MJ21195G - PNP MJ21196G - NPN

Silicon Power Transistors

The MJ21195G and MJ21196G utilize Perforated Emitter technology and are specifically designed for high power audio output, disk head positioners and linear applications.

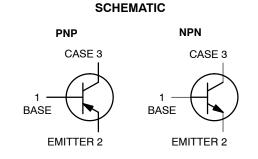
Features

- Total Harmonic Distortion Characterized
- High DC Current Gain
- Excellent Gain Linearity
- High SOA
- These Devices are Pb-Free and are RoHS Compliant*

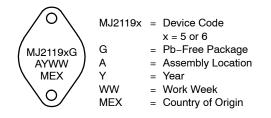
MAXIMUM RATINGS			
Rating	Symbol	Value	Unit
Collector-Emitter Voltage	V _{CEO}	250	Vdc
Collector-Base Voltage	V _{CBO}	400	Vdc
Emitter-Base Voltage	V _{EBO}	5	Vdc
Collector-Emitter Voltage - 1.5V	V _{CEX}	400	Vdc
Collector Current – Continuous	Ι _C	16	Adc
Collector Current – Peak (Note 1)	I _{CM}	30	Adc
Base Current – Continuous	Ι _Β	5	Adc
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	250 1.43	W W/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65 to +200	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability. 1. Pulse Test: Pulse Width = 5 μ s, Duty Cycle \leq 10%.

THERMAL CHARACTERISTICS


Characteristics	Symbol	Max	Unit
Thermal Resistance, Junction-to-Case	$R_{\theta JC}$	0.7	°C/W

ON Semiconductor®


http://onsemi.com

16 AMPERES COMPLEMENTARY SILICON-POWER TRANSISTORS 250 VOLTS, 250 WATTS

MARKING DIAGRAM

ORDERING INFORMATION

Device	Package	Shipping
MJ21195G	TO-204 (Pb-Free)	100 Units / Tray
MJ21196G	TO-204 (Pb-Free)	100 Units / Tray

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

MJ21195G – PNP MJ21196G – NPN

ELECTRICAL CHARACTERISTICS ($T_C = 25^{\circ}C \pm 5^{\circ}C$ unless otherwise noted)

Characteristic	Symbol	Min	Typical	Max	Unit	
OFF CHARACTERISTICS				- - 1		
Collector–Emitter Sustaining Voltage $(I_{C} = 100 \text{ mAdc}, I_{B} = 0)$		V _{CEO(sus)}	250	-	-	Vdc
Collector Cutoff Current ($V_{CE} = 200 \text{ Vdc}, I_B = 0$)		I _{CEO}	-	-	100	μAdc
Emitter Cutoff Current ($V_{CE} = 5 \text{ Vdc}, I_C = 0$)		I _{EBO}	-	-	100	μAdc
Collector Cutoff Current (V _{CE} = 250 Vdc, V _{BE(off)} = 1.5 Vdc)	ICEX	_	-	100	μAdc	
SECOND BREAKDOWN				•		
Second Breakdown Collector Current with Base Forw $(V_{CE} = 50 \text{ Vdc}, t = 1 \text{ s (non-repetitive)}$ $(V_{CE} = 80 \text{ Vdc}, t = 1 \text{ s (non-repetitive)}$	ard Biased	I _{S/b}	5 2.5		-	Adc
ON CHARACTERISTICS						-
DC Current Gain (I _C = 8 Adc, V_{CE} = 5 Vdc) (I _C = 16 Adc, V_{CE} = 5 Vdc)		h _{FE}	25 8		75	-
Base-Emitter On Voltage (I _C = 8 Adc, V _{CE} = 5 Vdc)		V _{BE(on)}	-	-	2.2	Vdc
Collector-Emitter Saturation Voltage ($I_C = 8 \text{ Adc}, I_B = 0.8 \text{ Adc}$) ($I_C = 16 \text{ Adc}, I_B = 3.2 \text{ Adc}$)		V _{CE(sat)}	_		1.4 4	Vdc
DYNAMIC CHARACTERISTICS						
Total Harmonic Distortion at the Output V _{RMS} = 28.3 V, f = 1 kHz, P _{LOAD} = 100 W _{RMS}	h _{FE} unmatched	T _{HD}	_	0.8	_	%
(Matched pair h_{FE} = 50 @ 5 A/5 V)	h _{FE} matched		_	0.08	-	
Current Gain Bandwidth Product $(I_C = 1 \text{ Adc}, V_{CE} = 10 \text{ Vdc}, f_{test} = 1 \text{ MHz})$		f _T	4	-	-	MHz
Output Capacitance (V _{CB} = 10 Vdc, I _E = 0, f _{test} = 1 MHz)		C _{ob}	-	-	500	pF

2. Pulse Test: Pulse Width = 300 $\mu s,$ Duty Cycle ${\leq}2\%$

NPN MJ21196G

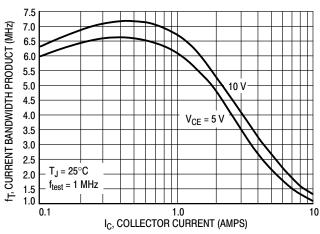


Figure 2. Typical Current Gain Bandwidth Product

TYPICAL CHARACTERISTICS

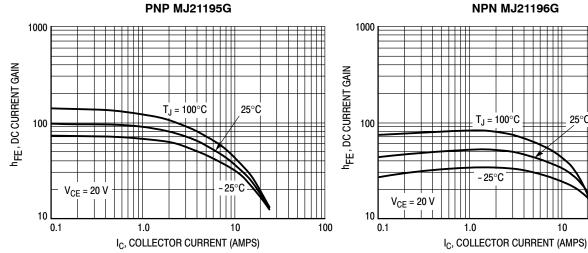
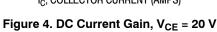
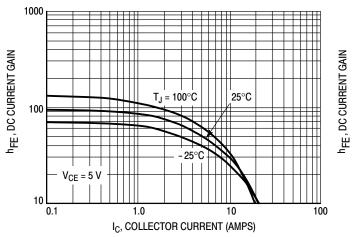




Figure 3. DC Current Gain, V_{CE} = 20 V

PNP MJ21195G



NPN MJ21196G

25°C

10

100

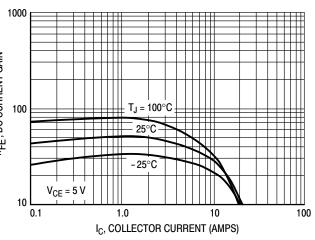
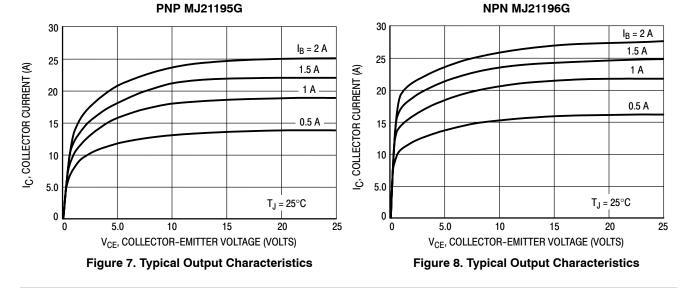



