SLLS320D - DECEMBER 1998 - REVISED JULY 2000

- Low-Voltage Differential Driver and Receiver for Half-Duplex Operation
- Designed for Signaling Rates of 400 Mbit/s
- ESD Protection Exceeds 15 kV on Bus Pins
- Operates From a Single 3.3-V Supply
- Low-Voltage Differential Signaling With Typical Output Voltages of 350 mV and a 50-Ω Load
- Valid Output With as Little as 50 mV Input Voltage Difference
- Propagation Delay Times
 - Driver: 1.7 ns Typ
 - Receiver: 3.7 ns Typ
- Power Dissipation at 200 MHz
 - Driver: 50 mW Typical
 - Receiver: 60 mW Typical
- LVTTL Levels Are 5-V Tolerant
- Bus Pins Are High Impedance When Disabled or With V_{CC} Less Than 1.5 V
- Open-Circuit Fail-Safe Receiver
- Surface-Mount Packaging
 - D Package (SOIC)
 - DGK Package (MSOP)

description

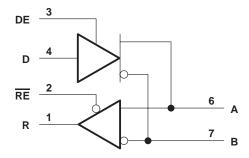
The SN65LVDM176 is a differential line driver and receiver configured as a transceiver that uses low-voltage differential signaling (LVDS) to achieve signaling rates as high as 400 Mbit/s. These circuits are similar to TIA/EIA-644 standard compliant devices (SN65LVDS) counterparts except that the output current of the drivers is doubled. This modification provides a minimum differential output voltage magnitude of 247 mV into a 50- Ω load and allows double-terminated lines and half-duplex operation. The receivers detect a voltage difference of less than 50 mV with up to 1 V of ground potential difference between a transmitter and receiver.

The intended application of this device and signaling technique is for half-duplex or multiplex baseband data transmission over controlled impedance media of approximately $100-\Omega$ characteristic impedance. The transmission media may be printed-circuit board traces, backplanes, or cables. (Note: The ultimate rate and distance of data transfer is dependent upon the attenuation characteristics of the media, the noise coupling to the environment, and other application specific characteristics).

The SN65LVDM176 is characterized for operation from -40°C to 85°C.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

PowerPAD is a trademark of Texas Instruments.


PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas instruments standard warranty. Production processing does not necessarily include testing of all parameters.

SN65LVDM176DGK (Marked as M76) (TOP VIEW) RE 2 7 B DE 3 6 A DE 4 5 GND

SN65LVDM176D (Marked as DM176 or LVM176)

logic diagram (positive logic)

Copyright $\ensuremath{\textcircled{\odot}}$ 2000, Texas Instruments Incorporated

SLLS320D - DECEMBER 1998 - REVISED JULY 2000

AVAILABLE OPTIONS

	PACKAGE						
TA	SMALL OUTLINE (D) [†]	М SOP (DGK) [†]					
-40°C to 85°C	SN65LVDM176D	SN65LVDM176DGK					

[†]The D package is available taped and reeled. Add the suffix R to the device type (e.g., SN65LVDM176DR).

