SN65175, SN75175 QUADRUPLE DIFFERENTIAL LINE RECEIVERS

SLLS145C - OCTOBER 1990 - REVISED NOVEMBER 2006

- Meet or Exceed the Requirements of ANSI Standard EIA/TIA-422-B, RS-423-B, and RS-485
- Meet ITU Recommendations V.10, V.11, X.26, and X.27
- Designed for Multipoint Bus Transmission on Long Bus Lines in Noisy Environments
- 3-State Outputs
- Common-Mode Input Voltage Range -12 V to 12 V
- Input Sensitivity . . . ±200 mV
- Input Hysteresis . . . 50 mV Typ
- High Input Impedance . . . 12 kΩ Min
- Operate From Single 5-V Supply
- Low-Power Requirements
- Plug-In Replacement for MC3486

(TOP VIEW) 1B [16 V_{CC} 1A **∏**2 15 🛮 4B 1Y **∏**3 14 **∏** 4A 13 **1** 4Y 2Y [12 3,4EN 11 3Y 2A ∏ 6 10 🛮 3A 2B **∏** 7 GND ¶8 9 3B

DORNPACKAGE

description

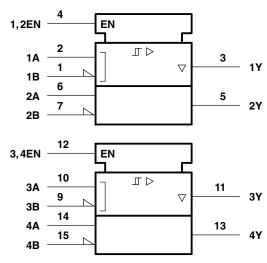
The SN65175 and SN75175 are monolithic quadruple differential line receivers with 3-state outputs. They are designed to meet the requirements of ANSI Standards EIA/TIA-422-B, RS-423-B, and RS-485, and several ITU recommendations. These standards are for balanced multipoint bus transmission at rates up to 10 megabits per second. Each of the two pairs of receivers has a common active-high enable.

The receivers feature high input impedance, input hysteresis for increased noise immunity, and input sensitivity of ± 200 mV over a common-mode input voltage range of ± 12 V. The SN65175 and SN75175 are designed for optimum performance when used with the SN75172 or SN75174 quadruple differential line drivers.

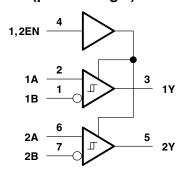
The SN65175 is characterized for operation from –40°C to 85°C. The SN75175 is characterized for operation from 0°C to 70°C.

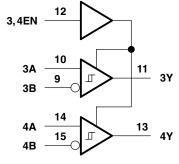
FUNCTION TABLE (each receiver)

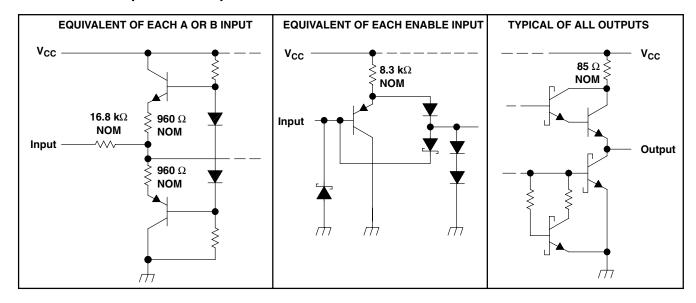
DIFFERENTIAL A – B	ENABLE	OUTPUT Y
$V_{ID} \ge 0.2 \text{ V}$	Н	Н
$-0.2 \text{ V} < \text{V}_{\text{ID}} < 0.2 \text{ V}$	Н	?
$V_{ID} \le -0.2 \text{ V}$	Н	L
X	L	Z
Open circuit	Н	?


H = high level, L = low level, ? = indeterminate, X = irrelevant, Z = high impedance (off)

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.




logic symbol†


[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

logic diagram (positive logic)

schematics of inputs and outputs

SN65175, SN75175 QUADRUPLE DIFFERENTIAL LINE RECEIVERS

SLLS145C - OCTOBER 1990 - REVISED NOVEMBER 2006

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage, V _{CC} (see Note 1)	7 V
Input voltage V _I , (A or B inputs)	
Differential input voltage, V _{ID} (see Note 2)	±25 V
Enable input voltage, V _I , EN	
Low-level output current, I _{OL}	50 mA
Continuous total dissipation	See Dissipation Rating Table
Operating free-air temperature range, T _{A:} SN65175	–40°C to 85°C
SN75175	0°C to 70°C
Storage temperature range, T _{stq}	–65°C to 150°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds	260°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. All voltage values, except differential input voltage, are with respect to network ground terminal.

