

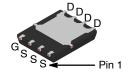
MOSFET - N-Channel, POWERTRENCH[®], SyncFET™

30 V, 22 A, 5.0 m Ω

FDMS0312AS

General Description

The FDMS0312AS has been designed to minimize losses in power conversion application. Advancements in both silicon and package technologies have been combined to offer the lowest $R_{DS(on)}$ while maintaining excellent switching performance. This device has the added benefit of an efficient monolithic Schottky body diode.


Features

- Max $R_{DS(on)} = 5.0 \text{ m}\Omega$ at $V_{GS} = 10 \text{ V}$, $I_D = 18 \text{ A}$
- Max $R_{DS(on)} = 6.2 \text{ m}\Omega$ at $V_{GS} = 4.5 \text{ V}$, $I_D = 16 \text{ A}$
- Advanced Package and Silicon Combination for Low R_{DS(on)} and High Efficiency
- SyncFET Schottky Body Diode
- MSL1 Robust Package Design
- 100% UIL Tested
- This Device is Pb-Free, Halide Free and is RoHS Compliant

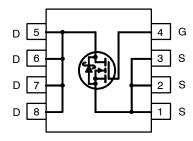
Applications

- Synchronous Rectifier for DC-DC Converters
- Notebook Vcore/GPU Low Side Switch
- Networking Point of Load Low Side Switch
- Telecom Secondary Side Rectification

V _{DS}	R _{DS(ON)} MAX	I _D MAX
30 V	5.0 mΩ @ 10 V	22 A
	6.2 mΩ @ 4.5 V	

PQFN8 5 × 6, 1.27P (Power 56) CASE 483AE

MARKING DIAGRAM


&Z&3&K FDMS 0312AS

&Z = Assembly Plant Code &3 = 3-Digit Date Code

&K = 2-Digit Lot Run Traceability Code

FDMS0312AS = Specific Device Code

PIN CONNECTIONS

ORDERING INFORMATION

Device	Package	Shipping [†]
FDMS0312AS	PQFN8 (Pb-Free, Halide Free)	3000 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

MAXIMUM RATINGS ($T_C = 25^{\circ}C$ unless otherwise noted)

Symbol	Parameter			Value	Unit
V _{DS}	Drain to Source Voltage			30	V
V _{GS}	Gate to Source Voltage (Note 4)			±20	V
I _D	Drain Current	Continuous (Package limited)	T _C = 25°C	22	Α
		Continuous (Silicon limited)	T _C = 25°C	70	
		Continuous (Note 1a)	T _A = 25°C	18	
		Pulsed		100	
E _{AS}	Single Pulse Avalanche Energy (Note 3)			33	mJ
P_{D}	Power Dissipation T _C = 25°C		T _C = 25°C	36	W
			T _A = 25°C (Note 1a)	2.5	
T _J , T _{STG}	Operating and Storage Junction Temperature Range			-55 to +150	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL CHARACTERISTICS

Symbol	Parameter	Value	Unit
$R_{ heta JC}$	Thermal Resistance, Junction to Case	3.4	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient (Note 1a)		

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted)

