SN54LVT574, SN74LVT574
 3.3-V ABT OCTAL EDGE-TRIGGERED D-TYPE FLIP-FLOPS
 WITH 3-STATE OUTPUTS
 SCBS139D - MAY 1992 - REVISED JULY 1995

- State-of-the-Art Advanced BiCMOS

Technology (ABT) Design for 3.3-V
Operation and Low Static Power Dissipation

- Support Mixed-Mode Signal Operation (5-V Input and Output Voltages With $3.3-\mathrm{V} \mathrm{V}_{\mathrm{CC}}$)
- Support Unregulated Battery Operation Down to 2.7 V
- Typical Volp (Output Ground Bounce) $<0.8 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- ESD Protection Exceeds 2000 V Per MIL-STD-883C, Method 3015; Exceeds 200 V Using Machine Model ($\mathrm{C}=\mathbf{2 0 0} \mathrm{pF}, \mathrm{R}=0$)
- Latch-Up Performance Exceeds 500 mA Per JEDEC Standard JESD-17
- Bus-Hold Data Inputs Eliminate the Need for External Pullup Resistors
- Support Live Insertion
- Package Options Include Plastic Small-Outline (DW), Shrink Small-Outline (DB), and Thin Shrink Small-Outline (PW) Packages, Ceramic Chip Carriers (FK), Ceramic Flat (W) Packages, and Ceramic (J) DIPs

\section*{SN54LVT574 ... J OR W PACKAGE
 SN74LVT574 . . . DB, DW, OR PW PACKAGE
 (TOP VIEW)
 | | | V_{cc} |
| :---: | :---: | :---: |
| 2 | 19 | 1 Q |
| 2 D | 18 | 2Q |
| 3D | 17 | 3Q |
| 4D 5 | 16 | 4Q |
| 5D 6 | 15 | 5Q |
| 6D 7 | 14 | 6Q |
| 7 D | 13 | 7Q |
| 8D 9 | | 8Q |
| GND [10 | | $1] \mathrm{CL}$ |

SN54LVT574... FK PACKAGE
(TOP VIEW)

description

These octal flip-flops are designed specifically for low-voltage (3.3-V) V_{CC} operation, but with the capability to provide a TTL interface to a $5-\mathrm{V}$ system environment.

The eight flip-flops of the 'LVT574 are edge-triggered D-type flip-flops. On the positive transition of the clock (CLK) input, the Q outputs are set to the logic levels set up at the data (D) inputs.
A buffered output-enable (OE) input can be used to place the eight outputs in either a normal logic state (high or low logic levels) or a high-impedance state. In the high-impedance state, the outputs neither load nor drive the bus lines significantly. The high-impedance state and increased drive provide the capability to drive bus lines without need for interface or pullup components. $\overline{O E}$ does not affect the internal operations of the flip-flops. Old data can be retained or new data can be entered while the outputs are in the high-impedance state.

Active bus-hold circuitry is provided to hold unused or floating data inputs at a valid logic level.
To ensure the high-impedance state during power up or power down, OE should be tied to V_{Cc} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

The SN74LVT574 is available in TI's shrink small-outline package (DB), which provides the same I/O pin count and functionality of standard small-outline packages in less than half the printed-circuit-board area.

The SN54LVT574 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74LVT574 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

c	
FUNCTION TABLE (each flip-flop)	
INPUTS OUTPUT OE CLK D Q L \uparrow H H L \uparrow L L L H or L X Q_{0} H X X Z	

logic symbol ${ }^{\dagger}$

logic diagram (positive logic)