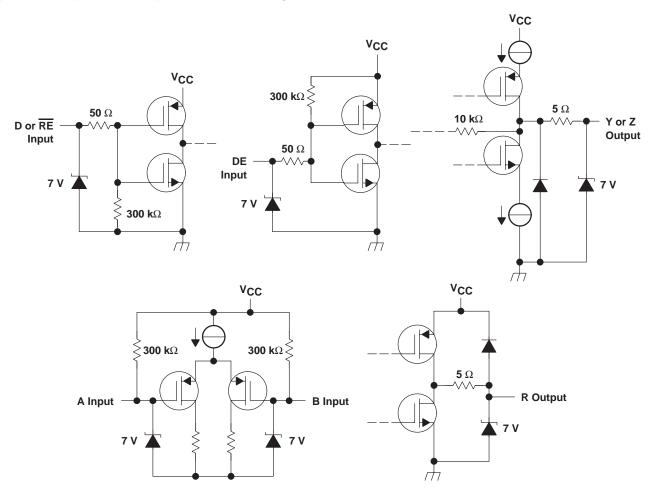
Function Tables

DRIVER

INPUT	ENABLE	OUTPUTS			
D	DE	Α	В		
L	Н	L	Н		
Н	Н	Н	L		
Open	Н	L	Н		
Х	L	Z	Z		

H = high level, L = low level, X = irrelevant, Z = high impedance

RECEIVER


DIFFERENTIAL INPUTS $V_{ID} = V_A - V_B$	ENABLE RE	OUTPUT R
$V_{ID} \ge 50 \text{ mV}$	L	Н
–50 mV < V _{ID} < 50 mV	L	?
$V_{ID} \le -50 \text{ mV}$	L	L
Open	L	Н
Х	н	Z

H = high level, L = low level, X = irrelevant,

Z = high impedance

SLLS320D - DECEMBER 1998 - REVISED JULY 2000

equivalent input and output schematic diagrams

SLLS320D - DECEMBER 1998 - REVISED JULY 2000

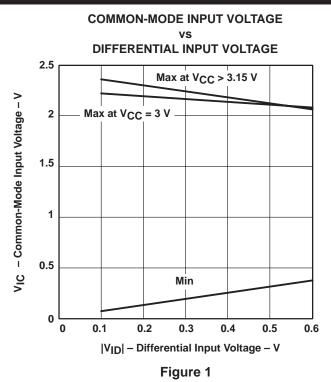
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage, V _{CC} (see Note <u>1)</u> Input voltage range, D, R, DE, RE	
A or B	–0.5 V to 4 V
Electrostatic discharge; A, B, and GND (see Note 2)	CLass 3, A:15 kV, B:600 V
All terminals	Class 3, A:7 kV, B:500 V
Continuous total power dissipation	See Dissipation Rating Table
Operating free-air temperature range, T _A	–40°C to 85°C
Storage temperature range, T _{stg}	–65°C to 150°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds	

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. All voltage values, except differential I/O bus voltage, are with respect to network ground terminal.

2. Tested in accordance with MIL-STD-883C Method 3015.7.


DISSIPATION RATING TABLE $T_A \le 25^{\circ}C$ T_A = 85[°]C DERATING FACTOR PACKAGE **POWER RATING** ABOVE $T_A = 25^{\circ}C$ POWER RATING D 725 mW 5.8 mW/°C 377 mW DGK 424 mW 3.4 mW/°C 220 mW

recommended operating conditions

	MIN	NOM	MAX	UNIT
Supply voltage, V _{CC}	3	3.3	3.6	V
High-level input voltage, VIH	2			V
Low-level input voltage, VIL			0.8	V
Magnitude of differential input voltage, V_{ID}	0.1		0.6	V
Common-mode input voltage, VIC (see Figure 1)	$\frac{ V_{ D } }{2}$	2	$\frac{2.4 - \frac{ V_{\text{ID}} }{2}}{V_{\text{CC}} = 0.8}$	V
Operating free–air temperature, T _A	-40		85	°C

SLLS320D - DECEMBER 1998 - REVISED JULY 2000

device electrical characteristics over recommended operating conditions (unless otherwise noted)

	PARAMETER	R TEST CONDITIONS				UNIT
ICC Supply current	Driver and receiver enabled, no receiver load, driver RL = 50 Ω		10	15		
		Driver enabled, receiver disabled, $R_L = 50 \Omega$		9	15	
	Supply current	Driver disabled, receiver enabled, no load		1.8	5	mA
		Disabled		0.5	2	

[†] All typical values are at 25°C and with a 3.3-V supply.

SLLS320D - DECEMBER 1998 - REVISED JULY 2000

driver electrical characteristics over recommended operating conditions (unless otherwise noted)

	PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
V _{OD}	D Differential output voltage magnitude		D 500	247	340	454	
$\Delta V_{OD} $	Change in differential output voltage magnitude betw states	een logic	$R_L = 50\Omega$, See Figure 2 and Figure 3	-50		50	mV
VOC(SS)	Steady-state common-mode output voltage			1.125		1.375	V
ΔVOC(SS)	Change in steady-state common-mode output voltage between		See Figure 4	-50		50	mV
VOC(PP)	Peak-to-peak common-mode output voltage	mode output voltage			50	150	mV
	Link laurel innut compart	DE			0.5	10	
ЧН	High-level input current [†]	D	V _{IH} = 5 V		2	20	μA
	Law boot Small summer	DE			-0.5	-10	•
ΊL	Low-level input current+	D	V _{IL} = 0.8 V		2	10	μA
	S Short-circuit output current ⁺		V_{OA} or $V_{OB} = 0 V$			-10	
los			$V_{OD} = 0 V$			-10	mA
Cl	Input capacitance				3		pF

[†] The non-algebraic convention, where the more positive (least negative) limit is designated maximum, is used in this data sheet for this parameter.

receiver electrical characteristics over recommended operating conditions (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP†	MAX	UNIT
V_{IT+}	Positive-going differential input voltage threshold				50	
VIT-	Negative-going differential input voltage threshold	See Figure 6	-50			mV
VOH	High-level output voltage	I _{OH} = -8 mA	2.4			V
VOL	Low-level output voltage	I _{OL} = 8 mA			0.4	V
		$V_{I} = 0 V$	-2		-20	•
1	Input current (A or B inputs)‡	V _I = 2.4 V	-1.2			μA
II(OFF)	Power-off input current (A or B inputs)	V _{CC} = 0 V or 1.8 V			20	μA
Iн	High-level input current (enables)	V _{IH} = 5 V			10	μA
۱ _{IL}	Low-level input current (enables)	VIL = 0.8 V			10	μΑ
I _{OZ}	High-impedance output current‡	$V_{O} = 0 V \text{ or } 5 V$			±1	μΑ

[†] All typical values are at 25°C and with a 3.3-V supply.

[‡] The non-algebraic convention, where the more positive (least negative) limit is designated maximum, is used in this data sheet for this parameter.

SLLS320D - DECEMBER 1998 - REVISED JULY 2000

driver switching characteristics over recommended operating conditions (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP†	MAX	UNIT
t _{PLH}	Propagation delay time, low-to-high-level output		0.5	1.7	2.7	
t _{PHL}	Propagation delay time, high-to-low-level output	$R_1 = 50\Omega$	0.5	1.7	2.7	ns
^t sk(p)	Pulse skew (t _{pHL} – t _{pLH})	$C_{L}^{-} = 10 \text{ pF},$		0.2		ns
t _r	Differential output signal rise time	See Figure 3		0.6	1	
t _f	Differential output signal fall time			0.6	1	ns
^t sk(pp) [‡]	Part-to-part skew				1	ns
^t PZH	Propagation delay time, high-impedance-to-high-level output			8	12	
t _{PZL}	Propagation delay time, high-impedance-to-low-level output			7	10	
^t PHZ	Propagation delay time, high-level-to-high-impedance output	See Figure 5		3	10	ns
t _{PLZ}	Propagation delay time, low-level-to-high-impedance output			4	10	

[†] All typical values are at 25°C and with a 3.3 V supply.

t_{sk(pp)} is the magnitude of the difference in propagation delay times between any specified terminals of two devices when both devices operate with the same supply voltages, at the same temperature, and have identical packages and test circuits.