Symbol	Parameter	Test Condition	Min	Тур	Max	Unit
OFF CHAR	ACTERISTICS					
BV _{DSS}	Drain to Source Breakdown Voltage	I _D = 1 mA, V _{GS} = 0 V	30	-	-	V
$\frac{\Delta BV_{DSS}}{\Delta T_{J}}$	Breakdown Voltage Temperature Coefficient	I _D = 10 mA, referenced to 25°C	-	18	_	mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = 24 V, V _{GS} = 0 V	-	-	500	μΑ
I _{GSS}	Gate to Source Leakage Current, Forward	V _{GS} = 20 V, V _{DS} = 0 V	-	-	100	nA
ON CHARA	ACTERISTICS					
V _{GS(th)}	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}$, $I_D = 1 \text{ mA}$	1.2	1.5	3.0	V
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate to Source Threshold Voltage Temperature Coefficient	I _D = 10 mA, referenced to 25°C	-	-4	-	mV/°C
R _{DS(on)}	Static Drain to Source On Resistance	V _{GS} = 10 V, I _D = 18 A	_	4.2	5.0	mΩ
, ,		V _{GS} = 4.5 V, I _D = 16 A	_	5.4	6.2	
		V _{GS} = 10 V, I _D = 18 A, T _J = 125°C	_	5.3	6.8	
9FS	Forward Transconductance	V _{DS} = 5 V, I _D = 18 A	_	92	-	S
DYNAMIC	CHARACTERISTICS					•
C _{iss}	Input Capacitance	V _{DS} = 15 V, V _{GS} = 0 V, f = 1 MHz	-	1365	1815	pF
C _{oss}	Output Capacitance	7	-	550	730	pF
C _{rss}	Reverse Transfer Capacitance	7	-	70	105	pF
Rg	Gate Resistance		-	0.5	2.5	Ω
SWITCHIN	G CHARACTERISTICS					
t _{d(on)}	Turn-On Delay Time	V _{DD} = 15 V, I _D = 18 A, V _{GS} = 10 V,	-	10	19	ns
t _r	Rise Time	$R_{GEN} = 6 \Omega$	-	2.3	10	ns
t _{d(off)}	Turn-Off Delay Time	7	-	25	40	ns
t _f	Fall Time	1	-	6	12	ns
Qg	Total Gate Charge	$V_{GS} = 0 \text{ V to } 10 \text{ V}, V_{DD} = 15 \text{ V}, I_D = 18 \text{ A}$	-	23	31	nC
		$V_{GS} = 0 \text{ V to } 4.5 \text{ V}, V_{DD} = 15 \text{ V}, I_D = 18 \text{ A}$	-	11	16	nC
Q _{gs}	Gate to Source Charge	V _{DD} = 15 V, I _D = 18 A	-	3.3	-	nC
Q_{gd}	Gate to Drain "Miller" Charge	V _{DD} = 15 V, I _D = 18 A	1	3.7	-	nC
DRAIN-SO	URCE DIODE CHARACTERISTICS					
V_{SD}	Source-Drain Diode Forward Voltage	V _{GS} = 0 V, I _S = 2 A (Note 2)	-	0.63	8.0	V
		V _{GS} = 0 V, I _S = 18 A (Note 2)	_	0.8	1.2]
t _{rr}	Reverse Recovery Time	I _F = 18 A, di/dt = 300 A/μs	-	23	36	ns
Q _{rr}	Reverse Recovery Charge	7	-	20	32	nC
		•	•	•	•	•

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

1. $R_{\theta JA}$ is determined with the device mounted on a 1 in² pad 2 oz copper pad on a 1.5 × 1.5 in. board of FR–4 material. $R_{\theta JC}$ is guaranteed

by design while $R_{\theta CA}$ is determined by the user's board design.

a) 50°C/W when mounted on a 1 in² pad of 2 oz copper.

b) 125°C/W when mounted on a minimum pad of 2 oz copper.

- Pulse Test: Pulse Width < 300 μs, Duty cycle < 2.0%.
 E_{AS} of 33 mJ is based on starting T_J = 25°C, L = 0.3 mH, I_{AS} = 15 A, V_{DD} = 27 V, V_{GS} = 10 V.
 As an N-ch device, the negative Vgs rating is for low duty cycle pulse occurrence only. No continuous rating is implied.

TYPICAL CHARACTERISTICS

(T_J = 25°C unless otherwise noted)

