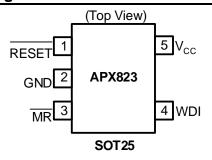
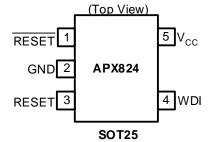
PROCESSOR SUPERVISORY CIRCUITS

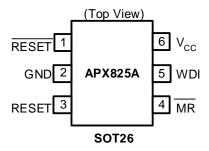
Description

The APX823/APX824/APX825A family of supervisors provides circuit initialization and timing supervision, primarily for DSP and processor-based systems.

During power-on, $\overline{\text{RESET}}$ is asserted when supply voltage V_{CC} becomes higher than 1.1V. Thereafter, the supply voltage supervisor monitors V_{CC} and keeps $\overline{\text{RESET}}$ active as long as V_{CC} remains below the threshold voltage \underline{V}_{TH} . An internal timer delays the return of the output to the inactive state (high) to ensure proper system reset. The delay time, t_d starts after V_{CC} has risen above the threshold voltage V_{TH}. When the supply voltage drops below the threshold voltage \underline{V}_{TH} ., the output becomes active (low) again. No external components are required. All the devices of this family have a fixed-sense threshold voltage \underline{V}_{TH} set by an internal voltage divider.

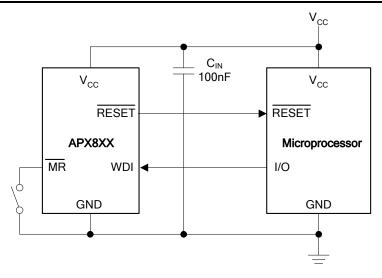

The APX823/APX825A devices incorporate a manual reset input, MR. A low level at MR causes RESET to become active. The APX824/APX825A devices include a high-level output RESET. APX823/APX824/APX825A have a watchdog timer that is periodically triggered by a positive or negative transition at WDI. When the supervising system fails to retrigger the watchdog circuit within the time-out interval, ttout, RESET becomes active for the time period td. This event also reinitializes the watchdog timer. Leaving WDI unconnected disables the watchdog.


In applications where the input to the WDI pin may be active (transitioning high and low) when the APX823/APX824/APX8 25A asserting RESET the APX823/APX824/APX825A does not return to a non-reset state when the input voltage is above Vt. The product spectrum is designed for supply voltage of 2.5V, 3V, 3.3V and 5V. The circuits are available in a SOT25 and SOT26 packages. The APX823/APX824/APX825A devices are characterized for operation over a temperature range of -40°C to 105°C.


Features

- Power-on reset generator with fixed delay time of 200ms
 Typ
- Manual reset input (APX823/APX825A)
- Reset output available in active-low (APX823/APX824/APX825A), active-high (APX824/APX825A)
- Supply voltage supervision range 2.5V, 3V, 3.3V, 5V
- Watchdog timer
- Supply current of 30µA (Typ.)
- Temperature range: -40°C to 85°C
- SOT25 and SOT26: Available in "Green" Molding Compound (No Br, Sb)
- Lead Free Finish/RoHS Compliant (Note 1)

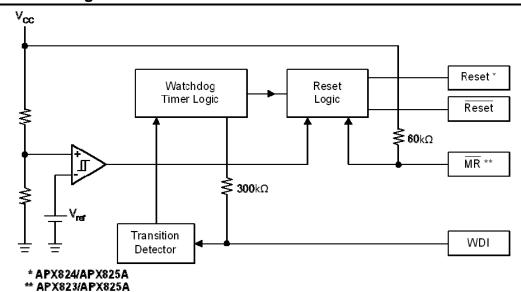
Pin Assignments


Applications

- Applications Using DSPs, Microcontrollers, or Microprocessors
- Industrial Equipment
- Programmable Controls
- Automotive Systems
- Portable/Battery-Powered Equipment
- Intelligent Instruments
- Wireless Communications Systems
- Notebook/Desktop Computers

Note: 1. EU Directive 2002/95/EC (RoHS). All applicable RoHS exemptions applied, see EU Directive 2002/95/EC Annex Notes.

PROCESSOR SUPERVISORY CIRCUITS


Typical Application Circuit

Pin Descriptions

Pin Name	Description
GND	Ground
RESET	Reset output pin
(RESET)	. tooot output piii
V _{CC}	Operating voltage input
WDI	Watchdog input
MR	Manual reset

Functional Block Diagram

PROCESSOR SUPERVISORY CIRCUITS

Absolute Maximum Ratings (Over operating ambient temperature range, unless otherwise noted)*

Symbol		Parameter		Rating	Unit
ESD HBM	Human Body Model ESD Protection			5	KV
ESD MM	Machine Model ESD Prote	ection		200	V
V _{CC}	Supply Voltage			6.0	V
V _{RESET}	RESET, RESET, MR, V	WDI		-0.3 to (V _{CC} +0.3)	V
I _{CC}	Input Current V _{CC}			20	mA
Io	Maximum High Output Cu	rrent		20	mA
		Derating Factor Above	SOT25	6.2	\A\/9C
		$T_A = 25^{\circ}C$	SOT26	5.8	mW/°C
		T 25°C Dawer Dating	SOT25	500	\/
	Continuous Total Power	$T_A = 25^{\circ}C$ Power Rating	SOT26	470	mW
P _D	Dissipation	T 70°C Dower Dating	SOT25	220	
		T _A = 70°C Power Rating	SOT26	210	mW
		T 95°C Dower Dating	SOT25	125	m\\/
		$T_A = 85^{\circ}C$ Power Rating	SOT26	120	mW
T _{OP}	Operating Junction Tempe	erature Range		-40 to 105	°C
T _{ST}	Storage Temperature Ran	ge		-65 to 150	°C

^{*} Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

Recommended Operating Conditions

Symbol	Parameter	Min	Max	Unit
V _{CC}	Supply Voltage	1.1	5.5	V
V_{IN}	Input Voltage	0	(V _{CC} +0.3)	V
V_{IH}	High-level Input Voltage at MR and WDI	$0.7 \times V_{CC}$	-	V
V_{IL}	Low-level Voltage	-	$0.3 \times V_{CC}$	V
Δt/ΔV	Input Transition Rise and Fall Rate at MR or WDI	-	100	ns/V
T _A	Operating Ambient Temperature Range	-40	85	°C
T_R	V _{CC} Rising Time (V _{CC} = 0~VT)	-	100	V/ uS

PROCESSOR SUPERVISORY CIRCUITS

Electrical Characteristics (Over recommended operating ambient temperature range, unless otherwise noted)

Symbol		Pa	rameter	Test Conditions	Min	Тур.	Max	Unit
			APX823/APX824/APX825A - 29/26/23	$V_{CC} = V_{TH} + 0.2V$ $I_{OH} = -20\mu A$	0.954/			
		RESET	APX823/APX824/APX825A - 40/31	$V_{CC} = V_{TH} + 0.2V$ $I_{OH} = -30\mu A$	0.8×V _{CC}	-	,	V
V _{OH}	High-level Output Voltage		APX823/APX824/APX825A -46/44	$V_{CC} = V_{TH} + 0.2V$ $I_{OH} = -120\mu A$	V _{CC} -1.5V	-	-	V
		RESET	APX824/APX825A -29/26/23	$V_{CC} \ge 1.8V$, $I_{OH} = -100\mu A$	0.8×V _{CC}			V
		RESET	APX824/APX825A - 46/44/40/31	$V_{CC} \ge 1.8V$, $I_{OH} = -150\mu A$	0.8 × ۷.00	-	•	V
			APX824/APX825A -29/26/23	$V_{CC} = V_{TH} + 0.2V$ $I_{OL} = 1 \text{mA}$				
		RESET	APX824/APX825A -40/31	$V_{CC} = V_{TH} + 0.2V$ $I_{OL} = 1.2 \text{mA}$	-	-	0.4	V
V _{OL}	Low-level		APX824/APX825A -46/44	$V_{CC} = \underline{V_{TH}} + 0.2V$ $I_{OL} = 3mA$				
VOL	Output Voltage		APX823/APX824/APX825A - 29/26/23	$V_{CC} = V_{TH} - 0.2V$ $I_{OL} = 1 \text{mA}$				
		RESET	APX823/APX824/APX825A - 40/31	$V_{CC} = \underline{V_{TH}} - 0.2V$ $I_{OL} = 1.2 \text{mA}$	-	-	0.4	V
			APX823/APX824/APX825A - 46/44	$V_{CC} = V_{TH} - 0.2V$ $I_{OL} = 3mA$				
V _{RESET}	Power-up Reset	Voltage (see Note 2)	$V_{CC} \ge 1.1V$, $I_{OL}=20\mu A$	ı	-	0.4	V
		APX	823/APX824/APX825A -23		2.21	2.25	2.30	
		APX	823/APX824/APX825A -26		2.59	2.63	2.69	
		APX	823/APX824/APX825A -29		2.88	2.93	3.00	
		APX	823/APX824/APX825A -31	$T_A = 0^{\circ}C - 85^{\circ}C$	3.02	3.08	3.15	V
		APX	823/APX824/APX825A -40		3.93	4.00	4.08	
	Negative-going	APX	823/APX824/APX825A -44	_	4.31	4.38	4.47	
V _{TH-}	Input Threshold		823/APX824/APX825A -46		4.56	4.63	4.72	
- 111-	Voltage		823/APX824/APX825A -23	_	2.20	2.25	2.30	
	(see Note 3)		823/APX824/APX825A -26	_	2.57	2.63	2.69	
			823/APX824/APX825A -29		2.86	2.93	3.00	
			823/APX824/APX825A -31	$T_A = -40^{\circ}\text{C} -85^{\circ}\text{C}$	3.00	3.08	3.15	V
			823/APX824/APX825A -40	4	3.92	4.00	4.08	
			823/APX824/APX825A -44	4	4.29	4.38	4.47	
		APX	823/APX824/APX825A -46		4.54	4.63	4.72	

Note:

^{2.} The lowest supply voltage at which RESET becomes active. T_R , $V_{\text{CC}} \geq 15 \mu \text{s/V}.$

^{3.} To ensure best stability of the threshold voltage, a bypass capacitor (ceramic, 0.1µF) should be placed near the supply terminals.

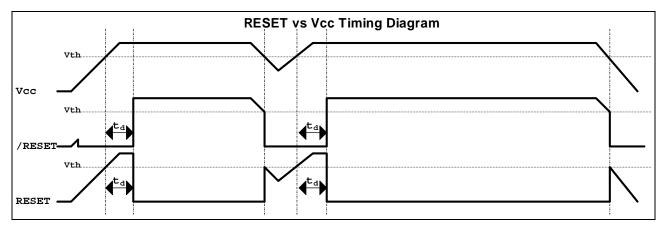
PROCESSOR SUPERVISORY CIRCUITS

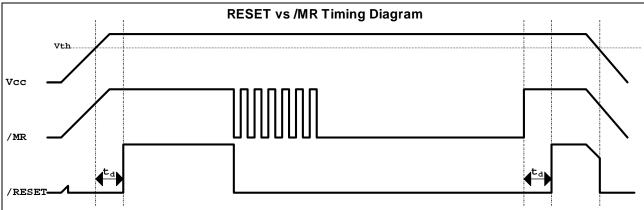
Electrical Characteristics (cont.)

