default setting unless an application-specific need arises.

UINT16,
0x3014,
0x13,
rw

8

total number
of bits in
packet

- The parameter specifies the number of pulses the controller clocks out via the
SCK line each time the controller reads a data packet from the encoder. This line
is sometimes called SCLK or CLOCK. The number of pulses matches the
number of bits read out from the encoder. This parameter should be taken from
the encoder's datasheet.

Furthermore, due to peculiarities of a silicon peripheral, the number of clocked
out pulses is rounded up to the nearest 16. For example, if this parameter is set as
25 bits (16+9), the actual number of clocked out pulses is going to be 32 (16+16).

UINT16,
0x3014,
0x14,
rw

9

POSITION
field: start bit

- This parameter defines a format of the data packet. The parameter needs to be
taken from the encoder's datasheet.

UINT16,
0x3014,
0x20,
rw

10

POSITION
field: length

- This parameter defines a format of the data packet. The parameter needs to be
taken from the encoder's datasheet.

UINT16,
0x3014,
0x21,
rw

11

POSITION
field: is
inverted

0 or 1 This parameter defines a format of the data packet. The parameter needs to be
taken from the encoder's datasheet.

BOOL,
0x3014,
0x22,
rw

12

CRC field: is
used

0 or 1 This parameter enables or disables CRC verification for received packets. Note
that the controller supports a limited number of CRC formulae. If an encoder
implements a CRC formula that is not supported by the controller, then the CRC
verification function has to be turned off. Note that if CRC verification fails, the
controller discards the packet as a corrupted one, but DOES NOT raise a "Fault
Bits" flag.

BOOL,
0x3014,
0x23,
rw

13

CRC field:
start bit

- This parameter defines a format of the data packet. The parameter needs to be
taken from the encoder's datasheet.

UINT16,
0x3014,
0x24,
rw

14 CRC field: - This parameter defines a format of the data packet. The parameter needs to be UINT16,

34 www.servosila.com

http://www.servosila.com/

length taken from the encoder's datasheet. 0x3014,
0x25,
rw

15

CRC field: is
inverted

0 or 1 This parameter defines a format of the data packet. The parameter needs to be
taken from the encoder's datasheet.

BOOL,
0x3014,
0x26,
rw

16

CRC input:
start bit

- The CRC is computed over a particular portion of the packet as specified in the
encoder's datasheet. For the purpose of this configuration procedure, the portion
is called "CRC input". The CRC input may span multiple data fields across the
packet.

This parameter defines a format of the data packet. The parameter needs to be
taken from the encoder's datasheet.

UINT16,
0x3014,
0x27,
rw

17

CRC input:
length

- This parameter defines a format of the data packet. The parameter needs to be
taken from the encoder's datasheet.

UINT16,
0x3014,
0x28,
rw

18

CRC input: is
inverted

0 or 1 This parameter defines a format of the data packet. The parameter needs to be
taken from the encoder's datasheet.

BOOL,
0x3014,
0x29,
rw

19

ERROR bit: is
used

0 or 1 This parameter specifies if the controller should analyze and react to an ERROR
bit in received packets. If the parameter is enabled, the controller stops the motor
and raises a "Fault Bits" flag upon receiving an ERROR bit. The motor remains
powered off until the controller receives a "Reset" command from a parent
control system.

BOOL,
0x3014,
0x2A,

rw

20

ERROR bit:
bit position

- This parameter defines a format of the data packet. The parameter needs to be
taken from the encoder's datasheet.

UINT16,
0x3014,
0x2B,

rw

21

ERROR bit: is
inverted

0 or 1 This parameter defines a format of the data packet. The parameter needs to be
taken from the encoder's datasheet.

BOOL,
0x3014,
0x2C,

rw

22

WARN bit: is
used

0 or 1 The WARN bit can be extracted from the data packet. However, it is not used for
anything other than telemetry.

BOOL,
0x3014,
0x2D,

rw

23

WARN bit: bit
position

- This parameter defines a format of the data packet. The parameter needs to be
taken from the encoder's datasheet.

UINT16,
0x3014,
0x2E,

rw
24 WARN bit: is 0 or 1 This parameter defines a format of the data packet. The parameter needs to be BOOL,

35 www.servosila.com

http://www.servosila.com/

inverted taken from the encoder's datasheet. 0x3014,
0x2F,
rw

Configuration - Peripheral: PWM Encoder

This section needs to be configured only if either "Motor Encoder" or "Servo Encoder" parameter in the "Datasheet"
section is set to "PWM Encoder". Otherwise leave this section unchanged.

Absolute encoders with PWM output deliver position information to the controller by increasing or decreasing duty
cycle of continuously sent PWM pulses. The duty cycle changes in a linear proportion to the measured position. The
pulses are sent at a constant frequency, but the pulses' duty cycle changes along with absolute position measured by the
encoder. The controller on its end measures the duty cycle of received pulses and knowing the resolution of the
encoder, uses a mathematical proportion to extract the absolute position readings.

Parameter Units Description CANopen

1

counts per
revolution

counts The parameter defines a maximum resolution of the encoder. This parameter
is to be taken from the encoder's datasheet.

UINT32,
0x3012,
0x02,
rw

2

encoder bias vs.
electrical position

counts This parameter needs to be set only if the encoder is used for motor control
(a "Motor Encoder"). Otherwise keep this parameter as 0.

This parameter specifies a zero offset of the encoder's mechanical
installation vs. an electrical position defined by an order in which the
motor's phase lines are connected to the controller.

The bias can be experimentally determined as the following:

• Positively energize phase "A".
• Negatively energize both phases "B" and "C".
• Let the motor's rotor settle at a position.
• The encoder's reading at that position is the bias.

The procedure needs to be performed after correcting for a possible
inversion of mechanical installation of the encoder (see "inverted
installation" parameter).

UINT32,
0x3012,
0x03,
rw

3

inverted
installation

0 or 1 The direction of the motor's rotation should match the direction of the
encoder's rotation. If that's not the case due to a way the encoder is
mechanically installed, this parameter helps correct the mismatch.

BOOL,
0x3012,
0x04,
rw

4

pulse period sec or
clocks

This parameter specifies the period of the PWM pulses sent by the encoder
to the controller. The period should be taken from the encoder's datasheet.

FLOAT32,
0x3012,
0x10,
rw

5 max pulse width
(angle=360 deg)

sec or
clocks

This parameter specifies the duty cycle that corresponds to MAXIMUM
position reported by the encoder. This parameter should be taken from the

FLOAT32,
0x3012,

36 www.servosila.com

http://www.servosila.com/

encoder's datasheet. 0x11,
rw

6

min pulse width
(angle=0 deg)

sec or
clocks

This parameter specifies the duty cycle that corresponds to ZERO position
reported by the encoder. This parameter should be taken from the encoder's
datasheet.

FLOAT32,
0x3012,
0x12,
rw

7

pulse exit width sec or
clocks

This parameter is specific to AMS encoders. The value should be taken from
the encoder's datasheet. Otherwise, keep as 0.0.

FLOAT32,
0x3012,
0x14,
rw

8

polarity inversion 0 or 1 The parameter tells the controller to electrically invert the input PWM
signal. Leave the default setting unless an application-specific need arises.

BOOL,
0x3012,
0x13,
rw

Configuration - Peripheral: Gate Driver

Parameter Units Description CANopen

1

Amplifier
Gain Selector

0 or 1 • 0: gain = 10
• 1: gain = 40

If a particular motor has a low Maximum Continuous Current rating, then a
dynamic range of the controller's ADC module might not be fully utilized. This
under-utilization of the dynamic range might create discretization errors when
measuring low phase currents. The discretization errors might reduce efficiency of
the electrical drive when controlling small motors.

To counter this issue, increase the gain of the amplifier whenever the motor's
"Maximum Continuous Current" rating is equal or less than 5A. Re-confirm this
threshold for your particular model of the controller.

