

Surface Mount Ceramic Capacitor Products

IMPORTANT INFORMATION/DISCLAIMER

All product specifications, statements, information and data (collectively, the "Information") in this datasheet or made available on the website are subject to change. The customer is responsible for checking and verifying the extent to which the Information contained in this publication is applicable to an order at the time the order is placed. All Information given herein is believed to be accurate and reliable, but it is presented without guarantee, warranty, or responsibility of any kind, expressed or implied.

Statements of suitability for certain applications are based on AVX's knowledge of typical operating conditions for such applications, but are not intended to constitute and AVX specifically disclaims any warranty concerning suitability for a specific customer application or use.

ANY USE OF PRODUCT OUTSIDE OF SPECIFICATIONS OR ANY STORAGE OR INSTALLATION INCONSISTENT WITH PRODUCT GUIDANCE VOIDS ANY WARRANTY.

The Information is intended for use only by customers who have the requisite experience and capability to determine the correct products for their application. Any technical advice inferred from this Information or otherwise provided by AVX with reference to the use of AVX's products is given without regard, and AVX assumes no obligation or liability for the advice given or results obtained.

Although AVX designs and manufactures its products to the most stringent quality and safety standards, given the current state of the art, isolated component failures may still occur. Accordingly, customer applications which require a high degree of reliability or safety should employ suitable designs or other safeguards (such as installation of protective circuitry or redundancies) in order to ensure that the failure of an electrical component does not result in a risk of personal injury or property damage.

Unless specifically agreed to in writing, AVX has not tested or certified its products, services or deliverables for use in high risk applications including medical life support, medical device, direct physical patient contact, water treatment, nuclear facilities, weapon systems, mass and air transportation control, flammable environments, or any other potentially life critical uses. Customer understands and agrees that AVX makes no assurances that the products, services or deliverables are suitable for any high-risk uses. Under no circumstances does AVX warrant or guarantee suitability for any customer design or manufacturing process.

Although all product—related warnings, cautions and notes must be observed, the customer should not assume that all safety measures are indicted or that other measures may not be required.

Surface Mount Ceramic Capacitor Products

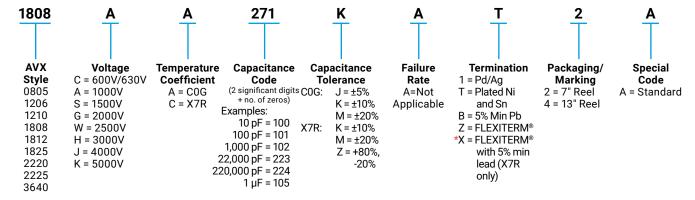
How to	Order	Automotive MLCC	
Part Nun	nber Explanation 1	General Specifications	<mark>54</mark>
		Capacitance Range	56
	P0) Dielectric		
	Specifications3	APS for COTS+ High Reliability Applications	
•	ations and Test Methods4	General Specifications	
Capacita	nce Range	Capacitance Range	60
U Diele		MLCC with FLEXITERM®	
	owave COG (NPO) Capacitors (RoHS)	General Specifications	
	owave COG (NPO) Capacitors (Sn/Pb)	Specifications and Test Methods	
	owave Automotive COG (NP0) Capacitors (RoHS) 200 Qualified Ultra Low ESR13	Capacitance Range	66
Designer	Kits	FLEXISAFE MLC Chips	
		General Specifications and Capacitance Range	68
	BL Dielectric		
	Specifications	Capacitor Array	
Specifica	ations and Test Methods	Capacitor Array (IPC)	
		Automotive Capacitor Array (IPC)	
	electric	Part & Pad Layout Dimensions	74
	Specifications19		
•	ations and Test Methods	Low Inductance Capacitors	
Capacita	nce Range21	Introduction	
V70 D:	d. and	LICC (Low Inductance Chip Capacitors)	
X7S Die		IDC (InterDigitated Capacitors)	
	Specifications	LGA Low Inductance Capacitors	85
	ations and Test Methods		
Capacita	nce Range	High Temperature MLCCs	
VED Di	electric	AT Series - 200°C & 250°C Rated	88
		High Waltage MI O Obing	
	Specifications	High Voltage MLC Chips	0.4
•	ince Range	For 600V to 5000V Applications	
Capacita	lice Range	Tin/Lead Termination "B" - 600V to 5000V Applications	
V5V Dia	electric	FLEXITERM® - 600V to 5000V Applications	
	Specifications30	For 600V to 3000V Automotive Applications - AEC-Q200	100
	ations and Test Methods	MIL DDE FE691/China	
•	ince Range 32	MIL-PRF-55681/Chips CDR01 thru CDR06	100
Capacita	lice Range	CDR01 thru CDR35	
MI CC (Gold Termination — AU Series	CDR31 (III CDR35	110
	Specifications	MLCC Medical Applications	
	nce Range 34	MM Series	114
MLCC 1	Fin/Lead Termination "B" (LD Series)	Packaging of Chip Components	110
	0) – General Specifications	T dordging of only compensate	
(Specifications and Test Methods41	Embossed Carrier Configuration	120
	Capacitance Range42	Embossed Carrier Comigaration	120
X8R	General Specifications44	Paper Carrier Configuration	121
	Specifications and Test Methods45	raper carrier configuration	121
\/ 7 D	Capacitance Range	Basic Capacitor Formulas	122
X7R	General Specifications and Test Methods 47	Dagio Sapacitor i Orindias	122
	Specifications and Test Methods	General Description	122
X5R	General Specifications 51	ocheral pescriptivii	123
	Specifications and Test Methods	Surface Mounting Guide	120
	Capacitance Range	Carrace mounting calac	140
	· · · · · · · · · · · · · · · · · · ·		

How to Order

Part Number Explanation

Commercial Surface Mount Chips **EXAMPLE: 08055A101JAT2A**

0805	5	Α	101	J*	Α	T	2	A**
Size	Voltage	Dielectric	Consoitance	Tolerance	Failure	Terminations	Packaging	Special
(L" x W")	•		Capacitance 2 Sig. Fig +	B = ±.10 pF	Rate	T = Plated Ni and Sn	Available	Code
0101* 0201 0402 0603 0805 1206 1210 1812	4 = 4V 6 = 6.3V Z = 10V Y = 16V 3 = 25V D = 35V 5 = 50V 1 = 100V 2 = 200V	A = NPO(COG) C = X7R D = X5R F = X8R G = Y5V U = U Series W = X6S Z = X7S	2 Sig. Fig + No. of Zeros Examples: 100 = 10 pF 101 = 100 pF 102 = 1000 pF 223 = 22000 pF 224 = 220000 pF 105 = 1µF	C = ±.25 pF	A = N/A 1 = Automotive	7 = Gold Plated U = Conductive Expoxy for Hybrid Applications Z = FLEXITERM® *X = FLEXITERM® with 5% min lead (X7R & X8R only)	2 = 7" Reel 4 = 13" Reel U = 4mm TR (01005) Contact Factory For	K = 30K (0603 2mm pitch) 22K (0805/1206 <0.030"/ 0.76mm) H = 18K (0603/0805/1206 <0.037" / 0.94mm) J = 15K (0805/1206 <0.050" / 1.27mm)
1825 2220	7 = 500V		106 = 10µF 107 = 100µF	P = +100%, -0%			Multiples	1 = 12K (0805/1206
2225		Factor: 6011	For values below				•	<0.055 / 1.4mm) **Non std options upon
*EIA 01005		Factory for Voltages 9 = 300V	10 pF, use "R" in place of Decimal point, e.g.,			Contact		approval from the factory
	E = 150V V = 250V	8 = 400V	9.1 pF = 9R1.		1	Factory For = Pd/Ag Term		


^{*} B, C & D tolerance for ≤10 pF values.

Standard Tape and Reel material (Paper/Embossed) depends upon chip size and thickness. See individual part tables for tape material type for each capacitance value.

NOTE: Contact factory for availability of Termination and Tolerance Options for Specific Part Numbers. For Tin/Lead Terminations, please refer to LD Series

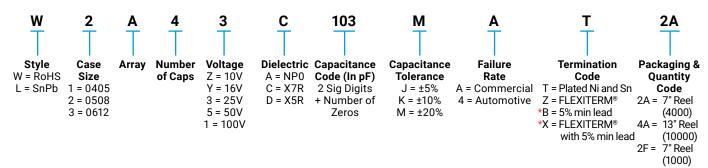
High Voltage MLC Chips

EXAMPLE: 1808AA271KA11A

NOTE: Contact factory for availability of Termination and Tolerance Options for Specific Part Numbers. For Tin/Lead Terminations, please refer to LD Series

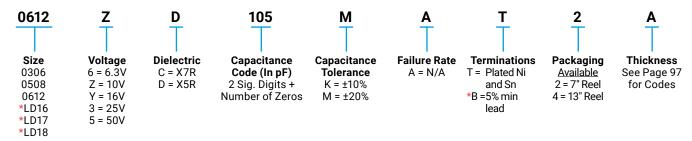
Not RoHS Compliant

For RoHS compliant products, please select correct termination style.


How to Order

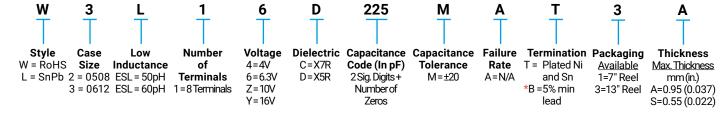
Part Number Explanation

Capacitor Array


EXAMPLE: W2A43C103MAT2A

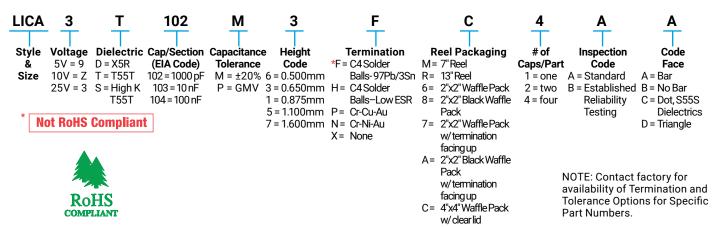
NOTE: Contact factory for availability of Termination and Tolerance Options for Specific Part Numbers.

Low Inductance Capacitors (LICC)


EXAMPLE: 0612ZD105MAT2A

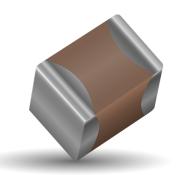
NOTE: Contact factory for availability of Termination and Tolerance Options for Specific Part Numbers.

Interdigitated Capacitors (IDC)


EXAMPLE: W3L16D225MAT3A

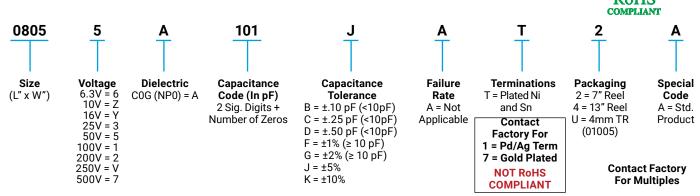
NOTE: Contact factory for availability of Termination and Tolerance Options for Specific Part Numbers.

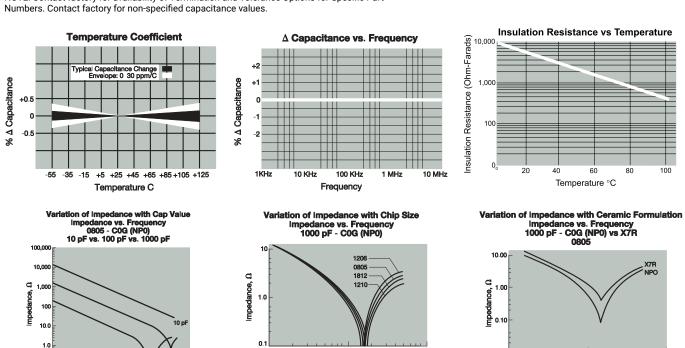
Low Inductance Decoupling Capacitor Arrays (LICA)


EXAMPLE: LICA3T183M3FC4AA

COG (NPO) Dielectric

General Specifications




COG (NPO) is the most popular formulation of the "temperature-compensating," EIA Class I ceramic materials. Modern COG (NPO) formulations contain neodymium, samarium and other rare earth oxides.

COG (NP0) ceramics offer one of the most stable capacitor dielectrics available. Capacitance change with temperature is 0 ±30ppm/°C which is less than ±0.3% C from -55°C to +125°C. Capacitance drift or hysteresis for COG (NPO) ceramics is negligible at less than ±0.05% versus up to ±2% for films. Typical capacitance change with life is less than ±0.1% for COG (NPO), one-fifth that shown by most other dielectrics. COG (NPO) formulations show no aging characteristics.

