
Data sheet acquired from Harris Semiconductor SCHS292

Octal D-Type Flip-Flop, 3-State Positive-Edge-Triggered

CD54/74AC/ACT564 - Inverting CD54/74AC/ACT574 - Non-Inverting

Type Features:

- Buffered inputs
- Typical propagation delay: 6.5 ns @ V_{CC} = 5 V, T_A = 25° C, C_L = 50 pF

FUNCTIONAL DIAGRAM

The RCA-CD54/74AC564 and CD54/74AC574 and the CD54/74ACT564 and CD54/74ACT574 octal D-type, 3-state, positive-edge-triggered flip-flops use the RCA ADVANCED CMOS technology. The eight flip-flops enter data into their registers on the LOW-to-HIGH transition of the clock (CP). The Output Enable (\overline{OE}) controls the 3-state outputs and is independent of the register operation. When the Output Enable (\overline{OE}) is HIGH, the outputs are in the high-impedance state. The CD54/74AC/ACT564 and CD54/74AC/ACT574 share the same pin configurations; the CD54/74AC/ACT564, however, has inverted outputs and the CD54/74AC/ACT574 has non-inverted outputs.

The CD74AC/ACT564 and CD74AC/ACT574 are supplied in 20-lead dual-in-line plastic packages (E suffix) and in 20-lead dual-in-line small-outline plastic packages (M suffix). Both package types are operable over the following temperature ranges: Commercial (0 to 70°C); Industrial (-40 to +85°C); and Extended Industrial/Military (-55 to +125°C).

The CD54AC/ACT564 and CD54AC/ACT574, available in chip form (H suffix), are operable over the -55 to +125°C temperature range.

Family Features:

- Exceeds 2-kV ESD Protection MIL-STD-883, Method 3015
- SCR-Latchup-resistant CMOS process and circuit design
- Speed of bipolar FAST*/AS/S with significantly reduced power consumption
- Balanced propagation delays
- AC types feature 1.5-V to 5.5-V operation and balanced noise immunity at 30% of the supply
- ± 24-mA output drive current
 - Fanout to 15 FAST* ICs
 - Drives 50-ohm transmission lines

*FAST is a Registered Trademark of Fairchild Semiconductor Corp.

TRUTH TABLE

	INPUTS	OUTPUTS			
		564	574		
OE	СР	Dn	Qn	Qn	
_L		Н	L	Н	
L		L	Н	L	
L	L	Х	QΘ	QO	
Н	X	Х	Z	Z	

H = High level (steady state)

L = Low level (steady state)

X = Don't care

_/ = Transition from low to high level

QO = The level of Q before the indicated steady-state input conditions were established

QO = The level of Q before the indicated steady-state input conditions were established.

Z = High impedance

This data sheet is applicable to the CD54/74AC574 and CD54/74AC574. The CD54/74AC564 and CD54/74ACT564 were not acquired from Harris Semiconductor.

MAXIMUM RATINGS, Absolute-Maximum Values:
DC SUPPLY-VOLTAGE (Vcc) -0.5 to 6 V
DC INPUT DIODE CURRENT, $I_{i\kappa}$ (for $V_i < -0.5$ V or $V_i > V_{cc} + 0.5$ V)
DC OUTPUT DIODE CURRENT, Iox (for Vo < -0.5 V or Vo > Vcc + 0.5 V)
DC OUTPUT SOURCE OR SINK CURRENT per Output Pin, I_0 (for $V_0 > -0.5$ V or $V_0 < V_{cc} + 0.5$ V) ± 50 mA
DC V _∞ or GROUND CURRENT (I _∞ or I _{GND})
POWER DISSIPATION PER PACKAGE (PD):
For $T_A = -55$ to $+100$ °C (PACKAGE TYPE E)
For T _A = +100 to +125°C (PACKAGE TYPE E)
For $T_A = -55$ to $+70^{\circ}$ C (PACKAGE TYPE M)
For T _A = +70 to +125°C (PACKAGE TYPE M) Derate Linearly at 6 mW/°C to 70 mW
OPERATING-TEMPERATURE RANGE (T _A):55 to +125°C
STORAGE TEMPERATURE (T _{stg})65 to +150°C
LEAD TEMPERATURE (DURING SOLDERING):
At distance 1/16 \pm 1/32 in. (1.59 \pm 0.79 mm) from case for 10 s maximum+265°C
Unit inserted into PC board min. thickness 1/16 in. (1.59 mm) with solder contacting lead tips only+300°C
*For up to 4 outputs per device; add \pm 25 mA for each additional output.