UINT16,
0x3002,
0x03,
rw

Configuration - Networking

Parameter Units Description CANopen

1

CANbus: bitrate kbps • 1000
• 500
• 250
• 125
• 100
• 50

The parameter defines bitrate in kbps for the CANbus interface of the
controller. This bit rate should match the bitrates of other devices on the same
CANbus network.

UINT16,
0x3000,
0x02,
rw

2
CANopen: Node
ID

1-127 The parameter defines the controller's Node ID on a CANopen network. Valid
Node IDs range from 1 to 127 (11 bits only).

UINT32,
0x3000,

37 www.servosila.com

http://www.servosila.com/

An initial Node ID is automatically generated. The value can be changed here
to ensure uniqueness of the Node ID within a CANopen network.

0x03,
rw

3

CANopen:
heartbeat timeout

sec If the controller does not receive any messages via either CANbus or USB
interfaces within this time period, the device assumes that there is a problem
with a parent control system. Upon detecting a heartbeat timeout event, the
controller executes the following actions:

1. The controller automatically issues a "Stop" command to itself,
2. ... that stops the motor,
3. ... and depending on the configuration, might enable the "Brake"

function.

FLOAT32,
0x3000,
0x04,
rw

4

CANopen:
telemetry
frequency

Hz The parameter specifies how often the controller sends telemetry messages
(CANopen TPDO packets) to a parent control system. The controller sends a
single TPDO message at a time, looping across the messages with a frequency
defined by this parameter.

FLOAT32,
0x3000,
0x05,
rw

5

Feature:
USB2CAN
routing

0 or 1 This feature turns the device into a USB-to-CANbus gateway ("USB2CAN
dongle" function).

Note that enabling the function puts a performance penalty on the controller.

BOOL,
0x3000,
0x10,
rw

6

USB2CAN:
support 29bit ID
frames

0 or 1 The parameter enables support for routing of 29bit frames between USB and
CANbus. If the feature is turned off, the built-in USB-to-CANbus gateway
routes 11bit frames only.

BOOL,
0x3000,
0x12,
rw

7

USB: serial
number

- The USB serial number is visible to host computers and can be used to identify
the device among multiple devices connected to a host. The serial number is
automatically generated, but can be changed here if needed.

UINT32,
0x3000,
0x20,
rw

Configuration - Product Activation

Parameter Units Description CANopen

1

Activation
Key

- The activation key is provided by SERVOSILA to the buyer of this device. Follow
instructions from SERVOSILA to obtain the activation key.

UINT32,
0x20FF,

0x02,
rw

38 www.servosila.com

http://www.servosila.com/

Telemetry Parameters

Telemetry - System Status

Parameter Units Description CANopen

1

Fault Bits bits • 0: No fault
• 1: Driver Chip Fault
• 2: Driver Chip Overheating
• 4: Overheating Protection
• 8: Overcurrent Protection
• 16: Thermistor Overheating
• 32: Hall Sensors Fault
• 64: Quadrature Encoder Fault
• 128: SSI Encoder Fault
• 256: SPI Encoder Fault
• 512: PWM Encoder Fault
• 16384: Emergency Stop
• 32768: Activation Key is Missing

Whenever a fault is detected, the controller powers off the motor, raises one or
more "Fault Bits" flags, and starts waiting for a "Reset" command to come from
a parent control system. Until a "Reset" command comes, the motor ignores all
other commands received from the parent control system. Note that all
configuration management functions (CANopen SDO functionality) keep
working as usual.

The parent control system is expected to continuously monitor the "Fault Bits"
parameter delivered to it via CANopen TPDO mechanism. If the "Fault Bits"
parameter is 0 (all bits are clear), then nothing needs to be done. Whenever one
or more bits of the "Fault Bits" value indicate a fault, the parent control system
is supposed to issue a "Reset" command. The "Reset" command needs to be
issued once the fault is corrected, and the drive is ready to re-start operation.

UINT16,
0x4000,
0x03,

ro

2 Operation
mode

- • 0: Idle
• 1: Off
• 2: Fault
• 3: Autoconfiguration
• 4: Field Oriented Control
• 6: Electronic Speed Control (Hz)
• 8: Servo Control
• 9: Kickstart
• 10: Brake
• 11: Direct Field Control - Rotation
• 12: Direct Field Control - Electrical Position
• 13: Stepper
• 15: Testing - FOC Wave
• 16: Testing - Speed Wave

UINT16,
0x4000,
0x02,

ro

39 www.servosila.com

http://www.servosila.com/

• 17: Testing - Servo Wave
• 18: BLDC Commutation
• 19: Brushed Motor or Solenoid Control (1-2 motors)

This parameter tells what control law the controller is currently using to drive
the motor.

3

Commutation
method

- • 1: None (Kickstart)
• 2: Sensorless
• 3: Hall Sensors
• 4: Encoder

This parameter tells which method the controller is currently using to determine
electrical position of the rotor.

UINT16,
0x4000,
0x15,

ro

4

Kickstart
needed

rad This telemetry parameter tells if the motor needs a kickstart at its current state.
A kickstart is needed if a sensorless motor is not yet moving or moving slowly,
or if a quadrature encoder is yet to find its index position.

BOOL,
0x4000,
0x14,

ro

5

Speed
(Electrical
Frequency)

Hz This telemetry parameter tells the speed of the motor.

The speed is defined in electrical revolutions per second (Hz). To convert
electrical revolutions per second (Hz) to motor shaft's revolutions per second,
just divide it by the number of pole pairs.

For example, assuming the speed is 20 Hz (electrical), and Poles Number is 8,
then the corresponding speed in motor shaft's revolutions per second is 20 /
(8/2) = 5.0 (revolutions per second), which is 5 * 60 = 300 RPM.

FLOAT32,
0x4000,
0x10,

ro

6

Electrical
Position

rad This telemetry parameter tells the position of the rotor in relation to the stator.

This position is measured using Hall sensors or a motor encoder, or estimated
by "Sensorless Observer" method.

FLOAT32,
0x4000,

0x11,
ro

7

Motor Encoder
Counts

counts This is an ABSOLUTE POSITION read out from an encoder that plays the
"Motor Encoder" role.

FLOAT32,
0x4000,
0x13,

ro

8

Servo Speed Hz This is the current speed of rotation of the output shaft of the servo drive (in
revolutions per second).

FLOAT32,
0x4000,
0x16,

ro
9 Servo Position rad This is a normalized position of the servo shaft. This is applicable to both

ROTARY and LINEAR encoders.

The position is normalized by dividing a servo encoder's output by the

FLOAT32,
0x4000,
0x17,

ro

40 www.servosila.com

http://www.servosila.com/

encoder's resolution and then multiplying it by (2*PI) rad.

For example, if a servo encoder has a resolution of 65536 counts, and the
encoder's output is 1000 counts, then the normalized position is 1000 / 65536 *
(2*PI) = 0.095873799 rad.

10

Servo Encoder
Counts

counts This is an ABSOLUTE POSITION read out from an encoder that plays the
"Servo Encoder" role.

FLOAT32,
0x4000,
0x12,

ro

11

Work Zone
Count

counts The "Work Zone Count" telemetry is the same as "Servo Encoder Counts", but
it continuously spans in both positive and negative directions.

The "Work Zone Count" is not limited to just 360 degrees of the rotary
encoder's resolution. Instead, it logically spans in both positive or negative
directions as many encoder counts as needed. Both Servo Control and Direct
Drive Control use the logical work zone's counts at their references instead of
the physical servo encoder's readings. This makes it easier to develop "multi-
turn" servo applications.

FLOAT32,
0x4000,
0x18,

ro

12

Sample
Number

- This is a continuously incremented counter of samples taken by an ADC
module of the controller. The counter is incremented with the sampling
frequency of the controller.

