
LuMini 8x8 Matrix Hookup Guide

Introduction
The LuMini 8x8 Matrix is a great way to add a square of light to just about anything, or even make a screen of a
custom shape. The LuMini product line uses the same LED used on our Lumenati boards, the APA102, just in a
smaller, 2.0x2.0 mm package. This allows for incredibly tight pixel densities, and thus, a screen with less
pixelation. The LuMini Matrix packs 64 LEDs into a measly square inch!

SparkFun LuMini LED Matrix - 8x8 (64 x APA102-2020)
 COM-15047

Product Showcase: Going TurboProduct Showcase: Going TurboProduct Showcase: Going Turbo

https://www.sparkfun.com/
https://www.sparkfun.com/products/15047
https://www.sparkfun.com/categories/405
https://www.sparkfun.com/categories/tags/apa102
https://www.sparkfun.com/products/15047
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/15047
https://www.youtube.com/watch?v=ahuEUC8uQ2k
https://www.youtube.com/channel/UCKPLvnWhN1Qo51IDDZsmq1g

In this tutorial, we’ll go over how to connect the LuMini Matrix up to more LuMini Matrices as well as other APA102
based products. We’ll check out how to map out a matrix of lights in software so we can get a little more creative
with our animations. We’ll go over some things to consider as you string more and more lights together, and we’ll
also go over some neat lighting patterns to get you away from that standard rainbow pattern (Iif you have 16
million colors why would you use 255).

Required Materials

To follow along with this tutorial, you will need the following materials. You may not need everything though
depending on what you have. Add it to your cart, read through the guide, and adjust the cart as necessary.

Choosing a Microcontroller

You’ll need a microcontroller to control everything, however, there are a few things to consider when picking out
one to control a whole ton of LEDs. The first thing is that, although they don’t have to operate at a specific timing,
APA102 LEDs can transmit data really really fast for an LED, 20 MHz fast! So you should use a microcontroller
that is fast enough to take advantage of this capability. Another consideration is the amount of RAM taken up by
the LED frame; especially, when you start getting into higher LED counts. Each LED takes up 3 bytes of space in
RAM. This doesn’t sound like a lot, but if you’re controlling 5000 LEDs, you might need something with a bit more
RAM than your traditional RedBoard. The below chart outlines the amount of LED’s where you may start running
into memory issues. Keep in mind that these are very generous estimates and will decrease depending on what
other global variables are declared.

Microcontroller Max LED's Clock Speed

SparkFun RedBoard 600 16 MHz

Arduino Mega 2560 2600 16 MHz

Pro Micro 700 16 MHz

SparkFun ESP8266 Thing 27,000 160 MHz

SparkFun ESP32 Thing (Plus) 97,000 160 MHz or 240 MHz

Teensy 3.6 87,000 180 MHz (240 MHz Overclock)

It’s pretty easy to choose either the ESP32 or Teensy 3.6 when it comes to stuff like this, as they’ve got a ton of
overhead in clock cycles to run wacky calculations for animations. However, if your project isn’t all about lights,
and you’re just tossing a LuMini Ring on a project as an indicator, less powerful microcontrollers will suffice.

Here are links to the ESP32 Thing and Teensy 3.6; otherwise, you can look at the other microcontrollers listed in
our catalog. If you want headers for these boards, here are links to those products as well. (*The Teensy 3.6 has
24 breadboard pins, so you can use 4 of the photon headers.)

https://www.sparkfun.com/categories/300

Selecting a Power Supply

In most cases, your LED installation is gonna pull more current than your board can handle. Depending on the
brightness and animation, anywhere from 100-250 LED’s will be too much for your board’s voltage regulator, so
you should snag a sweet 5V power supply that’s got enough wattage in the cottage for all of your LED’s. Here are
a few 5V power supplies to start off with:

SparkFun ESP32 Thing
 DEV-13907

Teensy 3.6
 DEV-14057

ESP32 Thing Stackable Header Set
 PRT-14311

Photon Stackable Header - 12 Pin
 PRT-14322

Wall Adapter Power Supply - 5.1V DC 2.5A
(USB Micro-B)
 TOL-13831

Mean Well Switching Power Supply - 5VDC,
20A
 TOL-14098

https://www.sparkfun.com/products/13907
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/13907
https://www.sparkfun.com/products/14057
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/14057
https://www.sparkfun.com/products/14311
https://www.sparkfun.com/products/14311
https://www.sparkfun.com/products/14322
https://www.sparkfun.com/products/14322
https://www.sparkfun.com/products/13831
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/13831
https://www.sparkfun.com/products/14098
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/14098

You can either estimate the necessary size of your power supply by taking the amount of LED’s and multiplying by
60 mA (0.06 A) which is the amount of current it takes to run an LED at full white. This calculation will give you the
maximum amount of power your LED’s could draw. However, most of the time, this is a gross overestimate of the
amount of power you’ll actually end up consuming. Instead of calculating the maximum current draw, I usually like
to test my completed installation on a benchtop power supply using the brightest animation it’ll be running, and
then add 20 or 30 percent to give myself a little wiggle room if I want to turn the brightness up in the future.

Additional Hardware

You will also probably need some soldering equipment and a 4.7 µF SMD capacitor (in a 603 package). The
capacitor will be used to decouple the power supply. This will reduce high frequency noise in the power line and
compensate for voltage drops due to the change in current demand from devices turning on and off. The 603
package might be a little tricky to solder, a good set of tweezers will help.

Mean Well LED Switching Power Supply -
5VDC, 8A
 TOL-14602

Mean Well LED Switching Power Supply -
5VDC, 5A
 TOL-14601

Hook-Up Wire - Assortment (Solid Core, 22
AWG)
 PRT-11367

SparkFun Beginner Tool Kit
 TOL-14681

Tweezers - Curved (ESD Safe)
 TOL-10602

Capacitor 4.7uF - SMD (Strip of 10)
 COM-15169

https://www.sparkfun.com/products/9291
https://www.sparkfun.com/products/14602
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/14602
https://www.sparkfun.com/products/14601
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/14601
https://www.sparkfun.com/products/11367
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/11367
https://www.sparkfun.com/products/14681
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/14681
https://www.sparkfun.com/products/10602
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/10602
https://www.sparkfun.com/products/15169
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/15169

Suggested Reading

If you aren’t familiar with the following concepts, we recommend checking out these tutorials before continuing.

LEDs, Light, and Power

Soldering Fundamentals

Light
Light is a useful tool for the electrical engineer.
Understanding how light relates to electronics is a
fundamental skill for many projects.

How to Power a Project
A tutorial to help figure out the power requirements of
your project.

Light-Emitting Diodes (LEDs)
Learn the basics about LEDs as well as some more
advanced topics to help you calculate requirements for
projects containing many LEDs.

Electric Power
An overview of electric power, the rate of energy
transfer. We'll talk definition of power, watts, equations,
and power ratings. 1.21 gigawatts of tutorial fun!

How to Solder: Through-Hole Soldering
This tutorial covers everything you need to know about
through-hole soldering.

How to Solder: Castellated Mounting Holes
Tutorial showing how to solder castellated holes (or
castellations). This might come in handy if you need to

https://learn.sparkfun.com/tutorials/light
https://learn.sparkfun.com/tutorials/how-to-power-a-project
https://learn.sparkfun.com/tutorials/light-emitting-diodes-leds
https://learn.sparkfun.com/tutorials/electric-power
https://learn.sparkfun.com/tutorials/how-to-solder-through-hole-soldering
https://learn.sparkfun.com/tutorials/how-to-solder-castellated-mounting-holes

Hardware Overview

I/O Pads

The LuMini Matrix is powered and controlled using a few pads on the back of each board. Each board has a set of
pads for 5V and GND (ground), a set of pads for DI (data in) and CI (clock input), and a set of pads for DO (data
out) and CO (clock output). These pads are outlined in the below image.

LuMini Matrix 8x8 I/O pads.

APA102

Heads up! The LiMini Rings and Matrix has a different footprint compared to the individual APA102-2020s
that are sold in packs of 10 (i.e. COM-14608).

The APA102 is an addressable RGB LED with 8-bit color (256 colors) and 256 levels of gray scale. This
essentially means that you can tell each individual LED what color you want it to show and how bright it should be.

solder a module or PCB to another PCB. These
castellations are becoming popular with integrated WiFi
and Bluetooth modules.