PART NUMBER (see page 4 for complete part number explanation)

NOTE: Contact factory for availability of Termination and Tolerance Options for Specific Part

Frequency, MHz

0.1

1000

100

Frequency, MHz

Frequency, MHz

COG (NP0) Dielectric

Parame	ter/Test	NP0 Specification Limits	Measuring (Conditions				
Operating Tem	perature Range	-55°C to +125°C	Temperature C	ycle Chamber				
•	itance Q	Within specified tolerance <30 pF: Q≥ 400+20 x Cap Value ≥30 pF: Q≥ 1000	Freq.: 1.0 MHz ± 10% 1.0 kHz ± 10% fo Voltage: 1.0	r cap > 1000 pF				
Insulation	Resistance	100,000MΩ or 1000MΩ - μ F, whichever is less	Charge device with rated @ room tem					
Dielectric	: Strength	No breakdown or visual defects	Charge device with 250% seconds, w/charge and d to 50 mA Note: Charge device with for 500V	ischarge current limited (max) 1 150% of rated voltage				
	Appearance	No defects						
Resistance to	Capacitance Variation	±5% or ±.5 pF, whichever is greater	Deflectio Test Time: 3					
Flexure	Q	Meets Initial Values (As Above)	V					
Stresses	Insulation Resistance	≥ Initial Value x 0.3	90 n	nm —				
Solder	rability	≥ 95% of each terminal should be covered with fresh solder	Dip device in eutectic sold 0.5 sec					
	Appearance	No defects, <25% leaching of either end terminal						
	Capacitance Variation	≤ ±2.5% or ±.25 pF, whichever is greater	Dip device in eutectic	solder at 260°C for				
Resistance to	Q	Meets Initial Values (As Above)	60sec- onds. Store at					
Solder Heat	Insulation Resistance	Meets Initial Values (As Above)	for 24 ± 2hours before measuring electric properties.					
	Dielectric Strength	Meets Initial Values (As Above)						
	Appearance	No visual defects	Step 1: -55°C ± 2°	30 ± 3 minutes				
	Capacitance Variation	≤ ±2.5% or ±.25 pF, whichever is greater	Step 2: Room Temp	≤ 3 minutes				
Thermal Shock	Q	Meets Initial Values (As Above)	Step 3: +125°C ± 2°	30 ± 3 minutes				
	Insulation Resistance	Meets Initial Values (As Above)	Step 4: Room Temp	≤ 3 minutes				
	Dielectric Strength	Meets Initial Values (As Above)	Repeat for 5 cycles 24 hours at roor					
	Appearance	No visual defects	_					
	Capacitance Variation	≤ ±3.0% or ± .3 pF, whichever is greater	Charge device with twic					
Load Life	Q (C=Nominal Cap)	≥ 30 pF: Q≥ 350 ≥10 pF, <30 pF: Q≥ 275 +5C/2 <10 pF: Q≥ 200 +10C	for 1000 hou Remove from test cha	rs (+48, -0).				
	Insulation Resistance	≥ Initial Value x 0.3 (See Above)	room temperatu before me	re for 24 hours				
	Dielectric Strength	Meets Initial Values (As Above)						
	Appearance	No visual defects						
	Capacitance Variation	≤ ±5.0% or ± .5 pF, whichever is greater	Store in a test chamber s	et at 85°C ± 2°C/ 85% +				
Load Humidity	Q	≥ 30 pF: Q≥ 350 ≥10 pF, <30 pF: Q≥ 275 +5C/2 <10 pF: Q≥ 200 +10C	5% relative humidi (+48, -0) with rated	ty for 1000 hours I voltage applied.				
	Insulation Resistance	≥ Initial Value x 0.3 (See Above)	Remove from chamber temperature for 24 ± 2 ho					
	Dielectric Strength	Meets Initial Values (As Above)						

COG (NP0) Dielectric

Capacitance Range

PREFERRED SIZES ARE SHADED

SIZE		0101*	02	01		0402				0603						0805						1206			
Solderi		Reflow Only	Reflov			low/W				eflow/W						low/Wave				Reflow/Wave					
Packagi	ing mm	All Paper 0.40 ± 0.02	All P 0.60 ±		-	All Pape 00 ± 0.				All Pape .60 ± 0.						/Emboss 01 ± 0.20	ed					oer/Embe 3.20 ± 0.			
(L) Length	(in.)	(0.016 ± 0.0008)	(0.024 ±			40 ± 0.				.60 ± 0. .063 ± 0						79 ± 0.20	8)					.126 ± 0.			
W) Width	mm	0.20 ± 0.02	0.30 ±			50 ± 0.				0.81 ± 0.						25 ± 0.20						1.60 ± 0.			
,	(in.) mm	(0.008 ± 0.0008) 0.10 ± 0.04	(0.011 ± 0.15 ±		<u> </u>	20 ± 0.0 25 ± 0.0				032 ± 0.						49 ± 0.00 50 ± 0.25						.063 ± 0. 0.50 ± 0.			
(t) Terminal	(in.)	(0.004 ± 0.0016)	(0.006 ±			23 ± 0. 10 ± 0.		0.35 ± 0.15 (0.014 ± 0.006)					20 ± 0.23						.020 ± 0.						
	WVDC	16	25	50	16	25	50	16	25	50	100	200	16	25	50	100	200	250	16	25	50	100	200	250	500
(pF)	0.5 1.0	В	A A	A	C	C	C	G G	G G	G G	G G		J	J	J	J	J	J	J	J	J	J	J	J	J
(61)	1.2	В	A	A	C	C	c	G	G	G	G		J	J	Ĵ	J	J	J	J	J	J	J	J	J	Ĵ
	1.5	В	Α	Α	С	С	С	G	G	G	G		J	J	J	J	J	J	J	J	J	J	J	J	J
	1.8 2.2	B B	A A	A	C	C	C	G G	G G	G G	G G		J	J	J	J	J	J	J	J	J	J	J	J	J
	2.7	В	A	A	С	С	С	G	G	G	G		J	Ĵ	Ĵ	Ĵ	Ĵ	Ĵ	Ĵ	J	Ĵ	J	Ĵ	Ĵ	J
	3.3	В	A	A	С	С	С	G	G	G	G		J	J	J	J	J	J	J	J	J	J	J	J	J
	3.9 4.7	B B	A	A	C	C	C	G G	G G	G G	G G		J	J	J	J	J	J	J	J	J	J	J	J	J
	5.6	В	Α	Α	С	С	С	G	G	G	G		J	J	J	J	J	J	J	J	J	J	J	J	J
	6.8	В	A	A	С	С	C	G	G	G	G		J	J	J	J	J	J	J	J	J	J	J	J	J
-	8.2 10	B B	A	A	C	C	C	G	G	G	G G	G	J	J	J	J	J	J	J	J	J	J	J	J	J
	12	В	Α	Α	С	С	С	G	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J	J	J
	15 18	B B	A	A	C	C	C	G G	G G	G	G G	G G	J	J	J	J	J	J	J	J	J	J	J	J	J
	22	В	A	A	C	C	C	G	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J	J	J
	27	В	Α	Α	С	С	С	G	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J	J	J
	33 39	B B	A A	A	C	C	C	G G	G G	G G	G G	G G	J	J	J	J	J	J	J	J	J	J	J	J	J
	47	В	Â	Â	C	c	c	G	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J	J	J
	56	В	A	A	С	С	С	G	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J	J	J
	68 82	B B	A	A	C	C	C	G G	G G	G G	G G	G G	J	J	J J	J	J J	J .1	J J	J	J	J	J	J J	J
	100	В	A	A	С	C	C	G	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J	J	J
	120				C	C	C	G	G G	G	G G	G	J	J J	J	J	J J	J	J	J	J	J	J	J	J
	150 180				С	C	C	G	G	G G	G	G G	J	J	J	J	J	N	J	J	J	J	J	J	J
	220				С	С	С	G	G	G	G	G	J	J	J	J	N	N	J	J	J	J	J	J	J
	270 330				C	C	C	G G	G G	G G	G G		J	J	J	J	N N	N N	J	J	J	J	J	J	J
	390				С	C	c	G	G	G	G		J	J	J	J	N	N	J	J	J	J	J	J	J
	470				С	С	С	G	G	G	G		J	J	J	J	N	N	J	J	J	J	J	J	J
	560 680				C	C	C	G G	G G	G G	G G		J	J	J	J	N N	N N	J	J	J	J	J	J	J
	750				С	c	С	G	G	G	G		J	Ĵ	Ĵ	J	N	N	Ĵ	Ĵ	Ĵ	Ĵ	J	Ĵ	J
	820 1000				C	C	C	G	G G	G	G G		J	J	J	J	N	N	J	J	J	J	J	J	J
	1200				C	C	C	G	G	G G	G		J	J	J	J	N P	N P	J	J	J	J	J	J	J
	1500							G	G	G			J	J	J	J	Р	Р	J	J	J	М	Q	Р	Р
	1800 2200							G G	G G	G G			J P	J P	J P	J P	P P	P P	J	J	M M	P P	Q Q	P P	P P
	2700							G	G	G			P	P	P	P	P	P	J	J	M	P	Q	P	P
	3300							G	G	G			Р	Р	Р	Р	Р	Р	J	J	М	Р	Q	X	P
	3900 4700							G G	G G	G			P P	P P	P P	P P	P P	P P	J	J	M M	P P	X	X X	X
	5600												Р	Р	Р				J	J	M	Р	Х	Х	Х
	6800												Р	Р	P				M P	М	М	P	X	X	Х
Сар	8200 0.010												P P	P P	P P				P	P P	P P	P P	X	X	
(μF)	0.012												P	P	P				Х	X	X	Х			
	0.015 0.018	<u> </u>	>		 	l	'												X	X	X	X			
	0.018	کا سی				2	•												X	X	X	X			
	0.027	_ ~ (\)) ÎT													х	Х	X				
	0.033			1 -	سلر		-												X	X	X	Х			
	0.039		$\overline{}$					L	L					L	L			L	x	X	X				
	0.068		4 ∱	•															Х	Х	Х				
	0.082		'			l	I												Х	X	Х				
WVDC	2	16	25	50	16	25	50	16	25	50	100	200	16	25	50	100	200	250	16	25	50	100	200	250	500
SIZE		0101*	02	01		0402				0603						0805						1206			

Letter	Α	В	С	Е	G	J	K	М	N	Р	Q	Х	Υ	Z
Max. Thickness	0.33 (0.013)	0.22 (0.009)	0.56 (0.022)	0.71 (0.028)	0.90 (0.035)	0.94 (0.037)	1.02 (0.040)	1.27 (0.050)	1.40 (0.05 5)	1.52 (0.060)	1.78 (0.070)	2.29 (0.090)	2.54 (0.100)	2.79 (0.110)
	PAPER									EMB	OSSED			

COG (NP0) Dielectric

Capacitance Range

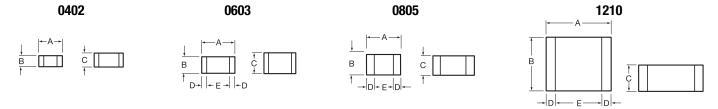
PREFERRED SIZES ARE SHADED

SIZE				1210					1812				1825			2220			2225	
Soldering	g			Reflow Only	,				Reflow Only	/			Reflow Onl	y		Reflow Onl	у	F	teflow Only	,
Packagin	ng		Pa	per/Embos					II Embosse				All Embosse			II Embosse			l Embosse	
(L) Length	mm (in.)			3.20 ± 0.20 0.126 ± 0.00	8)			(0	4.50 ± 0.30 .177 ± 0.01	2)		(0	4.50 ± 0.30 0.177 ± 0.01	2)	(0	5.70 ± 0.40 .225 ± 0.01	16)	(0.	5.72 ± 0.25 225 ± 0.010	0)
W) Width	mm (in.)			2.50 ± 0.20 0.098 ± 0.00					3.20 ± 0.20 .126 ± 0.00				6.40 ± 0.40 0.252 ± 0.01			5.00 ± 0.40			5.35 ± 0.25 250 ± 0.010	
(t) Terminal	mm			0.50 ± 0.25					0.61 ± 0.36				0.61 ± 0.36			0.64 ± 0.39		(0.64 ± 0.39	
(t) Terriman	(in.)	25	50	0.020 ± 0.01		500	25	50 50	.024 ± 0.01	4) 200	500		0.024 ± 0.01 100	200	50	.025 ± 0.01		(0. 50	025 ± 0.01	
Сар	WVDC 3.9	25	50	100	200	500	25	50	100	200	500	50	100	200	50	100	200	50	100	200
(pF)	4.7																			
	5.6																			
	6.8																			
	8.2 10	M	М	М	M	М	Р	P	P	P	P						<u> </u>			\vdash
	12	M	M	M	M	M	P	P	P	P	P								N-	
	15	М	М	М	М	М	Р	Р	Р	Р	Р						\leq) ÎT -	
	18	М	М	M	М	М	P	P	P	P	P)	المر ا	→	
	22 27	M M	M M	M M	M M	M M	P P	P P	P P	P P	P P						$\overline{}$			
	33	M	M	M	M	M	P	P	P	P	P				1	†	₹ t	1	-	\vdash
	39	М	М	М	М	М	Р	Р	Р	Р	Р						'			
	47	P	P	P	P	P	P	P	P	P	P									\perp
	56 68	P P	P P	P P	P P	P P	P P	P P	P P	P P	P P									
	82	P	P	P	P	P	P	P	P	P	P									
	100	P	Р	Р	P	P	P	P	Р	Р	Р									
	120	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р									
	150 180	P P	P P	P P	P P	P P	P P	P P	P P	P P	P P									\vdash
	220	P	P	P	P	P	P	P	P	P	P									
	270	P	P	P	P	P	P	P	P	P	P									
	330	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р									
	390 470	P P	P P	P P	P P	P P	P P	P P	P P	P P	P P									
	560	P	P	P	P	P	P	P	P	P	P									\vdash
	680	P	P	P	P	P	P	P	P	P	P									
	820	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р									
	1000 1200	P P	P P	P P	P P	P P	P P	P P	P P	P P	P P	M M	M M	M M				M M	M M	P P
	1500	P	P	P	P	P	P	P	P	P	P	M	M	M				M	M	P
	1800	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	М	М	М				М	М	Р
	2200	P	P	P	P	P	P	P	P	P	Р	X	X	М				М	М	P
	2700 3300	P P	P P	P P	P P	P P	P P	P P	P P	P P	Q	X	X	M X		-	X	M M	M M	P P
	3900	P	P	P	P	P	P	P	P	P	Q	x	x	x			x	M	M	P
	4700	Р	Р	Р	Р	Р	Р	Р	Р	Р	Υ	Х	Х	Х	Х	Х	Х	М	М	Р
	5600	Р	Р	P	Р	P	Р	Р	P	P	Y	Х	X	X	X	X	X	М	М	Р
	6800 8200	P P	P P	P P	X X	X X	P P	P P	Q Q	Q Q	Y	X	X	X X	X	X	X	M M	M M	P P
Сар	0.010	P	P	X	X	X	P	P	Q	Q	Y	X	X	X	X	X	X	M	M	P
(pF)	0.012	Х	Х	x	х	Х	Р	Р	Q	х	Y	x	X	х	x	X	x	М	М	Р
	0.015	X	X	X	Z	Z	P	P	Q	X	Y	X	X	X	X	X	X	M	M	Y
	0.018 0.022	X X	X	Z Z	Z Z		P P	P P	X	X X	Υ	X	X	X	X	X	X	M M	M Y	Y
	0.027	X	Z	Z	Z		Q Q	X	X	z		X	X	Ϋ́	x	×		P	Y	Y
	0.033	Х	Z	Z	Z		Q	Х	Х	Z		Х	Х		Х	Х		Х	Y	Y
	0.039	Z	Z	Z			Х	X	Z	Z		X			Y			X	Y	Υ
	0.047 0.068	Z	Z	Z			X Z	X Z	Z	Z	-	Х			Y Z	-		X	Z	\vdash
	0.082						Z	Z	Z						Z			x	Z	
	0.1						Z	Z	Z						Z			Z	Z	
	WVDC	25	50	100	200	500	25	50	100	200	500	50	100	200	50	100	200	50	100	200
	SIZE			1210					1812				1825			2220			2225	

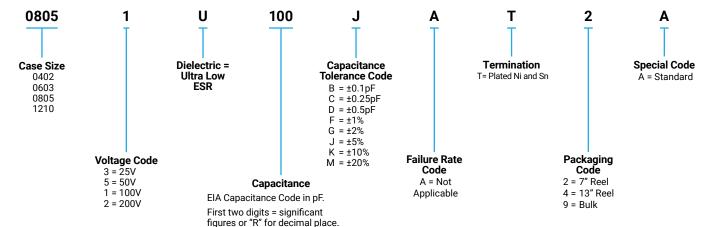
L	etter	Α	В	С	E	G	J	K	М	N	Р	Q	Х	Υ	Z
N	Лах.	0.33	0.22	0.56	0.71	0.90	0.94	1.02	1.27	1.40	1.52	1.78	2.29	2.54	2.79
Thi	ckness	(0.013)	(0.009)	(0.022)	(0.028)	(0.035)	(0.037)	(0.040)	(0.050)	(0.055)	(0.060)	(0.070)	(0.090)	(0.100)	(0.110)
		PAPER						EMBOSSED							

U Dielectric

RF/Microwave C0G (NP0) Capacitors (RoHS)


Ultra Low ESR, "U" Series, COG (NP0) Chip Capacitors

GENERAL INFORMATION


"U" Series capacitors are COG (NPO) chip capacitors specially designed for "Ultra" low ESR for applications in the communications market. Max ESR and effective capacitance are met on each value producing lot to lot uniformity. Sizes available are EIA chip sizes 0603, 0805, and 1210.