UINT32,
0x4000,
0x04,

ro

Telemetry - Field Oriented Control (FOC)

Parameter Units Description CANopen

1

Torque N*m This is an estimate of TORQUE that the motor is currently generating.
Note that this estimation is only available whenever the motor runs under
Field Oriented Control (FOC).

FLOAT32,
0x4001,
0x02,

ro

2

FOC: Iq current A This is an estimate of Iq current derived from phase currents measured by
the ADC.

FLOAT32,
0x4001,
0x03,

ro

3

FOC: Id current A This is an estimate of Id current derived from phase currents measured by
the ADC.

FLOAT32,
0x4001,
0x04,

ro

4

FOC: Id reference V This is a currently commanded Id reference. This telemetry parameter is
useful for tuning "Feature: Field Weakening".

FLOAT32,
0x4001,
0x09,

ro

5 FOC: Uq voltage V This is a Uq voltage, an output of a FOC control law. FLOAT32,
0x4001,
0x05,

41 www.servosila.com

http://www.servosila.com/

ro

6

FOC: Uq integral V This is an integral sum of a PI controller that commands Uq voltage to
stabilize Iq current.

FLOAT32,
0x4001,
0x07,

ro

7

FOC: Ud voltage V This is a Ud voltage, an output of a FOC control law. FLOAT32,
0x4001,
0x06,

ro

8

FOC: Ud integral V This is an integral sum of a PI controller that commands Ud voltage to
stabilize Id current.

FLOAT32,
0x4001,
0x08,

ro

9

Moment of Inertia
(Rotor and Payload)

kg*m
2

This is an estimated (measured) "Moment of Inertia of Rotor and
Payload".

FLOAT32,
0x4001,
0x0D,

ro

10

Viscous Damping
Constant

Nm/
Hz

This is an estimated (measured) "Viscous Damping Constant". FLOAT32,
0x4001,
0x0E,

ro

Telemetry - Direct Drive Control

Parameter Units Description CANopen

1

Direct Drive Control:
Electrical Position

rad This telemetry parameter tells an estimate of position of the rotor in
relation to the stator.

FLOAT32,
0x4008,
0x03,

ro

2

Direct Drive Control:
Speed (Electrical
Frequency)

Hz This telemetry parameter tells an estimate of speed of the motor.

The speed is defined in electrical revolutions per second (Hz). To convert
electrical revolutions per second (Hz) to motor shaft's revolutions per
second, just divide it by the number of pole pairs.

For example, assuming the speed is 20 Hz (electrical), and Poles Number
is 8, then the corresponding speed in motor shaft's revolutions per second
is 20 / (8/2) = 5.0 Hz (revolutions per second), which is 5 * 60 = 300
RPM.

FLOAT32,
0x4008,
0x04,

ro

Telemetry - Sensorless Observer

Parameter Units Description CANopen

1

Sensorless Observer:
mode

- • 0: Undefined state
• 1: Zero speed
• 2: Operational speed

UINT16,
0x4007,
0x02,

ro

42 www.servosila.com

http://www.servosila.com/

2

Sensorless Observer:
Speed (Electrical
Frequency)

Hz This telemetry parameter tells an estimated speed of the "sensorless"
motor.

The speed is defined in electrical revolutions per second (Hz). To convert
electrical revolutions per second (Hz) to motor shaft's revolutions per
second, just divide it by the number of pole pairs.

For example, assuming the speed is 20 Hz (electrical), and Poles Number
is 8, then the corresponding speed in motor shaft's revolutions per second
is 20 / (8/2) = 5.0 Hz (revolutions per second), which is 5 * 60 = 300
RPM.

FLOAT32,
0x4007,
0x03,

ro

3

Sensorless Observer:
Electrical Position

rad This telemetry parameter tells a estimated position of the rotor in relation
to the stator.

FLOAT32,
0x4007,
0x04,

ro

4

Sensorless Observer:
Emf alpha

V This is an estimate of Back-Emf voltage (the "sine" component). FLOAT32,
0x4007,
0x05,

ro

5

Sensorless Observer:
Emf beta

V This is an estimate of Back-Emf voltage (the "cosine" component). FLOAT32,
0x4007,
0x06,

ro

6

Sensorless Observer:
Back-Emf Constant
(Ke)

V/
(rad/s)

This is an estimate of "Back-Emf Constant (Ke)" measured in V (peak,
line-to-neutral) per electrical rad/s.

FLOAT32,
0x4007,
0x07,

ro

7

Sensorless Observer:
Zero Speed Threshold

Hz This is the lowest speed at which the Sensorless Observer is still capable
of sensing Back-Emf voltages in the presence of background noise.

FLOAT32,
0x4007,
0x08,

ro

Telemetry - Hall Sensors Observer

Parameter Units Description CANopen

1

Hall Observer:
mode

- • 0: Zero speed
• 1: Low speed
• 2: Operational speed

UINT16,
0x4002,
0x02,

ro

2

Hall Observer: Hall
code

- Hall sensors generate 6 codes (counts) per electrical revolution. This
telemetry parameter tells the current Hall code.

UINT16,
0x4002,
0x03,

ro

3 Hall Observer:
Speed (Electrical
Frequency)

Hz This telemetry parameter tells an estimated speed of the motor.

The speed is defined in electrical revolutions per second (Hz). To convert

FLOAT32,
0x4002,
0x04,

43 www.servosila.com

http://www.servosila.com/

electrical revolutions per second (Hz) to motor shaft's revolutions per
second, just divide it by the number of pole pairs.

For example, assuming the speed is 20 Hz (electrical), and Poles Number
is 8, then the corresponding speed in motor shaft's revolutions per second
is 20 / (8/2) = 5.0 Hz (revolutions per second), which is 5 * 60 = 300
RPM.

ro

4

Hall Observer:
Electrical Position

rad This telemetry parameter tells an estimated position of the rotor in
relation to the stator.

FLOAT32,
0x4002,
0x05,

ro

5

Hall Observer:
between codes
counter

samples This is a counter that is reset each time a Hall code changes. UINT32,
0x4002,
0x07,

ro

6

Hall Observer: Hall
errors counter

- This telemetry parameter counts occurrences of erroneous combinations
of Hall sensors' readings. Note that the combinations with all "ones" or
all "zeros" correspond to faulty or disconnected Hall sensors.

UINT32,
0x4002,
0x08,

ro

7

Hall Observer:
positioning error
estimate

rad Whenever a Hall code changes, an electrical position that corresponds to
the code is compared to an estimate of the electrical position made by the
Observer, and the difference is shown here. The smaller the difference,
the better.

FLOAT32,
0x4002,
0x09,

ro

8

Hall Observer:
Technical Speed
Limit

Hz This is an estimate of MAXIMUM speed the Hall Observer is capable of
measuring. The limit is caused by finite performance of CPU, and a finite
sampling frequency of ADC.

FLOAT32,
0x4002,
0x06,

ro

9

Hall Observer: Zero
Speed Threshold

Hz This is an estimate of MINIMUM speed the Hall Observer is capable of
measuring. The limit is caused by a low resolution of Hall Sensors that
generate just 6 counts per electrical revolution.

FLOAT32,
0x4002,
0x0A,

ro

10

Hall Observer:
count

- Hall sensors generate 6 counts per electrical revolution. This telemetry
parameter tells the current count as if Hall Sensors were an absolute
encoder.

