

Is Now Part of

ON Semiconductor®

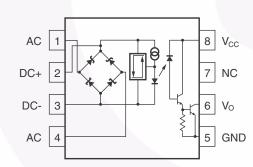
To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

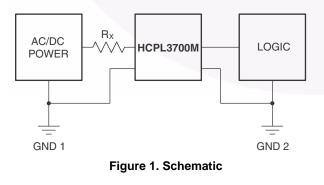
Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild_questions@onsemi.com.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized applications, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an equif prese

February 2016

HCPL3700M AC/DC to Logic Interface Optocoupler


Features


- AC or DC Input
- Programmable Sense Voltage
- Logic Level Compatibility
- Threshold Guaranteed Over Temperature (0°C to 70°C)
- Safety and Regulatory Approvals
 - UL1577, 5,000 VAC_{RMS} for 1 Minute
 - DIN EN/IEC60747-5-5

Applications

- Low Voltage Detection
- 5 V to 240 V AC/DC Voltage Sensing
- Relay Contact Monitor
- Current Sensing
- Microprocessor Interface
- Industrial Controls

Schematics

Description

The HCPL3700M voltage/current threshold detection optocoupler consists of an AlGaAs LED connected to a threshold sensing input buffer IC which are optically coupled to a high gain darlington output. The input buffer chip is capable of controlling threshold levels over a wide range of input voltages with a single resistor. The output is TTL and CMOS compatible.

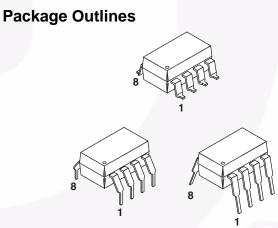


Figure 2. Package Outlines

TRUTH TABLE
(Popitiva Logia)

(Positive Logic)

Input	Output
Н	L
L	Н

A 0.1 μF bypass capacitor must be connected between pins 8 and 5.

Safety and Insulation Ratings

As per DIN EN/IEC 60747-5-5, this optocoupler is suitable for "safe electrical insulation" only within the safety limit data. Compliance with the safety ratings shall be ensured by means of protective circuits.

Paramete	Characteristics	
	< 150 V _{RMS}	I–IV
Installation Classifications per DIN VDE 0110/1.89 Table 1, For Rated Mains Voltage	< 300 V _{RMS}	I–IV
	< 450 V _{RMS}	I–III
	< 600 V _{RMS}	I–III
	< 1000 V _{RMS} (Option TV)	I–III
Climatic Classification		40/85/21
Pollution Degree (DIN VDE 0110/1.89)		2
Comparative Tracking Index		175

Symbol	Parameter	Value	Unit
V	Input-to-Output Test Voltage, Method A, $V_{IORM} \times 1.6 = V_{PR}$, Type and Sample Test with t _m = 10 s, Partial Discharge < 5 pC	2,262	V _{peak}
V _{PR}	Input-to-Output Test Voltage, Method B, $V_{IORM} \times 1.875 = V_{PR}$, 100% Production Test with $t_m = 1 \text{ s}$, Partial Discharge < 5 pC	2,651	V _{peak}
V _{IORM}	Maximum Working Insulation Voltage	1,414	V _{peak}
V _{IOTM}	Highest Allowable Over-Voltage	6,000	V _{peak}
	External Creepage	≥ 8	mm
	External Clearance	≥ 7.4	mm
	External Clearance (for Option TV, 0.4" Lead Spacing)	≥ 10.16	mm
DTI	Distance Through Insulation (Insulation Thickness)	≥ 0.5	mm
Τ _S	Case Temperature ⁽¹⁾	150	°C
I _{S,INPUT}	Input Current ⁽¹⁾	25	mA
P _{S,OUTPUT}	Output Power (Duty Factor $\leq 2.7\%$) ⁽¹⁾	250	mW
R _{IO}	Insulation Resistance at T _S , V_{IO} = 500 $V^{(1)}$	> 10 ⁹	Ω

Note:

1. Safety limit value - maximum values allowed in the event of a failure.

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only. $T_A = 25^{\circ}C$ unless otherwise specified.