receiver switching characteristics over recommended operating conditions (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	түр†	MAX	UNIT
^t PLH	Propagation delay time, low-to-high-level output		2.3	3.7	4.5	
^t PHL	Propagation delay time, high-to-low-level output		2.3	3.7	4.5	ns
^t sk(p)	Pulse skew (t _{pHL} – t _{pLH})	C _L = 10 pF, See Figure 7		0.4		
t _r	Output signal rise time			0.8	1.5	
t _f	Output signal fall time			0.8	1.5	ns
^t sk(pp) [‡]	Part-to-part skew				1	ns
^t PZH	Propagation delay time, high-level-to-high-impedance output			3	10	
^t PZL	Propagation delay time, low-level-to-low-impedance output	0		3	10	
^t PHZ	Propagation delay time, high-impedance-to-high-level output	See Figure 8		4	10	ns
^t PLZ	Propagation delay time, low-impedance-to-high-level output			6	10	

[†] All typical values are at 25°C and with a 3.3-V supply.

[‡] t_{sk(pp)} is the magnitude of the difference in propagation delay times between any specified terminals of two devices when both devices operate with the same supply voltages, at the same temperature, and have identical packages and test circuits.

SLLS320D - DECEMBER 1998 - REVISED JULY 2000

PARAMETER MEASUREMENT INFORMATION

driver

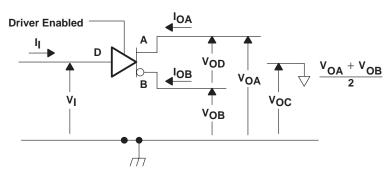
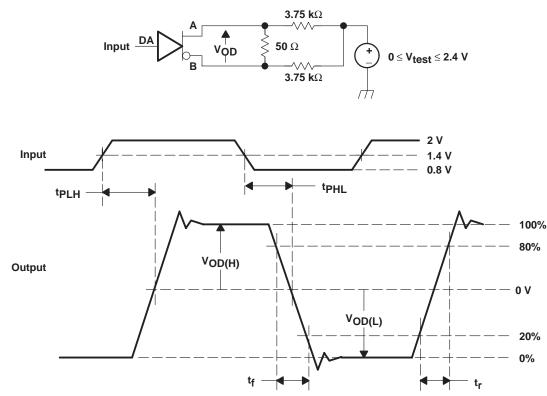
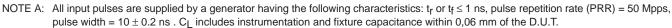
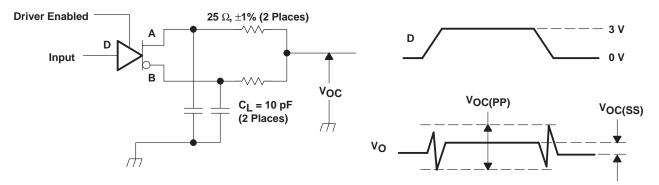
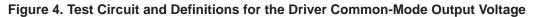
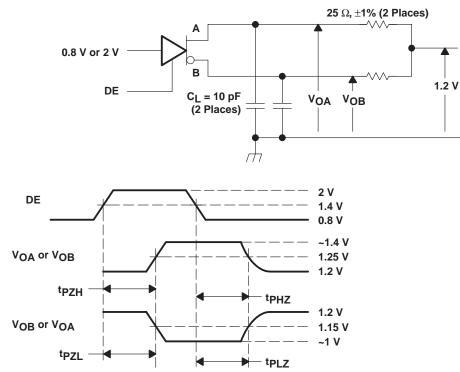



Figure 2. Driver Voltage and Current Definitions




Figure 3. Test Circuit, Timing, and Voltage Definitions for the Differential Output Signal


SLLS320D – DECEMBER 1998 – REVISED JULY 2000


PARAMETER MEASUREMENT INFORMATION

driver (continued)

NOTE A: All input pulses are supplied by a generator having the following characteristics: t_r or $t_f \le 1$ ns, pulse repetition rate (PRR) = 0.5 Mpps, pulse width = 500 ± 10 ns . C_L includes instrumentation and fixture capacitance within 0,06 mm of the D.U.T. The measurement of V_{OC(PP)} is made on test equipment with a –3 dB bandwidth of at least 300 MHz.