UINT16,
0x4002,
0x0B,

ro

Telemetry - Peripheral: ADC

Parameter Units Description CANopen

1

Voltage: DC bus (Udc) V Measured voltage of power supply FLOAT16,
0x5001,
0x04,

ro

2 Current: Phase A (Ia) A Measured electric current flowing through phase A FLOAT32,
0x5001,

44 www.servosila.com

http://www.servosila.com/

0x05,
ro

3

Current: Phase B (Ib) A Measured electric current flowing through phase B FLOAT32,
0x5001,
0x06,

ro

4

Current: Phase C (Ic) A Measured electric current flowing through phase C FLOAT32,
0x5001,
0x07,

ro

5

CPU Temperature C Measured temperature of the controller's CPU UINT16,
0x5001,
0x0C,

ro

6

Ia calibration offset A Result of an ADC calibration procedure FLOAT32,
0x5001,
0x09,

ro

7

Ib calibration offset A Result of an ADC calibration procedure FLOAT32,
0x5001,
0x0A,

ro

8

ADC mode 0 or 1 • 0: Calibration is ongoing
• 1: Operational

BOOL,
0x5001,
0x03,

ro

Telemetry - Peripheral: Hall Sensors

Parameter Units Description CANopen

1

Hall Sensor #0 - Reading of physical Hall sensor 0 UINT16,
0x5005,
0x03,

ro

2

Hall Sensor #1 - Reading of physical Hall sensor 1 UINT16,
0x5005,
0x04,

ro

3

Hall Sensor #2 - Reading of physical Hall sensor 2 UINT16,
0x5005,
0x05,

ro

4

Hall Sensors
Fault

0 or 1 Note that combinations with all "ones" or all "zeros" correspond to faulty or
disconnected Hall sensors.

BOOL,
0x5005,
0x02,

ro

45 www.servosila.com

http://www.servosila.com/

Telemetry - Peripheral: Quadrature Encoder

Parameter Units Description CANopen

1

Quadrature: count counts The encoder's ABSOLUTE POSITION expressed in counts (quadrature
edge counts).

UINT32,
0x500A,

0x06,
ro

2

Quadrature:
direction

0 or 1 The direction of the rotation of the encoder's disk BOOL,
0x500A,

0x05,
ro

3

Quadrature: encoder
speed

Hz The speed of quadrature disk rotation expressed in revolutions per second
(Hz). This speed is estimated using "UNIT TIME" or "UNIT DISTANCE"
method (see "Peripheral: Quadrature Encoder" configuration section for
details).

FLOAT32,
0x500A,

0x08,
ro

4

Quadrature: encoder
speed (UNIT
DISTANCE)

Hz The speed of quadrature disk rotation computed using "UNIT
DISTANCE" method.

FLOAT32,
0x500A,

0x0C,
ro

5

Quadrature: encoder
speed (UNIT TIME)

Hz The speed of quadrature disk rotation computed using "UNIT TIME"
method.

FLOAT32,
0x500A,
0x0D,

ro

6

Quadrature: distance
travelled in UNIT
TIME

counts This parameter helps monitor performance of UNIT TIME speed
computation method.

FLOAT32,
0x500A,

0x0E,
ro

7

Quadrature: signal A 0 or 1 Reading of signal "A" BOOL,
0x500A,

0x02,
ro

8

Quadrature: signal B 0 or 1 Reading of signal "B" BOOL,
0x500A,

0x03,
ro

9

Quadrature: signal I 0 or 1 Reading of INDEX signal BOOL,
0x500A,

0x04,
ro

10

Quadrature: index
detected

0 or 1 This bit latches whenever the quadrature encoder detects its INDEX
position for the first time. Until the INDEX signal is detected, the encoder
cannot measure an absolute position of the shaft since it does not have a
reference point that corresponds to a zero position.

BOOL,
0x500A,
0x0A,

ro

11 Quadrature: phase - This is a counter of phase errors in quadrature signals. UINT32,

46 www.servosila.com

http://www.servosila.com/

errors counter 0x500A,
0x0B,

ro

Telemetry - Peripheral: SSI/BISS-C Encoder

Parameter Units Description CANopen

1

SSI/BISS-C Encoder: packets
counter

- This is a counter of data packets received by the controller from
the encoder.

UINT32,
0x5008,
0x02,

ro

2

SSI/BISS-C Encoder: count counts This is the latest ABSOLUTE POSITION reported by the
encoder.

UINT32,
0x5008,
0x03,

ro

3

SSI/BISS-C Encoder: is count
valid

0 or 1 This bit tells if the latest absolute position is valid, meaning there
is no ERROR bit and no CRC error.

BOOL,
0x5008,
0x04,

ro

4

SSI/BISS-C Encoder: error bit 0 or 1 This is a value of latest ERROR bit reported by the encoder. BOOL,
0x5008,
0x05,

ro

5

SSI/BISS-C Encoder: warn bit 0 or 1 This is a value of latest WARN bit reported by the encoder. BOOL,
0x5008,
0x06,

ro

6

SSI/BISS-C Encoder: extracted
CRC

- This is a value of latest CRC field reported by the encoder. UINT16,
0x5008,
0x07,

ro

7

SSI/BISS-C Encoder:
computed CRC

- This is the latest CRC value computed by the controller. UINT16,
0x5008,
0x08,

ro

8

SSI/BISS-C Encoder: CRC
mismatch error

0 or 1 This bit is raised whenever CRC verification fails. BOOL,
0x5008,
0x09,

ro

9

SSI/BISS-C Encoder: CRC
mismatch counter

- This counter is increased each time CRC verification fails. UINT32,
0x5008,
0x0A,

ro

Telemetry - Peripheral: SPI Encoder

Parameter Units Description CANopen

1 SPI Encoder: packets - This is a counter of data packets received by the controller from the UINT32,

47 www.servosila.com

http://www.servosila.com/

counter encoder. 0x5006,
0x02,

ro

2

SPI Encoder: count counts This is the latest ABSOLUTE POSITION reported by the encoder. UINT32,
0x5006,
0x03,

ro

3

SPI Encoder: is count valid 0 or 1 This bit tells if the latest absolute position is valid, meaning there is
no ERROR bit and no CRC error.

BOOL,
0x5006,
0x04,

ro

4

SPI Encoder: error bit 0 or 1 This is a value of latest ERROR bit reported by the encoder. BOOL,
0x5006,
0x05,

ro

5

SPI Encoder: warn bit 0 or 1 This is a value of latest WARN bit reported by the encoder. BOOL,
0x5006,
0x06,

ro

6

SPI Encoder: extracted
CRC

- This is a value of latest CRC field reported by the encoder. UINT16,
0x5006,
0x07,

ro

7

SPI Encoder: computed
CRC

- This is the latest CRC value computed by the controller. UINT16,
0x5006,
0x08,

ro

8

SPI Encoder: CRC
mismatch error

0 or 1 This bit is raised whenever CRC verification fails. BOOL,
0x5006,
0x09,

ro

9

SPI Encoder: CRC
mismatch counter

- This counter is increased each time CRC verification fails. UINT32,
0x5006,
0x0A,

ro

Telemetry - Peripheral: PWM Encoder

Parameter Units Description CANopen

1

PWM Encoder: state - • 0: Undefined
• 1: No interrupts
• 2: Operational
• 3: Fault - No Pulse
• 4: Fault - PWM Duty Out of Range

UINT16,
0x5007,
0x02,

ro

2 PWM Encoder: sample
counter

- This counter is incremented each time a pair of pulses is sampled. UINT32,
0x5007,

48 www.servosila.com

http://www.servosila.com/

0x03,
ro

3

PWM Encoder: count counts This is the latest ABSOLUTE POSITION reported by the encoder. UINT32,
0x5007,
0x08,

ro

4

PWM Encoder: pulse
width

sec Measured duty cycle (in seconds) of the latest pulse FLOAT32,
0x5007,
0x0A,

ro

5

PWM Encoder: pulse
period

sec Measured period of the latest pulse FLOAT32,
0x5007,
0x0B,

ro

6

PWM Encoder: pulse
width (CAP1)

CPU
ticks

A silicon-specific value UINT32,
0x5007,
0x04,

ro

7

PWM Encoder: pulse
period (CAP2)

CPU
ticks

A silicon-specific value UINT32,
0x5007,
0x05,

ro

8

PWM Encoder: pulse
width (CAP3)

CPU
ticks

A silicon-specific value UINT32,
0x5007,
0x06,

ro

9

PWM Encoder: pulse
period (CAP4)

CPU
ticks

A silicon-specific value UINT32,
0x5007,
0x07,

ro

10

PWM Encoder: fault
detected

0 or 1 A silicon-specific value BOOL,
0x5007,
0x09,

ro

11

PWM Encoder:
overflow errors counter

- This counter is incremented each time a period of a pulse cannot be
measured due to a timeout while waiting for a pulse's edge.