† This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

To Seven Other Channels

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) ${ }^{\ddagger}$
Supply voltage range, V_{CC} -0.5 V to 4.6 V
Input voltage range, V_{I} (see Note 1) -0.5 V to 7 V
Voltage range applied to any output in the high state or power-off state, V_{O} (see Note 1) -0.5 V to 7 V
Current into any output in the low state, $\mathrm{I}_{\mathrm{O}}: ~ \mathrm{SN} 54 \mathrm{LVT} 574$ 96 mA
SN74LVT574 128 mA
Current into any output in the high state, I_{O} (see Note 2): SN54LVT574 48 mA
SN74LVT574 64 mA
Input clamp current, $\mathrm{I}_{\mathrm{IK}}\left(\mathrm{V}_{\mathrm{I}}<0\right)$ $-50 \mathrm{~mA}$
Output clamp current, $\mathrm{I}_{\mathrm{OK}}\left(\mathrm{V}_{\mathrm{O}}<0\right)$ $-50 \mathrm{~mA}$
Maximum power dissipation at $\mathrm{T}_{\mathrm{A}}=55^{\circ} \mathrm{C}$ (in still air) (see Note 3): DB package 0.6 W
DW package 1.6 W
PW package 0.7 W
Storage temperature range, $\mathrm{T}_{\text {stg }}$ $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$

[^0]
recommended operating conditions (see Note 4)

			SN54LV	T574	SN74L	T574	
			MIN	MAX	MIN	MAX	
V_{CC}	Supply voltage		2.7	3.6	2.7	3.6	V
V_{IH}	High-level input voltage		2		2		V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage			0.8		0.8	V
V_{1}	Input voltage			5.5		5.5	V
$\mathrm{I}^{\text {OH }}$	High-level output current			-24		-32	mA
IOL	Low-level output current			48		64	mA
$\Delta \mathrm{t} / \Delta \mathrm{v}$	Input transition rise or fall rate	Outputs enabled		10		10	ns/V
T_{A}	Operating free-air temperature		-55	125	-40	85	${ }^{\circ} \mathrm{C}$

[^1]electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

\dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
\ddagger For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
§ This is the increase in supply current for each input that is at the specified TTL voltage level rather than $V_{C C}$ or GND.
timing requirements over recommended operating free-air temperature range (unless otherwise noted) (see Figure 1)

switching characteristics over recommended operating free-air temperature range, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	SN54LVT574				SN74LVT574					UNIT
			$\begin{gathered} \mathrm{V}_{\mathrm{cc}}=3.3 \mathrm{~V} \\ \pm 0.3 \mathrm{~V} \end{gathered}$		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$		$\begin{gathered} \mathrm{V}_{\mathrm{Cc}}=3.3 \mathrm{~V} \\ \pm 0.3 \mathrm{~V} \end{gathered}$			$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$		
			MIN	MAX	MIN	MAX	MIN	TYP ${ }^{\dagger}$	MAX	MIN	MAX	
$\mathrm{f}_{\text {max }}$			150		150		150			150		MHz
$\mathrm{t}_{\text {PLH }}$	CLK	Q	1	5.9		6.6	1.7	3.6	5.4		6.2	ns
$\mathrm{t}_{\text {PHL }}$			1	6.1		6.8	2.4	4.3	5.9		6.6	
$\mathrm{t}_{\text {PZH }}$	OE	Q	0.5	5.9		7.1	1	2.9	4.8		5.9	ns
$\mathrm{t}_{\text {PzL }}$			0.5	5.3		6.4	1.3	3.4	5.1		6.2	
$\mathrm{t}_{\text {PHZ }}$	OE	Q	0.7	5.9		6.6	1.9	4	5.5		5.9	ns
tplz			0.5	5.1		5.1	1.7	3.2	4.5		4.5	

[^2]
PARAMETER MEASUREMENT INFORMATION

vOLTAGE WAVEFORMS
PULSE DURATION

VOLTAGE WAVEFORMS PROPAGATION DELAY TIMES INVERTING AND NONINVERTING OUTPUTS

TEST	S1
$\mathbf{t}_{\text {PLH }} / t_{\text {PHL }}$	Open
$\mathbf{t}_{\text {PLZ }} / \mathrm{t}_{\text {PZL }}$	6 V
$\mathbf{t}_{\text {PHZ }} / \mathrm{t}_{\text {PZH }}$	GND