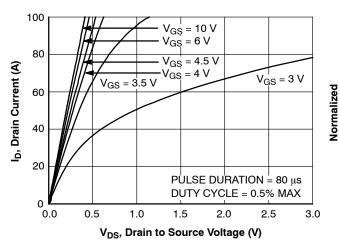


Figure 1. On Region Characteristics

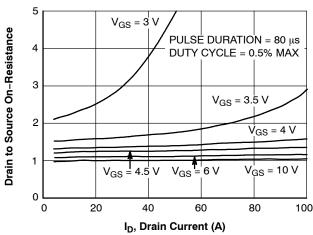


Figure 2. Normalized On–Resistance vs. Drain Current and Gate Voltage

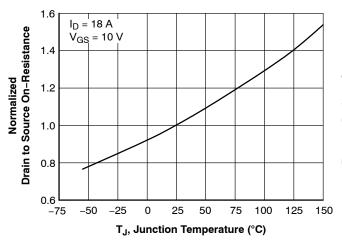


Figure 3. Normalized On Resistance vs. Junction Temperature

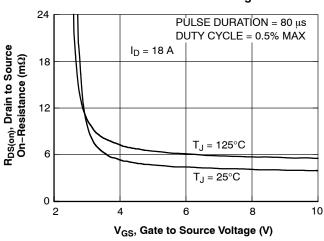


Figure 4. On-Resistance vs. Gate to Source Voltage

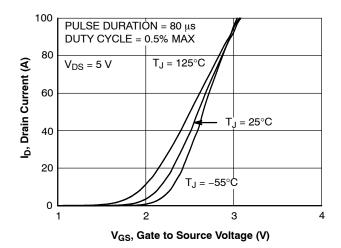


Figure 5. Transfer Characteristics

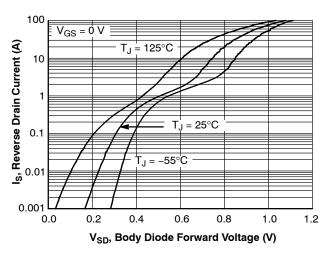


Figure 6. Source to Drain Diode Forward Voltage vs. Source Current

TYPICAL CHARACTERISTICS (continued)

 $(T_J = 25^{\circ}C \text{ unless otherwise noted})$

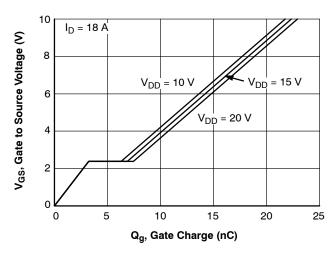


Figure 7. Gate Charge Characteristics

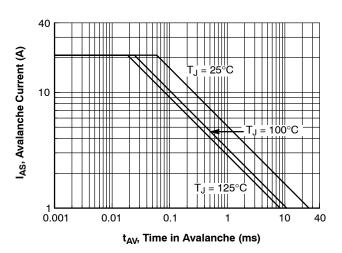


Figure 9. Unclamped Inductive Switching Capability

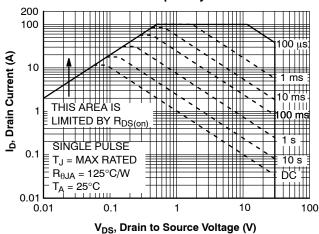
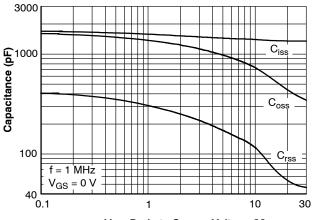



Figure 11. Forward Bias Safe Operating Area

V_{DS}, Drain to Source Voltage (V)

Figure 8. Capacitance vs. Drain to Source Voltage

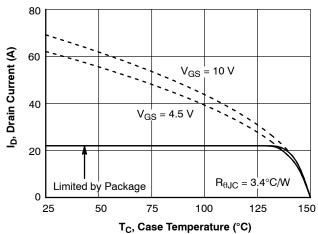


Figure 10. Maximum Continuous Drain Current vs. Case Temperature

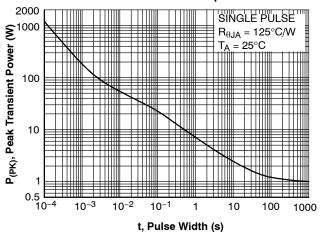


Figure 12. Single Pulse Maximum Power Dissipation

TYPICAL CHARACTERISTICS (continued)

 $(T_J = 25^{\circ}C \text{ unless otherwise noted})$

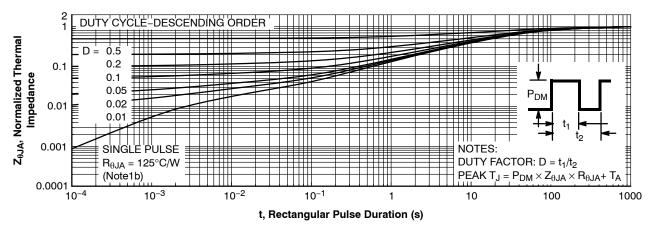


Figure 13. Junction-to-Ambient Transient Thermal Response Curve

TYPICAL CHARACTERISTICS (continued)

SyncFET Schottky Body Diode Characteristics

onsemi's SyncFET process embeds a Schottky diode in parallel with POWERTRENCH MOSFET. This diode exhibits similar characteristics to a discrete external Schottky diode in parallel with a MOSFET. Figure 14 shows the reverse recovery characteristic of the FDMS0312AS.