UINT32,
0x5007,
0x0C,

ro

Telemetry - Peripheral: GPIO

Parameter Units Description CANopen

1

Emergency Stop 0 or 1 Status of Emergency Stop Signal UINT16,
0x5009,
0x04,

ro
2 Limit Switch (Negative Speed) 0 or 1 Status of Limit Switch in NEGATIVE speed direction. UINT16,

49 www.servosila.com

http://www.servosila.com/

0x5009,
0x05,

ro

3

Limit Switch (Positive Speed) 0 or 1 Status of Limit Switch in POSITIVE speed direction. UINT16,
0x5009,
0x06,

ro

4

Generic Input 0 or 1 Latest value read out from a dedicated GPIO input. UINT16,
0x5009,
0x10,

ro

Telemetry - Peripheral: Inverter (PWM)

Parameter Units Description CANopen

1

Inverter (PWM) mode 0 or 1 • 0: Inverter PWM is OFF
• 1: Inverter PWM is ON

BOOL,
0x5002,
0x02,

ro

2

CMPR A CPU ticks A silicon-specific value UINT16,
0x5002,
0x03,

ro

3

CMPR B CPU ticks A silicon-specific value UINT16,
0x5002,
0x04,

ro

4

CMPR C CPU ticks A silicon-specific value UINT16,
0x5002,
0x05,

ro

Telemetry - Peripheral: Gate Driver

Parameter Units Description CANopen

1

driver: mode 0 or 1 • 0: Gate Driver is OFF
• 1: Gate Driver is ON

BOOL,
0x5004,
0x02,

ro

2

driver: fault 0 or 1 This is a latest reading of the "FAULT" signal coming from the Gate
Driver chip.

BOOL,
0x5004,
0x03,

ro

3

driver: overcurrent or
overtemperature

0 or 1 This is a latest reading of the "OVERCURRENT or
OVERTEMPERTATURE" signal coming from the Gate Driver chip.

BOOL,
0x5004,
0x04,

ro

50 www.servosila.com

http://www.servosila.com/

Telemetry - Networking

Parameter Units Description CANopen

1

CANbus: received
packets

- This counter is incremented each time the device receives a CANbus
packet.

UINT32,
0x5010,
0x02,

ro

2

CANbus: sent packets - This counter is incremented each time the device sends a CANbus
packet.

UINT32,
0x5010,
0x03,

ro

3

USB: status 0 or 1 • 0: Disconnected
• 1: Connected

BOOL,
0x5010,
0x12,

ro

4

USB: received packets - This counter is incremented each time the device receives a USB packet. UINT32,
0x5010,
0x13,

ro

5

USB: sent packets - This counter is incremented each time the device sends a USB packet. UINT32,
0x5010,
0x14,

ro

6

USB: sending errors - This counter is incremented each time the device is not able to send a
USB packet for any reason.

UINT32,
0x5010,
0x15,

ro

7

USB2CAN: can->usb
packets

- This counter is incremented each time a packet received from CANbus is
forwarded to a USB host.

UINT32,
0x5010,
0x17,

ro

8

USB2CAN: usb->can
packets

- This counter is incremented each time a USB packet is forwarded via
CANbus.

UINT32,
0x5010,
0x18,

ro

Telemetry - Device Information

Parameter Units Description CANopen

1

Device Type - The value is used when ACTIVATING the device. Please send this
number to SERVOSILA to obtain an activation key.

UINT32,
0x5000,

0x9F,
ro

2

Device Serial
Number

- The serial number is used when ACTIVATING the device. Please send
this number to SERVOSILA to obtain an activation key.

UINT32,
0x5000,
0xA0,

ro

51 www.servosila.com

http://www.servosila.com/

3

Firmware Serial
Number

- The serial number is used when ACTIVATING the device. Please send
this number to SERVOSILA to obtain an activation key.

UINT32,
0x5000,
0xA1,

ro

4

Sampling Frequency Hz This is the sampling frequency of the controller. FLOAT32,
0x5000,
0xA2,

ro

5

Inverter PWM
Period

CPU
ticks

This is a period of the inverter's PWM signals of the controller. UINT16,
0x5000,
0xA3,

ro

6

ADC ISR Execution
Time

CPU
ticks

Measured performance of an ADC interrupt servicing routine UINT32,
0x5000,
0xA4,

ro

7

Timer ISR Execution
Time

CPU
ticks

Measured performance of a Timer interrupt servicing routine UINT32,
0x5000,
0xA5,

ro

8

USB RX ISR
Execution Time

CPU
ticks

Measured performance of a USB interrupt servicing routine UINT32,
0x5000,
0xA6,

ro

52 www.servosila.com

http://www.servosila.com/

Commands

Command - Electronic Speed Control (ESC), Hz

The "Electronic Speed Control (ESC), Hz" command instructs the controller to drive a brushless/brushed motor at a
constant speed. The controller automatically increases or decreases torque to maintain the constant speed.

Note that the speed here is defined in electrical revolutions per second (Hz). To convert the electrical revolutions per
second (Hz) to motor shaft's revolutions per second, just divide it by the number of pole pairs. For example, assuming
the speed is 20 Hz (electrical), and Poles Number is 8, then the corresponding speed in motor shaft's revolutions per
second is 20 / (8/2) = 5.0 Hz (revolutions per second), which is 5 * 60 = 300 RPM.

Parameter Units Description Data type
Position in

Payload

1
Speed (Electrical
Frequency)

Hz This is a speed reference defined in electrical
revolutions per second.

FLOAT32 4

The RPDO COB-ID is 0x200.

The Command Code is 0x20.

This command should be sent CONTINUOUSLY at regular intervals to avoid heartbeat timeout on the device side.

Command - Electronic Speed Control (ESC), RPM

The "Electronic Speed Control (ESC), RPM" command instructs the controller to drive a brushless/brushed motor at a
constant speed defined in motor shaft's revolutions per minute (RPM). The controller automatically increases or
decreases torque to maintain the constant speed.

Under the hood the controller converts the RPM reference into an electrical revolutions per second (Hz), and issues
itself an "Electronic Speed Control (ESC)" command. Properly set the "Poles Number" parameter in the "Datasheet"
section before using this command, since the configuration parameter is used to perform the conversion.

Parameter Units Description Data type
Position in

Payload

1
Speed (Revolutions per
Minute)

RPM This is a speed reference defined in motor shaft's
revolutions per minute.

FLOAT32 4

The RPDO COB-ID is 0x200.

The Command Code is 0x24.

This command should be sent CONTINUOUSLY at regular intervals to avoid heartbeat timeout on the device side.

Command - Servo

The "Servo" command instructs the controller to move the output shaft of a servo drive to a specified target position,
and keep that position upon reaching it. Note that a speed with which the servo drive moves is defined by "Servo:
Speed Limit" configuration parameter.

53 www.servosila.com

http://www.servosila.com/

Parameter Units Description Data type
Position in

Payload

1

Work Zone
Position

counts This parameter specifies a target position the servo drive is going to
move to. Note that the position is defined in Work Zone "multi-turn"
counts meaning that the servo might make multiple revolutions to reach
the target position. The position can be a positive or a negative value.

FLOAT32 4

The RPDO COB-ID is 0x200.

The Command Code is 0x30.

This command should be sent CONTINUOUSLY at regular intervals to avoid heartbeat timeout on the device side.

Command - Servo Stepper

The "Servo Stepper" command instructs the controller to move the output shaft of a servo drive to a position that is
offset from its current position. The offset can be positive or negative. Under the hood the command causes the
controller to compute a new target position, and issue itself a "Servo" command.