Symbol	Para	meter	Value	Unit
T _{STG}	Storage Temperature		-40 to +125	°C
T _{OPR}	Operating Temperature		-40 to +85	°C
ТJ	Junction Temperature		-40 to +125	°C
T _{SOL}	Lead Solder Temperature		260 for 10 sec	°C
Ρ _T	Total Package Power Dissipation ⁽²⁾		305	mW
EMITTER				
		Average	50	
I _{IN} Input Current	Input Current	Surge, 3 ms, 120 Hz Pulse Rate	140	mA
		Transient, 10 µs, 120 Hz Pulse Rate	500	
V _{IN}	Input Voltage (Pins 2-3)		-0.5	V
P _{IN}	Input Power Dissipation ⁽³⁾		230	mW
DETECTO	R			
Ι _Ο	Output Current (Average) ⁽⁴⁾		30	mA
V _{CC}	Supply Voltage (Pins 8-5)		-0.5 to 20	V
Vo	Output Voltage (Pins 6-5)		-0.5 to 20	V
Po	Output Power Dissipation ⁽⁵⁾		210	mW

Notes:

2. Derate linearly above 70°C free-air temperature at a rate of 2.5 mW/°C.

3. Derate linearly above 70°C free-air temperature at a rate of 1.8 mW/°C.

4. Derate linearly above 70°C free-air temperature at a rate of 0.6 mA/°C.

5. Derate linearly above 70°C free-air temperature at a rate of 1.9 mW/°C.

Recommended Operating Conditions

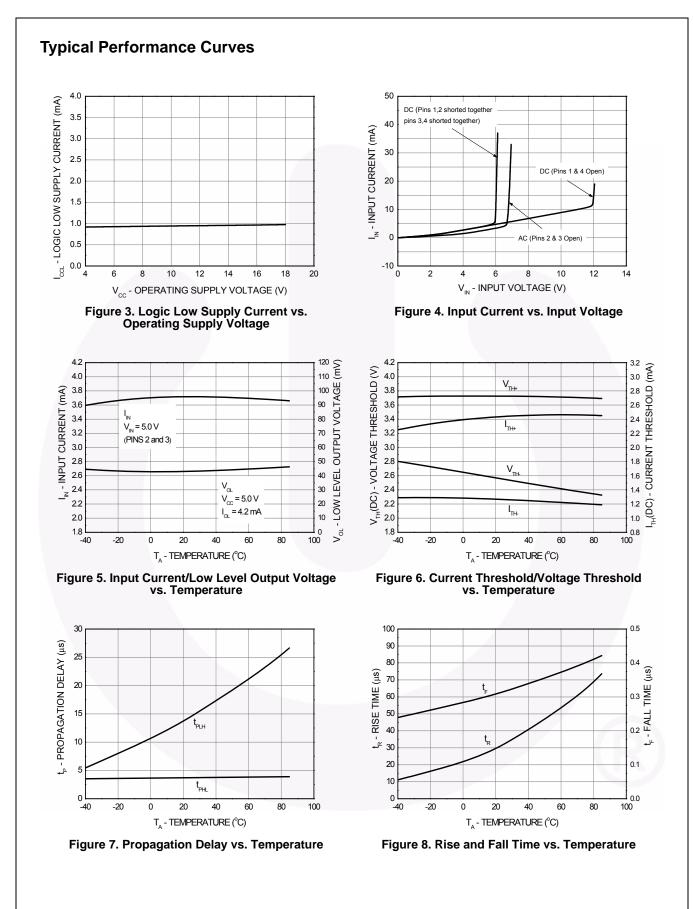
The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to absolute maximum ratings.

Symbol	Parameter	Min.	Max.	Unit
V _{CC}	Supply Voltage	2	18	V
T _A	Ambient Operating Temperature	0	70	°C
f	Operating Frequency	0	4	kHz

Symbol	Parameter		Test Conditions	Min.	Тур.	Max.	Unit
I _{TH+}	Input Threshold Current		$V_{IN} = V_{TH+}, V_{CC} = 4.5 V$	1.96	2.40	3.11	mA
I _{TH-}	input micshold current		V_{O} = 0.4 V, $I_{O} \ge 4.2 \text{ mA}^{(6)}$	1.00	1.20	1.62	mA
V _{TH+}	DC	DC		3.35	3.80	4.05	V
V _{TH-}	Input Throshold Voltago	(Pins 2, 3)		2.01	2.50	2.86	V
V_{TH+}	AC (Pins 1, 4)		4.23	5.00	5.50	V	
V_{TH-}		$ \begin{array}{l} {\sf IV}_{\sf IN} = {\sf IV}_1 - {\sf V}_4 {\sf I} \mbox{ (Pins 2 \& 3 \mbox{ Open})} \\ {\sf V}_{\sf CC} = 4.5 \mbox{ V}, \mbox{ V}_{\sf O} = 2.4 \mbox{ V}^{(6)} \\ {\sf I}_{\sf O} \leq 100 \mu {\sf A} \end{array} $	2.87	3.70	4.20	V	
I _{HYS}	Hysteresis	_	I _{HYS} = I _{TH+} - I _{TH-}		1.2		mA
V _{HYS}	Tysteresis		$V_{HYS} = V_{TH+} - V_{TH-}$		1.3		V
V _{IHC1}	Input Clamp Voltage		$V_{IHC1} = V_2 - V_3$, $V_3 = GND$, $I_{IN} = 10 \text{ mA}$, Pins 1 & 4 connected to Pin 3	5.4	6.3	6.6	v
V _{IHC2}			V _{IHC2} = IV ₁ - V ₄ I, II _{IN} I = 10 mA (Pins 2 & 3 Open)	6.1	7.0	7.3	V
V _{IHC3}			$V_{IHC3} = V_2 - V_3, V_3 = GND,$ $I_{IN} = 15 \text{ mA (Pins 1 & 4 Open)}$		12.5	13.4	V
V _{ILC}			$V_{ILC} = V_2 - V_3, V_3 = GND,$ $I_{IN} = -10 \text{ mA}$		-0.75		V
I _{IN}	Input Current		V _{IN} = V ₂ - V ₃ = 5.0 V (Pins 1 & 4 Open)	3.0	3.7	4.4	mA
V _{D1,2}	Bridge Diode		I _{IN} = 3 mA		0.65		V
V _{D3,4}	Forward Voltage		I _{IN} = 3 mA		0.65		V
V _{OL}	Logic LOW Output Voltag	ge	V_{CC} = 4.5 V, I_{OL} = 4.2 mA ⁽⁶⁾		0.04	0.40	V
I _{OH}	Logic HIGH Output Curre	ent	V _{OH} = V _{CC} = 18 V ⁽⁶⁾			100	μA
I _{CCL}	Logic LOW Supply Current		$V_2 - V_3 = 5.0 V, V_0 = Open, V_{CC} = 5 V$		1.0	4	mA
I _{CCH}	Logic HIGH Supply Curre	ent	V _{CC} = 18 V, V _O = Open		0.01	4	μA
C _{IN}	Input Capacitance		f = 1 MHz, V _{IN} = 0 V (Pins 2 & 3, Pins 1 & 4 Open)		50		pF

Note: 6. Logic LOW output level at pin 6 occurs when $V_{IN} \ge V_{TH+}$ and when $V_{IN} > V_{TH-}$ once V_{IN} exceeds V_{TH+} . Logic HIGH output level at pin 6 occurs when $V_{IN} \le V_{TH-}$ and when $V_{IN} < V_{TH+}$ once decreases below V_{TH-} .

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
t _{PHL}	Propagation Delay Time (to Output Low Level)	R_L = 4.7 kΩ, C_L = 30 pF ⁽⁷⁾		6.0	15	μs
t _{PLH}	Propagation Delay Time (to Output High Level)	$R_L = 4.7$ kΩ, $C_L = 30$ pF ⁽⁷⁾		25.0	40	μs
t _R	Output Rise Time (10–90%)	R_L = 4.7 kΩ, C_L = 30 pF		45		μs
t _F	Output Fall Time (90–10%)	R_L = 4.7 kΩ, C_L = 30 pF		0.5		μs
CM _H	Common Mode Transient Immunity (at Output High Level)	I_{IN} = 0 mA, R _L = 4.7 kΩ, V _{O min} = 2.0 V, V _{CM} = 1400 V ⁽⁸⁾⁽⁹⁾		4000		V/µs
CM _L	Common Mode Transient Immunity (at Output Low Level)	I_{IN} = 3.11 mA, R _L = 4.7 kΩ, V _{O max} = 0.8 V, V _{CM} = 1400 V ⁽⁸⁾⁽⁹⁾		600		V/µs


Isolation Characteristics (T_A = 25°C unless otherwise specified.)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _{ISO}	Withstand Isolation Voltage	RH \leq 50%, I _{I-O} \leq 10 µA t = 1 minute, f = 50 Hz ⁽¹⁰⁾⁽¹¹⁾	5000			VAC _{RMS}
R _{I-O}	Resistance (Input to Output)	$V_{IO} = 500 V_{DC}^{(10)}$		10 ¹²		Ω
C _{I-O}	Capacitance (Input to Output)	f = 1 MHz, V _{IO} = 0 V _{DC}		0.6		pF

Notes:

- T_{PHL} propagation delay is measured from the 2.5 V level of the leading edge of a 5.0 V input pulse (1 µs rise time) to the 1.5 V level on the leading edge of the output pulse. T_{PLH} propagation delay is measured on the trailing edges of the input and output pulse. (Refer to Fig. 11)
- 8. Common mode transient immunity in logic high level is the maximum tolerable (positive) dV_{cm}/dt on the leading edge of the common mode pulse signal V_{CM} , to assure that the output will remain in a logic high state (i.e., $V_O > 2.0 V$). Common mode transient immunity in logic low level is the maximum tolerable (negative) dV_{cm}/dt on the trailing edge of the common mode pulse signal, V_{CM} , to assure that the output will remain in a logic low state (i.e., $V_O < 0.8 V$). Refer to Fig. 12.
- 9. In applications where dV_{cm}/dt may exceed 50,000 V/µs (Such as static discharge), a series resistor, R_{CC} , should be included to protect the detector chip from destructive surge currents. The recommended value for R_{CC} is 240 V per volt of allowable drop in V_{CC} (between pin 8 and V_{CC}) with a minimum value of 240 Ω .
- 10. Device is considered a two terminal device: Pins 1, 2, 3 and 4 are shorted together and Pins 5, 6, 7 and 8 are shorted together.
- 11. The 5000 VAC_{RMS}/1 min. capability is validated by a 6000 VAC_{RMS}/1 sec. dielectric voltage withstand test.

HCPL3700M — AC/DC to Logic Interface Optocoupler

Typical Performance Curves (Continued)

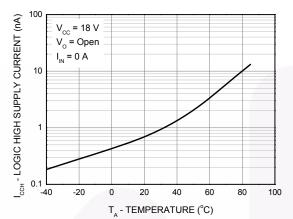


Figure 9. Logic High Supply Current vs. Temperature

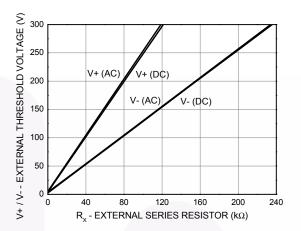
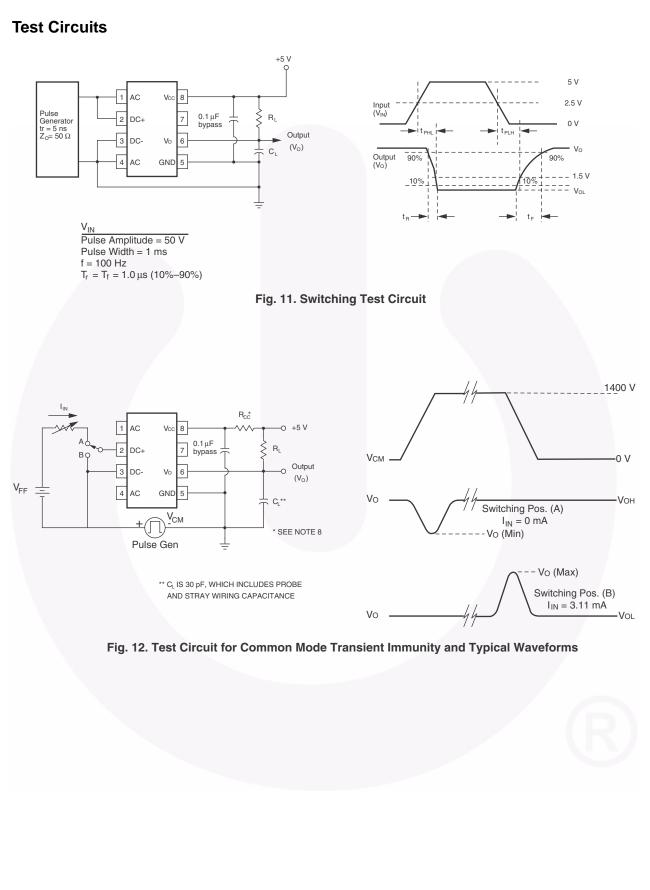
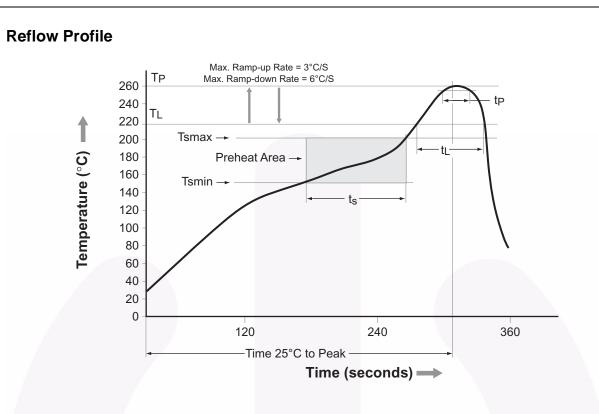