Schottky barrier diodes exhibit significant leakage at high temperature and high reverse voltage. This will increase the power in the device.

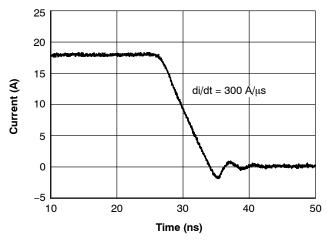


Figure 14. FDMS0312AS SyncFET Body Diode Reverse Recovery Characteristic

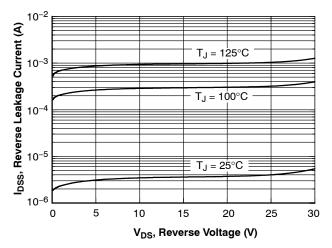
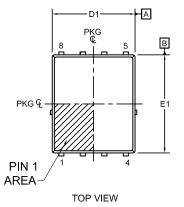
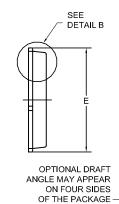


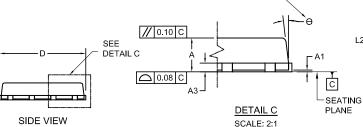
Figure 15. SyncFET Body Diode Reverse Leakage vs. Drain-Source Voltage

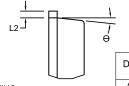
POWERTRENCH is a registered trademark of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries.

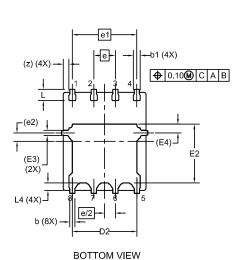

SyncFET is a trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries.

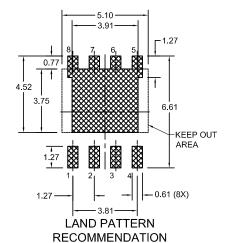


PQFN8 5X6, 1.27P CASE 483AE **ISSUE C**


DATE 21 JAN 2022




NOTES:


- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 2009.
- 2. CONTROLLING DIMENSION: MILLIMETERS
- 3. COPLANARITY APPLIES TO THE EXPOSED PADS AS WELL AS THE TERMINALS.
- 4. DIMENSIONS D1 AND E1 DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS.
- 5. SEATING PLANE IS DEFINED BY THE TERMINALS. "A1" IS DEFINED AS THE DISTANCE FROM THE SEATING PLANE TO THE LOWEST POINT ON THE PACKAGE BODY.
- 6. IT IS RECOMMENDED TO HAVE NO TRACES OR VIAS WITHIN THE KEEP OUT AREA.

DETAIL B SCALE: 2:1

*FOR ADDITIONAL INFORMATION ON OUR PB-FREE STRATEGY AND SOLDERING DETAILS, PLEASE DOWNLOAD THE ON SEMICONDUCTOR SOLDERING AND MOUNTING TECHNIQUES REFERENCE MANUAL, SOLDERRM/D.

DIM	MILLIMETERS				
Diwi	MIN.	NOM.	MAX.		
Α	0.90	1.00	1.10		
A1	0.00	-	0.05		
b	0.21	0.31	0.41		
b1	0.31	0.41	0.51		
А3	0.15	0.25	0.35		
D	4.90 5.00 5				
D1	4.80	4.90	5.00		
D2	3.61	3.82	3.96		
E	5.90	6.15	6.25		
E1	5.70	5.80	5.90		
E2	3.38	3.48	3.78		
E3	(0.30 REF			
E4	(0.52 REF			
е	,	1.27 BSC			
e/2	Ū	0.635 BS	С		
e1	• •	3.81 BSC			
e2	0.50 REF				
L	0.51	0.66	0.76		
L2	0.05	0.18	0.30		
L4	0.34	0.44	0.54		
z	0.34 REF				
Θ	0° - 12°				

DOCUMENT NUMBER:	98AON13655G	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	PQFN8 5X6, 1.27P		PAGE 1 OF 1	

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. **onsemi** does not convey any license under its patent rights nor the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <a href="www.onsemi.org/www.onsemi.or

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \underline{ www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales