SCAS121B - MARCH 1990 - REVISED APRIL 1996

- Members of the Texas Instruments Widebus™ Family
- 3-State True Outputs
- Full Parallel Access for Loading
- Flow-Through Architecture Optimizes
 PCB Layout
- Distributed V_{CC} and GND Pin Configuration Minimizes High-Speed Switching Noise
- EPIC[™] (Enhanced-Performance Implanted CMOS) 1-µm Process
- 500-mA Typical Latch-Up Immunity at 125°C
- Package Options Include Plastic 300-mil Shrink Small-Outline (DL) Packages Using 25-mil Center-to-Center Pin Spacings and 380-mil Fine-Pitch Ceramic Flat (WD) Packages Using 25-mil Center-to-Center Pin Spacings

description

The 'AC16373 are 16-bit transparent D-type latches with 3-state outputs designed specifically for driving highly capacitive or relatively low-impedance loads. They are particularly suitable for implementing buffer registers, I/O ports, bidirectional bus drivers, and working registers. The device can be used as two 8-bit latches or one 16-bit latch. When the latch-enable (LE) input is high, the Q outputs follow the data (D) inputs. When LE is taken low, the Q outputs are latched at the levels set up at the D inputs.

54AC16373... WD PACKAGE 74AC16373... DL PACKAGE (TOP VIEW)

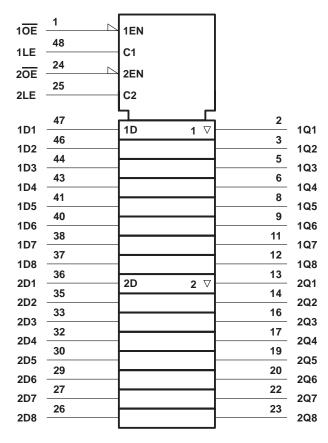
	$\overline{}$		1
10E	U	48	1LE
1Q1 [2	47] 1D1
1Q2 [3	46] 1D2
GND [4	45	GND
1Q3 [5	44	D3
1Q4 [6	43	D4 1D4
V _{CC}	7	42	₽ v _{cc}
1Q5 L	8	41	1D5
1Q6 L	9	40	1D6
GND [10	39	GND
1Q7 L	11	38	1D7
1Q8	12	37	D8 1D8
2Q1 [13	36	2D1
2Q2 [14	35	2D2
GND [15	34	GND
2Q3 [16	33	2D3
2Q4 [17	32	2D4
v _{cc} [18	31] v _{cc}
2Q5 [19	30	2D5
2Q6 [20	29	2D6
GND [21	28	GND
2Q7 [22	27	2D7
2Q8	23	26	2D8
20E [24	25] 2LE

A buffered output-enable (\overline{OE}) input can be used to place the eight outputs in either a normal logic state (high or low logic levels) or a high-impedance state. In the high-impedance state, the outputs neither load nor drive the bus lines significantly. The high-impedance state and the increased drive provide the capability to drive bus lines without need for interface or pullup components. \overline{OE} does not affect internal operations of the latch. Old data can be retained or new data can be entered while the outputs are in the high-impedance state.

The 74AC16373 is packaged in TI's shrink small-outline package (DL), which provides twice the I/O pin count and functionality of standard small-outline packages in the same printed-circuit-board area.

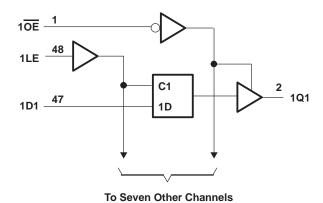
The 54AC16373 is characterized for operation over the full military temperature range of –55°C to 125°C. The 74AC16373 is characterized for operation from –40°C to 85°C.

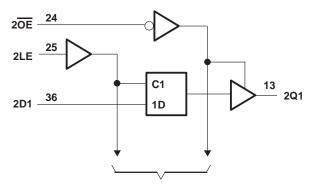
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.


EPIC and Widebus are trademarks of Texas Instruments Incorporated.