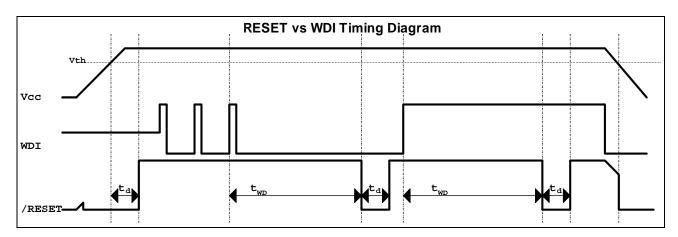
Symbol		Parameter	Test Conditions	Min	Тур.	Max	Unit
		APX823/APX824/APX825A -23					
		APX823/APX824/APX825A -26		_	50	_	
	Hysteresis at V _{CC}	APX823/APX824/APX825A -29		_	30	-	
V_{hys}	Input	APX823/APX824/APX825A -31					mV
	Input	APX823/APX824/APX825A -40	_				
		APX823/APX824/APX825A -44		-	50	-	
		APX823/APX824/APX825A -46					
T _S	Set-up Time	$V_{CC} = V_{TH}$ to $(V_{TH} - 100 \text{mV})$			20		μs
	Average High-		WDI=V _{CC} ,				
I _{IH(AV)}	level Input		Time average	-	120	-	μΑ
	Current	WDI	(dc=88%)				
١.	Average Low-		WDI=0.3V,		45		^
I _{IL(AV)}	level Input Current		V _{CC} =5.5V time average (dc=12%)	-	-15	-	μΑ
l _{IH}	High-level Input Current	WDI	WDI=V _{CC}	-	120	160	μΑ
I _{IL}	Low-level Input Current	WDI	WDI=0.3V, V _{CC} =5.5V	-	120	160	μΑ
Icc	Supply Current	WDI and MR Unconnected, Outputs unconnected	V _{CC} = <u>V_{TH}</u> .+0.2V	1	30	40	μΑ
	Internal Pull-up Re	esistor at MR		-	60	-	kΩ
TC	V _{OUT} Temperature	Coefficient			50	-	ppm/°C
C _i	Input Capacitance	at MR , WDI	V _I = 0V to 5.5V	-	5	-	pF
Α	Thermal Pecistans	ce Junction-to-Ambient	SOT25 (Note 4)		161		°C/W
θ _{JA}	THEITHAI RESISTANC	e Junction-to-Ambient	SOT26 (Note 4)		169		C/ VV
Α	Thermal Pesistana	ce Junction-to-Case	SOT25 (Note 4)		27		°C/W
θ _{JC}	THEITHAI RESISTANC	e Julicuoti-to-Case	SOT26 (Note 4)		28		0/ ٧٧

Note: 4. Test condition for SOT25 and SOT26: Devices mounted on FR-4 substrate PC board, 2oz copper, with minimum recommended pad layout.

PROCESSOR SUPERVISORY CIRCUITS

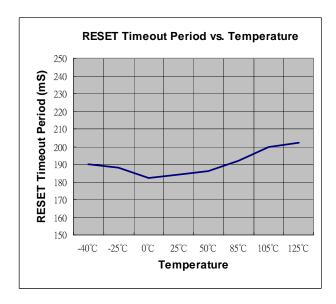

Timing Requirements (@ $R_L = 1m\Omega$, $C_L = 50pF$, $T_A = 25^{\circ}C$)

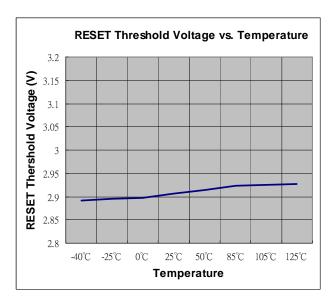

Symbol	Param	eter	Test Conditions	Min	Тур.	Max	Unit
t _W	Pulse Width	at MR	$V_{CC} \ge V_{TH} + 0.2V$, $V_{IL} = 0.3 \times V_{CC}$, $V_{IH} = 0.7 \times V_{CC}$	<u>100</u>	-	-	<u>ns</u>
1,00			$V_{CC} \ge V_{TH} + 0.2V$, $V_{IL} = 0.3 \times V_{CC}$, $V_{IH} = 0.7 \times V_{CC}$	<u>50</u>	-	-	ns

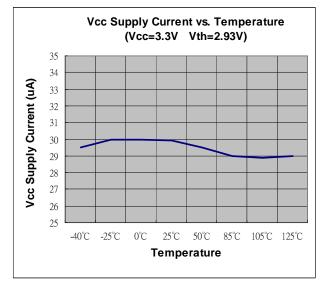

Switching Characteristics (@ $R_L = 1m\Omega$, $C_L = 50pF$, $T_A = 25$ °C)