DIMENSIONS: inches (millimeters)

Size	A	В	С	D	E
0402	0.039±0.004 (1.00±0.1)	0.020±0.004 (0.50±0.1)	0.024 (0.6) max	0.010 ± 0.006 (0.25 ± 0.15)	0.014 (0.36) min
0603	0.060±0.010 (1.52±0.25)	0.030±0.010 (0.76±0.25)	0.036 (0.91) max	0.010 ± 0.005 (0.25 ± 0.13)	0.030 (0.76) min
0805	0.079±0.008 (2.01±0.2)	0.049±0.008 (1.25±0.2)	0.045 (1.15mm) max	0.020 ± 0.010 (0.51 ± 0.254)	0.020 (0.51) min
1210	0.126±0.008 (3.2±0.2)	0.098±0.008 (2.49±0.2)	0.055 (1.40mm) max	0.025 ± 0.015 (0.635 ± 0.381)	0.040 (1.02) min

HOW TO ORDER

Third digit = number of zeros or after "R" significant figures.

ELECTRICAL CHARACTERISTICS

Capacitance Values and Tolerances:

Size 0402 - 0.2 pF to 22 pF @ 1 MHz Size 0603 - 1.0 pF to 100 pF @ 1 MHz Size 0805 - 1.6 pF to 160 pF @ 1 MHz Size 1210 - 2.4 pF to 1000 pF @ 1 MHz

Temperature Coefficient of Capacitance (TC):

0±30 ppm/°C (-55° to +125°C)

Insulation Resistance (IR):

 $10^{12}\,\Omega$ min. @ 25°C and rated WVDC $10^{11}\,\Omega$ min. @ 125°C and rated WVDC

Working Voltage (WVDC):

 Size
 Working Voltage

 0402
 50, 25 WVDC

 0603
 200, 100, 50 WVDC

 0805
 200, 100 WVDC

 1210
 200, 100 WVDC

Dielectric Working Voltage (DWV):

250% of rated WVDC

Equivalent Series Resistance Typical (ESR):

0402 - See Performance Curve, page 300
0603 - See Performance Curve, page 300
0805 - See Performance Curve, page 300
1210 - See Performance Curve, page 300

Marking

Laser marking EIA J marking standard (except 0603) (capacitance code and tolerance upon request).

LEAD-FREE

LEAD-FREE COMPATIBLE COMPONENT RoHS

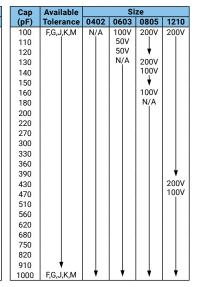
COMPLIANT

MILITARY SPECIFICATIONS

Meets or exceeds the requirements of MIL-C-55681

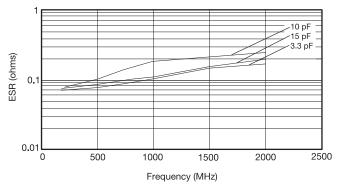
U Dielectric

RF/Microwave C0G (NP0) Capacitors (RoHS)

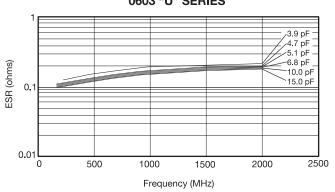

CAPACITANCE RANGE

Сар	Available							
(pF)	Tolerance	0402	0603	0805	1210			
0.2	B,C	50V	N/A	N/A	N/A			
0.3								
0.4	♦							
0.5	B,C							
0.6	B,Ç,D							
0.7								
0.8	🔻							
0.9	B,C,D	♦	♦	♦	🕈			

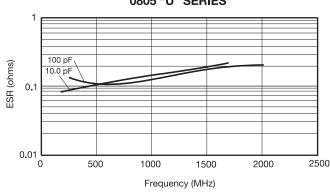
Cap	Available		Si	ze	
(pF)	Tolerance	0402	0603	0805	1210
1.0	B,C,D	50V	200V	200V	200V
1.1					
1.2					
1.3					
1.4					
1.5					
1.6					
1.7					
1.8					
1.9					
2.0					
2.1					
2.2					
2.4					
2.7					
3.0					
3.3					
3.6					
3.9					
4.3					
4.7					
5.1	<u> </u>				
5.6	, v				
6.2	B,C,D	↓	↓	↓	↓
6.8	B,C,J,K,M				_ '

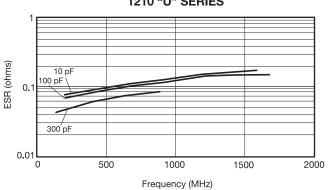

Cap	Available			<u> </u>	
(pF)	Tolerance	0402	0603	0805	1210
7.5	B,C,J,K,M	50V	200V	200V	200V
8.2	♦				
9.1	B,C,J,K,M				
10	F,G,J,K,M				
11					
12					
13					
15			♦		
18			200V		
20			100V		
22					
24					
27		♦			
30		50V			
33		N/A			
36					
39					
43					
47					
51					
56					
68					
75					
82			l		
91	■ ▼	_ ▼	▼	- ▼	_ •

Can Available

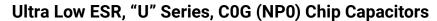


ULTRA LOW ESR, "U" SERIES


TYPICAL ESR vs. FREQUENCY 0402 "U" SERIES


TYPICAL ESR vs. FREQUENCY 0603 "U" SERIES

TYPICAL ESR vs. FREQUENCY 0805 "U" SERIES



TYPICAL ESR vs. FREQUENCY 1210 "U" SERIES

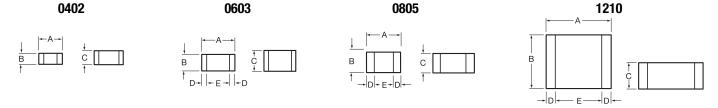
ESR Measured on the Boonton 34A

RF/Microwave C0G (NP0) Capacitors

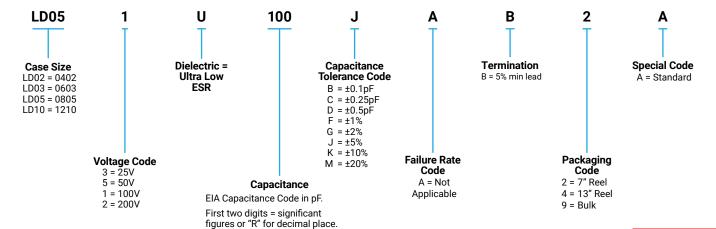
TYPICAL SERIES RESONANT FREQUENCY "U" SERIES CHIP

U Dielectric

RF/Microwave C0G (NP0) Capacitors (Sn/Pb)


Ultra Low ESR, "U" Series, COG (NP0) Chip Capacitors

GENERAL INFORMATION


"U" Series capacitors are COG (NPO) chip capacitors specially designed for "Ultra" low ESR for applications in the communications market. Max ESR and effective capacitance are met on each value producing lot to lot uniformity. Sizes available are EIA chip sizes 0603, 0805, and 1210.

DIMENSIONS: inches (millimeters)

Size	A	В	С	D	E
0402	0.039±0.004 (1.00±0.1)	0.020±0.004 (0.50±0.1)	0.024 (0.6) max	0.010 ± 0.006 (0.25 ± 0.15)	0.014 (0.36) min
0603	0.060±0.010 (1.52±0.25)	0.030±0.010 (0.76±0.25)	0.036 (0.91) max	0.010±0.005 (0.25±0.13)	0.030 (0.76) min
0805	0.079±0.008 (2.01±0.2)	0.049±0.008 (1.25±0.2)	0.045 (1.15mm) max	0.020±0.010 (0.51±0.254)	0.020 (0.51) min
1210	0.126±0.008 (3.2±0.2)	0.098±0.008 (2.49±0.2)	0.055 (1.40mm) max	0.025±0.015 (0.635±0.381)	0.040 (1.02) min

HOW TO ORDER

Third digit = number of zeros or after "R" significant figures.

Not RoHS Compliant

ELECTRICAL CHARACTERISTICS

Capacitance Values and Tolerances:

Size 0402 - 0.2 pF to 22 pF @ 1 MHz Size 0603 - 1.0 pF to 100 pF @ 1 MHz Size 0805 - 1.6 pF to 160 pF @ 1 MHz

Size 1210 - 2.4 pF to 1000 pF @ 1 MHz

Temperature Coefficient of Capacitance (TC):

0±30 ppm/°C (-55° to +125°C)

Insulation Resistance (IR):

 $10^{12}\,\Omega$ min. @ 25°C and rated WVDC $10^{11}\,\Omega$ min. @ 125°C and rated WVDC

Working Voltage (WVDC):

Size Working Voltage
0402 - 50, 25 WVDC
0603 - 200, 100, 50 WVDC
0805 - 200, 100 WVDC
1210 - 200, 100 WVDC

Dielectric Working Voltage (DWV):

250% of rated WVDC

Equivalent Series Resistance Typical (ESR):

040 - See Performance Curve, page 306 0603 - See Performance Curve, page 306 0805 - See Performance Curve, page 306 1210 - See Performance Curve, page 306

Marking:

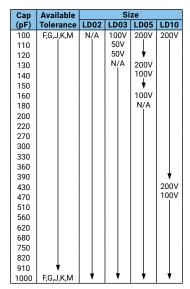
Laser marking EIA J marking standard (except 0603) (capacitance code and tolerance upon request).

Military Specifications

Meets or exceeds the requirements of MIL-C-55681

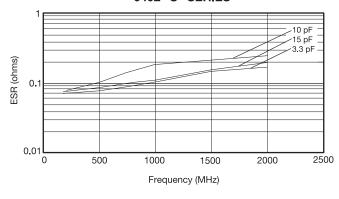
U Dielectric

RF/Microwave C0G (NP0) Capacitors (Sn/Pb)

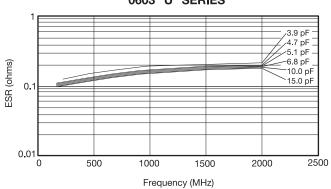


CAPACITANCE RANGE

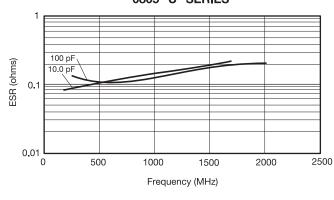
Tolerance	1 DO2			
	LDUZ	LD03	LD05	LD10
B,C	50V	N/A	N/A	N/A
♦				
B,C				
B,Ç,D				
▼				
B,C,D	♦	♦	🕈	♦
	B,C,D	B,C,D	B,C,D ↓	B,C,D

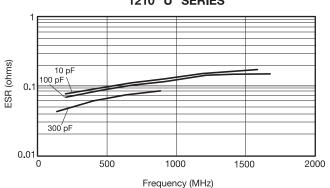

Сар	Available			Size			
(pF)	Tolerance	Tolerance LD02 LD03 LD		LD05	LD10		
1.0	B,Ç,D	50V	200V	200V	200V		
1.1							
1.2							
1.3							
1.4							
1.5							
1.6							
1.7							
1.8							
1.9							
2.0							
2.1							
2.2							
2.4							
2.7							
3.0							
3.3							
3.6							
3.9							
4.3							
4.7							
5.1	↓						
5.6	B,C,D						
6.2	B,C,J,K,M	↓	♦	↓	♦		
6.8	ا۱۱۵٫۵٫۵٫۵٫۵ ا						

Сар	Available			ze	
(pF)	Tolerance	LD02	LD03	LD05	LD10
7.5	B,C,J,K,M	50V	200V	200V	200V
8.2	♦				
9.1	B,C,J,K,M				
10	F,G,J,K,M				
11					
12					
13					
15			▼		
18			200V		
20			100V		
22					
24					
27		🔻			
30		50V			
33		N/A			
36					
39					
43					
47					
51					
56					
68					
75					
82					
91	▼	▼	▼	▼	♥



ULTRA LOW ESR, "U" SERIES

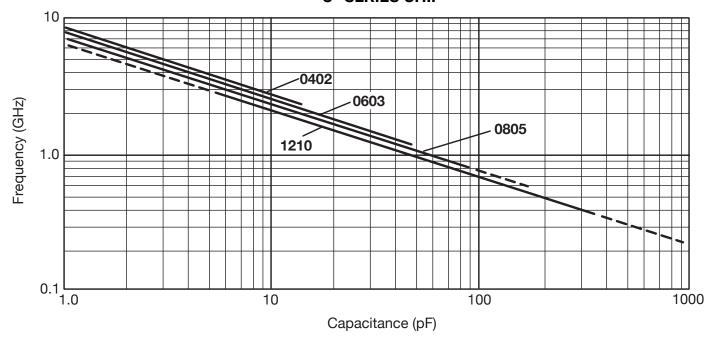

TYPICAL ESR vs. FREQUENCY 0402 "U" SERIES


TYPICAL ESR vs. FREQUENCY 0603 "U" SERIES

TYPICAL ESR vs. FREQUENCY 0805 "U" SERIES

TYPICAL ESR vs. FREQUENCY 1210 "U" SERIES

ESR Measured on the Boonton 34A


RF/Microwave Capacitors

RF/Microwave C0G (NP0) Capacitors

Ultra Low ESR "U" Series, C0G (NP0) Capacitors (Sn/Pb)

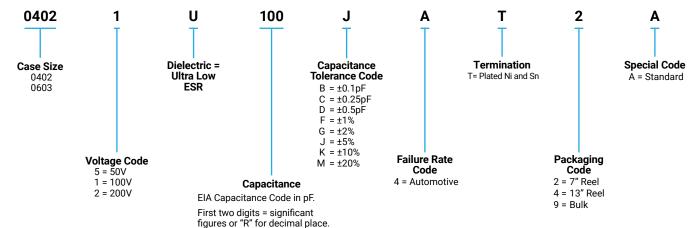
TYPICAL SERIES RESONANT FREQUENCY "U" SERIES CHIP

U Dielectric

RF/Microwave Automotive C0G (NP0) Capacitors (RoHS)

AEC Q200 Qualified Ultra Low ESR, "U" Series, C0G (NP0) Chip Capacitors

GENERAL INFORMATION


Automotive "U" Series capacitors are C0G (NP0) chip capacitors specially designed for "Ultra" low ESR for applications in the automotive market. Max ESR and effective capacitance are met on each value producing lot to lot uniformity. Sizes available are EIA chip sizes 0402 and 0603.

0402 (millimeters) 0402 0603

inches (mm)

Size	Α	В	С	D	Е
0402	0.039±0.004 (1.00±0.1)	0.020±0.004 (0.50±0.1)	0.024 max (0.6)	N/A	N/A
0603	0.060±0.010 (1.52±0.25)	0.030±0.010 (0.76±0.25)	0.036 max (0.91)	0.010±0.005 (0.25±0.13)	0.030 min (0.76)

HOW TO ORDER

LEAD-FREE LEAD-FREE COMPATIBLE COMPONENT

ELECTRICAL CHARACTERISTICS

Capacitance Values and Tolerances:

Size 0402 - 0.2 pF to 22 pF @ 1 MHz Size 0603 - 1.0 pF to 100 pF @ 1 MHz

Temperature Coefficient of Capacitance (TC):

0±30 ppm/°C (-55° to +125°C)

Insulation Resistance (IR):

 $10^{12}\,\Omega$ min. @ 25°C and rated WVDC $10^{11}\,\Omega$ min. @ 125°C and rated WVDC

Working Voltage (WVDC):

Size Working Voltage 0402 - 100, 50, 25 WVDC 0603 - 200, 100, 50 WVDC

Dielectric Working Voltage (DWV):

250% of rated WVDC

Third digit = number of zeros or after "R" significant figures.

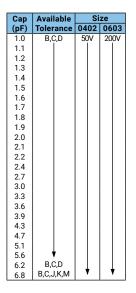
Equivalent Series Resistance Typical (ESR):

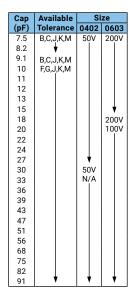
0402 - See Performance Curve, page 3030603 - See Performance Curve, page 303

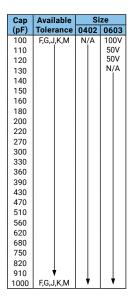
Automotive Specifications

Meets or exceeds the requirements of AEC Q200

U Dielectric

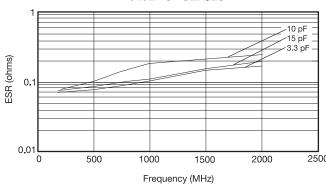

RF/Microwave Automotive C0G (NP0) Capacitors (RoHS)

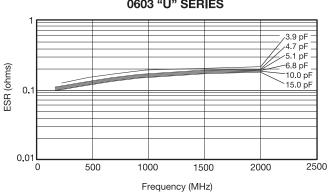



AEC Q200 Qualified, Ultra Low ESR, "U" Series, C0G (NP0) Chip Capacitors

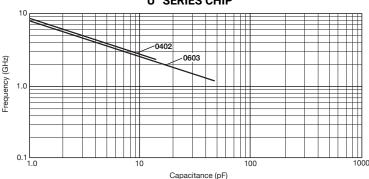
CAPACITANCE RANGE

Cap	Available	Si	ze
(pF)	Tolerance	0402	0603
0.2	B,C	50V	N/A
0.3			
0.4	♦		
0.5	B,C		
0.6	B,C,D		
0.7			
0.8	▼		
0.9	B,C,D	*	🗡





ULTRA LOW ESR, "U" SERIES


TYPICAL ESR vs. FREQUENCY 0402 "U" SERIES

TYPICAL ESR vs. FREQUENCY 0603 "U" SERIES

TYPICAL
SERIES RESONANT FREQUENCY
"U" SERIES CHIP

Communication Kits "U" Series

0402

Kit 5000 UZ					
Cap. Value PF	Tolerance	Cap. Value pF	Tolerance		
0.5		4.7			
1.0		5.6	D (1 0 1 = F)		
1.5		6.8	B (± 0.1pF)		
1.8	B (±0.1pF)	8.2			
2.2	ь (±0.1рг)	10.0			
2.4		12.0	I (±E%)		
3.0		15.0	J (±5%)		
3.6					

^{***25} each of 15 values

0805

Kit 3000 UZ						
Cap. Value PF	Tolerance	Cap. Value pF	Tolerance			
1.0		15.0				
1.5		18.0				
2.2	B (±0.1pF)	22.0				
2.4		24.0				
2.7		27.0				
3.0		33.0				
3.3		36.0	J (±5%)			
3.9		39.0	3 (±3%)			
4.7		47.0				
5.6		56.0				
7.5		68.0				
8.2		82.0				
10.0	J (±5 %)	100.0				
12.0	3 (±3 %)	130.0				

^{***25} each of 30 values

0603

Kit 4000 UZ						
Cap. Value PF	Tolerance	Cap. Value pF	Tolerance			
1.0		6.8				
1.2		7.5	B (±0.1pF)			
1.5		8.2				
1.8		10.0				
2.0		12.0				
2.4	B (±0.1pF)	15.0				
2.7	Б (±0.1рі)	18.0				
3.0		22.0	J (±5%)			
3.3		27.0				
3.9		33.0				
4.7		39.0				
5.6		47.0				

^{***25} each of 24 values

1210

Kit 3500 UZ						
Cap. Value PF	Tolerance	Cap. Value pF	Tolerance			
2.2		36.0				
2.7		39.0				
4.7		47.0				
5.1	B (±0.1pF)	51.0				
6.8		56.0				
8.2		68.0				
9.1		82.0				
10.0		100.0	J (±5%)			
13.0		120.0				
15.0		130.0				
18.0	1/+ 5 %)	240.0				
20.0	J (± 5 %)	300.0				
24.0		390.0				
27.0		470.0				
30.0		680.0				

^{***25} each of 30 values

X8R/X8L Dielectric

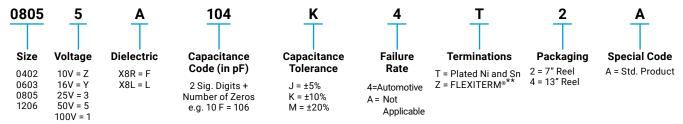
General Specifications

AVX has developed a range of multilayer ceramic capacitors designed for use in applications up to 150° C. These capacitors are manufactured with an X8R and an X8L dielectric material. X8R material has capacitance variation of \pm 15% between -55°C and +150°C. The X8L material has capacitance variation of \pm 15% between -55°C to 125°C to 125°C and +15/40% from +125°C to +150°C.

The need for X8R and X8L performance has been driven by customer requirements for parts that operate at elevated temperatures. They provide a highly reliable capacitor with low loss and stable capacitance over temperature.

They are ideal for automotive under the hood sensors, and various industrial applications. Typical industrial application would be drilling monitoring system. They can also be used as bulk capacitors for high temperature camera modules.

Size Soldering


(pF)

684

105 155 225 WVDC

0.68

2.2 WVDC Both X8R and X8L dielectric capacitors are automotive AEC-Q200 qualified. Optional termination systems, tin, FLEXITERM® and conductive epoxy for hybrid applications are available. Providing this series with our FLEXITERM® termination system provides further advantage to customers by way of enhanced resistance to both, temperature cycling and mechanical damage.

NOTE: Contact factory for availability of Termination and Tolerance Options for Specific Part Numbers.

Reflow/

25V

03	0805		1206		
/Wave	Reflow/Wave		Reflow/Wave		
50V	25V	50V	25V	50V	
G					
G	J	J			
G	J	J			
G	J	J			
_					

471		470	G	G	J	J		
681		680	G	G	J	J		
102		1000	G	G	J	J	J	J
152		1500	G	G	J	J	J	J
222		2200	G	G	J	J	J	J
332		3300	G	G	J	J	J	J
472		4700	G	G	J	J	J	J
682		6800	G	G	J	J	J	J
103	Cap	0.01	G	G	J	J	J	J
153	(µF)	0.015	G	G	J	J	J	J
223		0.022	G	G	J	J	J	J
333		0.033	G	G	J	J	J	J
473		0.047	G	G	J	J	J	J
683		0.068	G		N	N	М	M
104		0.1			N	N	М	М
154		0.15			N	N	М	М
224		0.22			N		М	М
334		0.33					М	М
474		0.47					N.4	

Size		0603	0805	1206	1210
Solderin	ıg	Reflow/Wave	Reflow/Wave	Reflow/Wave	Reflow/Wave
Packagii	ng	All Paper	Paper/Embossed	Paper/Embossed	Paper/Embossed
(1) 1	mm	1.60 ± 0.15	2.01 ± 0.20	3.20 ± 0.20	3.30 ± 0.4
(L) Length	(in)	(0.063 ± 0.006)	(0.079 ± 0.008)	(0.126 ± 0.008)	(0.130 ± 0.016)
(W) Width	mm	0.81 ± 0.15	1.25 ± 0.20	1.60 ± 0.20	2.50 ± 0.20
(vv) vvidili	(in)	(0.032 ± 0.006)	(0.049 ± 0.008)	(0.063 ± 0.008)	(0.098 ± 0.008)
(t) Terminal	mm	0.35 ± 0.15	0.50 ± 0.25	0.50 ± 0.25	0.50 ± 0.25
(t) Terminal	(in)	(0.014 ± 0.006)	(0.020 ± 0.010)	(0.020 ± 0.010)	(0.020 ± 0.010)

25V

50V

50V

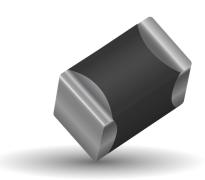
50V

X8L

	Size		0603			0805			12	06			1210	
•	Soldering	Ref	flow/W	ave	Ref	flow/W	ave		Reflow	/Wave		Ref	flow/W	ave
	WVDC	25V	50V	100V	25V	50V	100V	16V	25V		100V	10V	50V	100V
271	Cap 270	G	G											
331	(pF) 330	G	G	G	J	J	J							
471	470	G	G	G	J	J	J							
681	680	G	G	G	J	J	J							
102	1000	G	G	G	J	J	J		J	J				
152	1500	G	G	G	J	J	J		J	J	J			
182	1800	G	G	G	J	J	J		J	J	J			
222	2200	G	G	G	J	J	J		J	J	J			
272	2700	G	G	G	J	J	J		J	J	J			
332	3300	G	G	G	J	J	J		J	J	J			
392	3900	G	G	G	J	J	J		J	J	J			
472	4700	G	G	G	J	J	J		J	J	J			
562	5600	G	G	G	J	J	J		J	J	J			
682	6800	G	G	G	J	J	J		J	J	J			
822	8200	G	G	G	J	J	J		J	J	J			
103	Cap 0.01	G	G	G	J	J	J		J	J	J			
123	(μF) 0.012	G	G		J	J	J		J	J	J			
153	0.015	G	G		J	J	J		J	J	J			
183	0.018	G	G		J	J	J		J	J	J			
223	0.022	G	G		J	J	J		J	J	J			
273	0.027	G	G		J	J	J		J	J	J			
333	0.033	G	G		J	J	N		J	J	J			
393	0.039	G	G		J	J	N		J	J	J			
473	0.047	G	G		J	J	N		J	J	J			
563	0.056	G	G		J	J	N		J	J	J			
683 823	0.068	G G	G		J	J	N N		J	J	J		_	_
104	0.082	G	G		J	J	N		J	J	M			
124	0.12	G	G		J	N	IN		J	J	M			-
154	0.12				J	N	_	J	J	J	Q		_	_
184	0.13				N	N		J	J	J	Q			
224	0.18				N	N	_	J	J	J	Q			-
274	0.22		-		N	- 14		J	M	M	Q	-		
334	0.27				N	-		J	M	M	Q			
394	0.39				N			M	M	P	Q			
474	0.47				N			M	M	P	Q			
684	0.68				N			M	M	P	Q			
824	0.82				N			M	M	P	Q			
105	1				N			M	M	P	Q			
155	1.5							M	M					
225	2.2							M	M				Z	Z
475													Z	
106												Z		
	WVDC	25V	50V	100V	25V	50V	100V	16V	25V	50V	100V	10V	50V	100V
	SIZE		0603			0805				06			1210	

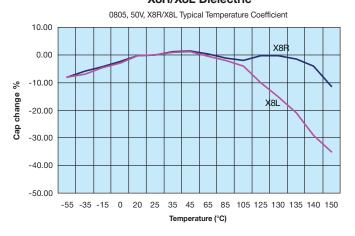
Letter	Α	С	E	G	J	K	М	N	Р	Q	Χ	Υ	Z
Max.	0.33	0.56	0.71	0.9	0.94	1.02	1.27	1.4	1.52	1.78	2.29	2.54	2.79
Thickness	(-0.013)	(-0.022)	(-0.028)	(-0.035)	(-0.037)	(-0.04)	(-0.05)	(-0.055)	(-0.06)	(-0.07)	(-0.09)	(-0.1)	(-0.11)
			PAPER						EMBO:	SSED			

X8R/X8L Dielectric


General Specifications

APPLICATIONS FOR X8R AND X8L CAPACITORS

- · All market sectors with a 150°C requirement
- Automotive on engine applications
- · Oil exploration applications
- · Hybrid automotive applications
 - Battery control
 - Inverter / converter circuits
 - Motor control applications
 - Water pump
- · Hybrid commercial applications
 - Emergency circuits
 - Sensors
 - Temperature regulation


ADVANTAGES OF X8R AND X8L MLC CAPACITORS

- Both ranges are qualified to the highest automotive AEC-Q200 standards
- Excellent reliability compared to other capacitor technologies
- RoHS compliant
- Low ESR / ESL compared to other technologies
- · Tin solder finish
- FLEXITERM® available
- · Epoxy termination for hybrid available
- 100V range available

ENGINEERING TOOLS FOR HIGH VOLTAGE MLC CAPACITORS

- Samples
- Technical Articles
- · Application Engineering
- · Application Support