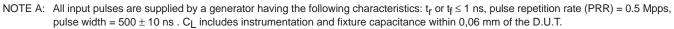


Figure 5. Enable and Disable Time Circuit and Definitions

SLLS320D - DECEMBER 1998 - REVISED JULY 2000

PARAMETER MEASUREMENT INFORMATION

receiver

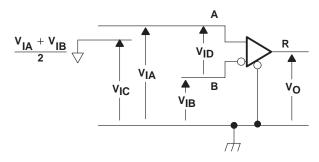
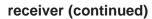
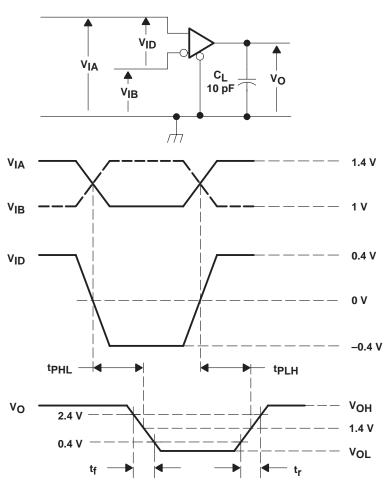


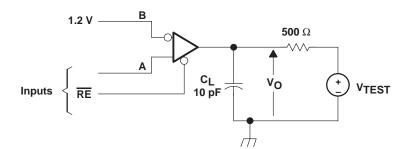
Figure 6. Receiver Voltage Definitions


	VOLTAGES (V)	RESULTING DIFFERENTIAL INPUT VOLTAGE (mV)	RESULTING COMMON- MODE INPUT VOLTAGE (V)
VIA	VIB	V _{ID}	VIC
1.225	1.175	50	1.2
1.175	1.225	-50	1.2
2.41	2.36	50	2.385
2.36	2.41	-50	2.385
0.05	0	50	0.025
0	0.05	-50	0.025
1.5	0.9	600	1.2
0.9	1.5	-600	1.2
2.4	1.8	600	2.1
1.8	2.4	-600	2.1
0.6	0	600	0.3
0	0.6	-600	0.3


Table 1. Receiver Minimum and Maximum Input Threshold Test Voltages

SLLS320D - DECEMBER 1998 - REVISED JULY 2000

NOTE A: All input pulses are supplied by a generator having the following characteristics: t_r or $t_f \le 1$ ns, pulse repetition rate (PRR) = 50 Mpps, pulse width = 10 ± 0.2 ns. CL includes instrumentation and fixture capacitance within 0,06 mm of the D.U.T.


Figure 7. Timing Test Circuit and Waveforms

SLLS320D - DECEMBER 1998 - REVISED JULY 2000

PARAMETER MEASUREMENT INFORMATION

receiver (continued)

NOTE A: All input pulses are supplied by a generator having the following characteristics: t_r or $t_f \le 1$ ns, pulse repetition rate (PRR) = 0.5 Mpps, pulse width = 5000 ± 10 ns. CL includes instrumentation and fixture capacitance within 0,06 mm of the D.U.T.