2. Differential-input voltage is measured at the noninverting input with respect to the corresponding inverting input.

DISSIPATION RATING TABLE

PACKAGE	T _A ≤ 25°C POWER RATING	DERATING FACTOR	T _A = 70°C POWER RATING	T _A = 85°C POWER RATING	
D	950 mW	7.6 mW/°C	608 mW	494 mW	
N	1150 mW	9.2 mW/°C	736 mW	598 mW	

recommended operating conditions

		MIN	NOM	MAX	UNIT
Supply voltage, V _{CC}		4.75	5	5.25	V
Common-mode input voltage, V _{IC}				±12	V
Differential input voltage, V _{ID}				±12	V
High-level enable-input voltage, V _{IH}		2			V
Low-level enable-input voltage, V _{IL}				8.0	V
High-level output current, I _{OH}				-400	μΑ
Low-level output current, I _{OL}				16	mA
Occupies for sixtema and a T	SN65175	-40		85	00
Operating free-air temperature, T _A	SN75175	0		70	°C

SN65175, SN75175 **QUADRÚPLE DIFFERENTIAL LINE RECEIVERS**

SLLS145C - OCTOBER 1990 - REVISED NOVEMBER 2006

electrical characteristics over recommended ranges of common-mode input voltage, supply voltage and operating free-air temperature

	PARAMETER	TES	T CONDITIONS		MIN	TYP†	MAX	UNIT
V_{IT+}	Positive-going input threshold voltage	$V_O = 2.7 V$,	$I_0 = -0.4 \text{ mA}$				0.2	V
$V_{\text{IT-}}$	Negative-going input threshold voltage	$V_O = 0.5 V$,	I _O = 16 mA		-0.2 [‡]			V
V_{hys}	Hysteresis voltage (V _{IT+} - V _{IT-})	See Figure 4				50		mV
V_{IK}	Enable-input clamp voltage	$I_I = -18 \text{ mA}$					-1.5	V
V_{OH}	High-level output voltage	V _{ID} = 200 mV,	$I_{OH} = -400 \mu A$,	See Figure 1	2.7			V
V	Landard advisor to the same		0 Fi 1	$I_{OL} = 8 \text{ mA}$			0.45	.,
V _{OL}	Low-level output voltage	$V_{ID} = -200 \text{ mV},$	See Figure 1	$I_{OL} = 16 \text{ mA}$			0.5	V
I _{OZ}	High-impedance-state output current	$V_O = 0.4 \text{ V to } 2.4 \text{ V}$					±20	μΑ
	Line in and accorded	Oth an import at 0 M	Con Note O	V _I = 12 V			1	A
1 ₁	Line input current	Other input at 0 V,	See Note 3	$V_I = -7 V$			-0.8	mA
I_{IH}	High-level enable-input current	V _{IH} = 2.7 V					20	μΑ
I _{IL}	Low-level enable-input current	V _{IL} = 0.4 V					-100	μΑ
rį	Input resistance				12			kΩ
los	Short-circuit output current§				-15		-85	mA
I _{CC}	Supply current	Outputs disabled					70	mA

NOTE 3: Refer to ANSI Standards EIA/TIA-422-B, RS-423-B, and RS-485 for exact conditions.

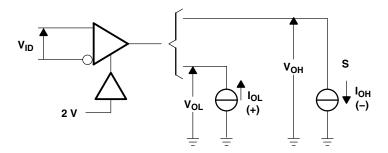
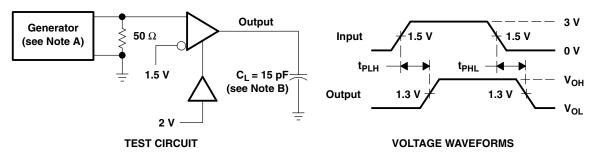
switching characteristics, V_{CC} = 5 V, C_L = 15 pF, T_A = 25°C

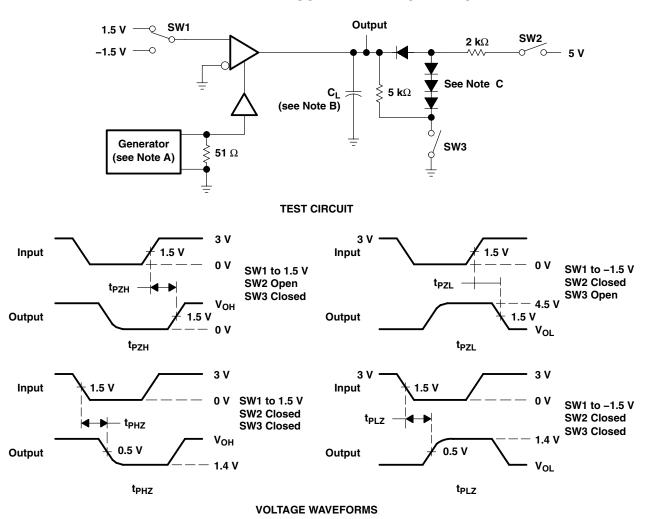
	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
t _{PLH}	Propagation delay time, low- to high-level output	Con Figure 0		22	35	ns
t _{PHL}	Propagation delay time, high- to low-level output	See Figure 2		25	35	ns
t _{PZH}	Output enable time to high level	Con Figure 0		13	30	ns
t _{PZL}	Output enable time to low level	See Figure 3		19	30	ns
t_{PHZ}	Output disable time from high level	See Figure 3		26	35	ns
t_{PLZ}	Output disable time from low level	See Figure 3		25	35	ns

[†] All typical values are at V_{CC} = 5 V, T_A = 25°C. ‡ The algebraic convention, in which the less positive (more negative) limit is designated as minimum, is used in this data sheet for threshold voltage levels only.

[§] Not more than one output should be shorted at a time, and the duration of the short circuit should not exceed one second.

PARAMETER MEASUREMENT INFORMATION


Figure 1. V_{OH}, V_{OL}

- NOTES: A. The input pulse is supplied by a generator having the following characteristics: PRR \leq 1 MHz, duty cycle = 50%, $t_r \leq$ 6 ns, $t_f \leq$ 6 ns, $t_Q = 50 \Omega$.
 - B. C_L includes probe and stray capacitance.

Figure 2. Test Circuit and Voltage Waveforms

PARAMETER MEASUREMENT INFORMATION

NOTES: A. The input pulse is supplied by a generator having the following characteristics: PRR \leq 1 MHz, duty cycle = 50%, $t_f \leq$ 6 ns, $Z_O = 50 \ \Omega$.

- B. C_L includes probe and stray capacitance.
- C. All diodes are 1N916 or equivalent.

Figure 3. Test Circuit and Voltage Waveforms

TYPICAL CHARACTERISTICS

OUTPUT VOLTAGE DIFFERENTIAL INPUT VOLTAGE $V_{CC} = 5 V$ $I_0 = 0$ $T_A = 25^{\circ}C$ 4.5 4 ν_{IC} = V_{IC} = V_O - Output Voltage - V V_{IC} = 3.5 12 V -12 V 0 3 $v_{\text{IT}_{\!i^-}}$ V_{IT-} 2.5 V_{IT+} $V_{\text{IT+}}$ V_{IT+} 2 1.5 1 0.5 -125 -100 -75 - 50 - 25 0 25 50 75 100 125 V_{ID} - Differential Input Voltage - mV

Figure 4

HIGH-LEVEL OUTPUT VOLTAGE

vs FREE-AIR TEMPERATURE 5 $V_{CC} = 5 V$ 4.5 $V_{ID} = 0.2 \text{ V}$ $I_{OH} = -400 \,\mu\text{A}$ V_{OH} - High-Level Output Voltage - V 3.5 SN65175 Only 3 2.5 2 1.5 1 0.5 0 10 40 50 60 70 80 0 20 30 90 T_A - Free-Air Temperature - °C