How to Work with Jumper Pads and PCB Traces
Handling PCB jumper pads and traces is an essential
skill. Learn how to cut a PCB trace, add a solder
jumper between pads to reroute connections, and
repair a trace with the green wire method if a trace is
damaged.

https://cdn.sparkfun.com/assets/learn_tutorials/8/5/3/LuMini_Matrix_IO_Pads.png
https://cdn.sparkfun.com/assets/d/c/a/4/2/APA_102-2020-256-6.pdf
https://learn.sparkfun.com/tutorials/how-to-work-with-jumper-pads-and-pcb-traces

APA102 LED under a microscope. Click to enlarge image.

The LEDs employ a 2-wire communication protocol consisting of a clock line and a data line. While this requires
one more wire than standard WS2812B addressable LEDs, the advantage is that the communication with the
LEDs becomes somewhat timing independent, allowing you to run these off boards without long, precisely-timed
data streams.

Note: We've found that setting the global brightness using the FastLED Library to 32 is good for testing, as
it's easier on the eyes. You can also tape a small piece of paper to the front to get better diffusion of each
LED.

LED Indexing

Each matix acts like a string of LEDs. The indexing (or numbering) of the LEDs moves from left to right, bottom to
top of the board, on the LED facing side, as shown in the diagram below.

LED indexing for LuMini Matrix 8x8 (Left: Front or LED facing side, Right: Back). Click to enlarge image.

Capacitor Pads

In larger installations you may need to add a decoupling capacitor between power and ground to prevent voltage
dips when turning on a whole bunch of LEDs simultaneously. The spot to add this optional capacitor is outlined
below.

https://cdn.sparkfun.com/assets/learn_tutorials/8/5/3/APA102.jpg
https://cdn.sparkfun.com/assets/learn_tutorials/8/5/3/LuMini_Matrix_LED_Indexing.png

LuMini Matrix 8x8 pads for capacitor.

We’d recommend the below 4.7 µF capacitor. If you’ve never done surface mount soldering before, this part might
be a little tricky, but check out our SMD tips and tricks on doing just that.

4.7 µF capacitor on a quarter for size comparison.

Note: You only need capacitor one per setup and not one for every board in your installation.

Heat Dissipation

As with most high power LEDs, the APA102 LEDs used on the LuMini Matrix 8x8 generate a lot of heat. To keep
the LEDs from damaging themselves and the board, the ground plane (back/bottom layer of the board) is used for
heat dissipation. The stand off pads are also tied to the ground plane and can be used for greater thermal
dissipation.

Note: Be careful to make sure your animations don't run too hot, and if they do, you can always lower the
brightness (see Warning below).

We've found that setting the global brightness using the FastLED Library to 32 is good for testing, as it's
easier on the eyes. Even if all the LEDs are set to white, the temperature of the board will idle around (90-
95°F... depending on your ambient room temperature).

https://cdn.sparkfun.com/assets/learn_tutorials/8/5/3/LuMini_Matrix_Cap_Pads.png
https://www.sparkfun.com/products/15169
https://www.sparkfun.com/news/2233
https://cdn.sparkfun.com/assets/parts/1/3/5/6/2/15169-Capacitor_4.7uF_SMD__strip_of_10_-02.jpg
https://www.sparkfun.com/products/15169

 Warning! Do NOT try this at home! (We tested the Matrix at full-tilt so that you don't have to.)

Setting all the LEDs on white and turning the brightness up all the way up will result in damage to your board
and may result in injury and/or fire ! We only ran our display for about 20-30 seconds before we
decided to turn it off, in that time it climbed to over 300°F and was still rising!

Hardware Assembly

Soldering to the LuMini Matrix

Soldering wires to the pads on the LuMini Matirx is pretty simple. The trick is simply to pre-solder both the pad and
wire before attempting to solder the two together. Then, press the wire onto the pad and solder away! Check out
the below GIF if you’re a little confused.

Soldering wire to board.