Parameter Units Description Data type
Position in

Payload

1

Number of steps
(Work Zone
Counts)

counts This parameter defines an offset from the servo drive's current
position. Note that the offset is defined in Work Zone "multi-turn"
counts meaning that the servo might make multiple revolutions to
reach the target position. The number of steps can be a positive or a
negative value.

FLOAT32 4

The RPDO COB-ID is 0x200.

The Command Code is 0x38.

It is generally not required to continuously send this command to the device.

Command - Current Control / Field Oriented Control (FOC)

This command instructs the controller to drive a constant electrical current through a brushless/brushed motor. Use this
command to directly control electrical current flowing through a motor. The constant electrical current means a
constant torque generated by the motor. The command might causes the motor to continuously accelerate.

Parameter Units Description Data type
Position in

Payload
1 Current A The "Current" parameter is the commanded electrical current to be driven

through the brushless/brushed motor. This value should be equal or less
than the "Maximum Continuous Current" configuration parameter.

FLOAT32 4

The RPDO COB-ID is 0x200.

The Command Code is 0x10.

This command should be sent CONTINUOUSLY at regular intervals to avoid heartbeat timeout on the device side.

54 www.servosila.com

http://www.servosila.com/

Command - Electronic Torque Control (ETC)

This commands instructs the controller to drive a brushless motor in such a way that the motor generates a specific
constant torque. Use this command to directly control torque of a brushless motor. Note that the command might cause
the motor to continuously accelerate.

Under the hood the controller converts the torque reference into an electrical current reference, and issues itself a "Field
Oriented Control (FOC)" command. Properly set the "Back-Emf Constant (Ke)" and "Poles Number" parameters in the
"Datasheet" section before using this command since the parameters are needed when converting the torque reference
to an electrical current reference.

Parameter Units Description Data type
Position in

Payload

1
Torque N*m The "Torque" parameter is the constant torque that the brushless

motor is commanded to produce.
FLOAT32 4

The RPDO COB-ID is 0x200.

The Command Code is 0x14.

This command should be sent CONTINUOUSLY at regular intervals to avoid heartbeat timeout on the device side.

Command - Direct Field Control: Rotation

The "Direct Field Control: Rotation" command instructs the controller to use the coils of a brushless motor to create a
magnetic field inside the motor, and then ROTATE the magnetic field with a given speed. What happens next is that
permanent magnets of the rotor get attracted to the rotating magnetic field of the coils. The rotor starts following the
rotation of the magnetic field. Note that this way of moving the rotor is inefficient from energy point of view as
compared to Field Orieted Control (FOC), and can lead to heating the motor. However this mode of operation is useful
any many practical applications such as gyro-stabilization of optical payloads.

Parameter Units Description Data type
Position

in
Payload

1 Voltage V This parameter specifies a voltage that the controller applies to the coils of
the stator to create a magnetic field inside the motor. The higher the
voltage is, the stronger the electric current in the coils is, the stronger the
rotor is attracted to the rotating magnetic field.

ATTENTION: Wrong voltage burns brushless motors. The coils of
brushless motors tend to have low electrical resistance. Even a small
voltage (0.20-0.30 V) can create an electric current strong enough to burn
the coils. If you are not sure what a safe voltage is, start with a small
voltage (0.10 V), and gradually raise it, while observing electrical currents
flowing through the motor's phases using the controller's telemetry screen.
The electrical currents should not be stronger than "Maximum Continuous
Current" limit of the motor, a datasheet value.

FLOAT16 2

55 www.servosila.com

http://www.servosila.com/

2
Speed
(Electrical
Frequency)

Hz This parameter defines a speed with which the controller rotates the
magnetic field created inside the motor using the coils of the motor.

FLOAT32 4

The RPDO COB-ID is 0x200.

The Command Code is 0x40.

This command should be sent CONTINUOUSLY at regular intervals to avoid heartbeat timeout on the device side.

Command - Direct Field Control: Electrical Position

The "Direct Field Control: Electrical Position" command instructs the controller to use the coils of a brushless motor to
create a STATIC magnetic field inside the motor. The rotor of the motor aligns itself with such a static magnetic field.
Note that this way of positioning the rotor is inefficient from the energy point of view, and can lead to heating the
motor. However this mode of operation is useful any many practical applications such as gyro-stabilization of optical
payloads.

Parameter Units Description Data type Position
in

Payload

1

Voltage V This parameter specifies a voltage that the controller applies to the coils of
the stator to create a STATIC magnetic field inside the motor. The higher
the voltage is, the stronger the electrical current in the coils is, the stronger
the rotor is attached to the static magnetic field.

ATTENTION: Wrong voltage burns brushless motors. The coils of
brushless motors tend to have low electrical resistance. Even a small
voltage (0.20-0.30 V) can create an electric current strong enough to burn
the coils. If you are not sure what a safe voltage is, start with a small
voltage (0.10 V), and gradually raise it, while observing electrical currents
flowing through the motor's phases using the controller's telemetry screen.
The electrical currents should not be stronger than "Maximum Continuous
Current" limit of the motor, a datasheet value.

FLOAT16 2

2
Electrical
Position

rad This parameter specifies an electrical position of the static magnetic field to
be created using the coils of the stator.

FLOAT32 4

The RPDO COB-ID is 0x200.

The Command Code is 0x44.

This command should be sent CONTINUOUSLY at regular intervals to avoid heartbeat timeout on the device side.

Command - Kickstart

The "Kickstart" command accelerates a "sensorless" brushless motor to a target speed using a control technique that
that does require any knowledge of the rotor's position. This command is intended for use with "sensorless" brushless
motors. Note the "Kickstart" procedure is configured in "Control Laws" section.

56 www.servosila.com

http://www.servosila.com/

Parameter Units Description Data type
Position in

Payload

1
Speed (Electrical
Frequency)

Hz This parameter defines a target speed. The speed is expressed
in electrical revolutions per second (Hz).

FLOAT32 4

The RPDO COB-ID is 0x200.

The Command Code is 0x58.

This command should be sent CONTINUOUSLY at regular intervals to avoid heartbeat timeout on the device side.

Command - Reset

The command clears "Fault Bits" latches, powers off the motor, resets the inverter circuitry, and resets the Work Zone
position. Use this command to clear fault flags whenever Fault Bits telemetry indicates a fault, to reset servo position
within the work zone, or as a "panic button" to power off the motor in an emergency.

Whenever a fault is detected, the controller powers off the motor, raises one or more "Fault Bits" flags, and starts
waiting for a "Reset" command to come from a parent control system. Until a "Reset" command comes, the motor
ignores all other commands received from the parent control system. Note that all configuration management functions
(CANopen SDO functionality) keep working as usual. The parent control system is expected to continuously monitor
the "Fault Bits" parameter streamed to it via CANopen TPDO mechanism. If the "Fault Bits" parameter is 0 (all bits are
clear), then nothing needs to be done. Whenever one or more bits of the "Fault Bits" telemetry indicate a fault, the
parent control system is supposed to issue a "Reset" command once the fault is addressed, and the drive is ready to re-
start operation.

This command does not have parameters.

The RPDO COB-ID is 0x200.

The Command Code is 0x01.

It is generally not required to continuously send this command to the device.

Command - Reset Work Zone

The command programmatically resets the multi-turn Work Zone position counter back to the first turn.

This command does not have parameters.

The RPDO COB-ID is 0x200.

The Command Code is 0xE0.

It is generally not required to continuously send this command to the device.

Command - Brake

The "Brake" command instructs the controller to start using the drive's electric motor to prevent motion of the drive's
shaft under influence of external forces. The controller starts dynamically positioning electromagnetic fields inside the
motor in such a way that any significant motion of the shaft is countered by an electromagnetic force working in the

57 www.servosila.com

http://www.servosila.com/

opposite direction. This is like applying a brake to the shaft, but without an actual physical braking device. If there is no
external force, the "Brake" command does not trigger any countering electromagnetic forces, and thus does not draw
energy from the power supply.