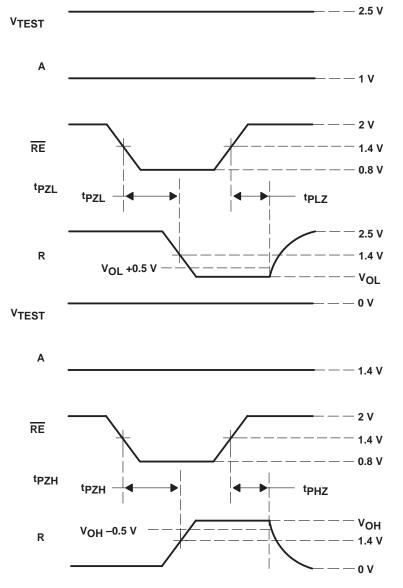
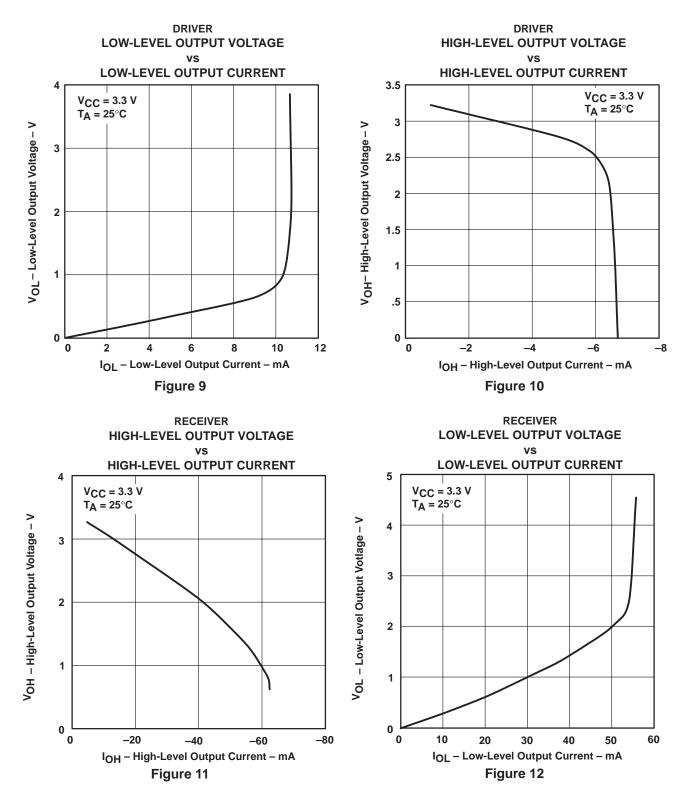
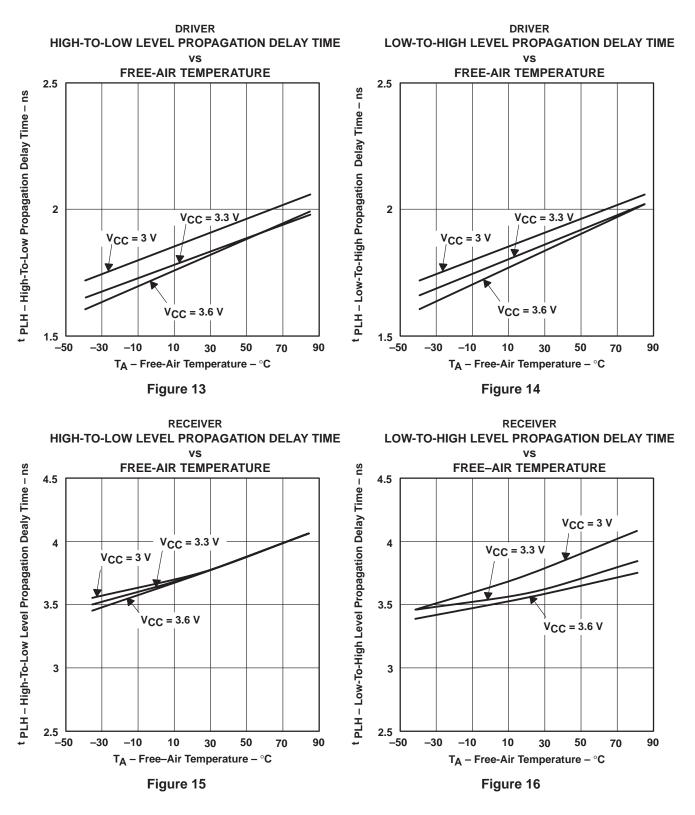



Figure 8. Enable/Disable Time Test Circuit and Waveforms


SLLS320D - DECEMBER 1998 - REVISED JULY 2000

TYPICAL CHARACTERISTICS

SLLS320D - DECEMBER 1998 - REVISED JULY 2000

TYPICAL CHARACTERISTICS

SLLS320D - DECEMBER 1998 - REVISED JULY 2000

APPLICATION INFORMATION

The devices are generally used as building blocks for high-speed point-to-point data transmission. Ground differences are less than 1 V with a low common-mode output and balanced interface for very low noise emissions. Devices can interoperate with RS-422, PECL, and IEEE-P1596. Drivers/receivers maintain ECL speeds without the power and dual supply requirements.