Figure 6. DC Current Gain, V_{CE} = 5 V

TYPICAL CHARACTERISTICS

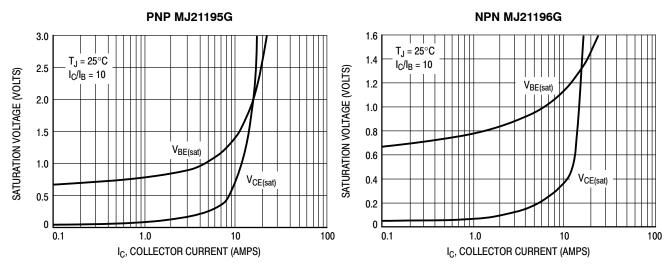


Figure 9. Typical Saturation Voltages

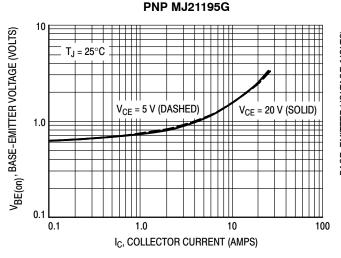


Figure 11. Typical Base–Emitter Voltage

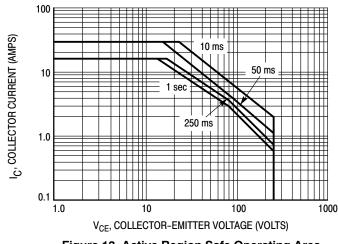


Figure 13. Active Region Safe Operating Area

Figure 10. Typical Saturation Voltages

NPN MJ21196G

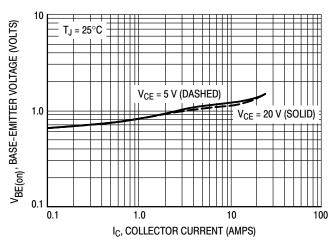


Figure 12. Typical Base–Emitter Voltage

There are two limitations on the power handling ability of a transistor; average junction temperature and secondary breakdown. Safe operating area curves indicate $I_C - V_{CE}$ limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate.

The data of Figure 13 is based on $T_{J(pk)} = 200^{\circ}C$; T_C is variable depending on conditions. At high case temperatures, thermal limitations will reduce the power than can be handled to values less than the limitations imposed by second breakdown.

MJ21195G – PNP MJ21196G – NPN

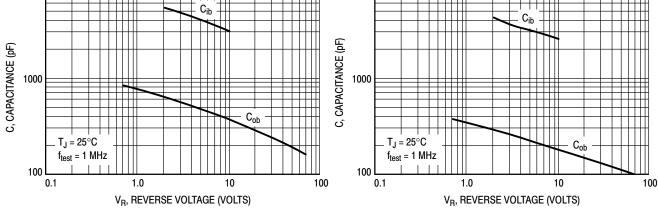
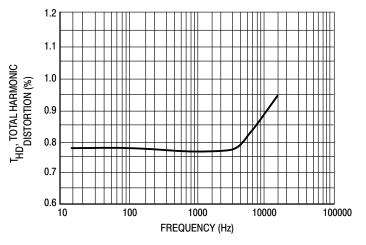



Figure 14. MJ21195 Typical Capacitance

10000

Figure 15. MJ21196 Typical Capacitance

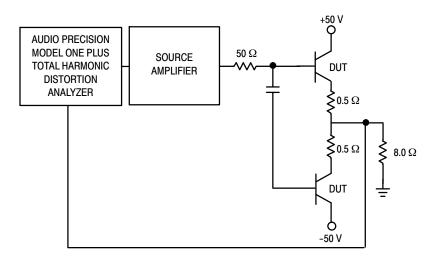
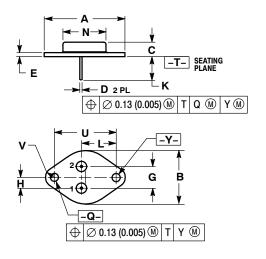



Figure 17. Total Harmonic Distortion Test Circuit

PACKAGE DIMENSIONS

TO-204 (TO-3) CASE 1-07 ISSUE Z

2. (3. /	Y14.5M Cont All R	M, 1982. Rolling Ules Ani	DIMENSI D NOTES	ON: INCH ASSOCIA	NG PER A I. ATED WITI E SHALL	н
		INCHES		MILLIMETERS		
	DIM	MIN	MAX	MIN	MAX	1
	Α	1.550			REF	1
-	A B	1.550				
		1.550 0.250	REF		REF	

U	0.038	0.043	0.97	1.09	
Е	0.055	0.070	1.40	1.77	
G	0.430 BSC		10.92 BSC		
Н	0.215 BSC		.215 BSC 5.46 BSC		
Κ	0.440	0.480	11.18	12.19	
L	0.665 BSC		16.89 BSC		
Ν	0.830			21.08	
Q	0.151	0.165	3.84	4.19	
U	1.187 BSC		30.15	BSC	
٧	0.131	0.188	3.33	4.77	

STYLE 1: PIN 1. BASE 2. EMITTER CASE: COLLECTOR

ON Semiconductor and a registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typical" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and easonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use personal and associated with such unintended or unauthorized use personal and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

ON Semiconductor: MJ21195G MJ21196G