RECOMMENDED OPERATING CONDITIONS:

For maximum reliability, normal operating conditions should be selected so that operation is always within the following ranges:

		1101170		
CHARACTERISTIC		MIN.	MAX.	UNITS
Supply-Voltage Range, Vcc*:				
(For $T_A = Full Package-Temperature Range)$			l	
AC Types		1.5	5.5	V
ACT Types		4.5	5.5	V
DC Input or Output Voltage, V ₁ , V ₀		0	Vcc	V
Operating Temperature, T _A :		-55	+125	°C
Input Rise and Fall Slew Rate, dt/dv				
at 1.5 V to 3 V (AC Types)	į	0	50	ns/V
at 3.6 V to 5.5 V (AC Types)		0	20	ns/V
at 4.5 V to 5.5 V (ACT Types)		0	10	ns/V

^{*}Unless otherwise specified, all voltages are referenced to ground.

TERMINAL ASSIGNMENT DIAGRAMS

CD54/74AC/ACT564

CD54/74AC/ACT574

STATIC ELECTRICAL CHARACTERISTICS: AC Series

•					AMBIEN	T TEMP	RATUR	E (T _A) - °	С		
CHARACTERIST	ICS	TEST CO	V _{cc}	+	25	-40	o +85	-55 to +125		UNITS	
		(V)	l _o (mA)	(V)	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
High-Level Input				1.5	1.2	_	1.2	_	1.2	1-	
Voltage	V _{IH}			3	2.1	_	2.1	<u> </u>	2.1	_	1 v
				5.5	3.85		3.85		3.85	_	1
Low-Level Input				1.5	_	0.3	T -	0.3	_	0.3	
Voltage	VIL			3	_	0.9		0.9	_	0.9	l v
				5.5	1 -	1.65	_	1.65		1.65	1
High-Level Output Voltage Vo		· · · · · · · · · · · · · · · · · · ·	-0.05	1.5	1.4	_	1.4		1.4		,
	V _{OH}	V _{IH}	-0.05	3	2.9		2.9	_	2.9	Τ_	1
		or	-0.05	4.5	4.4		4.4	_	4.4	_	1
		V _{IL}	-4	3	2.58	_	2.48	_	2.4		v
	-		-24	4.5	3.94		3.8	_	3.7		1
			-75	5.5			3.85		_	_	1
		#. * {	-50	5.5		_	_	_	3.85	_	1
Low-Level Output			0.05	1.5	_	0.1		0.1	_	0.1	
Voltage	Vol	V _{IH}	0.05	3	_	0.1	_	0.1	_	0.1	
		or	0.05	4.5		0.1	-	0.1	_	0.1	v
		V _{IL}	12	3	_	0.36	_	0.44		0.5	
			24	4.5	_	0.36	_	0.44	_	0.5	
		<i>s</i>	75	5.5	_	_	_	1.65	_		
		#, * {	50	5.5	_	_	_	_	_	1.65	
Input Leakage Current	I ₁	V _∞ or GND		5.5	-	±0.1		±1	_	±1	μΑ
3-State Leakage		ViH									
Current	loz	or									
		VıL									
		V _o =		5.5	_	±0.5	_	±5		±10	μΑ
		Vcc							·	, ,	
		or									
		GND	ļ			."					
Quiescent Supply Current, MSI	loc	V _{cc} or GND	0	5.5		8		80		160	μΑ

[#]Test one output at a time for a 1-second maximum duration. Measurement is made by forcing current and measuring voltage to minimize power dissipation.
*Test verifies a minimum 50-ohm transmission-line-drive capability at +85°C, 75 ohms at +125°C.

STATIC ELECTRICAL CHARACTERISTICS: ACT Series

		,			AMBIEN	T TEMPE	RATURE	(T _A) - °	С	UNITS	
CHARACTERIST	ICS	TEST COI	NDITIONS	V _{cc}	+	25	-40 t	o +85	-55 to +125		
		(V)	l _o (mA)	(V)			MIN.	MAX.	MIN.	MAX.	UNITS
High-Level Input Voltage	V _{IH}			4.5 to 5.5	2	_	2	_	2	_	٧
Low-Level Input Voltage	ViL			4.5 to 5.5	_	0.8	_	0.8		0.8	v
High-Level Output		V _{IH}	-0.05	4.5	4.4	1 _	4.4	_	4.4	_	
Voltage	VoH	or 	-24	4.5	3.94	_	3.8		3.7		v
**	VIL.	-75	5.5			3.85				1 *	
		#, * {	-50	5.5	_	_		_	3.85	_]
Low-Level Output		V _{IH}	0.05	4.5		±0.1		±.1		±.1	
Voltage	Vol	or	24	4.5		0.36		0.44		0.5	V
		Vil S	75	5.5	_			1.65	_	-]
		#, * {	50	5.5			_		_	1.65	
Input Leakage Current	ŀı	V _{cc} or GND		5.5	_	±0.1	_	±1		±1	μΑ
3-State Leakage Current	l _{oz}	V _{IH} or V _{IL}									
		V _O = V _{CC} or GND		5.5	. _	±0.5		±5		±10	μΑ
Quiescent Supply Current, MSI	lcc	V _∞ or GND	0	5.5		8	<u> </u>	80		160	μΑ
Additional Quiescent Current per Input Pi TTL Inputs High 1 Unit Load	Supply in ΔI _{CC}	V _{cc} -2.1		4.5 to 5.5	—	2.4		2.8	_	3	mA

[#]Test one output at a time for a 1-second maximum duration. Measurement is made by forcing current and measuring voltage to minimize power dissipation.

ACT INPUT LOADING TABLE

INPUT	UNIT LOADS*
D, ŌE	0.7
CP	1.17

^{*}Unit load is ΔI_{CC} limit specified in Static Characteristics Chart, e.g., 2.4 mA max. @ 25°C.

^{*}Test verifies a minimum 50-ohm transmission-line-drive capability at +85°C, 75 ohms at +125°C.

PREREQUISITE FOR SWITCHING: AC Series

			AMBI	ENT TEMP	ERATURE (TA) -°C	
CHARACTERISTICS	SYMBOL	V	-40 to +85		-55 to	UNITS	
· ·		(V)	MIN.	MAX.	MIN.	MAX.	
Clock Pulse Width	tw	1.5 3.3* 5†	44 4.9 3.5	=	50 5.6 4	=	ns
Setup Time Data to Clock	tsu	1.5 3.3 5	2 2 2	=	2 2 2		ns
Hold Time Data to Clock	ţ t H	1.5 3.3 5	2 2 2	= .	2 2 2	_ , 	ns
Maximum Clock Frequency	f _{MAX}	1.5 3.3 5	11 101 143		10 89 125	_ _ _	MHz

*3.3 V: min. is @ 3 V †5 V: min. is @ 4.5 V

SWITCHING CHARACTERISTICS: AC Series; t_{rr} , t_{t} = 3 ns, C_{L} = 50 pF

			AMBI	ENT TEMP	ERATURE (T _A) -°C	T	
CHARACTERISTICS	SYMBOL	V _{cc} (V)	-40 1	o +85	-55 (o +125	UNITS	
	1	(*)	MIN.	MAX.	MIN.	MAX.	1	
Propagation Delays: Clock to Q AC574	t _{PLH}	1.5 3.3* 5†	- 4 2.9	123 13.7 9.8	3.8 2.7	135 15.1 10.8	ns	
Clock to Q AC564	t _{PLH} t _{PHL}	1.5 3.3 5	- 4.1 2.9	128 14.4 10.3	_ 4 2.8	141 15.8 11.3	ns	
Output Enable to Q, Q	t _{PZL} t _{PZH}	1.5 3.3 5	5.6 3.7	165 19.2 13.2	5.5 3.6	181 21.8 14.5	ns	
Output Disable to Q, Q	t _{PLZ}	1.5 3.3 5	4.7 3.7	165 16.5 13.2	4.5 3.6	181 18.1 14.5	ns	
Power Dissipation Capacitance	C _{PO} §	_	67	Гур.	67	Тур.	pF	
Min. (Valley) V _{OH} During Switching of Other Outputs (Output Under Test Not Switching)	V _{OHV} See . Fig. 1	5		v				
Max. (Peak) Vol. During Switching of Other Outputs (Output Under Test Not Switching)	V _{OLP} See Fig. 1	5	1 Typ. @ 25°C			V		
Input Capacitance	Cı		_	10	_	10	pF	
3-State Output Capacitance	Co	_		15		15	pF	

*3.3 V: min. is @ 3.6 V max. is @ 3 V †5 V: min. is @ 5.5 V max. is @ 4.5 V

§C_{PD} is used to determine the dynamic power consumption, per flip flop.

 $P_D = C_{PO} V_{CC}^2 f_i + \sum V_{CC}^2 f_O C_L$ where $f_i = input$ frequency

fo = output frequency C_L = output load capacitance

V_{cc} = supply voltage.

Technical Data.

CD54/74AC564, CD54/74AC574 CD54/74ACT564, CD54/74ACT574

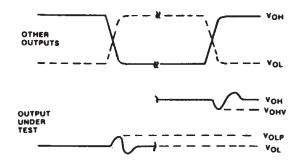
PREREQUISITE FOR SWITCHING: ACT Series

			AMBI				
CHARACTERISTICS	SYMBOL	(V)	-40 t	o +85	-55 to	UNITS	
or invited that it is		(4)	MIN.	MAX.	MIN.	MAX.	
Clock Pulse Width	tw	5†	3.9	_	4.5	_	ns
Setup Time Data to Clock	t _{su}	5	2	<u> </u>	2	_	ns
Hold Time Data to Clock	t _H	5	2.6		3	-	ns
Maximum Clock Frequency	fmax	5	125		110		MHz

†5 V: min. is @ 4.5 V

SWITCHING CHARACTERISTICS: ACT Series; t,, t, = 3 ns, CL = 50 pF

			AMBI	AMBIENT TEMPERATURE (TA) -°C					
CHARACTERISTICS	SYMBOL	V _{cc}	-40 t	o +85	-55 to	+125	UNITS		
		(V)	MIN.	MAX.	MIN.	MAX.			
Propagation Delays: Clock to Q ACT574	tецн tенц	5†	2.9	10.2	2.8	11.2	ns		
Clock to Q ACT564	t _{PLH} t _{PHL}	5	3	10.6	2.9	11.7	ns		
Output Enable and Disable to Q ACT574	tplz tpHz tpZL tpZH	5	3.7	13.2	3.6	14.5	ns		
Output Enable and Disable to Q ACT564	tplz tpHz tpżl tpzH	5	3.7	13.2	3.6	14.5	ns		
Power Dissipation Capacitance	C _{PO} §		67	Тур	67	Тур.	pF		
Min. (Valley) V _{он} During Switching of Other Outputs (Output Under Test Not Switching)	V _{онv} See Fig. 1	5		V					
Max. (Peak) Vol. During Switching of Other Outputs (Output Under Test Not Switching)	V _{OLP} See Fig. 1	5	1 Тур. @ 25°С			V			
Input Capacitance	Cı			10		10	ρF		
3-State Output Capacitance	Со	<u> </u>		15		15	pF		


†5 V: min. is @ 5.5 V max. is @ 4.5 V

 $\S{C_{PD}}$ is used to determine the dynamic power consumption, per flip flop. $P_D = C_{PD} \ V_{CC}^2 \ f_i + \Sigma \ V_{CC}^2 \ f_0 \ C_L + V_{CC} \ \Delta I_{CC}$ where $f_i =$ input frequency

 f_0 = output frequency C_L = output load capacitance

 $V_{cc} = supply voltage.$

PARAMETER MEASUREMENT INFORMATION

- VOHY AND VOLP ARE MEASURED WITH RESPECT TO A GROUND REFERENCE NEAR THE OUTPUT UNDER TEST.
 INPUT PULSES HAVE THE FOLLOWING CHARACTERISTICS:
- PRR \leq 1 MHz, $t_{\rm f}$ = 3 ns, $t_{\rm f}$ = 3 ns, SKEW 1 ns.
- 3. R.F. FIXTURE WITH 700-MHz DESIGN RULES REQUIRED.
 IC SHOULD BE SOLDERED INTO TEST BOARD AND BYPASSED WITH 0.1 µF CAPACITOR. SCOPE AND PROBES REQUIRE 700-MH2 BANDWIDTH.

9205-42406

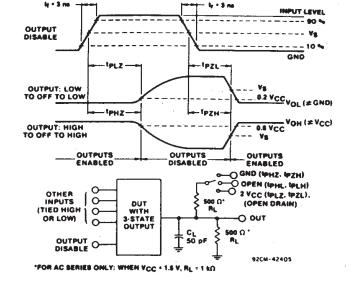
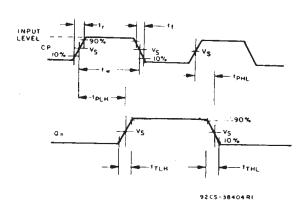
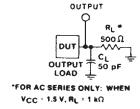




Fig. 1 - Simultaneous switching transient waveforms.

Fig. 2 - Three-state propagation delay waveforms and test circuit.

	CD54/74AC	CD54/74ACT
Input Level	V _{cc}	3 V
Input Switching Voltage, Vs	0.5 V _{CC}	1.5 V
Output Switching Voltage, Vs	0.5 V _{cc}	0.5 V _{CC}

Fig. 3 - Propagation delays times and test circuit.

14-Aug-2021 www.ti.com

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
CD54AC574F3A	ACTIVE	CDIP	J	20	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	CD54AC574F3A	Samples
CD54ACT574F3A	ACTIVE	CDIP	J	20	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	CD54ACT574F3A	Samples
CD74AC574E	ACTIVE	PDIP	N	20	20	RoHS & Green	NIPDAU	N / A for Pkg Type	-55 to 125	CD74AC574E	Samples
CD74AC574M	ACTIVE	SOIC	DW	20	25	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-55 to 125	AC574M	Samples
CD74AC574M96	ACTIVE	SOIC	DW	20	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-55 to 125	AC574M	Samples
CD74AC574M96G4	ACTIVE	SOIC	DW	20	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-55 to 125	AC574M	Samples
CD74AC574MG4	ACTIVE	SOIC	DW	20	25	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-55 to 125	AC574M	Samples
CD74ACT574E	ACTIVE	PDIP	N	20	20	RoHS & Green	NIPDAU	N / A for Pkg Type	-55 to 125	CD74ACT574E	Samples
CD74ACT574EE4	ACTIVE	PDIP	N	20	20	RoHS & Green	NIPDAU	N / A for Pkg Type	-55 to 125	CD74ACT574E	Samples
CD74ACT574M	ACTIVE	SOIC	DW	20	25	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-55 to 125	ACT574M	Samples
CD74ACT574M96	ACTIVE	SOIC	DW	20	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-55 to 125	ACT574M	Samples
CD74ACT574M96E4	ACTIVE	SOIC	DW	20	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-55 to 125	ACT574M	Samples
CD74ACT574MG4	ACTIVE	SOIC	DW	20	25	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-55 to 125	ACT574M	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

PACKAGE OPTION ADDENDUM

www.ti.com 14-Aug-2021

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead finish/Ball material Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

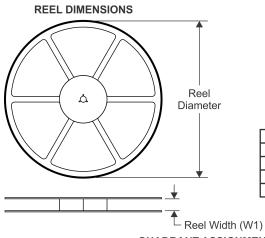
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

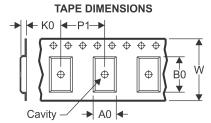
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF CD54AC574, CD54ACT574, CD74AC574, CD74ACT574:

Catalog: CD74AC574, CD74ACT574

Military: CD54AC574, CD54ACT574


NOTE: Qualified Version Definitions:

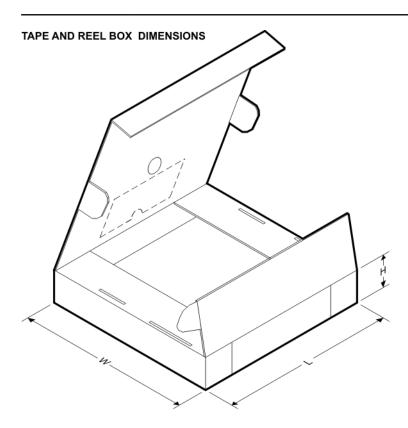

- Catalog TI's standard catalog product
- Military QML certified for Military and Defense Applications

PACKAGE MATERIALS INFORMATION

www.ti.com 26-Jan-2013

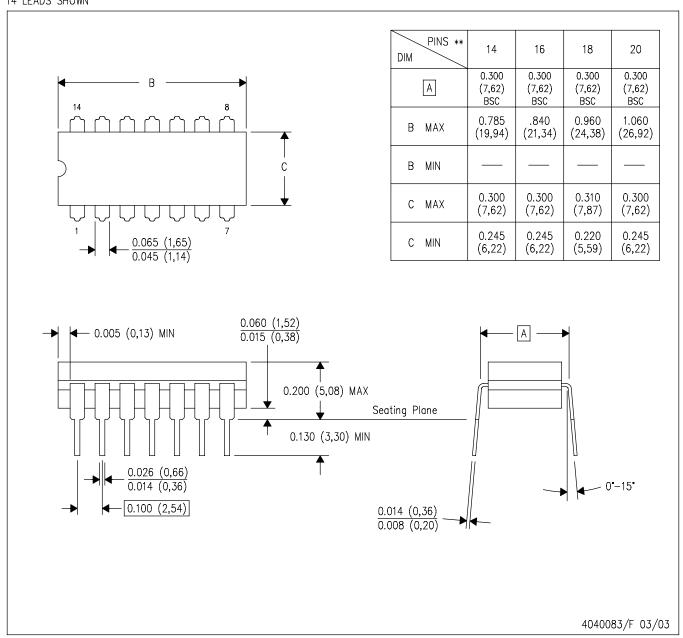

TAPE AND REEL INFORMATION

	Dimension designed to accommodate the component width
	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

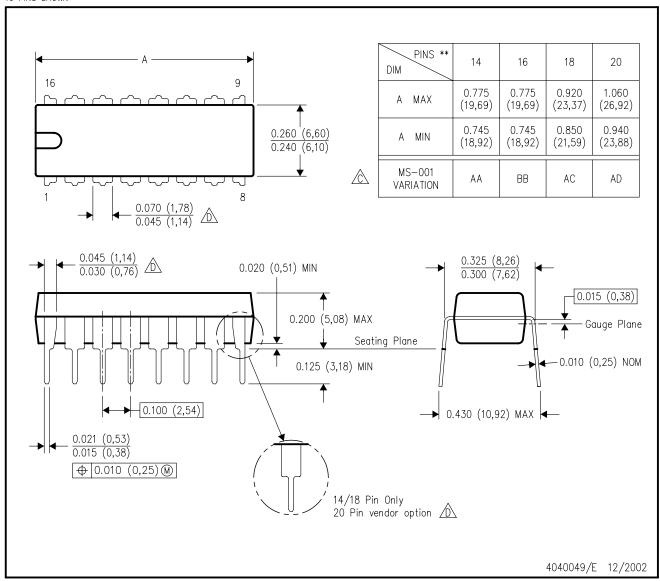
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
CD74AC574M96	SOIC	DW	20	2000	330.0	24.4	10.8	13.0	2.7	12.0	24.0	Q1
CD74ACT574M96	SOIC	DW	20	2000	330.0	24.4	10.8	13.0	2.7	12.0	24.0	Q1


www.ti.com 26-Jan-2013

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
CD74AC574M96	SOIC	DW	20	2000	367.0	367.0	45.0
CD74ACT574M96	SOIC	DW	20	2000	367.0	367.0	45.0