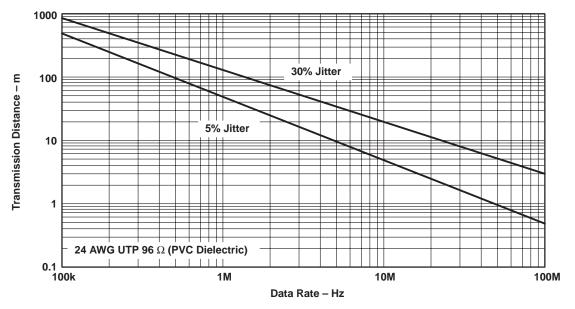


Figure 17. Data Transmission Distance Versus Rate

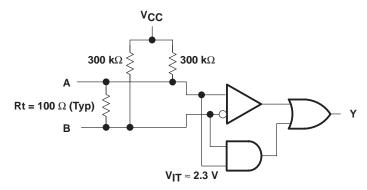
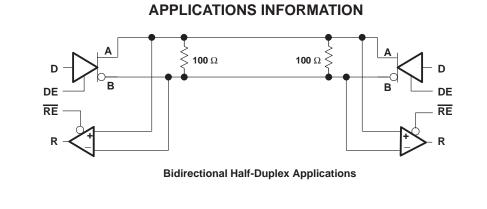
SLLS320D - DECEMBER 1998 - REVISED JULY 2000

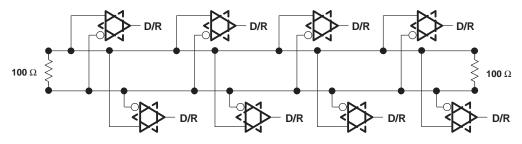
APPLICATION INFORMATION

fail safe

One of the most common problems with differential signaling applications is how the system responds when no differential voltage is present on the signal pair. The LVDS receiver is like most differential line receivers, in that its output logic state can be indeterminate when the differential input voltage is between –50 mV and 50 mV and within its recommended input common-mode voltage range. TI's LVDS receiver is different in how it handles the open-input circuit situation, however.

Open-circuit means that there is little or no input current to the receiver from the data line itself. This could be when the driver is in a high-impedance state or the cable is disconnected. When this occurs, the LVDS receiver will pull each line of the signal pair to near V_{CC} through 300-k Ω resistors as shown in Figure 18. The fail-safe feature uses an AND gate with input voltage thresholds at about 2.3 V to detect this condition and force the output to a high-level regardless of the differential input voltage.