For the braking function to work efficiently, the controller uses Hall sensors or a "Motor Encoder" to detect that the
shaft is moving due to external forces, and to dynamically apply a countering electromagnetic force. Note that if a
motor does not have Hall sensors or a "Motor Encoder", then the controller defaults to using a statically positioned
magnetic field when holding the shaft of the motor. The statically positioned magnetic field requires an electric current
to be continuously driven through the coils of the motor regardless of the presence of external forces. This electric
current might cause excessive heating of the sensorless motor, and cause a continuous drain of energy from its power
supply. In short, special care needs to be taken when using the "Brake" command with sensorless motors.

This command does not have parameters.

The RPDO COB-ID is 0x200.

The Command Code is 0x50.

This command should be sent CONTINUOUSLY at regular intervals to avoid heartbeat timeout on the device side.

Command - Stop

This command instructs the controller to stop a running motor in a controllable way.

This command does not have parameters.

The RPDO COB-ID is 0x200.

The Command Code is 0x04.

This command should be sent CONTINUOUSLY at regular intervals to avoid heartbeat timeout on the device side.

Command - Off

This command powers off the inverter circuitry which means all connected motors or solenoids are powered off.

This command does not have parameters.

The RPDO COB-ID is 0x200.

The Command Code is 0x06.

This command should be sent CONTINUOUSLY at regular intervals to avoid heartbeat timeout on the device side.

Command - GPIO: PWM output

This command increases or decreases duty cycle of a PWM signal on a dedicated GPIO output pin. The command is
typically used to control solenoids/brakes connected via the GPIO output pin.

Parameter Units Description Data type
Position in

Payload
1 Duty Cycle 0.0- This parameter specifies a duty cycle of the PWM signal. The value must FLOAT32 4

58 www.servosila.com

http://www.servosila.com/

1.0 be a real number between 0.0 (fully open) and 1.0 (fully closed). For
example, Duty Cycle=0.40 means 40% duty cycle of the output PWM
signal.

The RPDO COB-ID is 0x200.

The Command Code is 0xA4.

It is generally not required to continuously send this command to the device.

Command - Testing: Field Oriented Control (FOC)

This command initiates a load test of "Field Oriented Control (FOC)" function of the controller. The load test is
typically run to verify that the relevant control laws are configured properly. The load test routine continuously changes
commanded CURRENT reference ("Iq current") according to a SINE WAVE profile. Note that the motor accelerates
and decelerates repeatedly while the test is running. Use "Stop" or "Reset" command to terminate the testing procedure.

Parameter Units Description Data type
Position in

Payload

1
Period sec The parameter specifies a period of a SINE WAVE that produces

an "Iq current" reference for the testing procedure.
FLOAT16 2

2
Amplitude: Iq
current

A The parameter specifies an amplitude of a SINE WAVE that
produces an "Iq current" reference for the testing procedure.

FLOAT32 4

The RPDO COB-ID is 0x200.

The Command Code is 0xB0.

This command should be sent CONTINUOUSLY at regular intervals to avoid heartbeat timeout on the device side.

Command - Testing: Electronic Speed Control (ESC)

This command initiates a load test of "Electronic Speed Control (ESC)" function of the controller. The load test is
typically run to verify that the relevant control laws are configured properly. The load test routine continuously changes
commanded SPEED reference according to a SINE WAVE profile. Note that the motor accelerates and decelerates
repeatedly while the test is running. Use "Stop" or "Reset" command to terminate the testing procedure.

Parameter Units Description Data type
Position in

Payload

1
Period sec The parameter specifies a period of a SINE WAVE that produces an

SPEED reference for the testing procedure.
FLOAT16 2

2
Amplitude:
Speed

Hz The parameter specifies an amplitude of a SINE WAVE that
produces an SPEED reference for the testing procedure.

FLOAT32 4

The RPDO COB-ID is 0x200.

The Command Code is 0xB4.

59 www.servosila.com

http://www.servosila.com/

This command should be sent CONTINUOUSLY at regular intervals to avoid heartbeat timeout on the device side.

Command - Testing: Servo Control

This command initiates a load test of "Servo Control" and "Direct Drive Control" functions of the controller. The load
test is typically run to verify that the relevant control laws are configured properly. The testing procedure forces the
output shaft of a servo drive to continuously transit back-and-forth between two discrete Work Zone positions, a
positive one and a negative one. Use "Stop" or "Reset" command to terminate the testing procedure.

Parameter Units Description Data type
Position in

Payload

1
Period sec This parameter specifies a time period between transitions of the

servo drive's position.
FLOAT16 2

2

Amplitude:
Work Zone
Counts

counts This parameter defines an amplitude of servo transitions. For
example, if the amplitude is 1000, the servo transits between the
positions [-1000] and [1000]. The positions are defined in Work
Zone counts.

FLOAT32 4

The RPDO COB-ID is 0x200.

The Command Code is 0xB8.

This command should be sent CONTINUOUSLY at regular intervals to avoid heartbeat timeout on the device side.

Command - Brushed: Open Loop Control (1-2 motors)

The purpose of this command is to control 1-2 brushed motors or solenoids in an open-loop way. The motors/solenoids
are independently controlled. Both direct and reverse directions of speed are supported.

The brushed motors/solenoids need to be connected to the controller in the following way:

• Brushed Motor #1 shall be connected to terminals "A" and "B".
• Brushed Motor #2 (if exists) shall be connected to terminals "C" and "B".
• Note that both motors/solenoids share the terminal "B".

Parameter Units Description Data type Position in Payload

1
Voltage: Channel #1 V A commanded output voltage for channel #1 FLOAT16 2

2
Voltage: Channel #2 V A commanded output voltage for channel #2 FLOAT16 4

The RPDO COB-ID is 0x300.

The Command Code is 0x90.

This command should be sent CONTINUOUSLY at regular intervals to avoid heartbeat timeout on the device side.

60 www.servosila.com

http://www.servosila.com/

Command - Autoconfiguration: Brushless Motor

Use this command when commissioning a new brushless motor. The command launches an auto-configuration
procedure that automatically measures various characteristics of a brushless motor, computes optimal parameters for
relevant control laws, and updates stored configuration of the controller. The updated configuration is saved to a
persistent storage of the controller (Flash).

ATTENTION: The brushless motor makes various moves while the procedure is ongoing, including a rapid
acceleration. The beginning and an end of the procedure are indicated by "beep" sounds produced by the motor.

Note that in order to launch the auto-configuration procedure, the user needs to have prior knowledge of "Maximum
Continuous Current" and "Poles Number" characteristics of the brushless motor. Those characteristics has to be taken
from the motor's datasheet or determined experimentally prior to launching the auto-configuration procedure. Read
descriptions of the parameters "Maximum Continuous Current" and "Poles Number" in the "Datasheet" section for
details about the parameters.

The auto-configuration procedure does the following:

1. Measures "Phase Resistance (Line-to-Line)" of the brushless motor
2. Measures "Phase Inductance (Line-to-Line)" of the brushless motor
3. Measures "Back-Emf Constant (Ke)" of the brushless motor
4. Measures "Moment of Inertia of Rotor and Payload"
5. Detects if Hall sensors are properly wired to the controller, and updates the "Hall Sensors" configuration

parameter in the "Datasheet" section accordingly. If Hall sensors have been detected, the procedure
automatically configures the section "Peripheral: Hall Sensors"

6. Writes all the measured parameters to the "Datasheet" section
7. Computes optimal parameters for various control laws, and writes the parameters to "Control Laws" section
8. Save to Flash: all the updated configuration parameters are automatically saved to a persistent storage of the

controller

NOTE: The parameter "Moment of Inertia of Rotor and Payload" is automatically measured by the controller during
the auto-configuration procedure. However, the procedure assumes that Viscous Damping is not present. If that turns
out to be not the case, the auto-configuration procedure overestimates the moment of inertia which might lead to
vibrations or noise in the drive whenever the drive is operated under Electronic Speed Control (ESC).