Figure 6

HIGH-LEVEL OUTPUT VOLTAGE
vs
HIGH-LEVEL OUTPUT CURRENT

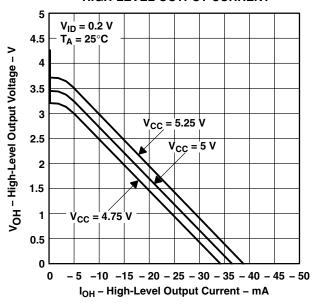
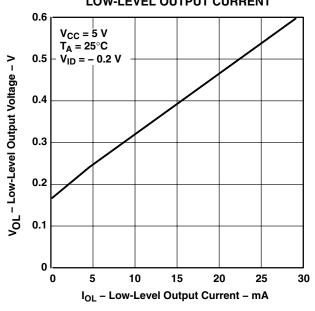
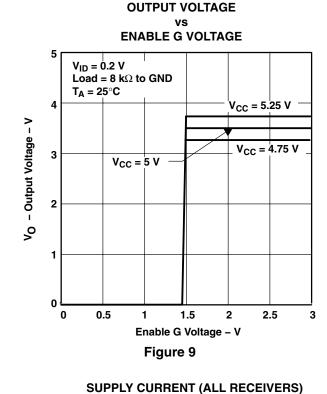
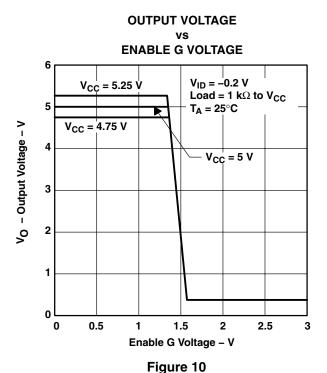
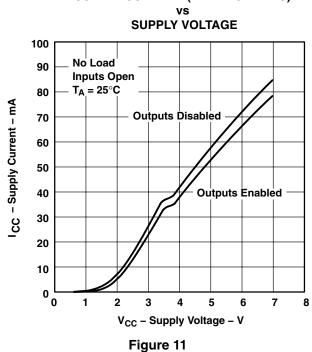


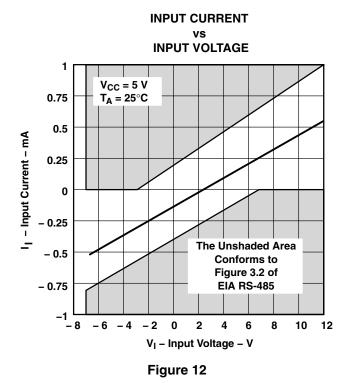
Figure 5

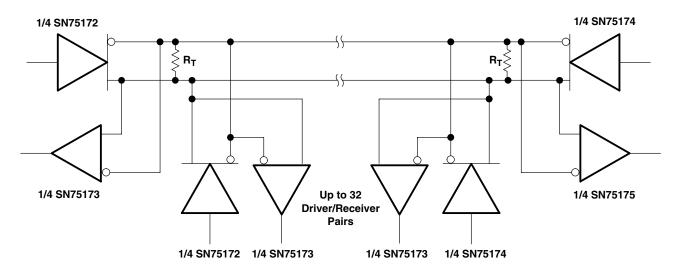
LOW-LEVEL OUTPUT VOLTAGE vs LOW-LEVEL OUTPUT CURRENT


Figure 7

TYPICAL CHARACTERISTICS





TYPICAL CHARACTERISTICS

APPLICATION INFORMATION

NOTE A: The line should be terminated at both ends in its characteristicc impedance (R_T = Z_O). Stub lengths off the main line should be kept as short as possible.

Figure 13. Typical Application Circuit

www.ti.com 13-Aug-2021

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
SN65175D	ACTIVE	SOIC	D	16	40	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	SN65175	Samples
SN65175DR	ACTIVE	SOIC	D	16	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	SN65175	Samples
SN75175D	ACTIVE	SOIC	D	16	40	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	SN75175	Samples
SN75175DE4	ACTIVE	SOIC	D	16	40	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	SN75175	Samples
SN75175DR	ACTIVE	SOIC	D	16	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	SN75175	Samples
SN75175DRE4	ACTIVE	SOIC	D	16	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	SN75175	Samples
SN75175DRG4	ACTIVE	SOIC	D	16	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	SN75175	Samples
SN75175N	ACTIVE	PDIP	N	16	25	RoHS & Green	NIPDAU	N / A for Pkg Type	0 to 70	SN75175N	Samples
SN75175NSR	ACTIVE	SO	NS	16	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	SN75175	Samples
SN75175NSRE4	ACTIVE	so	NS	16	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	SN75175	Samples
SN75175NSRG4	ACTIVE	SO	NS	16	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	SN75175	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

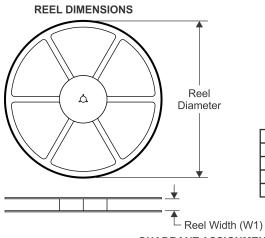
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

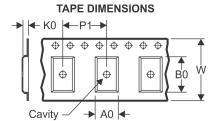
Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

PACKAGE OPTION ADDENDUM

www.ti.com 13-Aug-2021


- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead finish/Ball material Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