Choosing Pins

The APA102 LED is controlled on an SPI-like protocol, so it’s generally good practice to connect CI on the LuMini
Matrix to SCLK on your microcontroller, and connect DI to MOSI . However, This setup isn’t required, and you can
connect data and clock up to most pins on your microcontroller. Go ahead and determine which pins you will use,
and solder your Data and Clock lines into your microcontroller.

Connecting to a SparkFun ESP32 Thing

In the examples below, we will be using a SparkFun ESP32 Thing. For the hardware connections, the 5V
line is connected to the VUSB pin, GND is connected to the GND pin, DI is connected to pin 16, and CI is
connected to pin 17.

https://cdn.sparkfun.com/assets/learn_tutorials/8/5/3/Full_Brightness.gif
https://cdn.sparkfun.com/assets/learn_tutorials/8/5/3/Soldering_Wire.gif
https://www.sparkfun.com/products/13907

Pin connections to SparkFun ESP32 Thing for examples below. Click image for wiring on the matrix panel.

Creating a Larger Installation

Now that we know how to solder to these pads, we can start making a grid of LuMini Matrices, or even tie them to
other APA102 based products. To do this, all we’ll need to do is solder CO and DO of one matrix panel to the CI
and DI of the next matrix panel. Below, is an image multiple matrices soldered together to make a larger display.

Castellated soldering for I/O pads.

Troubleshooting Tip: The standoffs mounting points can be clipped with a pair of dikes (diagonal wire
cutters). You may need sand or file the edges square, since the diagonal cutters will leave a rough edge.

Arduino Library

Note: This example assumes you are using the latest version of the Arduino IDE on your desktop. If this is
your first time using Arduino, please review our tutorial on installing the Arduino IDE. If you have not
previously installed an Arduino library, please check out our installation guide.

We’ll be leveraging the ever popular FastLED library to control our LuMini Matrix. So go ahead and start by
downloading the library by clicking the button below or searching for FastLED in the Arduino Library manager.

DOWNLOAD THE FASTLED LIBRARY (ZIP)

Light It Up
SparkFun has also written some example code specific to the rings to get you started. These example sketches
can be found in the LuMini 8x8 GitHub Repo under Firmware. To download, click on the button below.

https://cdn.sparkfun.com/assets/learn_tutorials/8/5/3/LuMini_Pin_Connections.jpg
https://www.sparkfun.com/products/13907
https://cdn.sparkfun.com/assets/learn_tutorials/8/5/3/Soldering_Board.gif
https://learn.sparkfun.com/tutorials/installing-arduino-ide
https://learn.sparkfun.com/tutorials/installing-an-arduino-library
https://github.com/FastLED/FastLED/archive/master.zip
https://github.com/sparkfun/Lumini_8x8/tree/master/Firmware

DOWNLOAD THE EXAMPLE SKETCHES

Make sure to adjust the pin definition depending on how you connected the LEDs to your microcontroller.

Note: Be careful to make sure your animations don't run too hot, and if they do, you can always lower the
brightness LEDS.setBrightness(##); (see Warning below).

 Warning!
Setting all the LEDs on white and turning the brightness up all the way up will result in damage to your board
and may result in injury and/or fire !

Example 1 — Matrix Test

Glen Larson invented the Larson Scanner as an LED effect for the TV series Knight Rider. In this example, we’ll
begin to reproduce it that effect and add in some color for flavor. This sketch is a great way to test all of the LEDs.
First, we begin by creating an object for matrix CRGB matrix[NUM_LEDS] .

#include <FastLED.h>

// How many leds in your chain? Change the value of NUM_BOARDS depending on your setup
#define NUM_BOARDS 1
#define NUM_LEDS 64 * NUM_BOARDS //64 LED's per board

// The LuMini matrices need two data pins connected, these two pins are common on many microcont
rollers, but can be changed according to your setup
#define DATA_PIN 16
#define CLOCK_PIN 17

// Define the array of leds
CRGB matrix[NUM_LEDS];

We then, initialize the matrix using the LEDS.addLeds function below. Notice the BGR in this statement, this is the
color order, sometimes, the manufacturer will change the order in which the received data is put into the PWM
registers, so you’ll have to change your color order to match. The particular chipset we’re using is BGR, but this
could change in the future.