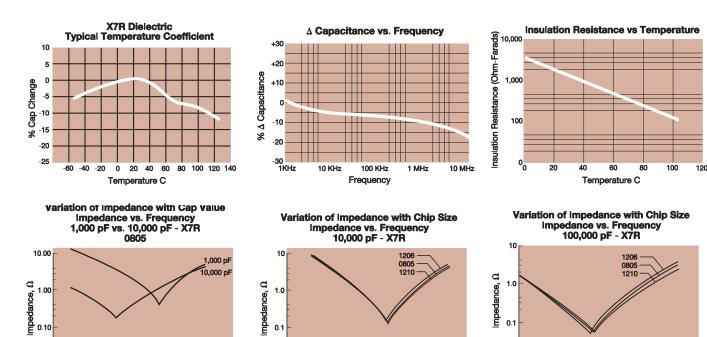
X8R/X8L Dielectric

X8R/X8L Dielectric

Parame	ter/Test	X8R/X8L Specification Limits	Measuring (Conditions
Operating Tem	perature Range	-55°C to +150°C	Temperature C	ycle Chamber
Сарас	itance	Within specified tolerance	From : 1.0 k	U= 1 100/
Dissipati	on Factor	≤ 2.5% for ≥ 50V DC rating ≤ 3.5% for 25V DC and 16V DC rating	Freq.: 1.0 k Voltage: 1.0\	M2 ± 10% Vrms ± .2V
Insulation	Resistance	100,000ΜΩ or 1000ΜΩ - μF, whichever is less	Charge device with rated @ room tem	voltage for 120 ± 5 secs p/humidity
Dielectric	: Strength	No breakdown or visual defects	Charge device with 250 1-5 seconds, w/charge limited to 50 Note: Charge device with for 500V	and discharge current mA (max) n 150% of rated voltage
	Appearance	No defects	Deflection	n: 2mm
Resistance to	Capacitance Variation	≤ ±12%	Test Time: 3	
Flexure Stresses	Dissipation Factor	Meets Initial Values (As Above)		
	Insulation Resistance	≥ Initial Value x 0.3	90 n	nm —
Solder	rability	≥ 95% of each terminal should be covered with fresh solder	Dip device in eutectic sold 0.5 sec	
	Appearance	No defects, <25% leaching of either end terminal		
	Capacitance Variation	≤ ±7.5%	Dip device in eutectic	ander at 26000 for
Resistance to Solder Heat	Dissipation Factor	Meets Initial Values (As Above)		room temperature for
	Insulation Resistance	Meets Initial Values (As Above)	properties.	J
	Dielectric Strength	Meets Initial Values (As Above)		
	Appearance	No visual defects	Step 1: -55°C ± 2°	30 ± 3 minutes
	Capacitance Variation	≤ ±7.5%	Step 2: Room Temp	≤ 3 minutes
Thermal Shock	Dissipation Factor	Meets Initial Values (As Above)	Step 3: +125°C ± 2°	30 ± 3 minutes
	Insulation Resistance	Meets Initial Values (As Above)	Step 4: Room Temp	≤ 3 minutes
	Dielectric Strength	Meets Initial Values (As Above)	Repeat for 5 cycles 24 ± 2 hours at ro	
	Appearance	No visual defects		
	Capacitance Variation	≤ ±12.5%	Charge device with 1.5 r test chamber set	
Load Life	Dissipation Factor	≤ Initial Value x 2.0 (See Above)	for 1000 hou	
	Insulation Resistance	≥ Initial Value x 0.3 (See Above)	Remove from test chamb temperature for 24 ± 2 ho	
	Dielectric Strength	Meets Initial Values (As Above)		
	Appearance	No visual defects		
	Capacitance Variation	≤ ±12.5%	Store in a test chamber s 5% relative humidi	
Load Humidity	Dissipation Factor	≤ Initial Value x 2.0 (See Above)	(+48, -0) with rated	l voltage applied.
. idillidity	Insulation Resistance	≥ Initial Value x 0.3 (See Above)	Remove from chamber temperature and humidity measu	for 24 ± 2 hours before
	Dielectric Strength	Meets Initial Values (As Above)	ineasu	y

General Specifications

X7R formulations are called "temperature stable" ceramics and fall into EIA Class II materials. X7R is the most popular of these intermediate dielectric constant materials. Its temperature variation of capacitance is within ±15% from -55°C to +125°C. This capacitance change is non-linear.


Capacitance for X7R varies under the influence of electrical operating con-ditions such as voltage and frequency.

X7R dielectric chip usage covers the broad spectrum of industrial applications where known changes in capacitance due to applied voltages are acceptable.

PART NUMBER (SEE PAGE 4 FOR COMPLETE PART NUMBER EXPLANATION)

0805	<u>5</u>	C	103	M	A	<u>T</u>	2	A
Size (L" x W")	Voltage 4V = 4 6.3V = 6 10V = Z 16V = Y 25V = 3 50V = 5	Dielectric X7R = C	Capacitance Code (In pF) 2 Sig. Digits + Number of Zeros	Capacitance Tolerance $J = \pm 5\%^*$ $K = \pm 10\%$ $M = \pm 20\%$	Failure Rate A = Not Applicable	Terminations T = Plated Ni and Sn Z= FLEXITERM®** *Optional termination **See FLEXITERM®	Packaging 2 = 7" Reel 4 = 13" Reel Contact Factory For Multiples	Special Code A = Std. Product
	100V = 1 200V = 2 500V = 7			*≤1μF only, contact factory fo additional values		X7R section	a.a.piec	

NOTE: Contact factory for availability of Termination and Tolerance Options for Specific Part Numbers. Contact factory for non-specified capacitance values.

.01

Frequency, MHz

0.01

1,000

100

Frequency, MHz

1,000

Frequency, MHz

Specifications and Test Methods

	ter/Test	X7R Specification Limits		g Conditions
	perature Range	-55°C to +125°C	Temperature	Cycle Chamber
•	on Factor	Within specified tolerance ≤ 10% for ≥ 50V DC rating≤ 12.5% for 25V DC rating ≤ 12.5% for 25V and 16V DC rating ≤ 12.5% for ≤ 10V DC rating Contact Factory for DF by PN	Voltage: 1	0 kHz ± 10% .0Vrms ± .2V ; 0.5Vrm @ 120Hz
Insulation	Resistance	100,000ΜΩ or 1000ΜΩ - μF, whichever is less		ith rated voltage for oom temp/humidity
Dielectric	: Strength	No breakdown or visual defects	seconds, w/charge and o 50 m Note: Charge device with	0% of rated voltage for 1-5 discharge current limited to A (max) h 150% of rated voltage for devices.
	Appearance	No defects		
Resistance to	Capacitance Variation	≤ ±12%	Deflect	ion: 2mm
Flexure Stresses	Dissipation Factor	Meets Initial Values (As Above)	Test Time	: 30 seconds
	Insulation Resistance	≥ Initial Value x 0.3		
Solde	rability	≥ 95% of each terminal should be covered with fresh solder		tic solder at 230 ± 5°C 0.5 seconds
	Appearance	No defects, <25% leaching of either end terminal		
	Capacitance Variation	≤ ±7.5%		
Resistance to Solder Heat	Dissipation Factor	Meets Initial Values (As Above)		c solder at 260°C for 60 emperature for 24 ± 2hours
Solder Heat	Insulation Resistance	Meets Initial Values (As Above)	before measuring	electrical properties.
	Dielectric Strength	Meets Initial Values (As Above)		
	Appearance	No visual defects	Step 1: -55°C ± 2°	30 ± 3 minutes
	Capacitance Variation	≤ ±7.5%	Step 2: Room Temp	≤ 3 minutes
Thermal Shock	Dissipation Factor	Meets Initial Values (As Above)	Step 3: +125°C ± 2°	30 ± 3 minutes
	Insulation Resistance	Meets Initial Values (As Above)	Step 4: Room Temp	≤ 3 minutes
	Dielectric Strength	Meets Initial Values (As Above)		measure after 24 ± 2 hours emperature
	Appearance	No visual defects	Okaman I i iii	and an element of the second
	Capacitance Variation	≤ ±12.5%		ed voltage in test chamber or 1000 hours (+48, -0).
Load Life	Dissipation Factor	≤ Initial Value x 2.0 (See Above)		nber and stabilize at room hours before measuring.
	Insulation Resistance	≥ Initial Value x 0.3 (See Above)		asheet of specific parts.
	Dielectric Strength	Meets Initial Values (As Above)	Jointage AVA for date	aoneer or openine parts.
	Appearance	No visual defects		
	Capacitance Variation	≤ ±12.5%		set at 85°C ± 2°C/ 85% ± 5% 0 hours (+48, -0) with rated
Load Humidity	Dissipation Factor	≤ Initial Value x 2.0 (See Above)	voltage	e applied.
riamilarty	Insulation Resistance	≥ Initial Value x 0.3 (See Above)	temperature and humid	er and stabilize at room lity for 24 ± 2 hours before
	Dielectric Strength	Meets Initial Values (As Above)	mea	suring.

Capacitance Range

PREFERRED SIZES ARE SHADED

Package Fine Package Package	SIZE	0101*			020	1				n/	102						0	603							_	0805								12	06			
Page			 						B			ve		\vdash		_			ave													_	Re					-
1		Paper/																_						P									_					
Note March March		n 0.40 ± 0.02)																															
Name	W) Width mn	n 0.20 ± 0.02		0.3	80 ± 0	0.09				0.50	± 0.1	0					0.81	± 0.	15						1.2	5 ± 0.2	20						1	.60 ±	0.30			
Cop 100 101)																															
	WVDC	16	6.3	10	16	25	50	6.3	10	16	25	50	100	6.3	10	16	25	50	100	200	250	6.3	10	16	25	50	100	200	250	6.3	10	16	25	50	100	200	250	500
22 221	Cap 100 101	В	Α	Α	Α	Α	Α	С	С	С	С	С	С	G	G	G	G	G	G	J	J													G	G	N	N	N
330 331 8 8 A A A A A A A A C C C C C C C C C C	(pF) 150 151	В	Α	Α	Α	Α	Α	С	С	С	С	С	С	G	G	G	G	G	G	J	J									G	G	G	G	G	G	N	N	N
March Marc	220 221	В	Α	Α	Α	Α	Α	С	С	С	С	С	С	G	G	G	G	G	G	J	J	Е	Е	Е	Е	Е	Е	Е	J	J	J	J	J	J	J	N	N	Р
March Marc	330 331	В	Α	Α	Α	Α	Α	С	С	С	С	С	С	G	G	G	G	G	G	J	J		J	J	J	J	J	J	J	J	J	J	J	J	J	N	N	Р
1	470 471	В	Α	Α	Α	Α	Α	С	С	С	С	С	С	G	G	G	G	G	G	J	J		J	J	J	J	J	J	J	J	J	J	J	J	J	N	N	Р
1	680 681	В	Α	Α	Α	Α	Α	С	С	С	С	С	С	G	G	G	G	G	G	J	J		J	J	J	J	J	J	J	J	J	J	J	J	J	N	N	Р
2220 222	1000 102	В	Α	Α	Α	Α	Α	С	С	С	С	С	С	G	G	G	G	G	G	J	J		J	J	J	J	J	J	J	J	J	J	J	J	J	N	N	Р
300 332	1500 152	2	Α	Α	Α	Α		С	С	С	С	С	С	G	G	G	G	G	G	J	J		J	J	J	J	J	J	J	J	J	J	J	J	J	N	N	Р
3900 390 390	2200 222	2	Α	Α	Α	Α		С	С	С	С	С	С	G	G	G	G	G	G	J	J		J	J	J	J	J	J	J	J	J	J	J	J	J	N	N	Р
Martin M	3300 332	2	Α	Α	Α	Α		С	С	С	С	С	С	G	G	G	G	G	G	J	J		J	J	J	J	J	J	J	J	J	J	J	J	J	N	N	Р
Second	3900 392	2	Α	Α	Α	Α																																П
Section Sect	4700 472	2	Α	Α	Α	Α		С	С	С	С	С	С	G	G	G	G	G	G	J	J		J	J	J	J	J	J	J	J	J	J	J	J	J	N	N	Р
Cap (1.01 103 105 105 105 105 115 105 115 115 115 115	5600 562	2	Α	Α	Α	Α																																\Box
Cap O.11 102 Cap O.12 T.12 Cap	6800 682	2	Α	Α	Α	Α		С	С	С	С	С	С	G	G	G	G	G	G	J	J		J	J	J	J	J	Р	Р	J	J	J	J	J	J	N	N	Р
	Cap 0.01 103	В	Α	Α	Α	Α		С	С	С	С	С	С	G	G	G		G		J	J		J	J	J	J	J	Р	Р	J	J	J	J	J	J	N	N	Р
0.018 183		В																																				\neg
0.018 183	. ,	+			t			С	С	С	С	Е		G	G	G	G	G	J	J	J		J	J	J	J	J	Р	Р	J	J	J	J	J	J	N	N	0
0.027 273	0.018 183	В			t																																	
0.027 273	0.022 223	3	Α	Α	A			С	С	С	С	Е		G	G	G	G	G	J	J	J		J	J	J	J	J	Р	Р	J	J	J	J	J	J	Р	Р	0
0.033 333	0.027 273	3				1												_																				
0.039 393					1	1		С	С	С	С	Е		G	G	G	G	J	J	J			J	J	J	J	Р	Р	Р	J	J	J	J	J	J	0	0	0
0.068 683					<u> </u>													_																				
0.068 683			 		t			С	С	С	С	E		G	G	G	G	J	J	J			J	J	J	J	Р	Р	Р	J	J	J	J	J	J	0	0	0
0.082 823			\vdash		\vdash			_	_	_		_		_	_	_	_	=		_				-				_	<u> </u>	_	_	_	_		_	_		$\overline{}$
0.1 104			\vdash		\vdash				Ť	_	Ť	<u> </u>								Ť			Ť	۳			· ·			Ť	<u> </u>	Ť	_	_	Ė	_	_	П
0.12 124			Α		\vdash			С	С	С	С	F		G	G	G	G	Л	.l	.l			.l	.l	.l	.l	Р	Р		.I.	.I	.I	.I	.l	Р	0	0	П
0.15 154					\vdash		\vdash		Ť		_						Ü							Ŭ	Ť											1	4	\neg
0.22 224			<u> </u>		T	T	t	<u> </u>	t					G	G	G	J	J					N	N	N	N	Р			K	K	К	К	K	0	0	0	\vdash
0.33 334			+					С	С	С	С		\vdash		_	_	-	_	\vdash		\vdash			_	_					_		-		-	_			\vdash
0.47 474			t												_			_																		1	٦	\vdash
0.68 684			 					С	С				 	_	_	_	-						_		_							_						\vdash
1.0 105			 		\vdash		\vdash						1	_	_		-															_		-				\vdash
2.2 225			+	\vdash	\vdash		\vdash	C					 	_	-		J	J	\vdash		\vdash	\vdash				Р			\vdash							 	\vdash	\vdash
4.7 475		+	1	\vdash	\vdash	+	 		1		\vdash		\vdash	-	_	_	0		\vdash	-	\vdash		<u> </u>		_		-		\vdash	_	_	_		-		 	\vdash	\vdash
10 106			+	\vdash	\vdash	+	\vdash	\vdash	\vdash		\vdash	\vdash	\vdash		J	K	\vdash	-	<u> </u>	\vdash	<u> </u>	\vdash		_	_	Г			<u> </u>						_^	-	\vdash	$\overline{}$
22 226			\vdash	\vdash	\vdash	+	\vdash	\vdash	\vdash	\vdash	\vdash	\vdash	\vdash			-	\vdash	-	\vdash	\vdash	\vdash	D	_		P		\vdash		\vdash							-	\vdash	$\overline{}$
47 476			\vdash		\vdash	+	\vdash	\vdash	\vdash	\vdash		\vdash	\vdash	\vdash	\vdash		\vdash	-	\vdash	 	\vdash	P	-	-			\vdash		\vdash	_		_	^	\vdash	\vdash	-	\vdash	$\overline{}$
100 107			-		\vdash	+	\vdash	\vdash	\vdash	\vdash		\vdash	\vdash	\vdash		-	\vdash	-	 	-	\vdash	\vdash	\vdash	\vdash			-		\vdash	^	^	^		\vdash		-	\vdash	$\overline{}$
WVDC 16 6.3 10 16 25 50 6.3 10 16 25 50 6.3 10 16 25 50 6.3 10 16 25 50 6.3 10 16 25 50 6.3 10 16 25 50 100 6.3 10 16 25 50 100 20 250 6.3 10 16 25 50 100 20 250 6.3 10 16 25 50 100 20 250 6.3 10 16 25 50 100 200 250 500			+	\vdash	\vdash	+	\vdash	\vdash	\vdash	\vdash	\vdash	\vdash	\vdash	\vdash	\vdash	_		_	\vdash	-	\vdash	<u> </u>	\vdash	\vdash			_		\vdash	-	\vdash	$\overline{}$						
			6.2	10	16	25	50	6.2	10	16	25	50	100	6.2	10	16	25	50	100	200	250	6.2	10	16	25	50	100	200	250	6.2	10	16	25	50	100	200	250	500
SIZE 0101" 0201 0402 0003 0809 1206			0.3				1 30	0.3	10			1 30	100	0.3	10	10			100	200	250	0.3	10	10			100	200	250	0.3	10	10	23			200	250	300
	SIZE	01011			UZU					U	+UZ						U	003								1803								12	00			