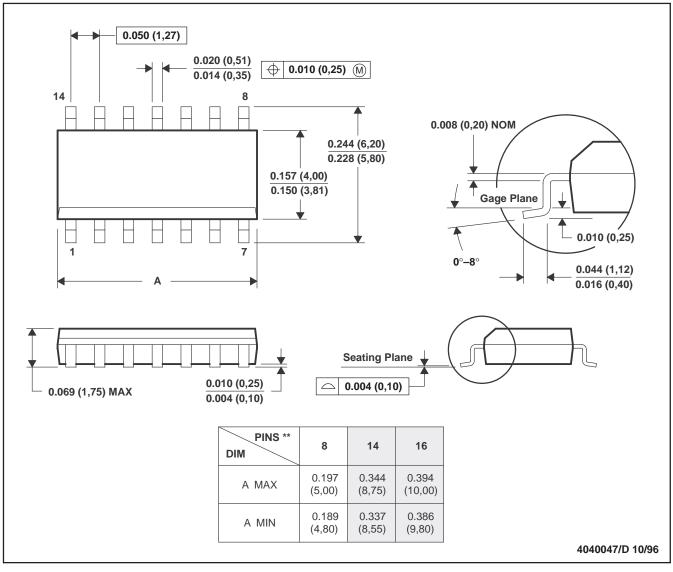

Figure 18. Open-Circuit Fail Safe of the LVDS Receiver

It is only under these conditions that the output of the receiver will be valid with less than a 50-mV differential input voltage magnitude. The presence of the termination resistor, Rt, does not affect the fail-safe function as long as it is connected as shown in the figure. Other termination circuits may allow a dc current to ground that could defeat the pullup currents from the receiver and the fail-safe feature.

SLLS320D - DECEMBER 1998 - REVISED JULY 2000

Multipoint Bus Applications

Note A: Keep drivers and receivers as close to the LVDS bus side connector as possible. Figure 19. Bidirectional Half-Duplex and Multipoint Bus Applications


SLLS320D - DECEMBER 1998 - REVISED JULY 2000

MECHANICAL DATA

D (R-PDSO-G**)

PLASTIC SMALL-OUTLINE PACKAGE

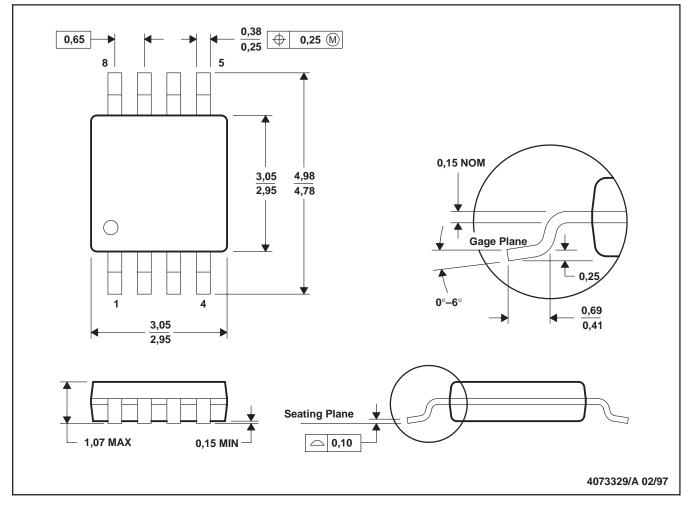
14 PIN SHOWN

NOTES: A. All linear dimensions are in inches (millimeters).

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion, not to exceed 0.006 (0,15).

D. Falls within JEDEC MS-012



SLLS320D - DECEMBER 1998 - REVISED JULY 2000

MECHANICAL DATA

DGK (R-PDSO-G8)

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion.
- D. Falls within JEDEC MO-187

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
SN65LVDM176D	ACTIVE	SOIC	D	8	75	Pb-Free (RoHS)	CU NIPDAU	Level-2-260C-1YEAR/ Level-1-220C-UNLIM
SN65LVDM176DGK	ACTIVE	MSOP	DGK	8	80	None	CU NIPDAU	Level-1-220C-UNLIM
SN65LVDM176DGKR	ACTIVE	MSOP	DGK	8	2500	None	CU NIPDAU	Level-1-220C-UNLIM
SN65LVDM176DR	ACTIVE	SOIC	D	8	2500	Pb-Free (RoHS)	CU NIPDAU	Level-2-260C-1YEAR/ Level-1-220C-UNLIM

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ Eco Plan - May not be currently available - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

None: Not yet available Lead (Pb-Free).

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Green (RoHS & no Sb/Br): TI defines "Green" to mean "Pb-Free" and in addition, uses package materials that do not contain halogens, including bromine (Br) or antimony (Sb) above 0.1% of total product weight.

⁽³⁾ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDECindustry standard classifications, and peak solder temperature.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
		Telephony	www.ti.com/telephony
		Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address:

Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright © 2005, Texas Instruments Incorporated