void setup() {
 Serial.begin(115200);
 Serial.println("resetting");
 LEDS.addLeds<APA102, DATA_PIN, CLOCK_PIN, BGR>(matrix, NUM_LEDS);
 LEDS.setBrightness(32);
}

In this sketch, the global brightness is set to 32 LEDS.setBrightness(32); . Although, the full range of this setting
is 0 to 255, we’ve found that 32 is good for testing, as it’s easier on the eyes. Even if all the LEDs are set to white,
the temperature of the board will idle around (90-95°F… depending on your ambient room temperature).

https://github.com/sparkfun/LuMini_8x8/archive/master.zip
https://en.wikipedia.org/wiki/Knight_Rider_(1982_TV_series)

Our animation is then contained in the fadeAll() function, which loops through every LED and fades it to a
percentage of it’s previous brightness. Our loop() then set’s an LED to a hue, we increment the hue, then show
our LEDs. After this we use the fadeAll() function to fade our LED’s down so they don’t all end up being on.

void fadeAll() {
 for (int i = 0; i < NUM_LEDS; i++)
 {
 matrix[i].nscale8(250);
 }
}

void loop() {
 static uint8_t hue = 0;
 //Rotate around the circle
 for (int i = 0; i < NUM_LEDS; i++) {
 // Set the i'th led to the current hue
 matrix[i] = CHSV(hue++, 150, 255); //display the current hue, then increment it.
 // Show the leds
 FastLED.show();
 fadeAll();//Reduce the brightness of all LEDs so our LED's fade off with every frame.
 // Wait a little bit before we loop around and do it again
 delay(5);
 }
}

Your code should look like the below gif if you’ve hooked everything up right. If thing’s aren’t quite what you’d
expect, double check your wiring.

You should see this on the LuMini matrix if you have done everything correctly.

As a challenge, see if you can create an actual Larson scanner. It should only take a few modifications to the
example code.

Example 2 — RGB Color Picker

In this second example, we’ll use the serial terminal to control the color displayed by the matrix. We initialize
everything in the same way. We then listen for data on the serial port, parsing integers that are sent from the Serial
Monitor from the Arduino IDE and putting them in the corresponding color (red, green or blue). The code to
accomplish this is shown below.

https://cdn.sparkfun.com/assets/learn_tutorials/8/5/3/Example_1.gif
https://learn.sparkfun.com/tutorials/terminal-basics

#include <FastLED.h>

// How many leds in your chain? Change the value of NUM_BOARDS depending on your setup
#define NUM_BOARDS 1
#define NUM_LEDS 64 * NUM_BOARDS //64 LED's per board

// The LuMini matrices need two data pins connected, these two pins are common on many microcont
rollers, but can be changed according to your setup
#define DATA_PIN 16
#define CLOCK_PIN 17

CRGB color;
char colorToEdit;

// Define the array of leds
CRGB matrix[NUM_LEDS];

void setup() {
 Serial.begin(115200);
 Serial.println("resetting");
 LEDS.addLeds<APA102, DATA_PIN, CLOCK_PIN, BGR>(matrix, NUM_LEDS);
 LEDS.setBrightness(32);

 //Display our current color data
 Serial.print("Red Value: ");
 Serial.println(color[0]);
 Serial.print("Green Value: ");
 Serial.println(color[1]);
 Serial.print("Blue Value: ");
 Serial.println(color[2]);
 Serial.println();
}

void loop()
{
 if (Serial.available()) //Check to see if we have new Serial data.
 {
 colorToEdit = Serial.read();
 switch (colorToEdit)
 {
 case 'R':
 case 'r':
 color[0] = Serial.parseInt();
 break;
 case 'G':
 case 'g':
 color[1] = Serial.parseInt();
 break;
 case 'B':

 case 'b':
 color[2] = Serial.parseInt();
 break;
 }

//Display our current color data

 //Display our current color data
 Serial.print("Red Value: ");
 Serial.println(color[0]);
 Serial.print("Green Value: ");
 Serial.println(color[1]);
 Serial.print("Blue Value: ");
 Serial.println(color[2]);
 Serial.println();
 for (int i = 0; i < NUM_LEDS; i++)
 {
 matrix[i] = color;
 FastLED.show();
 delay(10);
 }
 }
}

Go ahead and upload this code, then open your Serial Monitor to a baud rate of 115200. It should be displaying
the current color value (R:0, G:0, B:0), if not.