Figure 10. External Threshold Characteristics V+/Vvs. Rx

Profile Freature	Pb-Free Assembly Profile
Temperature Min. (Tsmin)	150°C
Temperature Max. (Tsmax)	200°C
Time (t _S) from (Tsmin to Tsmax)	60–120 seconds
Ramp-up Rate (t _L to t _P)	3°C/second max.
Liquidous Temperature (T _L)	217°C
Time (t _L) Maintained Above (T _L)	60–150 seconds
Peak Body Package Temperature	260°C +0°C / –5°C
Time (t _P) within 5°C of 260°C	30 seconds
Ramp-down Rate (T _P to T _L)	6°C/second max.
Time 25°C to Peak Temperature	8 minutes max.

Figure 13. Reflow Profile

Ordering Information

Part Number	Package	Packing Method
HCPL3700M	DIP 8-Pin	Tube (50 units)
HCPL3700SM	SMT 8-Pin (Lead Bend)	Tube (50 units)
HCPL3700SDM	SMT 8-Pin (Lead Bend)	Tape and Reel (1,000 units)
HCPL3700VM	DIP 8-Pin, DIN EN/IEC60747-5-5 option	Tube (50 units)
HCPL3700SVM	SMT 8-Pin (Lead Bend), DIN EN/IEC 60747-5-5 option	Tube (50 units)
HCPL3700SDVM	SMT 8-Pin (Lead Bend), DIN EN/IEC 60747-5-5 option	Tape and Reel (1,000 units)
HCPL3700TVM	DIP 8-Pin, 0.4" Lead Spacing, DIN EN/IEC 60747-5-5 option	Tube (50 units)

Marking Information

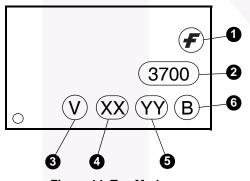
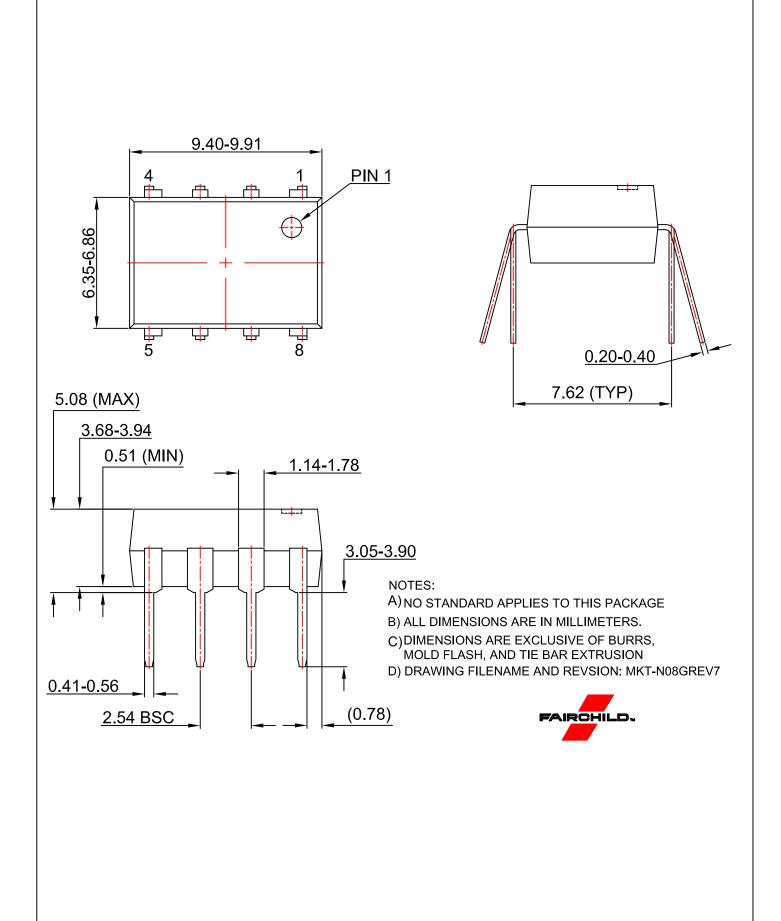



Figure 14. Top Mark

Defini	Definitions				
1	Fairchild Logo				
2	Device Number				
3	DIN EN/IEC60747-5-5 Option (only appears on component ordered with this option)				
4	Two Digit Year Code, e.g., '15'				
5	Two Digit Work Week Ranging from '01' to '53'				
6	Assembly Package Code				

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor has against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death ass

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

ON Semiconductor: HCPL3700M