Parameter Units Description Data type
Position

in
Payload

1 Maximum
Continuous
Current (Line-
to-Line)

A The "Maximum Continuous Current" is one of the most critical
performance and safety parameters in the "Datasheet" section. This
parameter should be found in the motor's datasheet.

On one hand, the parameter defines the maximum torque the electric
drive can produce. The higher this limit is set, the more electric
current is allowed to be driven through the motor by the controller,
the more torque the motor produces, the better the dynamics of the
electric drive is. On the other hand, driving more current through the
motor means generating more heat in the motor's winding. The heat

FLOAT32 4

61 www.servosila.com

http://www.servosila.com/

is what burns electric motors. This means that making a mistake and
setting this parameter too high might have a fatal consequences for
the motor. Setting this parameter too low would mean that the motor
is not used to its full capacity in terms of torque. In short, it is
important to set this parameter right.

Note that if a particular application does not require all the torque the
motor can produce, it would be wise to set the limit lower than a
nominal value suggested by the manufacturer. This would establish a
safety margin at the expense of torque.

2

Poles Number
(Rotor Poles)

an even
number

The Poles Number parameter should be taken from the motor's
datasheet, or it can be determined experimentally. Note that the
number of rotor poles is always an EVEN number since magnet
poles always come in pairs.

The number of poles can be determined by looking inside the motor.
Just count the number of coils in the motor, divide it by 3, and then
multiply by 2. For example, if a motor has 21 stator coils, this means
that Poles Number = (21 / 3) * 2 = 14.

If one cannot peek inside the motor, there is a simple procedure that
experimentally determines the Poles Number.

UINT16 2

The RPDO COB-ID is 0x400.

The Command Code is 0xD0.

This command should be sent CONTINUOUSLY at regular intervals to avoid heartbeat timeout on the device side.

Command - Autoconfiguration: Brushed Motor

Use this command when commissioning a new brushed motor. The command launches an auto-configuration procedure
that automatically measures various characteristics of a brushed motor, computes optimal parameters for relevant
control laws, and updates stored configuration of the controller. The updated configuration is saved to a persistent
storage of the controller (Flash).

Parameter Units Description Data type
Position

in
Payload

1 Maximum
Continuous
Current (Line-
to-Line)

A The "Maximum Continuous Current" is one of the most critical
performance and safety parameters in the "Datasheet" section. This
parameter should be found in the motor's datasheet.

On one hand, the parameter defines the maximum torque the electric
drive can produce. The higher this limit is set, the more electric current
is allowed to be driven through the motor by the controller, the more
torque the motor produces, the better the dynamics of the electric drive

FLOAT32 4

62 www.servosila.com

http://www.servosila.com/

is. On the other hand, driving more current through the motor means
generating more heat in the motor's winding. The heat is what burns
electric motors. This means that making a mistake and setting this
parameter too high might have a fatal consequences for the motor.
Setting this parameter too low would mean that the motor is not used to
its full capacity in terms of torque. In short, it is important to set this
parameter right.

Note that if a particular application does not require all the torque the
motor can produce, it would be wise to set the limit lower than a
nominal value suggested by the manufacturer. This would establish a
safety margin at the expense of torque.

The RPDO COB-ID is 0x400.

The Command Code is 0xD4.

This command should be sent CONTINUOUSLY at regular intervals to avoid heartbeat timeout on the device side.

Command - GPIO: Generic Output

This command sets output (0 or 1) on a dedicated GPIO output pin.

Parameter Units Description
Data
type

Position in
Payload

1
Output 0 or 1 This parameter provides a value (0 or 1) to be set as an output on a

dedicated GPIO output pin.
UINT16 2

The RPDO COB-ID is 0x400.

The Command Code is 0xA0.

It is generally not required to continuously send this command to the device.

63 www.servosila.com

http://www.servosila.com/

Telemetry Mappings (TPDO)

Telemetry Message with COB-ID 0x180

Name Units Position in Payload (byte #) Data type Index Subindex
1 Fault Bits bits 0 UINT16 0x4000 0x03

2 Voltage: DC bus (Udc) V 2 FLOAT16 0x5001 0x04
3 Speed (Electrical Frequency) Hz 4 FLOAT32 0x4000 0x10

Telemetry Message with COB-ID 0x280

Name Units Position in Payload (byte #) Data type Index Subindex

1 Electrical Position rad 0 FLOAT32 0x4000 0x11
2 Work Zone Count counts 4 FLOAT32 0x4000 0x18

Telemetry Message with COB-ID 0x380

Name Units Position in Payload (byte #) Data type Index Subindex

1 Current: Phase A (Ia) A 0 FLOAT32 0x5001 0x05
2 Current: Phase B (Ib) A 4 FLOAT32 0x5001 0x06

64 www.servosila.com

http://www.servosila.com/
Servosila-Device-Reference-0xA020192.html#sdo-5001-06
Servosila-Device-Reference-0xA020192.html#sdo-5001-05
Servosila-Device-Reference-0xA020192.html#sdo-4000-18
Servosila-Device-Reference-0xA020192.html#sdo-4000-11
Servosila-Device-Reference-0xA020192.html#sdo-4000-10
Servosila-Device-Reference-0xA020192.html#sdo-5001-04
Servosila-Device-Reference-0xA020192.html#sdo-4000-03

	Servosila Device Reference
	Configuration Parameters
	Configuration - Datasheet
	Configuration - Control Laws
	Configuration - Features
	Configuration - Brake
	Configuration - Work Zone
	Configuration - Fault Management
	Configuration - Peripheral: GPIO
	Configuration - Peripheral: Hall Sensors
	Configuration - Peripheral: Quadrature Encoder
	Configuration - Peripheral: SSI/BISS-C Encoder
	Configuration - Peripheral: SPI Encoder
	Configuration - Peripheral: PWM Encoder
	Configuration - Peripheral: Gate Driver
	Configuration - Networking
	Configuration - Product Activation

	Telemetry Parameters
	Telemetry - System Status
	Telemetry - Field Oriented Control (FOC)
	Telemetry - Direct Drive Control
	Telemetry - Sensorless Observer
	Telemetry - Hall Sensors Observer
	Telemetry - Peripheral: ADC
	Telemetry - Peripheral: Hall Sensors
	Telemetry - Peripheral: Quadrature Encoder
	Telemetry - Peripheral: SSI/BISS-C Encoder
	Telemetry - Peripheral: SPI Encoder
	Telemetry - Peripheral: PWM Encoder
	Telemetry - Peripheral: GPIO
	Telemetry - Peripheral: Inverter (PWM)
	Telemetry - Peripheral: Gate Driver
	Telemetry - Networking
	Telemetry - Device Information

	Commands
	Command - Electronic Speed Control (ESC), Hz
	Command - Electronic Speed Control (ESC), RPM
	Command - Servo
	Command - Servo Stepper
	Command - Current Control / Field Oriented Control (FOC)
	Command - Electronic Torque Control (ETC)
	Command - Direct Field Control: Rotation
	Command - Direct Field Control: Electrical Position
	Command - Kickstart
	Command - Reset
	Command - Reset Work Zone
	Command - Brake
	Command - Stop
	Command - Off
	Command - GPIO: PWM output
	Command - Testing: Field Oriented Control (FOC)
	Command - Testing: Electronic Speed Control (ESC)
	Command - Testing: Servo Control
	Command - Brushed: Open Loop Control (1-2 motors)
	Command - Autoconfiguration: Brushless Motor
	Command - Autoconfiguration: Brushed Motor
	Command - GPIO: Generic Output

	Telemetry Mappings (TPDO)
	Telemetry Message with COB-ID 0x180
	Telemetry Message with COB-ID 0x280
	Telemetry Message with COB-ID 0x380