Serial monitor entries (for animation below r255 -> r100g50b200 -> r255g255b255).

Changing the value of a color is done be sending the letter of the color (R, G, or B) followed by a value between 0
and 255. For instance, turning red to half brightness would be achieved by sending R127 . Play around and look
for your favorite color.

You should see this on the LuMini matrix if you have done everything correctly.

Troubleshooting Tips:
You may get some weird responses using low values for RGB; around 50 or less.
The letters for the color entry are not case sensitive.

https://learn.sparkfun.com/tutorials/terminal-basics
https://cdn.sparkfun.com/assets/learn_tutorials/8/5/3/Serial_Monitor.gif
https://cdn.sparkfun.com/assets/learn_tutorials/8/5/3/Example_2.gif

You can also send multiple entries. Try sending r100b50 g200 or r0, b200,g150 in the serial monitor.
CRGB is an object defined in the FastLED library. If you look up the object definitions, you play with

how it operates in your code. For example, modifying this line of code:
matrix[i] = CRGB::White;

will set your entire panel color to white.

Example 3 — HSV Color Picker

The third example is very similar to the first in that we are picking colors using the serial terminal. However, in this
example, we are working with an HSV color space. This sketch works mostly the same as the previous one, only
we send h, s or v instead of r, g or b. Upload the below code and play around in search of your favorite color.

https://en.wikipedia.org/wiki/HSL_and_HSV

#include <FastLED.h>

// How many leds in your chain? Change the value of NUM_BOARDS depending on your setup
#define NUM_BOARDS 1
#define NUM_LEDS 64 * NUM_BOARDS //64 LED's per board

// The LuMini matrices need two data pins connected, these two pins are common on many microcont
rollers, but can be changed according to your setup
#define DATA_PIN 16
#define CLOCK_PIN 17

CHSV color = CHSV(0, 255, 255);
char colorToEdit;

// Define the array of leds
CRGB matrix[NUM_LEDS];

void setup() {
 Serial.begin(115200);
 Serial.println("resetting");
 LEDS.addLeds<APA102, DATA_PIN, CLOCK_PIN, BGR>(matrix, NUM_LEDS);
 LEDS.setBrightness(32);

 //Display our current color data
 Serial.print("Hue: ");
 Serial.println(color.hue);
 Serial.print("Saturation: ");
 Serial.println(color.sat);
 Serial.print("Value: ");
 Serial.println(color.val);
 Serial.println();
}

void loop()
{
 if (Serial.available()) //Check to see if we have new Serial data.
 {
 colorToEdit = Serial.read();
 switch (colorToEdit)
 {
 case 'H':
 case 'h':
 color.hue = Serial.parseInt();
 break;
 case 'S':
 case 's':
 color.sat = Serial.parseInt();
 break;
 case 'V':
 case 'v':
 color.val = Serial.parseInt();
 break;
 }

 //Display our current color data
 Serial.print("Hue: ");
 Serial.println(color.hue);
 Serial.print("Saturation: ");
 Serial.println(color.sat);
 Serial.print("Value: ");
 Serial.println(color.val);
 Serial.println();

 for (int i = 0; i < NUM_LEDS; i++)
 {
 matrix[i] = color;
 FastLED.show();
 delay(10);
 }
 }
}

Once again, play around to try and find your favorite color. I find that HSV is a much more intuitive space to work in
than RGB space.

Example 4 — Mapping Multiple Matrices

The LuMini Matrices can be easily daisy chained to create a screen of a custom size. When dealing with any
screen or LED matrix, you’ll want to be able to call some sort of function XY(x, y) to return an LED number at
any given coordinate. In order to do this, we’ll need to outline the path in which we’ve daisy chained our matrices
as well as the orientation of each matrix. First let’s look at the path that our matrices take.

Completed assembly for 2x2 matrices with matrix map marked. The orientation of third panel should be rotated 90°
clockwise (from the front of the panels). Click image to see the soldering connections on the back of the assembly.