Letter	Α	В	С	E	G	J	K	М	N	Р	Q	X	Υ	Z
Max.	0.33	0.22	0.56	0.71	0.90	0.94	1.02	1.27	1.40	1.52	1.78	2.29	2.54	2.79
Thickness	(0.013)	(0.009)	(0.022)	(0.028)	(0.035)	(0.037)	(0.040)	(0.050)	(0.055)	(0.060)	(0.070)	(0.090)	(0.100)	(0.110)
			PAF	PER						EMBO	SSED			

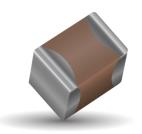
NOTE: Contact factory for non-specified capacitance values

*EIA 01005

^{**}Contact Factory for Specifications

Capacitance Range

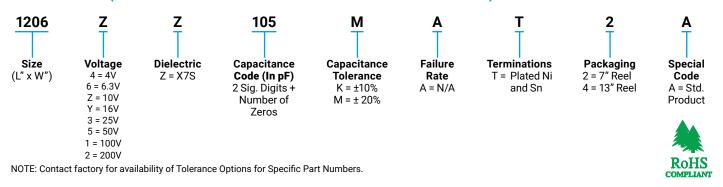
PREFERRED SIZES ARE SHADED


	SIZE					1210						18	12				1825				2220				2225	
	Soldering				Re	eflow Or	nlv						w Only			R	eflow Or	nlv		R	eflow Or	nlv		R	eflow On	ılv
	Packaging					er/Embo							bossed				Emboss				Embos			All	Emboss	sed
(L) Ler	ngth	mm (in.)				3.30 ± 0.0							± 0.40 ± 0.016)				.50 ± 0.4 177 ± 0.0				5.70 ± 0.5 224 ± 0.0				.70 ± 0.4	
W) Wid	dth	mm (in.)				.50 ± 0.3 198 ± 0.0						3.20 (0.126	± 0.40 ± 0.016)				.40 ± 0.4 252 ± 0.0				i.00 ± 0.4 197 ± 0.0				.30 ± 0.4 248 ± 0.0	
(t) Teri		mm (in.)				.50 ± 0.2)20 ± 0.0)10)					(0.024	± 0.36 ± 0.014)				0.61 ± 0.3 024 ± 0.0)14)		(0.0	.64 ± 0.3 025 ± 0.0)15)		(0.0	.64 ± 0.3)25 ± 0.0)15)
		VVDC	10	16	25	50	100	200	500	16	25	50	100	200	500	50	100	200	25	50	100	200	500	50	100	200
Cap	100	101																					ļ.	>	~~ N	<u>.</u>
(pF)	150	151																					1	<		15-
	220	221				K	K	К	М														1 (ノモゴ
	330	331				K	K	К	М			N	N	N	N								_	$\overline{}$		
	470	471				K	K	К	М			N	N	N	N								ļ	t		
	680	681				K	K	K	М			N	N	N	N											
	1000	102	K	K	K	K	K	K	М	N	N	N	N	N	N	X	X	X		Х	Х	X	X	Х	Х	Х
	1500	152	K	K	K	K	K	K	М	N	N	N	N	N	N	Х	Х	X		Х	Х	Х	X	Х	Х	Х
	2200	222	K	K	K	K	K	K	M	N	N	N	N	N	N	Х	X	X		X	Х	Х	X	Х	Х	Х
	3300	332	K	K	K	K	K	K	P	N	N	N	N	N	N	Х	X	X		X	Х	X	X	Х	Х	Х
	4700	472	K	K	K	K	K	K	P	N	N	N	N	N	P	Х	X	X		X	X	X	X	Х	Х	Х
	6800	682	K	K	K	K	K	K	P	N	N	N	N	N	P	Х	X	X		X	X	X	X	X	Х	Х
Сар	0.01	103	K	K	K	K	K	K	P	N	N	N	N	N	P	X	X	Х		X	X	X	X	Х	Х	Х
(μF)	0.015	153	K	K	K	K	K	K	Р	N	N	N	N	N	P	Х	X	X		X	X	X	X	Х	Х	Х
	0.022	223	K	K	K	K	К	Р	Q	N	N	N	N	N	Р	Х	X	Х		X	Х	Х	Х	Х	Х	Х
	0.033	333	K	K	K	K	K	Р	Х	N	N	N	N	N	Х	Х	Х	Х		Х	Х	Х	Х	Х	Х	Х
	0.047	473	K	K	K	K	K	Р	Х	N	N	N	N	Р	Х	Х	Х	Х		Х	Х	Х	Х	Х	Х	Х
	0.068	683	K	K	K	K	K	Р	Х	N	N	N	N	Р	Х	Х	Х	Х		Х	Х	Х	Х	Х	Х	Х
	0.1	104	K	K	K	K	K	Р	Х	N	N	N	Р	Р	Х	Х	Х	Х		Х	Х	Х	Х	Х	Х	Х
	0.15	154	K	K	K	М	Р	Z	Z	N	N	N	Р	Р	Z	Х	Х	Х		Х	Х	Х	Х	Х	Х	Х
	0.22	224	K	K	K	М	Р	Z		N	N	N	Р	Q	Z	Х	Х	Х		Х	Х	Х	Х	Х	Х	Х
	0.33	334	K	K	K	М	Q	Z		N	N	N	Р	Х	Z	Х	Х	Х		Х	Х	Х	Х	Х	Х	Х
	0.47	474	М	М	М	Р	Q	Z		N	N	N	Q	Х	Z	Х	Х	Х		Х	X	Х	Х	Х	Х	Х
	0.68	684	М	М	Р	Х	Х	Z		Q	Q	Q	Q	Z		Х	Х	Х		Х	Х	Х		Х	Х	Х
	1.0	105	Р	Р	P	Х	Z			Q	Q	Q	Х	Z		Х	X	Х		Х	Х	Х		Х	Х	Х
	1.5	155	N	N	Z	Z	Z				Z	Z	Z			Х	Х	Z		Х	Х	Z		Х	Х	Z
	2.2	225	Х	Х	Z	Z	Z				Z	Z	Z			Х	Х	Z		Х	Х	Z		Х	Х	Z
	3.3	335	Х	Х	Z	Z	Z				Z	Z	Z			Х	Х			Х	Z			Х	Х	igspace
	4.7	475	Z	Z	Z	Z	Z				Z	Z	Z			Х	Х			Z	Z			Х	Х	\sqcup
	10	106	Z	Z	Z	Z				Z	Z	Z				Z	Z			Z	Z			Z	Z	\sqcup
	22	226	Z	Z	Z														Z							igsquare
	47	476	Z																							igsquare
	100	107																								
	WVDC		10	16	25	50	100	200	500	16	25	50	100	200	500	50	100	200					500	50	100	200
	SIZE					1210						18	12				1825				2220				2225	

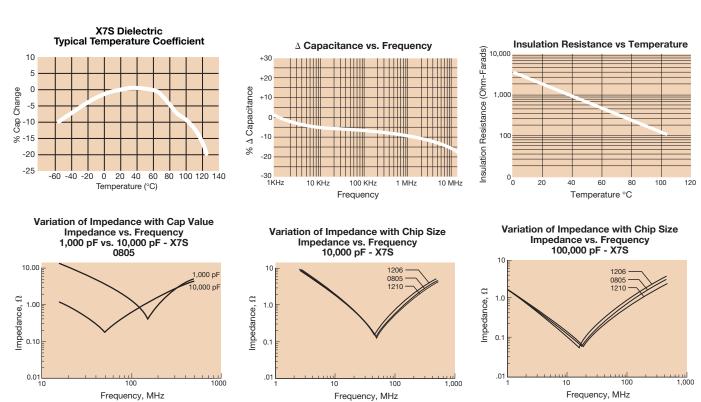
	Letter	Α	В	С	E	G	J	K	М	N	Р	Q	Х	Υ	Z
	Max.	0.33 (0.013)	0.22 (0.009)	0.56 (0.022)	0.71 (0.028)	0.90 (0.035)	0.94 (0.037)	1.02 (0.040)	1.27 (0.050)	1.40 (0.055)	1.52 (0.060)	1.78 (0.070)	2.29 (0.090)	2.54 (0.100)	2.79 (0.110)
L	Thickness	(0.013)	(0.009)	(0.022)	(0.028)	(0.035)	(0.037)	(0.040)	(0.050)	(0.055)	(0.060)	(0.070)	(0.090)	(0.100)	(0.110)
				PAI	PER						EMBC	SSED			

NOTE: Contact factory for non-specified capacitance values

General Specifications


GENERAL DESCRIPTION

X7S formulations are called "temperature stable" ceramics and fall into EIA Class II materials. Its temperature variation of capacitances within $\pm 22\%$ from -55° C to $+125^{\circ}$ C. This capacitance change is non-linear.


Capacitance for X7S varies under the influence of electrical operating conditions such as voltage and frequency.

X7S dielectric chip usage covers the broad spectrum of industrial applications where known changes in capacitance due to applied voltages are acceptable.

PART NUMBER (SEE PAGE 4 FOR COMPLETE PART NUMBER EXPLANATION)

TYPICAL ELECTRICAL CHARACTERISTICS

Specifications and Test Methods

Parame	ter/Test	X7S Specification Limits	Measuring	Conditions
	perature Range	-55°C to +125°C	Temperature C	ycle Chamber
	on Factor	Within specified tolerance ≤ 5.0% for ≥ 100V DC rating ≤ 5.0% for ≥ 25V DC rating ≤ 10.0% for ≥ 10V DC rating ≤ 10.0% for ≤ 10V DC rating Contact Factory for DF by PN	- Freq.: 1.0 k Voltage: 1.0 For Cap > 10 μF, 0	Vrms ± .2V
Insulation	Resistance	100,000MΩ or 1000MΩ - μF, whichever is less	Charge device with 120 ± 5 secs @ roo	
Dielectric	: Strength	No breakdown or visual defects	Charge device with 250 1-5 seconds, w/charge limited to 50	and discharge current
	Appearance	No defects	Deflection	
Resistance to	Capacitance Variation	≤ ±12%	Test Time: 3	30 seconds 7 1mm/sec
Flexure Stresses	Dissipation Factor	Meets Initial Values (As Above)		
	Insulation Resistance	≥ Initial Value x 0.3	90 1	mm —
Solder	rability	≥ 95% of each terminal should be covered with fresh solder	Dip device in eutection for 5.0 ± 0.	
	Appearance	No defects, <25% leaching of either end terminal		
	Capacitance Variation	≤ ±7.5%		
Resistance to Solder Heat	Dissipation Factor	Meets Initial Values (As Above)	Dip device in eutectic s seconds. Store at room	temperature for 24 ± 2
	Insulation Resistance	Meets Initial Values (As Above)	hours before measuring	g electrical properties.
	Dielectric Strength	Meets Initial Values (As Above)		
	Appearance	No visual defects	Step 1: -55°C ± 2°	30 ± 3 minutes
	Capacitance Variation	≤ ±7.5%	Step 2: Room Temp	≤ 3 minutes
Thermal Shock	Dissipation Factor	Meets Initial Values (As Above)	Step 3: +125°C ± 2°	30 ± 3 minutes
	Insulation Resistance	Meets Initial Values (As Above)	Step 4: Room Temp	≤ 3 minutes
	Dielectric Strength	Meets Initial Values (As Above)	Repeat for 5 cycles 24 ± 2 hours at ro	and measure after oom temperature
	Appearance	No visual defects		
	Capacitance Variation	≤ ±12.5%	Charge device with 1.5 i	
Load Life	Dissipation Factor	≤ Initial Value x 2.0 (See Above)	test chamber set for 1000 hoเ	
	Insulation Resistance	≥ Initial Value x 0.3 (See Above)	Remove from test chamb temperature for 24 ± 2 h	
	Dielectric Strength	Meets Initial Values (As Above)		
	Appearance	No visual defects		
	Capacitance Variation	≤ ±12.5%	Store in a test chamber s 5% relative humidi	
Load	Dissipation Factor	≤ Initial Value x 2.0 (See Above)	(+48, -0) with rated	
Humidity	Insulation Resistance	≥ Initial Value x 0.3 (See Above)	Remove from chamber temperature an	d humidity for
	Dielectric Strength	Meets Initial Values (As Above)	24 ± 2 hours bef	ore measuring.