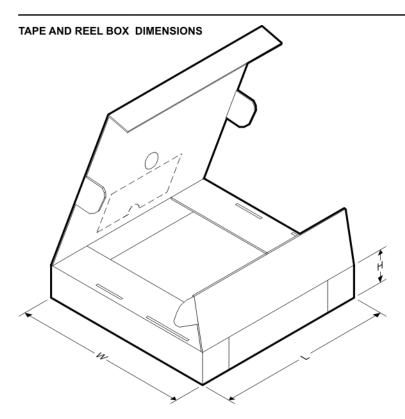

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

www.ti.com 27-Jul-2021

TAPE AND REEL INFORMATION

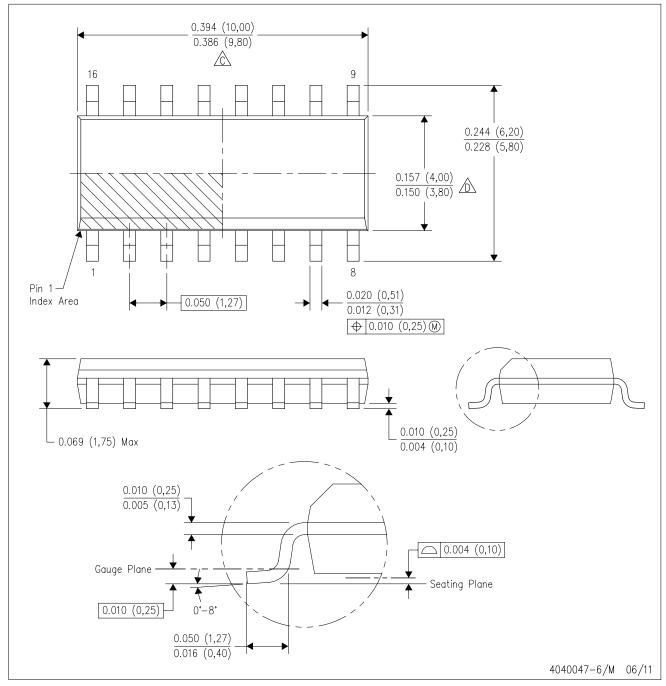
	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

All ulmensions are nominal												
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN65175DR	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.1	8.0	16.0	Q1
SN75175DR	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.1	8.0	16.0	Q1
SN75175DR	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.1	8.0	16.0	Q1
SN75175NSR	SO	NS	16	2000	330.0	16.4	8.2	10.5	2.5	12.0	16.0	Q1

www.ti.com 27-Jul-2021

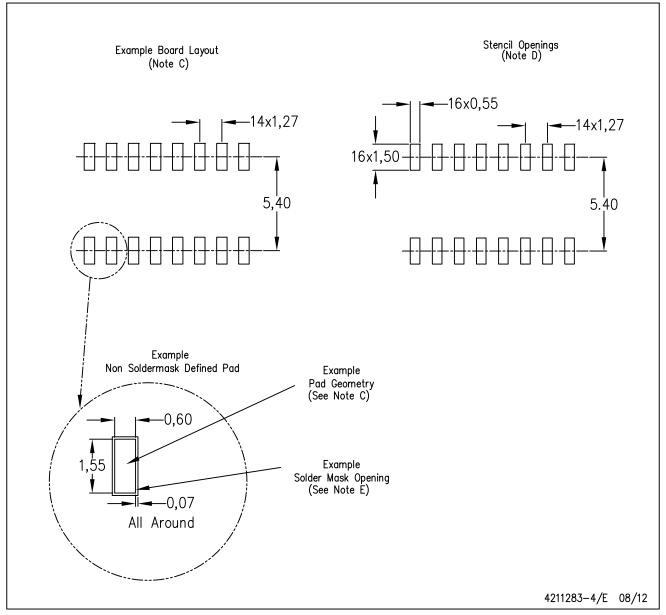


*All dimensions are nominal

7 till difficilitiere reserve are fremman							
Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN65175DR	SOIC	D	16	2500	340.5	336.1	32.0
SN75175DR	SOIC	D	16	2500	853.0	449.0	35.0
SN75175DR	SOIC	D	16	2500	340.5	336.1	32.0
SN75175NSR	SO	NS	16	2000	853.0	449.0	35.0

D (R-PDS0-G16)

PLASTIC SMALL OUTLINE



- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AC.

D (R-PDSO-G16)

PLASTIC SMALL OUTLINE

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

MECHANICAL DATA

NS (R-PDSO-G**)

14-PINS SHOWN

PLASTIC SMALL-OUTLINE PACKAGE

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

16 PINS SHOWN

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- The 20 pin end lead shoulder width is a vendor option, either half or full width.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale (https://www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2021, Texas Instruments Incorporated