I’ve soldered together 4 LuMini matrices in the below picture. Each number represents which number the matrix is
in the chain. I like to start at the bottom left, but you can lay out your matrix however you want. We’ll then have to
edit our matrixMap[moduleHeight][moduleWidth] object to tell our code where each matrix is. Notice how the
numbers in the table identically map to the numbers on the matrices in the above picture.

https://cdn.sparkfun.com/assets/learn_tutorials/8/5/3/2x2_Soldering_Points-Highlighted.jpg

#include <FastLED.h>

const int moduleHeight = 2; //The Height of our display, measured in numbers of LuMini matrices
const int moduleWidth = 2; //The Width of our display, measured in numbers of LuMini matrices

//The following matrix represents our entire LED display, with the number that each module is in
 the chain. My data flows in to the bottom left matrix (matrix 0 in my chain),
//then it goes right to the bottom right matrix (matrix 1 in my chain) then up to the top right
 matrix (matrix 2) then to the remaining matrix 3
//The below table should have identical matrix numbers/positions as that of the full multi-matri
x module
int matrixMap[moduleHeight][moduleWidth] = {
 {3, 2},
 {0, 1}
};

We’ll then need to adjust the orientation of each matrix in code so that any physically rotated matrix gets it’s pixels
rotated in code as well. The easiest way to check the orientation is to first change the values of the int
orientation[moduleHeight * moduleWidth] to 0, which is the default orientation when a LuMini matrix is facing
straight up and down. Go ahead and upload your code. The last matrix should have a line going from top to bottom
instead of left to right.

If your entire module was properly oriented, you would see a line of color swiping from left to right. If any of your
matrices have a line swiping in a different direction, take note of the direction the line is swiping on the problem
module. Use the below table to match the direction you’re seeing to the necessary orientation in the int
orientation[moduleHeight * moduleWidth] object.

Swipe Direction (Orientation 0) Orientation Number

Left to Right 0

Top to Bottom 1

Right to Left 2

Bottom to Top 3

Since the last matrix has a line swiping from top to bottom due to its orientation, I’ll change the orientation of the
last matrix like so.

int orientation[moduleHeight * moduleWidth] = { 0, 0, 0, 1 };

https://cdn.sparkfun.com/assets/learn_tutorials/8/5/3/Example_4.gif

You should see this on the 2x2 matrices if you have done everything correctly.

Example 5 — Using Gradients

In this final example, we’ll leverage FastLED’s palette object (CRGBPalette16) to create and visualize a color
palette on our matrix. We have much the same initialization as our previous examples, only this time we also
initialize a CRGBPalette16 object which will be full of colors along with a TBlendType which will tell us whether or
not to blend the colors together or not. This can be either LINEARBLEND or NOBLEND . To populate this gradient, we
use examples 2 and 3 to find the colors we want to put into our gradient. The gradient included is a bunch of colors
created in HSV space, but you can easily change to RGB space if you prefer. You can also use any of the preset
palettes by uncommenting the line that sets it equal to currentPalette .

TBlendType currentBlending = LINEARBLEND;
CRGBPalette16 currentPalette = {
 CHSV(5, 190, 255),
 CHSV(0, 190, 255),
 CHSV(245, 255, 255),
 CHSV(235, 235, 255),
 CHSV(225, 235, 255),
 CHSV(225, 150, 255),
 CHSV(16, 150, 255),
 CHSV(16, 200, 255),
 CHSV(16, 225, 255),
 CHSV(0, 255, 255),
 CHSV(72, 200, 255),
 CHSV(115, 225, 255),
 CHSV(40, 255, 255),
 CHSV(35, 255, 255),
 CHSV(10, 235, 255),
 CHSV(5, 235, 255)
};

//currentPalette = RainbowColors_p;
//currentPalette = RainbowStripeColors_p;
//currentPalette = OceanColors_p;
//currentPalette = CloudColors_p;
//currentPalette = LavaColors_p;

//currentPalette = ForestColors_;
//currentPalette = PartyColors_p;

We then use the ColorFromPalette function to put the colors from our gradient onto our LED matrix.

void loop() {
 for (uint8_t x = 0; x < matrixWidth; x++)
 {
 uint8_t gradientIndex = (x * 2) + rotation;//Multiply by 2 to show more of the gradient on t
he matrix
 for (uint8_t y = 0; y < matrixHeight; y++)
 {
 matrix[XY(x, y)] = ColorFromPalette(currentPalette, gradientIndex, brightness, currentBlen
ding);
 }
 }
 FastLED.show();
 rotation++;
 delay(30);
}

Play around with the colors in your palette until you’re satisfied. If all is hooked up correctly your LED matrix should
look something like the below gif.