FUNCTION TABLE

	INPUTS	OUTPUT	
OE	LE	D	Q
L	Н	Н	Н
L	Н	L	L
L	L	Χ	Q ₀
Н	X	Χ	Z


logic symbol†



[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

SCAS121B - MARCH 1990 - REVISED APRIL 1996

logic diagram (positive logic)

To Seven Other Channels

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage range, V _{CC}	0.5 V to 7 V
Input voltage range, V _I (see Note 1)	$-0.5 \text{ V to V}_{CC} + 0.5 \text{ V}$
Output voltage range, V _O (see Note 1)	
Input clamp current, I_{IK} ($V_I < 0$ or $V_I > V_{CC}$)	±20 mA
Output clamp current, I _{OK} (V _O < 0 or V _O > V _{CC})	±50 mA
Continuous output current, I_O ($V_O = 0$ to V_{CC})	±50 mA
Continuous current through V _{CC} or GND	±400 mA
Maximum power dissipation at $T_A = 55^{\circ}$ C (in still air) (see Note 2): DL package	1.2 W
Storage temperature range, T _{stg}	–65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

^{2.} The maximum package power dissipation is calculated using a junction temperature of 150 °C and a board trace length of 750 mils.

54AC16373, 74AC16373 16-BIT TRANSPARENT D-TYPE LATCHES WITH 3-STATE OUTPUTS

SCAS121B - MARCH 1990 - REVISED APRIL 1996

recommended operating conditions (see Note 3)

			54	AC1637	3	74	AC1637	3	UNIT
			MIN	NOM	MAX	MIN	NOM	MAX	UNIT
VCC	Supply voltage		3	5	5.5	3	5	5.5	V
		V _{CC} = 3 V	2.1			2.1			
VIH	High-level input voltage	V _{CC} = 4.5 V	3.15			3.15			V
		V _{CC} = 5.5 V	3.85			3.85			
		V _{CC} = 3 V			0.9			0.9	
VIL	Low-level input voltage	V _{CC} = 4.5 V		Ž,	1.35			1.35	V
		V _{CC} = 5.5 V		13.	1.65			1.65	
VI	Input voltage		0	Q.	VCC	0		VCC	V
Vo	Output voltage		0	5	VCC	0		VCC	V
		VCC = 3 V	,Q)	-4			-4	
ІОН	High-level output current	V _{CC} = 4.5 V	200		-24			-24	mA
		V _{CC} = 5.5 V	-		-24			-24	
		V _{CC} = 3 V			12			12	
lOL	Low-level output current	V _{CC} = 4.5 V			24			24	mA
		V _{CC} = 5.5 V			24			24	
Δt/Δν	Input transition rise or fall rate		0		10	0		10	ns/V
TA	Operating free-air temperature		-55		125	-40		85	°C

NOTE 3: Unused inputs must be held high or low to prevent them from floating.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

DADAMETED	TEST CONDITIONS	V	T,	_A = 25°C		54AC	16373	74AC1	UNIT	
PARAMETER	TEST CONDITIONS	VCC	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNIT
		3 V	2.9			2.9		2.9		
	I _{OH} = -50 μA	4.5 V	4.4			4.4		4.4		
		5.5 V	5.4			5.4		5.4		
Voн	$I_{OH} = -4 \text{ mA}$	3 V	2.58			2.48		2.48		V
	I _{OL} = -24 mA	4.5 V	3.94			3.8	4	3.8		
	10L = -24 IIIA	5.5 V	4.94			4.8	1/5	4.8		
	I _{OH} = -75 mA [†]	5.5 V				3.85	9E	3.85		
		3 V			0.1	4	0.1		0.1	
	I _{OL} = 50 μA	4.5 V			0.1	05	0.1		0.1	
		5.5 V			0.1	³ 0	0.1		0.1	
VOL	I _{OL} = 12 mA	3 V			0.36	Ya	0.44		0.44	V
	I _{OL} = 24 mA	4.5 V			0.36		0.44		0.44	
	IOL - 24 IIIA	5.5 V			0.36		0.44		0.44	
	$I_{OL} = 75 \text{ mA}^{\dagger}$	5.5 V					1.65		1.65	
lį	$V_I = V_{CC}$ or GND	5.5 V			±0.1		±1		±1	μΑ
loz	$V_O = V_{CC}$ or GND	5.5 V			±0.5		±5		±5	μΑ
ICC	$V_I = V_{CC}$ or GND, $I_O = 0$	5.5 V			8		80		80	μΑ
C _i	$V_I = V_{CC}$ or GND	5 V		4.5						pF
Co	$V_O = V_{CC}$ or GND	5 V		12						pF

[†] Not more than one output should be tested at a time, and the duration of the test should not exceed 10 ms.

SCAS121B - MARCH 1990 - REVISED APRIL 1996

timing requirements over recommended operating free-air temperature range, V_{CC} = 3.3 V \pm 0.3 V (unless otherwise noted) (see Figure 1)

		$T_A = 2$	25°C	54AC1	6373	74AC1	6373	UNIT
		MIN	MAX	MIN	MAX	MIN	MAX	UNIT
t _W	Pulse duration, LE high	5		5	100	5		ns
t _{su}	Setup time, data before LE↓	1.5		1.5	11/2	1.5		ns
th	Hold time, data after LE↓	3	·	3		3		ns

timing requirements over recommended operating free-air temperature range, V_{CC} = 5 V \pm 0.5 V (unless otherwise noted) (see Figure 1)

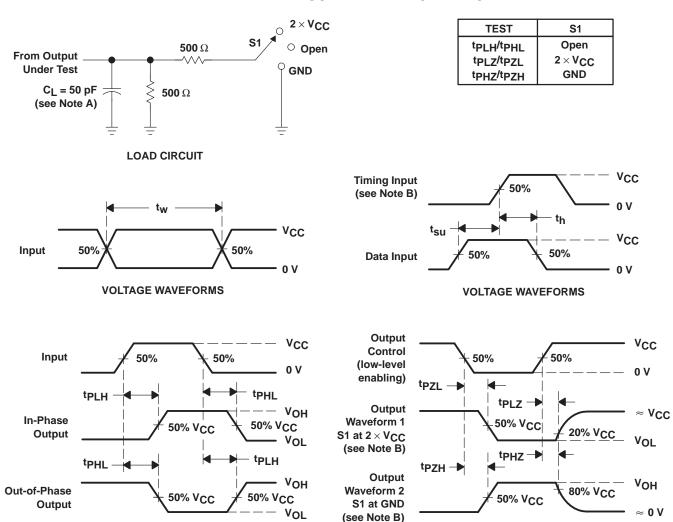
		T _A = 1	25°C	54AC	16373	74AC1	6373	UNIT
		MIN	MAX	MIN	MAX	MIN	MAX	UNIT
t _W	Pulse duration, LE high	4		4	J. W	4		ns
t _{su}	Setup time, data before LE↓	1.5		1.5	116	1.5		ns
t _h	Hold time, data after LE \downarrow	2.5		2.5		2.5		ns

switching characteristics over recommended operating free-air temperature range, V_{CC} = 3.3 V \pm 0.3 V (unless otherwise noted) (see Figure 1)

PARAMETER	FROM	то	T,	T _A = 25°C			6373	74AC16373		UNIT
PARAMETER	(INPUT)	(OUTPUT)	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNIT
^t PLH	D	Q	3.7	10.6	13.4	3.7	15.1	3.7	15.1	ne
^t PHL	Ь	ζ	4.3	11.3	14	4.3	14.8	4.3	14.8	ns
^t PLH	LE	Q	4.6	12.9	15.8	4.6	18.6	4.6	18.6	ns
^t PHL	LL	γ	4.5	12.1	14.6	4.5	16.4	4.5	16.4	115
^t PZH	ŌĒ	Q	4.2	11.8	14.8	4.2	17.5	4.2	17.5	ne
^t PZL	OE	ζ	5.4	16.3	19.8	5.4	22.3	5.4	22.3	ns
^t PHZ	ŌĒ	Q	4.2	7.9	9.5	4.2	10.2	4.2	10.2	ns
^t PLZ	OE .	γ	3.8	7.1	8.9	3.8	9.8	3.8	9.8	115

switching characteristics over recommended operating free-air temperature range, V_{CC} = 5 V \pm 0.5 V (unless otherwise noted) (see Figure 1)

DADAMETED	PARAMETER FROM		T,	T _A = 25°C			54AC16373		74AC16373	
PARAMETER	(INPUT)	(OUTPUT)	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNIT
t _{PLH}	D	Q	3.1	6.7	8.5	3.1	9.7	3.1	9.7	ne
tPHL the tensor of the tensor	Ь	ά	3.5	7.3	9.1	3.5	10/1	3.5	10.1	ns
t _{PLH}	LE	Q	3.8	8.2	10.2	3.8	11.9	3.8	11.9	ns
t _{PHL}	LE	Q	3.6	7.8	9.7	3.6	10.9	3.6	10.9	115
^t PZH	ŌĒ	Q	3.5	7.4	9.4	3.5	10.8	3.5	10.8	20
t _{PZL}	OE	Q	4.3	9.1	11.3	4.3	12.8	4.3	12.8	ns
t _{PHZ}	ŌĒ	Q	3.9	6.6	8	3.9	8.8	3.9	8.8	ne
t _{PLZ}	OE OE	Q	3.7	5.9	7.4	3.7	8.1	3.7	8.1	ns


operating characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$

	PARAMETER	TEST COM	TYP	UNIT		
C . Dower discination conscitance per letch		Outputs enabled	O: 50 = 5 4 MH=		43	pF
Cpd	Power dissipation capacitance per latch	Outputs disabled	C _L = 50 pF,	f = 1 MHz	5	pr