Capacitance Range

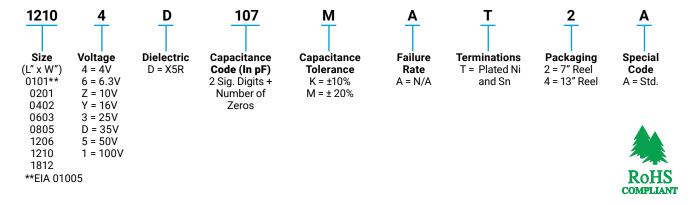
PREFERRED SIZES ARE SHADED


			-	E		Ц			
SIZI	E	0	402	0603	0805		1206		1210
Solder	ring	Reflo	w/Wave	Reflow/Wave	Reflow/Wave	Ref	low/W	ave	Reflow Only
Packag	ging	All	Paper	All Paper	Paper/Embossed	Pape	r/Embo	ssed	Paper/Embossed
(L) Length	mm	1.00	± 0.10	1.60 ± 0.15	2.01 ± 0.20	3.	20 ± 0.:	20	3.20 ± 0.20
(L) Length	(in.)		± 0.004)	(0.063 ± 0.006)	(0.079 ± 0.008)		26 ± 0.		(0.126 ± 0.008)
W) Width	mm		± 0.10	0.81 ± 0.15	1.25 ± 0.20	1.	60 ± 0.:	20	2.50 ± 0.20
′	(in.)		± 0.004)	(0.032 ± 0.006)	(0.049 ± 0.008)		63 ± 0.		(0.098 ± 0.008)
(t)	mm		± 0.15	0.35 ± 0.15	0.50 ± 0.25		50 ± 0.:		0.50 ± 0.25
Terminal	(in.)		± 0.006)	(0.014 ± 0.006)	(0.020 ± 0.010)		20 ± 0.		(0.020 ± 0.010)
	WVDC	4	6.3	6.3	4	10	50	100	6.3
Сар	100								
(pF)	150								
	220					ļ '	_	-	* * * * * * * * * * * * * * * * * * *
	330					_	-L		W-V
	470					~	$\bar{}$) 1
	680					. (7	₩ —
	1000					١ ١	_	1 1	
	1500							\smile	
	2200					ļ		t	
	3300					ļ ,		1	1
	4700								
	6800								
Сар	0.010								
(μF)	0.015								
	0.022								
	0.033		С						
	0.047		С						
	0.068		С						
	0.10		С						
1	0.15								
	0.22								
	0.33			G					
	0.47			G					
<u> </u>	0.68			G					
	1.0	Е		G					
	1.5				N				
ļ	2.2	Е			N				
	3.3				N			Orto	
	4.7				N	Q		Q*	
<u> </u>	10								-
	22								Z
	47								
<u> </u>	100					40		100	
	WVDC	4	6.3	6.3	4	10	50	100	6.3
	SIZE	0	402	0603	0805		1206		1210

Letter	Α	С	E	G	J	K	М	N	Р	Q	Х	Υ	Z	
Max.	0.33	0.56	0.71	0.90	0.94	1.02	1.27	1.40	1.52	1.90	2.29	2.54	2.79	
Thickness	(0.013)	(0.022)	(0.028)	(0.035)	(0.037)	(0.040)	(0.050)	(0.055)	(0.060)	(0.075)	(0.090)	(0.100)	(0.110)	
			PAPER			EMBOSSED								

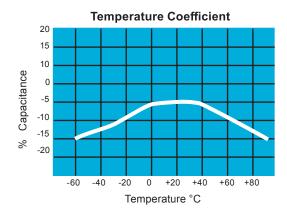
^{*}Contact Factory for Specifications

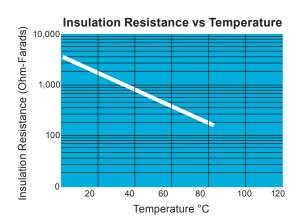
General Specifications



GENERAL DESCRIPTION

- · General Purpose Dielectric for Ceramic Capacitors
- · EIA Class II Dielectric
- Temperature variation of capacitance is within ±15% from -55°C to +85°C
- · Well suited for decoupling and filtering applications
- Available in High Capacitance values (up to 100μF)


PART NUMBER (SEE PAGE 4 FOR COMPLETE PART NUMBER EXPLANATION)



NOTE: Contact factory for availability of Tolerance Options for Specific Part Numbers.

Contact factory for non-specified capacitance values.

TYPICAL ELECTRICAL CHARACTERISTICS

Specifications and Test Methods

Paramet	ter/Test	X5R Specification Limits	Measuring C	onditions	
Operating Temp	perature Range	-55°C to +85°C	Temperature Cy	cle Chamber	
Capac	itance	Within specified tolerance			
Dissipatio	on Factor	≤ 2.5% for ≥ 50V DC rating ≤ 12.5% for 25V, 35V DC rating ≤ 12.5% Max. for 16V DC rating and lower Contact Factory for DF by PN	Freq.: 1.0 kl Voltage: 1.0\ For Cap > 10 μF, 0.9	/rms ± .2V	
Insulation I	Resistance	10,000MΩ or 500MΩ - μF, whichever is less	Charge device with rate secs @ room te		
Dielectric	Strength	No breakdown or visual defects	Charge device with 250% seconds, w/charge and di to 50 mA	scharge current limited	
	Appearance	No defects	Deflection	n: 2mm	
Resistance to	Capacitance Variation	≤ ±12%	Test Time: 30		
Flexure Stresses	Dissipation Factor	Meets Initial Values (As Above)	V		
	Insulation Resistance	≥ Initial Value x 0.3	90 m	nm —	
Solder	ability	≥ 95% of each terminal should be covered with fresh solder	Dip device in eutectic solo ± 0.5 sec		
	Appearance	No defects, <25% leaching of either end terminal			
	Capacitance Variation	≤ ±7.5%			
Resistance to Solder Heat	Dissipation Factor	Meets Initial Values (As Above)	Dip device in eutectic 60seconds. Store at room	n temperature for 24 ±	
	Insulation Resistance	Meets Initial Values (As Above)	2hours before measuring	g electrical properties.	
	Dielectric Strength	Meets Initial Values (As Above)			
	Appearance	No visual defects	Step 1: -55°C ± 2°	30 ± 3 minutes	
	Capacitance Variation	≤ ±7.5%	Step 2: Room Temp	≤ 3 minutes	
Thermal Shock	Dissipation Factor	Meets Initial Values (As Above)	Step 3: +85°C ± 2°	30 ± 3 minutes	
	Insulation Resistance	Meets Initial Values (As Above)	Step 4: Room Temp	≤ 3 minutes	
	Dielectric Strength	Meets Initial Values (As Above)	Repeat for 5 cycles and hours at room		
	Appearance	No visual defects	Charge device with 1.5X	rated voltage in test	
	Capacitance Variation	≤ ±12.5%	chamber set at 85°C ±	2°C for 1000 hours	
Load Life			(+48, -0). Note: Contact factory for *optional spec		
	Dissipation Factor	≤ Initial Value x 2.0 (See Above)			
		≤ Initial Value x 2.0 (See Above) ≥ Initial Value x 0.3 (See Above)	Note: Contact factory for part numbers that are to voltage	ested at < 1.5X rated	
	Factor Insulation		part numbers that are t	ested at < 1.5X rated ge. er and stabilize at room	
	Factor Insulation Resistance Dielectric	≥ Initial Value x 0.3 (See Above)	part numbers that are to voltage Remove from test chambe	ested at < 1.5X rated ge. er and stabilize at room	
	Factor Insulation Resistance Dielectric Strength	≥ Initial Value x 0.3 (See Above) Meets Initial Values (As Above)	part numbers that are to voltage Remove from test chamber temperature for Store in a test chamber see	ested at < 1.5X rated ge. er and stabilize at room 24 ± 2 hours et at 85°C ± 2°C/ 85% ±	
Load Humidity	Factor Insulation Resistance Dielectric Strength Appearance Capacitance	≥ Initial Value x 0.3 (See Above) Meets Initial Values (As Above) No visual defects	part numbers that are to voltage Remove from test chambe temperature for	ested at < 1.5X rated ge. er and stabilize at room 24 ± 2 hours et at 85°C ± 2°C/85% ± 2000 hours (+48, -0) with	
Load Humidity	Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation	≥ Initial Value x 0.3 (See Above) Meets Initial Values (As Above) No visual defects ≤ ±12.5%	part numbers that are to voltage Remove from test chamber temperature for Store in a test chamber see 5% relative humidity for 10	ested at < 1.5X rated ge. er and stabilize at room 24 ± 2 hours et at 85°C ± 2°C/85% ± 200 hours (+48, -0) with e applied. and stabilize at room thumidity for	

Capacitance Range

PREFERRED SIZES ARE SHADED

W) Width	mm (in.) mm (in.)	Paper/Er 0.40 ± (0.016 ±	v Only nbossed ± 0.02		Re	0201 flow 0				F	Reflow	02 //Way					Dofl	0603 ow/W	fovo					Refl	0805 ow/W			
Packaging (L) Length (W) Width	mm (in.) mm	Paper/Er 0.40 ± (0.016 ±	nbossed ± 0.02																									
W) Width	(in.) mm	(0.016 ±				II Pape	er			<u>·</u>	All P							II Pap								ossed		
W) Width		0.20	0.0008)		0.6	50 ± 0. 24 ± 0.	.09				1.00 ±	± 0.20	8)				1.6	50 ± 0. 53 ± 0.	.15					2.0	01 ± 0. 79 ± 0.	.20		
(t) Terminal		(0.008 ±	± 0.02 0.0008)			30 ± 0. 11 ± 0.					0.50 ±		8)					31 ± 0. 32 ± 0.							25 ± 0. 19 ± 0.			
(t) reminar	mm (in.)	0.10 ± (0.004 ±				15 ± 0. 06 ± 0.					0.25 ±							35 ± 0. 14 ± 0.							50 ± 0. 20 ± 0.			
Voltage:		6.3	10	4	6.3	10	16	25	4	6.3	10	16	25	50	4	6.3	10	16	25	35	50	4	6.3	10	16	25	35	50
Cap (pF) 100	101		В					Α																				
150	151		В					Α																				
220	221		В					Α						С														
330	331		В					Α						С														
470	471		В					Α						С														
680	681		В					Α						С														
1000	102		В				Α	Α						С														<u> </u>
1500	152	В	В				Α	Α						С														<u> </u>
2200	222	В	В			Α	Α	Α						С														<u> </u>
3300	332	В	В		ļ	Α	Α	Α						С														Ь—
4700	472	В	В			Α	Α	Α					С								G							<u> </u>
6800	682	В	В			Α	Α	Α					С								G							└
Cap (μF) 0.01	103	В	В			Α	Α	Α					С						G	G	G							<u> </u>
0.015	150	В										_	С						G	G	G							
0.022	223	В			Α	Α	Α	Α				С	С						G	G	G							N
0.033	333	В										С							G	G	G							N
0.047 0.068	473 689	B B			Α	Α	Α	Α				С	С						G	G	G							N
	104	В		_	۸	Α	Α	Α			С	C	_	С		-			G	•	G					N.I.	NI.	N
0.1 0.15	154	В			Α	Α	Α	Α			U	L L	С	l C					G	G	G					N N	N N	IN
0.13	224	В		Α	Α	A				С	С	С	С	С				G	G							N	N	N
0.33	334	D		А	A	A				L L	U	U	U	U				G	G							N	IN	IN
0.33	474	В		Α	Α				С	С	С	С	С	Е				G	J							N	P	Р
0.68	684	U						-								<u> </u>		G	J						-	N		
1.0	105			Α	Α	С	С		С	С	С	С	С		G	G	G	G	J	G	G				N	N	Р	Р
1.5	155																U			0	J				11	- ' '		
2.2	225			С	С	С			С	С	С	С	С		G	G	J	J	J	K	K			N	N	Р	Р	Р
3.3	335														J	J	J						N	N				
4.7	475			С	С				Е	Е	Е	Е			J	J	J	G	К			N	P	J	N	N	Р	Р
10	106								E	E	E				K	J	K	K	K			P	P	P	P	P		
22	226								E	G					K	K	K	<u> </u>				P	P	P	P	P		
47	476														K	K						P	P	P				
100	107																											
Voltage:		6.3	10	4	6.3	10	16	25	4	6.3	10	16	25	50	4	6.3	10	16	25	35	50	4	6.3	10	16	25	35	50
Case Size		010	01*			0201						02						0603							0805			

Letter	Α	В	С	E	G	J	K	М	N	Р	Q	Х	Y	Z
Max. Thicknes	0.33 s (0.013)	0.22 (0.009)	0.56 (0.022)	0.71 (0.028)	0.90 (0.035)	0.94 (0.037)	1.02 (0.040)	1.27 (0.050)	1.40 (0.055)	1.52 (0.060)	1.78 (0.070)	2.29 (0.090)	2.54 (0.100)	2.79 (0.110)
	, ,	, ,	PA	PER	,	,	, ,			EMBC	SSED		, ,	

PAPER and EMBOSSED available for 01005 NOTE: Contact factory for non-specified capacitance values *EIA 01005

PREFERRED SIZES ARE SHADED

Soldering Packaging (L) Length	mm			Refl	ow/W	lave													2 2				
Packaging			Reflow/Wave Paper/Embossed							Reflow Only						1812 Reflow Only							
				Paper,	/Emb	ossec	1					r/Emb						All E	mbos	sed			
(L) Length					20 ± 0.							20 ± 0.	-						50 ± 0.				
	(in.)				26 ± 0.							26 ± 0.							77 ± 0.				
W) Width	mm				0 ± 0.							50 ± 0.							20 ± 0.				
11,111411	(in.)				3 ± 0.							98 ± 0.				(0.126 ± 0.008) 0.61 ± 0.36							
(t) Terminal	mm				50 ± 0.							50 ± 0.											
	(in.)	4	()		20 ± 0.		35	Ε0	4	()		20 ± 0.		35	F0	4	()		24 ± 0.	25	35		
Voltage:	101	4	6.3	10	16	25	35	50	4	6.3	10	16	25	35	50	4	6.3	10	16	25	33	50	
Cap (pF) 100 150	101 151																						
220	221																						
330	331																						
470	471													_									
680	681																						
1000	102																						
1500	152																						
2200	222																						
3300	332																						
4700	472																						
6800	682																						
Cap (µF) 0.01	103																						
0.015	150																						
0.022	223																						
0.033	333																						
0.047	473																						
0.068	689																						
0.1	104																						
0.15	154																						
0.22	224																						
0.33	334													.,									
0.47	474					Q	Q							Х	Х								
0.68	684					0		0					V	V	V								
1.0	105 155					Q	Q	Q					Х	Х	Х								
2.2	225			Q	Q	Q	0	Q					Х	Z	Z								
3.3	335		Q	Q	Ų	Ų	Ų	Ų					^										
4.7	475	Χ	X	X	Х	Х	Х	Х			Z	Z	Z	Z	Z								
10	106	X	X	X	X	X	X	X		Х	X	Z	Z	Z	Z					Z			
22	226	X	X	X	X	X			Z	Z	Z	Z	Z			Z	Z	Z	Z				
47	476	X	X	X	X	- `			Z	Z	Z	Z	Z			_	_	_	_				
100	107	X	X							Z	_	_	_										
Voltage:		4 6.3 10 16 25 35 50					4 6.3 10 16 25 35 50					50 4 6.3 10 16 25 35 50											
Case Size		1206				1210					1812												

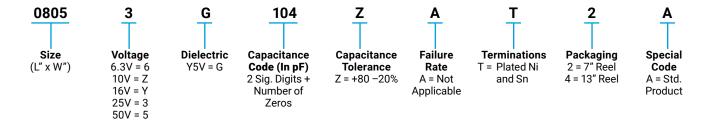
Letter	Α	В	С	E	G	J	K	М	N	P	Q	X	Υ	Z	
Max.	0.33	0.22	0.56	0.71	0.90	0.94	1.02	1.27	1.40	1.52	1.78	2.29	2.54	2.79	
Thickness	(0.013)	(0.009)	(0.022)	(0.028)	(0.035)	(0.037)	(0.040)	(0.050)	(0.055)	(0.060)	(0.070)	(0.090)	(0.100)	(0.110)	
			PA	PER			EMBOSSED								

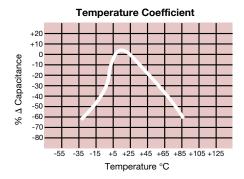
PAPER and EMBOSSED available for 01005

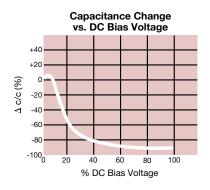
NOTE: Contact factory for non-specified capacitance values *EIA 01005

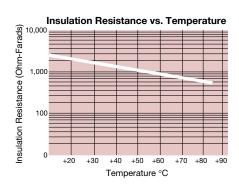
Y5V Dielectric

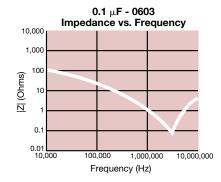
General Specifications

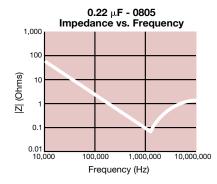

GENERAL DESCRIPTION

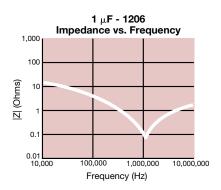

Y5V formulations are for general-purpose use in a limited temperature range. They have a wide temperature characteristic of +22% -82% capacitance change over the operating temperature range of -30°C to +85°C.