You should see this on the LuMini matrix if you have done everything correctly.

Additional Examples

There are quite a few additional examples contained in the FastLED library. These can be obtained by opening up
File -> Examples -> Examples From Custom Libraries -> FastLED

Resources & Going Further
Now that you’ve successfully got your LuMini Ring up and running, it’s time to incorporate it into your own project!
For more information about the LuMini Matrix, check out the links below.

Schematic (PDF)
Eagle Files (ZIP)
Datasheet - APA102 (PDF)
SMD Soldering Tips
GitHub FastLED Arduino Library
Example Code
GitHub Product Repository
SFE Product Showcase

Or, you can check out some of our other LuMini products:

New!
New!

https://cdn.sparkfun.com/assets/learn_tutorials/8/5/3/Example_5.gif
https://cdn.sparkfun.com/assets/4/4/2/0/0/LuMini_8X8_Matrix.pdf
https://cdn.sparkfun.com/assets/d/5/5/3/1/LuMini_8X8_Matrix.zip
https://cdn.sparkfun.com/assets/d/c/a/4/2/APA_102-2020-256-6.pdf
https://www.sparkfun.com/news/2233
https://github.com/FastLED/FastLED
https://github.com/sparkfun/Lumini_8x8/tree/master/Firmware
https://github.com/sparkfun/Lumini_8x8
https://youtu.be/ahuEUC8uQ2k
https://learn.sparkfun.com/tutorials/lumini-ring-hookup-guide
https://learn.sparkfun.com/tutorials/lumidrive-hookup-guide

Here are some tutorials for more projects and ideas:

Check out the following blog posts for more LED Fun:

LuMini Ring Hookup Guide
The LuMini Rings (APA102-2020) are the highest
resolution LED rings available.

LumiDrive Hookup Guide
The LumiDrive LED Driver is SparkFun’s foray into all
things Python on micro-controllers. With the SparkFun
LumiDrive you will be able to control and personalize a
whole strand of APA102s directly from the board itself.

Lumenati Hookup Guide
Lumenati is our line of APA102c-based addressable
LED boards. We'll show you how to bring the sparkle to
your projects!

Using Artnet DMX and the ESP32 to Drive
Pixels
In this tutorial, we'll find out how to use Resolume
Arena, a popular video jockey software, to control
custom-made ArtNet DMX fixtures.

Getting Started with the SmartLED Shield for
Teensy
In this tutorial, we will connect different RGB LED
matrix panels to PixelMatix's SmartLED shield and
Teensy.

Introduction to DMX
DMX512 is an industry standard in lighting and stage
design, whether it be controlling lights, motors, or
lasers, DMX512 has many uses. In this tutorial we’ll
cover DMX512 (Digital Multiplex with 512 pieces of
information).

https://learn.sparkfun.com/tutorials/lumini-ring-hookup-guide
https://learn.sparkfun.com/tutorials/lumidrive-hookup-guide
https://learn.sparkfun.com/tutorials/lumenati-hookup-guide
https://learn.sparkfun.com/tutorials/using-artnet-dmx-and-the-esp32-to-drive-pixels
https://learn.sparkfun.com/tutorials/getting-started-with-the-smartled-shield-for-teensy
https://learn.sparkfun.com/tutorials/introduction-to-dmx
https://www.sparkfun.com/news/2514
https://www.sparkfun.com/news/2844

DIY LED Motorcycle Helmet
OCTOBER 31, 2017

Mathematical Color Fading
DECEMBER 26, 2018

Python and the SparkFun LumiDrive
JANUARY 22, 2019

https://www.sparkfun.com/news/2514
https://www.sparkfun.com/news/2844
https://www.sparkfun.com/news/2857