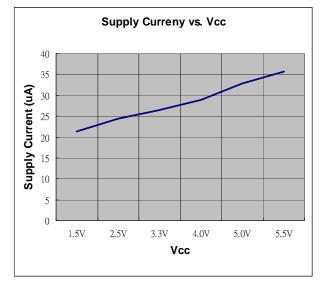
Symbol	F	Parameter	Test Conditions	Min	Тур.	Max	Unit
<u>t_{tout}</u>	Watchdog Time Out	APX823/APX824/APX825A	V _{CC≥} <u>V_{TH}</u> .+0.2V, See timing diagram	<u>1.12</u>	1.6	<u>2.4</u>	s
t _d	Delay Time	APX823/APX824/APX825A	V _{CC≥} <u>V_{TH-}</u> +0.2V, See timing diagram	140	200	280	ms
t _{PHL}	Propagation (Delay) Time, High-to-low-level Output	MR to RESET delay (APX823/APX825A)	$V_{CC} > \underline{V}_{TH} + 0.2V,$ $V_{IL} = 0.3 \times V_{CC},$ $V_{IH} = 0.7 \times V_{CC}$	-	-	0.1	μs
	Guipui	V _{CC} to RESET delay	$V_{IL} = V_{TH} - 0.2V,$ $V_{IH} = V_{TH} + 0.2V$	1	-	25	μs
t _{PLH}	Propagation (Delay) Time, Low-to-high-level	MR to RESET delay (APX824/APX825A)	$\begin{split} & V_{\text{CC}} > \underline{V}_{\text{TH}} \text{+} 0.2 \text{V}, \\ & V_{\text{IL}} \text{=} 0.3 \times V_{\text{CC}}, \\ & V_{\text{IH}} \text{=} 0.7 \times V_{\text{CC}} \end{split}$	-	-	0.1	μs
	Output	V _{CC} to RESET delay (APX824/APX825A)	$V_{IL} = V_{\underline{TH}} - 0.2V,$ $V_{IH} = V_{\underline{TH}} + 0.2V$	-	-	25	μs

Timing Diagram

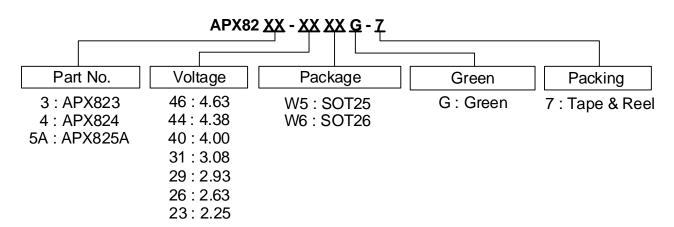







PROCESSOR SUPERVISORY CIRCUITS

Typical Characteristics



Ordering Information

	Davisa	Daakana Cada	Packaging	7" Tape	and Reel
	Device	Package Code	(Note 5)	Quantity	Part Number Suffix
P	APX823-XXW5G-7	W5	SOT25	3000/Tape & Reel	-7
@ ,	APX824-XXW5G-7	W5	SOT25	3000/Tape & Reel	-7
Pb ,	APX825A-XXW6G-7	W6	SOT26	3000/Tape & Reel	-7

Notes: 5. Pad layout as shown on Diodes Inc. suggested pad layout document AP02001, which can be found on our website at http://www.diodes.com/datasheets/ap02001.pdf.