14 LEADS SHOWN

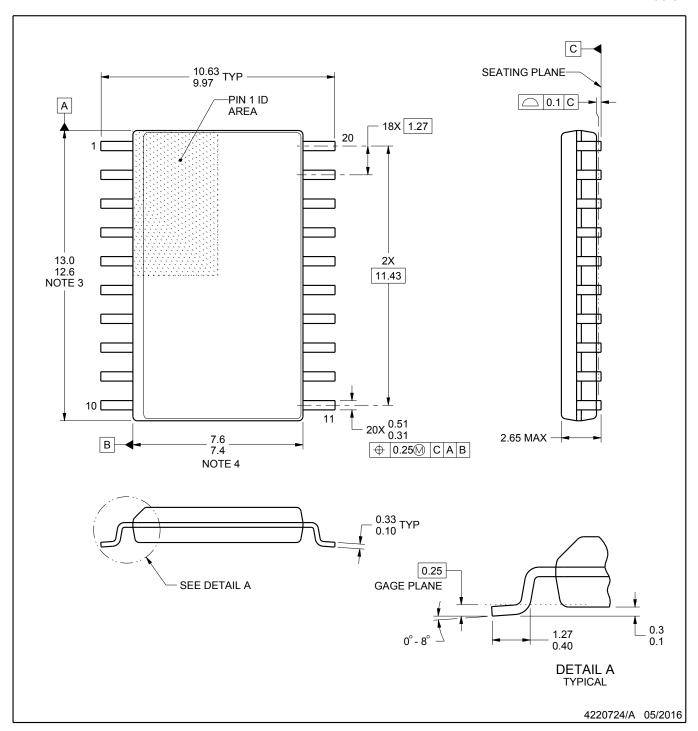

NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. This package is hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
- E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.

N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

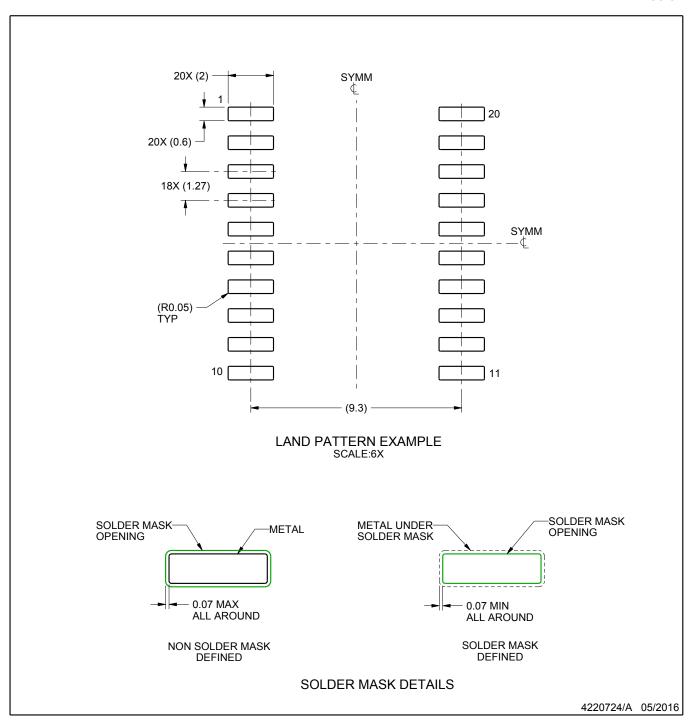
16 PINS SHOWN


NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- The 20 pin end lead shoulder width is a vendor option, either half or full width.

SOIC

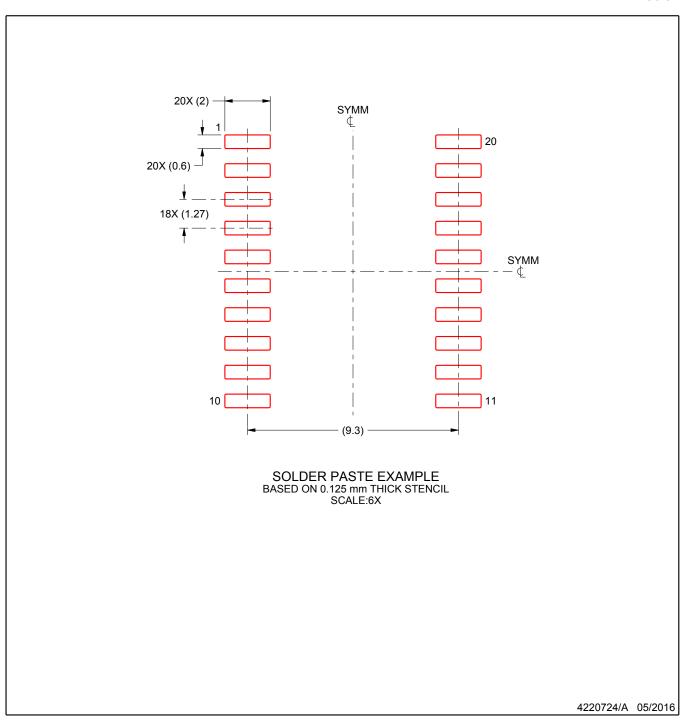
NOTES:


- 1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.43 mm per side.
- 5. Reference JEDEC registration MS-013.

SOIC


NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SOIC

NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale (https://www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2021, Texas Instruments Incorporated