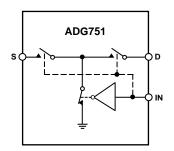


CMOS, Low Voltage RF/Video, SPST Switch


ADG751

FEATURES

High Off Isolation –75 dB at 100 MHz –3 dB Signal Bandwidth 300 MHz +1.8 V to +5.5 V Single Supply Low On-Resistance (15 Ω) Fast Switching Times toN Typically 9 ns toFF Typically 3 ns Typical Power Consumption <0.01 μ W TTL/CMOS Compatible

APPLICATIONS
Audio and Video Switching
RF Switching
Networking Applications
Battery Powered Systems
Communication Systems
Relay Replacement
Sample-and-Hold Systems

FUNCTIONAL BLOCK DIAGRAM

SWITCH SHOWN FOR A LOGIC "1" INPUT

GENERAL DESCRIPTION

The ADG751 is a low voltage SPST (single pole, single throw) switch. It is constructed in a T-switch configuration, which results in excellent Off Isolation while maintaining good frequency response in the ON condition.

High off isolation and wide signal bandwidth make this part suitable for switching RF and video signals. Low power consumption and operating supply range of +1.8 V to +5.5 V make it ideal for battery powered, portable instruments.

The ADG751 is designed on a submicron process that provides low power dissipation yet gives high switching speed and low on resistance. This part is a fully bidirectional switch and can handle signals up to and including the supply rails.

The ADG751 is available in 6-lead SOT-23 and 8-lead $\mu SOIC$ packages.

PRODUCT HIGHLIGHTS

- 1. High Off Isolation -75 dB at 100 MHz.
- 2. -3 dB Signal Bandwidth 300 MHz.
- 3. Low On-Resistance (15 Ω).
- 4. Low Power Consumption, typically $< 0.01 \mu W$.
- 5. Tiny 6-lead SOT-23 and 8-lead µSOIC packages.

REV. A

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781/329-4700 World Wide Web Site: http://www.analog.com Fax: 781/461-3113 © Analog Devices, Inc., 2012

$\label{eq:continuous} \textbf{ADG751-SPECIFICATIONS} \ \, (\textbf{V}_{DD} = +5 \ \textbf{V} \pm 10\%, \ \textbf{GND} = 0 \ \textbf{V}, \ \textbf{unless otherwise noted.})$