Marking Information

(1) SOT25

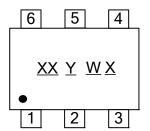
(Top View)

5 4 XX Y W X

XX: Identification code

Y: Year 0~9

<u>W</u>: Week: A~Z: 1~26 week;


a~z: 27~52 week; z represents

52 and 53 week

X: A~Z: Green

(2) SOT26

(Top View)

XX: Identification code

Y: Year 0~9

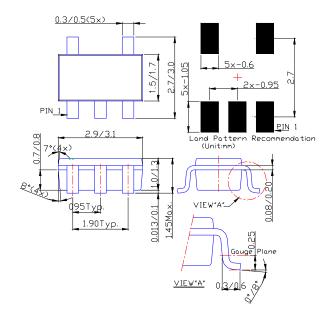
<u>W</u>: Week: A~Z: 1~26 week;

a~z: 27~52 week; z represents

52 and 53 week

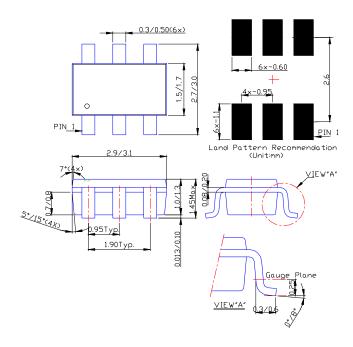
X: A~Z: Green

PROCESSOR SUPERVISORY CIRCUITS


Marking Information (cont.)

Marking Table

Device	Package Type	Identification Code
APX823-46W5	SOT25	W1
APX823-44W5	SOT25	W2
APX823-40W5	SOT25	W3
APX823-31W5	SOT25	W4
APX823-29W5	SOT25	W5
APX823-26W5	SOT25	W6
APX823-23W5	SOT25	W7
APX824-46W5	SOT25	T2
APX824-44W5	SOT25	Т3
APX824-40W5	SOT25	T4
APX824-31W5	SOT25	T5
APX824-29W5	SOT25	T6
APX824-26W5	SOT25	T7
APX824-23W5	SOT25	Т8
APX825A-46W6	SOT26	Т9
APX825A-44W6	SOT26	TA
APX825A-40W6	SOT26	ТВ
APX825A-31W6	SOT26	TC
APX825A-29W6	SOT26	TD
APX825A-26W6	SOT26	TE
APX825A-23W6	SOT26	TF


Package Outline Dimensions (All Dimensions in mm)

(1) Package Type: SOT25

Package Outline Dimensions (cont.) (All Dimensions in mm)

(2) Package Type: SOT26

Notes: 6. Package outline dimensions as shown on Diodes Inc. package outline dimensions document AP02002, which can be found on our website at http://www.diodes.com/datasheets/ap02002.pdf

PROCESSOR SUPERVISORY CIRCUITS

IMPORTANT NOTICE

DIODES INCORPORATED MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS TO THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION).

Diodes Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. Diodes Incorporated does not assume any liability arising out of the application or use of this document or any product described herein; neither does Diodes Incorporated convey any license under its patent or trademark rights, nor the rights of others. Any Customer or user of this document or products described herein in such applications shall assume all risks of such use and will agree to hold Diodes Incorporated and all the companies whose products are represented on Diodes Incorporated website, harmless against all damages.

Diodes Incorporated does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel.

Should Customers purchase or use Diodes Incorporated products for any unintended or unauthorized application, Customers shall indemnify and hold Diodes Incorporated and its representatives harmless against all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized application.

Products described herein may be covered by one or more United States, international or foreign patents pending. Product names and markings noted herein may also be covered by one or more United States, international or foreign trademarks.

LIFE SUPPORT

Diodes Incorporated products are specifically not authorized for use as critical components in life support devices or systems without the express written approval of the Chief Executive Officer of Diodes Incorporated. As used herein:

- A. Life support devices or systems are devices or systems which:
 - 1. are intended to implant into the body, or
 - 2. support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in significant injury to the user.
- B. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or to affect its safety or effectiveness.

Customers represent that they have all necessary expertise in the safety and regulatory ramifications of their life support devices or systems, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of Diodes Incorporated products in such safety-critical, life support devices or systems, notwithstanding any devices- or systems-related information or support that may be provided by Diodes Incorporated. Further, Customers must fully indemnify Diodes Incorporated and its representatives against any damages arising out of the use of Diodes Incorporated products in such safety-critical, life support devices or systems.

Copyright © 2011, Diodes Incorporated

www.diodes.com