VOLTAGE WAVEFORMS SETUP AND HOLD TIMES

NOTES: A. C_{L} includes probe and jig capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
C. All input pulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 2.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$.
D. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead/Ball Finish (6)	MSL Peak Temp (3)	Op Temp (${ }^{\circ} \mathrm{C}$)	Device Marking (4/5)	Samples
SN74LVT574DW	ACTIVE	SOIC	DW	20	25	Green (RoHS \& no Sb/Br)	NIPDAU	Level-1-260C-UNLIM	-40 to 85	LVT574	Samples
SN74LVT574DWR	ACTIVE	SOIC	DW	20	2000	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	NIPDAU	Level-1-260C-UNLIM	-40 to 85	LVT574	Samples
SN74LVT574PWR	ACTIVE	TSSOP	PW	20	2000	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	NIPDAU	Level-1-260C-UNLIM	-40 to 85	LX574	Samples

${ }^{(1)}$ The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but Tl does not recommend using this part in a new design
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device
${ }^{(2)}$ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption
Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.
${ }^{(3)}$ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
${ }^{(4)}$ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
${ }^{(5)}$ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
${ }^{(6)}$ Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer:The information provided on this page represents Tl's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

TAPE AND REEL INFORMATION

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	$\begin{gathered} \mathrm{AO} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathrm{BO} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \text { K0 } \\ (\mathrm{mm}) \end{gathered}$	$\begin{gathered} \text { P1 } \\ (\mathrm{mm}) \end{gathered}$	$\begin{gathered} \mathrm{W} \\ (\mathrm{~mm}) \end{gathered}$	Pin1 Quadrant
SN74LVT574DWR	SOIC	DW	20	2000	330.0	24.4	10.8	13.3	2.7	12.0	24.0	Q1
SN74LVT574PWR	TSSOP	PW	20	2000	330.0	16.4	6.95	7.0	1.4	8.0	16.0	Q1

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74LVT574DWR	SOIC	DW	20	2000	367.0	367.0	45.0
SN74LVT574PWR	TSSOP	PW	20	2000	367.0	367.0	38.0

PW (R-PDSO-G20)

NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.
B. This drawing is subject to change without notice.

C Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shal not exceed 0,15 each side
D Body width does not include interlead flash. Interlead flash shall not exceed 0,25 each side.
E. Falls within JEDEC MO-153

$P W$ (R-PDSO-G20)	PLASTIC SMALL OUTLINE
Example Board Layout	Based on a stencil thickness of .127 mm (.005inch).

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Publication IPC-7351 is recommended for alternate design.
D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

NOTES:

1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm per side.
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.43 mm per side
5. Reference JEDEC registration MS-013.

NOTES: (continued)
6. Publication IPC-7351 may have alternate designs.
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SOLDER PASTE EXAMPLE BASED ON 0.125 mm THICK STENCIL

SCALE:6X

NOTES: (continued)
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
9. Board assembly site may have different recommendations for stencil design.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Tl grants you permission to use these resources only for development of an application that uses the Tl products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify Tl and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.
Tl's products are provided subject to Tl's Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. Tl's provision of these resources does not expand or otherwise alter Tl's applicable warranties or warranty disclaimers for TI products.

[^0]: \ddagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
 NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
 2. This current flows only when the output is in the high state and $\mathrm{V}_{\mathrm{O}}>\mathrm{V}_{\mathrm{CC}}$.
 3. The maximum package power dissipation is calculated using a junction temperature of $150^{\circ} \mathrm{C}$ and a board trace length of 750 mils. For more information, refer to the Package Thermal Considerations application note in the 1994 ABT Advanced BiCMOS Technology Data Book, literature number SCBD002B.

[^1]: NOTE 4: Unused control inputs must be held high or low to prevent them from floating

[^2]: \dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