PRODUCT PREVIEW information concerns products in the formative or design phase of development. Characteristic data and other specifications are design goals. Texas Instruments reserves the right to change or discontinue these products without notice.

PARAMETER MEASUREMENT INFORMATION

NOTES: A. C_I includes probe and jig capacitance.

VOLTAGE WAVEFORMS

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 1 MHz, $Z_O = 50 \ \Omega$, $t_f = 3 \ ns$, $t_f = 3 \ ns$.

VOLTAGE WAVEFORMS

D. The outputs are measured one at a time with one input transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

www.ti.com 13-Aug-2021

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
							(6)				
74AC16373DL	ACTIVE	SSOP	DL	48	25	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	AC16373	Samples
74AC16373DLR	ACTIVE	SSOP	DL	48	1000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	AC16373	Samples
74AC16373DLRG4	ACTIVE	SSOP	DL	48	1000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	AC16373	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

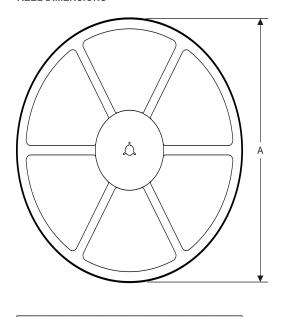
Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead finish/Ball material Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

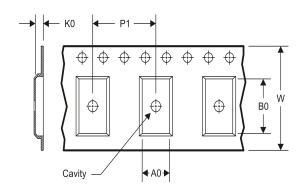
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

PACKAGE OPTION ADDENDUM

www.ti.com 13-Aug-2021


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION


www.ti.com 14-Jul-2012

TAPE AND REEL INFORMATION

REEL DIMENSIONS

TAPE DIMENSIONS

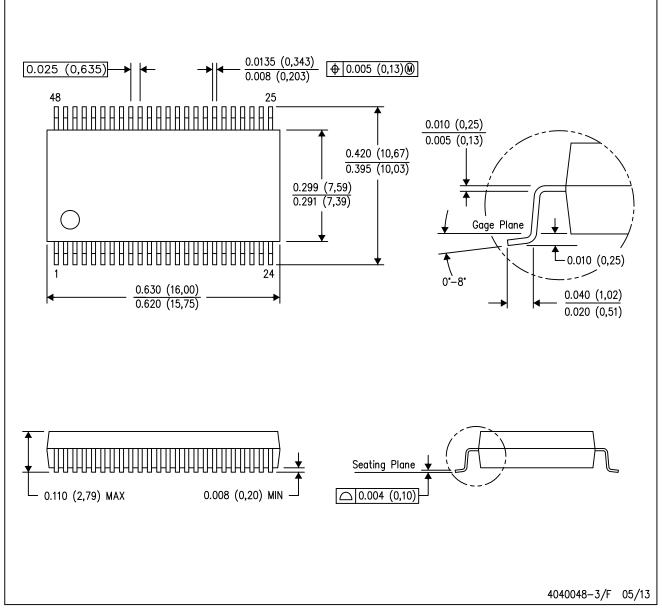
A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

TAPE AND REEL INFORMATION

*All dimensions are nominal

Device	Package Type	Package Drawing			Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
74AC16373DLR	SSOP	DL	48	1000	330.0	32.4	11.35	16.2	3.1	16.0	32.0	Q1

www.ti.com 14-Jul-2012



*All dimensions are nominal

Device Package Type		Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)	
74AC16373DLR	SSOP	DL	48	1000	367.0	367.0	55.0	

DL (R-PDSO-G48)

PLASTIC SMALL-OUTLINE PACKAGE

NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).
- D. Falls within JEDEC MO-118

PowerPAD is a trademark of Texas Instruments.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale (https://www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2021, Texas Instruments Incorporated