	В	Grade -40°C to	A	Grade -40°C to		
Parameter	+25℃	+85°C	+25°C	+85°C	Units	Test Conditions/Comments
ANALOG SWITCH						
Analog Signal Range		$0~V~\text{to}~V_{DD}$		$0~V~to~V_{DD}$	V	
On-Resistance (R _{ON})	28		15		Ω typ	$V_S = 0 \text{ V to } V_{DD}, I_{DS} = 10 \text{ mA};$
	35	40	18	20	Ω max	Test Circuit 1
On-Resistance Flatness $(R_{FLAT(ON)})$	3	_	2	_	Ω typ	$V_S = 0 \text{ V to } 2.5 \text{ V}, I_{DS} = 10 \text{ mA}$
		5		3	Ω max	$V_{\mathrm{DD}} = 4.5 \mathrm{\ V}$
LEAKAGE CURRENTS						$V_{\mathrm{DD}} = +5.5 \mathrm{V}$
Source OFF Leakage I _S (OFF)	±0.01		±0.01		nA typ	$V_D = 4.5 \text{ V/1 V}, V_S = 1 \text{ V/4.5 V};$
	±0.25	± 3.0	±0.25	±3.0	nA max	Test Circuit 2
Drain OFF Leakage I _D (OFF)	±0.01		±0.01		nA typ	$V_D = 4.5 \text{ V/1 V}, V_S = 1 \text{ V/4.5 V};$
	±0.25	±3.0	±0.25	±3.0	nA max	Test Circuit 2
Channel ON Leakage I_D , I_S (ON)	±0.01	120	±0.01	120	nA typ	$V_D = V_S = 1 \text{ V, or } 4.5 \text{ V;}$
	±0.25	±3.0	±0.25	±3.0	nA max	Test Circuit 3
DIGITAL INPUTS						
Input High Voltage, V _{INH}		2.4		2.4	V min	
Input Low Voltage, V _{INL}		0.8		0.8	V max	
Input Current	0.001		0.001		Α.	., .,
I_{INL} or I_{INH}	0.001	±0.5	0.001	±0.5	μA typ μA max	$V_{IN} = V_{INL} \text{ or } V_{INH}$
C _{IN} , Digital Input Capacitance	2	±0.5	2	10.5	pF typ	
DYNAMIC CHARACTERISTICS ¹					1 71	
t _{on}	9		9		ns typ	$R_{\rm L} = 300 \Omega, C_{\rm L} = 35 \rm pF;$
CON		13		13	ns max	$V_S = 3 \text{ V}$, Test Circuit 4
$t_{ m OFF}$	3	13	3		ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$;
		5		5	ns max	V _S = 3 V, Test Circuit 4
Charge Injection	1		1		pC typ	$V_S = 1 \text{ V}, R_S = 0 \Omega, C_L = 1.0 \text{ nF};$
						Test Circuit 5
Off Isolation	-75		-65		dB typ	$R_L = 50 \Omega, C_L = 5 pF, f = 100 MHz;$
						Test Circuit 6
-3 dB Bandwidth	180		300		MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$, Test Circuit 7
C_{S} (OFF)	4		4		pF typ	
C_D (OFF) C_D , C_S (ON)	4 26		15		pF typ	
·	20		17		pF typ	
POWER REQUIREMENTS						$V_{DD} = +5.5 \text{ V}$
$I_{ m DD}$	0.001	0.5	0.001	0.5	μA typ	Digital Inputs = 0 V or +5.5 V
	0.1	0.5	0.1	0.5	μA max	

NOTES

Specifications subject to change without notice.

¹Guaranteed by design, not subject to production test.

$\label{eq:continuous} \textbf{SPECIFICATIONS} \ (\textbf{V}_{DD} = +3 \ \textbf{V} \ \pm \ 10\%, \ \textbf{GND} = 0 \ \textbf{V}, \ \textbf{unless otherwise noted.})$

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		B Grade -40°C to		A Grade -40°C to			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Parameter	+25℃		+25°C		Units	Test Conditions/Comments
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ANALOG SWITCH						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Analog Signal Range		$0~V~\text{to}~V_{DD}$		0 V to V_{DD}	V	
	On-Resistance (R _{ON})	60		35		Ω typ	$V_S = 0 \text{ V to } V_{DD}, I_{DS} = -10 \text{ mA};$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			90		50	Ω max	Test Circuit 1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	LEAKAGE CURRENTS						$V_{DD} = +3.3 \text{ V}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Source OFF Leakage I _S (OFF)	±0.01		±0.01		nA typ	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		±0.25	± 3.0	±0.25	±3.0	nA max	Test Circuit 2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Drain OFF Leakage I _D (OFF)	±0.01		±0.01		nA typ	$V_D = 1 \text{ V/3 V}, V_S = 3 \text{ V/1 V};$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		±0.25	± 3.0	±0.25	±3.0	nA max	Test Circuit 2
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Channel ON Leakage ID, IS (ON)	±0.01		±0.01		nA typ	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		±0.25	±3.0	±0.25	±3.0	nA max	Test Circuit 3
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	DIGITAL INPUTS						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Input High Voltage, V _{INH}		2.0		2.0	V min	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			0.4		0.4	V max	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Input Current						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	I _{INL} or I _{INH}	0.001		0.001		μA typ	$V_{IN} = V_{INL}$ or V_{INH}
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			± 0.5		± 0.5	μA max	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	C _{IN} , Digital Input Capacitance	2		2		pF typ	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	DYNAMIC CHARACTERISTICS ¹						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	t_{ON}	12		12		ns typ	$R_L = 300 \Omega, C_L = 35 pF;$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			19		19	ns max	V _S = 2 V, Test Circuit 4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$t_{ m OFF}$	4		4		ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$;
Off Isolation $ -75 \qquad -65 \qquad dB \text{ typ} \qquad \begin{array}{c} \text{Test Circuit 5} \\ R_L = 50 \ \Omega, \ C_L = 5 \ \text{pF, f} = 100 \ \text{MHz} \\ \text{Test Circuit 6} \\ \text{Test Circuit 6} \\ \text{Test Circuit 6} \\ \text{Reconstruction} \\ \text{Test Circuit 6} \\ \text{Test Circuit 6} \\ \text{Reconstruction} \\ \text{Reconstruction} \\ \text{Reconstruction} \\ \text{Cop (OFF)} \qquad \qquad 4 \qquad \qquad 4 \qquad \qquad 4 \\ \text{PF typ} \\ \text{Cop (OFF)} \qquad \qquad 4 \qquad \qquad 4 \qquad \qquad 4 \\ \text{PF typ} \\ \text{Cop (OFF)} \qquad \qquad 4 \qquad \qquad 4 \qquad \qquad 4 \\ \text{PF typ} \\ \text{Cop (OFF)} \qquad \qquad 4 \qquad \qquad 4 \\ \text{Cop (OFF)} \qquad \qquad 4 \qquad \qquad 4 \\ \text{Cop (OFF)} \qquad \qquad 4 \qquad \qquad 4 \\ \text{Cop (OFF)} \qquad \qquad 4 \qquad \qquad 4 \\ \text{Cop (OFF)} \qquad \qquad 4 \qquad \qquad 4 \\ \text{Cop (OFF)} \qquad \qquad 4 \qquad \qquad 4 \\ \text{Cop (OFF)} \qquad \qquad 4 \qquad \qquad 4 \\ \text{Cop (OFF)} \qquad \qquad 4 \qquad \qquad 4 \\ \text{Cop (OFF)} \qquad 4 \\ \text{Cop (OFF)} \qquad \qquad 4 \\ \text{Cop (OFF)}$			6		6	ns max	$V_S = 2 V$, Test Circuit 4
Off Isolation $ \begin{array}{ccccccccccccccccccccccccccccccccccc$	Charge Injection	1		1		pC typ	$V_S = 1 \text{ V}, R_S = 0 \Omega, C_L = 1.0 \text{ nF};$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Off Isolation	-75		-65		dB typ	
$egin{array}{cccccccccccccccccccccccccccccccccccc$							
C_D (OFF) 4 4 pF typ						J 1	$R_L = 50 \Omega$, $C_L = 5 pF$, Test Circuit 7
	- · · · · ·						
$C_D, C_S(ON)$ 26 15 pF typ	= ' '						
	$C_{\rm D}, C_{\rm S}({\rm ON})$	26		15		pF typ	
POWER REQUIREMENTS $V_{DD} = +3.3 \text{ V}$	POWER REQUIREMENTS						$V_{\mathrm{DD}} = +3.3 \mathrm{V}$
I_{DD} 0.001 0.001 $\mu A \text{ typ}$ Digital Inputs = 0 V or +3.3 V	I_{DD}	0.001		0.001		μA typ	Digital Inputs = 0 V or +3.3 V
$0.1 0.5 0.1 0.5 \mu A max$		0.1	0.5	0.1	0.5	μA max	

NOTES

Specifications subject to change without notice.

REV. A -3-

¹Guaranteed by design, not subject to production test.

ADG751

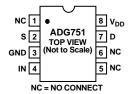
ABSOLUTE MAXIMUM RATINGS1

$(T_A = +25^{\circ}C \text{ unless otherwise noted})$
V _{DD} to GND
Analog, Digital Inputs ² -0.3 V to $V_{DD} + 0.3 \text{ V}$ or
30 mA, Whichever Occurs First
Peak Current, S or D
(Pulsed at 1 ms, 10% Duty Cycle Max)
Continuous Current, S or D
Operating Temperature Range
Industrial (A, B Versions)40°C to +85°C
Storage Temperature Range65°C to +150°C
Junction Temperature (T _J Max)+150°C
Power Dissipation $(T_I Max-T_A)/\theta_{IA}$
μSOIC Package
θ_{JA} Thermal Impedance
$\theta_{\rm IC}$ Thermal Impedance

SOT-23 Package	
θ_{IA} Thermal Impedance	. 229.6°C/W
θ_{JC} Thermal Impedance	.91.99°C/W
Lead Temperature, Soldering	
Vapor Phase (60 sec)	+215°C
Infrared (15 sec)	+220°C

NOTE

¹Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Only one absolute maximum rating may be applied at any one time.


²Overvoltages at IN, S or D will be clamped by internal diodes. Current should be limited to the maximum ratings given.

CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the ADG751 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

PIN CONFIGURATIONS 8-Lead µSOIC (RM-8)

6-Lead SOT-23 (RT-6)

TERMINOLOGY

V_{DD}	Most positive power supply potential.
GND	Ground (0 V) reference.
S	Source terminal. May be an input or output.
D	Drain terminal. May be an input or output.
IN	Logic control input.
R _{ON}	Ohmic resistance between D and S.
R _{FLAT(ON)}	Flatness is defined as the difference between the maximum and minimum value of on resis- tance as measured over the specified analog signal range.
I _S (OFF)	Source leakage current with the switch "OFF."
I _D (OFF)	Drain leakage current with the switch "OFF."
I_D , I_S (ON)	Channel leakage current with the switch "ON."
$V_{D}(V_{S})$	Analog voltage on terminals D and S.
C _S (OFF)	"OFF" switch source capacitance.
C _D (OFF)	"OFF" switch drain capacitance.
C_D , C_S (ON)	"ON" switch capacitance.
t _{ON}	Delay between applying the digital control input and the output switching on. See Test Circuit 4.
t _{OFF}	Delay between applying the digital control input and the output switching off.
Off Isolation	A measure of unwanted signal coupling through an "OFF" switch.
Charge Injection	A measure of the glitch impulse transferred from the digital input to the analog output during switching.
Bandwidth	The frequency at which the output is attenuated by –3 dBs.
On Response	The frequency response of the "ON" switch.
Insertion Loss	Loss due to the ON resistance of the switch.
V_{INL}	Maximum input voltage for Logic "0."
V_{INH}	Minimum input voltage for Logic "1."
$I_{\rm INL}(I_{\rm INH})$	Input current of the digital input.
I_{DD}	Positive supply current.

Table I. Truth Table

ADG751 IN	Switch Condition
0	ON
1	OFF

REV. A -5-

ADG751-Typical Performance Characteristics

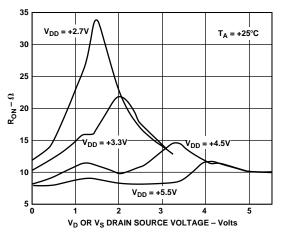


Figure 1. On Resistance as a Function of V_D (V_S) Single Supplies (A Grade)

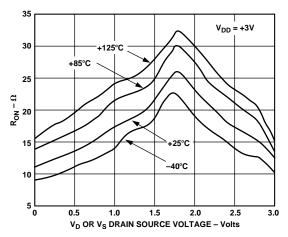


Figure 2. On Resistance as a Function of V_D (V_S) for Different Temperatures $V_{DD} = 3 \ V$ (A Grade)

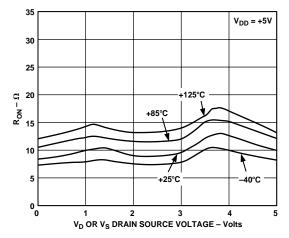


Figure 3. On Resistance as a Function of V_D (V_S) for Different Temperatures $V_{DD} = 5 V$ (A Grade)

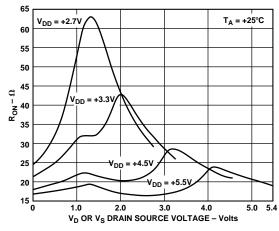


Figure 4. On Resistance as a Function of V_D (V_S) Single Supplies (B Grade)

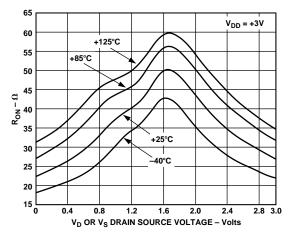


Figure 5. On Resistance as a Function of V_D (V_S) for Different Temperatures $V_{DD} = 3 V$ (B Grade)

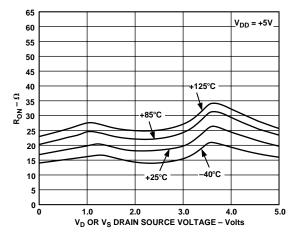


Figure 6. On Resistance as a Function of V_D (V_S) for Different Temperatures $V_{DD} = 5 V$ (B Grade)

-6- REV. A

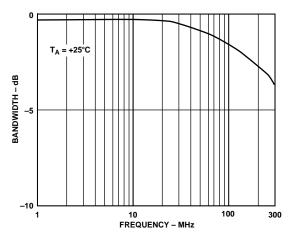


Figure 7. On Response vs. Frequency (A Grade)

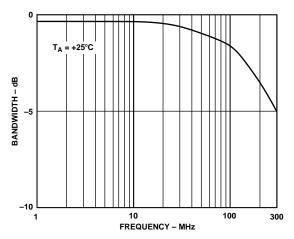


Figure 8. On Response vs. Frequency (B Grade)

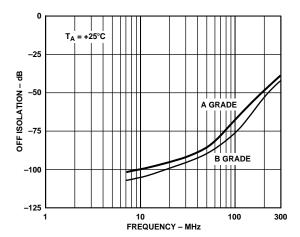


Figure 9. Off Isolation vs. Frequency for Both Grades

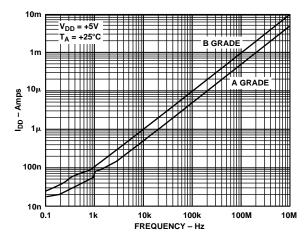


Figure 10. Supply Current vs. Input Switching Frequency

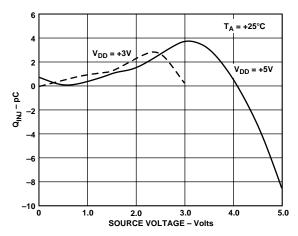


Figure 11. Charge Injection vs. Source/Drain Voltage

REV. A -7-

ADG751

GENERAL DESCRIPTION

The ADG751 is an SPST switch constructed using switches in a T configuration to obtain high "OFF" isolation while maintaining good frequency response in the "ON" condition.

Figure 12 shows the T-switch configuration. While the switch is in the OFF state, the shunt switch is closed and the two series switches are open. The closed shunt switch provides a signal path to ground for any of the unwanted signals that find their way through the off capacitances of the series' MOS devices. This results in improved isolation between the input and output than with an ordinary series switch. When the switch is in the ON condition, the shunt switch is open and the signal path is through the two series switches which are now closed.

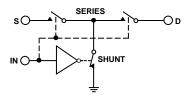
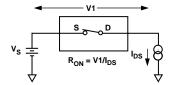
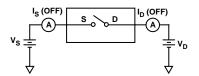


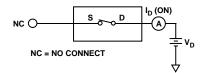
Figure 12. Basic T-Switch Configuration

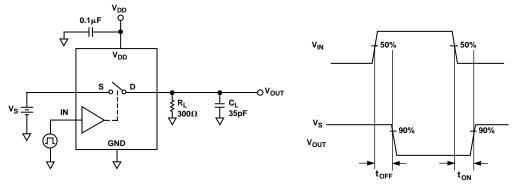

LAYOUT CONSIDERATIONS

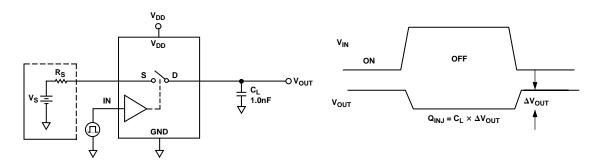
Where accurate high frequency operation is important, careful consideration should be given to the printed circuit board layout and to grounding. Wire wrap boards, prototype boards and sockets are not recommended because of their high parasitic inductance and capacitance. The part should be soldered directly to a printed circuit board. A ground plane should cover all unused areas of the component side of the board to provide a low impedance path to ground. Removing the ground planes from the area around the part reduces stray capacitance.

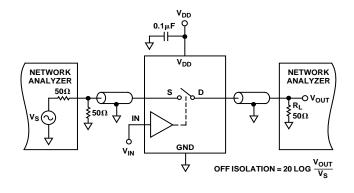

Good decoupling is important in achieving optimum performance. V_{DD} should be decoupled with a 0.1 μF surface mount capacitor to ground mounted as close as possible to the device itself

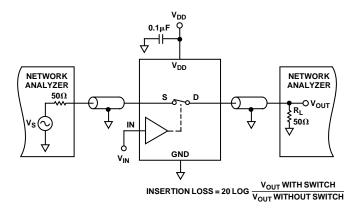
-8- REV. A


Test Circuits


Test Circuit 1. On Resistance


Test Circuit 2. Off Leakage


Test Circuit 3. On Leakage


Test Circuit 4. Switching Times

Test Circuit 5. Charge Injection

Test Circuit 6. Off Isolation

Test Circuit 7. Bandwidth

OUTLINE DIMENSIONS

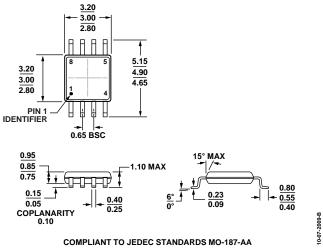


Figure 12. 8-Lead Mini Small Outline Package [MSOP] (RM-8) Dimensions shown in millimeters

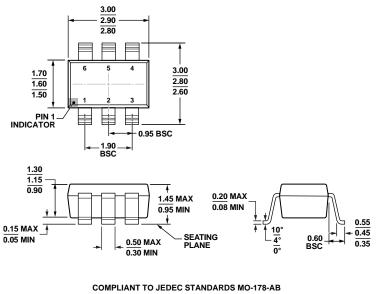


Figure 13. 6-Lead Small Outline Transistor Package [SOT-23] (RJ-6) Dimensions shown in millimeters

ADG751

ORDERING GUIDE

Model ¹	Temperature Range	Brand ²	Package Description	Package Option
ADG751BRMZ-REEL	-40°C to +85°C	SDB	8-Lead Mini Small Outline Package [MSOP]	RM-8
ADG751BRT-REEL	−40°C to +85°C	SDB	6-Lead Small Outline Transistor Package [SOT-23]	RJ-6
ADG751BRT-REEL7	-40°C to +85°C	SDB	6-Lead Small Outline Transistor Package [SOT-23]	RJ-6
ADG751BRTZ-REEL7	−40°C to +85°C	SDB	6-Lead Small Outline Transistor Package [SOT-23]	RJ-6
ADG751ARMZ	-40°C to +85°C	SDA	8-Lead Mini Small Outline Package [MSOP]	RM-8
ADG751ARMZ-REEL	−40°C to +85°C	SDA	8-Lead Mini Small Outline Package [MSOP]	RM-8
ADG751ART-REEL	-40°C to +85°C	SDA	6-Lead Small Outline Transistor Package [SOT-23]	RJ-6
ADG751ART-REEL7	-40°C to +85°C	SDA	6-Lead Small Outline Transistor Package [SOT-23]	RJ-6
ADG751ARTZ-REEL7	-40°C to +85°C	SDA	6-Lead Small Outline Transistor Package [SOT-23]	RJ-6

¹ Z = RoHS Compliant Part.

REVISION HISTORY

8/12-Rev. 0 to Rev. A

4/99—Revision 0—Initial Version

www.analog.com

² Brand on these packages is limited to three characters due to space constraints.