These characteristics make Y5V ideal for decoupling applications within limited temperature range.




PART NUMBER (SEE PAGE 4 FOR COMPLETE PART NUMBER EXPLANATION)





Y5V Dielectric

Specifications and Test Methods

Parame	ter/Test	Y5V Specification Limits	Measuring (Conditions
Operating Tem	perature Range	-30°C to +85°C	Temperature C	ycle Chamber
Capac	itance	Within specified tolerance		
Dissipation	on Factor	≤ 5.0% for ≥ 50V DC rating ≤ 7.0% for 25V DC rating ≤ 9.0% for 16V DC rating ≤ 12.5% for ≤ 10V DC rating	Freq.: 1.0 k Voltage: 1.0' For Cap > 10 μF, 0.	Vrms ± .2V
Insulation	Resistance	10,000MΩ or 500MΩ - μ F, whichever is less	Charge device with rated @ room tem	
Dielectric	Strength	No breakdown or visual defects	Charge device with 250 1-5 seconds, w/charge limited to 50	and discharge current
	Appearance	No defects	Deflectio	n: 2mm
Resistance to	Capacitance Variation	≤ ±30%	Test Time: 3	30 seconds 7 1mm/sec
Flexure Stresses	Dissipation Factor	Meets Initial Values (As Above)	l	
	Insulation Resistance	≥ Initial Value x 0.1	90 n	mm
Solder	ability	≥ 95% of each terminal should be covered with fresh solder	Dip device in eutectic for 5.0 ± 0.5	
	Appearance	No defects, <25% leaching of either end terminal		
	Capacitance Variation	≤ ±20%		
Resistance to Solder Heat	Dissipation Factor	Meets Initial Values (As Above)	Dip device in eutectic s seconds. Store at room	temperature for 24 ± 2
	Insulation Resistance	Meets Initial Values (As Above)	hours before measuring	g electrical properties.
	Dielectric Strength	Meets Initial Values (As Above)		
	Appearance	No visual defects	Step 1: -30°C ± 2°	30 ± 3 minutes
	Capacitance Variation	≤ ±20%	Step 2: Room Temp	≤ 3 minutes
Thermal Shock	Dissipation Factor	Meets Initial Values (As Above)	Step 3: +85°C ± 2°	30 ± 3 minutes
	Insulation Resistance	Meets Initial Values (As Above)	Step 4: Room Temp	≤ 3 minutes
	Dielectric Strength	Meets Initial Values (As Above)	Repeat for 5 cycles 24 ±2 hours at ro	
	Appearance	No visual defects	-	
	Capacitance Variation	≤ ±30%	Charge device with twic	
Load Life	Dissipation Factor	≤ Initial Value x 1.5 (See Above)	for 1000 hou	
	Insulation Resistance	≥ Initial Value x 0.1 (See Above)	Remove from test chamb temperature for 24 ± 2 ho	
	Dielectric Strength	Meets Initial Values (As Above)		
	Appearance	No visual defects		
	Capacitance Variation	≤ ±30%	Store in a test chamber s 5% relative humidi	
Load Humidity	Dissipation Factor	≤ Initial Value x 1.5 (See above)	(+48, -0) with rated	l voltage applied.
Trainfulty	Insulation Resistance	≥ Initial Value x 0.1 (See Above)	Remove from chamber temperature an 24 ± 2 hours bef	d humidity for
	Dielectric Strength	Meets Initial Values (As Above)	Z4 I Z Hours ben	ore measuring.

Y5V Dielectric

Capacitance Range

PREFERRED SIZES ARE SHADED

Soldering Reflow Only Reflow/Wave Reflow Reflow/Wave Reflow	008) 20 008) 20 008) 25 010)	nboss : 0.20 : 0.00 : 0.20 : 0.00 : 0.25	20 008) 20 008) 25 010)	ed 3)		(0 (0	2.50 2.098	± 0.2 ± 0.0 ± 0.2 ± 0.0 ± 0.2 ± 0.0	20 20 20 20 20 20 20 20 20 20 20 20 20 2
(L) Length mm (in.) 0.60 ± 0.09 (0.024 ± 0.004) 1.00 ± 0.10 (0.063 ± 0.006) 1.60 ± 0.15 (0.079 ± 0.008) 2.01 ± 0.20 (0.126 ± 0.008) 3.20 ± 0.20 (0.126 ± 0.008) W) Width mm (0.30 ± 0.09 (in.)) 0.50 ± 0.10 (0.020 ± 0.004) 81 ± 0.15 (0.049 ± 0.008) 1.25 ± 0.20 (0.049 ± 0.008) 1.60 ± 0.20 (0.049 ± 0.008) (0.049 ± 0.008) (0.063 ± 0.006) (0.049 ± 0.008) (0.063 ± 0.006) (0.049 ± 0.008) (0.063 ± 0.006) (0.014 ± 0.006) (0.014 ± 0.006) (0.014 ± 0.006) (0.020 ± 0.010)	20 008) 20 008) 25 010)	0.20 0.00 0.20 0.00 0.25	20 20 20 20 20 25 25	3) 3) 0)		(0)	3.20 0.126 2.50 0.098 .50 :	± 0.2 ± 0.0 ± 0.2 ± 0.0 ± 0.2	20 008) 20 008) 5 010)
Column	008) 20 008) 25 010)	0.00 0.20 0.00 0.25 0.01	008) 20 008) 25 010)	3) 0)) 1	(0)	2.50 2.50 0.098 .50 :	± 0.0 ± 0.2 ± 0.0 ± 0.2 ± 0.0	008) 20 008) 5 010)
W Width mm 0.30 ± 0.09 0.50 ± 0.10 0.15 ± 0.15 1.25 ± 0.20 1.60 ± 0.20 (0.004 ± 0.004) (0.022 ± 0.006) (0.049 ± 0.008) (0.063 ± 0.006) (0.063 ± 0.006) (0.063 ± 0.006) (0.063 ± 0.006) (0.063 ± 0.006) (0.063 ± 0.006) (0.063 ± 0.006) (0.063 ± 0.00	20 008) 25 010)	0.20 0.00 0.25 0.01	20 008) 25 010)	3) 0)		(0	2.50 0.098 .50 :	± 0.2 ± 0.0 ± 0.2 ± 0.0	20 008) 5 010)
W) Width (in.) (0.011 ± 0.004) (0.020 ± 0.004) (0.032 ± 0.006) (0.049 ± 0.008) (0.063 ± 0.008) (0.063 ± 0.008) (0.063 ± 0.008) (0.063 ± 0.008) (0.063 ± 0.008) (0.063 ± 0.008) (0.064 ± 0.008) (0.064 ± 0.008) (0.063 ± 0.008) (0.064 ± 0.008) (0.063 ± 0.008) (0.064 ± 0.008) (0.020 ± 0.010) (0.020 ±	008) 25 010)	0.00	008) 25 010)	ý))		(0)	0.098 .50 : 0.020	± 0.0 ± 0.2 ± 0.0	008) 5 010)
(in.) (0.011±0.004) (0.020±0.004) (0.032±0.006) (0.049±0.008) (0.063±0.000) (0.012±0.006) (0.010±0.006) (0.010±0.006) (0.010±0.006) (0.020±0.010) (0.020±0.	25 010)	0.25	25 010)	ý))		(0	.50 : 0.020	± 0.2	5 010)
(in) (0.006±0.002) (0.010±0.006) (0.014±0.006) (0.020±0.010) (0.020±0.01	010)	0.01	010)				0.020	± 0.0	010)
(n.) (0.006±0.002) (0.010±0.006) (0.014±0.006) (0.020±0.010) (0.020±0.0	/								
Cap 820 (pF) 1000 2200 A 4700 A A Cap 0.010 A (μF) 0.022 A 0.047 A C 0.10 0.22 C 0.33 0.47 1.0 C 1.0 C C C C C G G G G N N N N M M M 2.2 C J N N N N K	- (25	5	50		10	16	25	5 50 N
(pF) 1000	(*	(+			S) T
2200			+		+) +	
4700 A A Cap 0.010 A A 0.022 A C C 0.047 A C C 0.10 C C G 0.22 G K 0.33 C G G 0.47 C C G G 1.0 C C G G N N N N M M 2.2 C J J N N N K	_ (+	(\ +			<i>→</i> +-	J↓ <u>Γ</u>
Cap (μF) 0.010 (μF) A A A A A A A A A A A A A A A A A A A				<u> </u>	<u>_</u>	\ -	 	+	+
(μF) 0.022 A C C C G G G C C C C G G G J N N N N M M M C 2.2 C C J J N N N N K			+		+	-	₹¶ 	+	+
0.047 A C C G G G K K			\dagger		+	_	<u> </u>	+-	+
0.10									
0.22					- 1				- 1
0.33 0.47 1.0						-			
0.47 C G G G W M			\perp				<u></u>	\perp	
1.0 C C G G J N N N M M 2.2 C J J N N N N K									
2.2 C J N N K									
			_	М				\perp	N
	(Q	K		Q					
		Q					N	N	
10.0 N P Q Q X	(Χ			_	Χ	Q	Q	Z
22.0						Χ	Z		
47.0			\perp		\perp		—	┷	
WVDC 6.3 10 6 10 16 25 50 10 16 25 50 10 16 25 50 10 16 25 50 10 16 25	5 50		5	50) 1	10	16		5 50
SIZE 0201 0402 0603 0805 1206		06					12	210	
Letter A C E G J K M N P Q X Y :	Z		Z	Z					
	2.79	2	2.7	79					
Thickness (0.013) (0.022) (0.028) (0.035) (0.037) (0.040) (0.050) (0.055) (0.060) (0.070) (0.090) (0.100) (0.100)	(0.110)	(0.	0.1	110)					
PAPER EMBOSSED		<u> </u>							

MLCC Gold Termination – AU Series

AVX Corporation will support those customers for commercial and military Multilayer Ceramic Capacitors with a termination consisting of Gold. This termination is indicated by the use of a "7" or "G" in the 12th position of the AVX Catalog Part Number. This fulfills AVX's commitment to providing a full range of products to our customers. Please contact the factory if you require additional information on our MLCC Gold Termination.

PART NUMBER

AU03	<u>Y</u>	G	104	<u>K</u>	<u>A</u>	7	<u>2</u>	<u>A</u>
Size AU02 - 0402 AU03 - 0603 AU05 - 0805 AU06 - 1206 AU10 - 1210 AU12 - 1812 AU13 - 1825 AU14 - 2225 AU16 - 0306 AU17 - 0508	Voltage 6.3V = 6 10V = Z 16V = Y 25V = 3 35V = D 50V = 5 100V = 1 200V = 2 500V = 7	Dielectric COG (NPO) = A X7R = C X5R = D	Capacitance Code (In pF) 2 Sig. Digits + Number of Zeros	Capacitance Tolerance $B = \pm .10 \text{ pF} (<10 \text{ pF})$ $C = \pm .25 \text{ pF} (<10 \text{ pF})$ $D = \pm .50 \text{ pF} (<10 \text{ pF})$ $F = \pm 1\% (\ge 10 \text{ pF})$ $G = \pm 2\% (\ge 10 \text{ pF})$ $J = \pm 5\%$ $K = \pm 10\%$ $M = \pm 20\%$	Failure Rate A = Not Applicable	Terminations G*=1.9 μ" to 7.87 μ" 7 = 100 μ" minimum	Packaging 2 = 7" Reel 4 = 13" Reel U = 4mm TR (01005) Contact Factory For Multiples*	Special Code A = Std. Product

^{*} Contact factory for availability.

AU18 - 0612

PREFERRED SIZES ARE SHADED

SIZE			AU02			AU	103				AU05					AL	J06		
Solderin	na		flow/Epc			Reflow	/Epoxy/				flow/Epo					Reflow	/Epoxy/		
Packagi			Vire Bond All Pape			Wire I					Vire Bond er/Embo					Wire Paper/E	Bond* mbosse	d	
(L) Length	mm	1	.00 ± 0.1	0		1.60 :				2	.01 ± 0.2	20				3.20	± 0.20		
	(in.) mm		040 ± 0.0			0.063 :					079 ± 0.0 .25 ± 0.2						± 0.008) ± 0.20		
W) Width	(in.)	(0.0	020 ± 0.0	04)		(0.032 :	± 0.006)			(0.0	0.0 ± 0.0	(80				(0.063)	± 0.008)		
(t) Terminal	mm (in.)		0.25 ± 0.1 010 ± 0.0			0.35 :					0.50 ± 0.2 020 ± 0.0						± 0.25 ± 0.010)		
	WVDC	16	25	50	16	25	50	100	16	25	50 ± 0.0	100	200	16	25	50	100	200	500
Cap	0.5	С	С	С	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J
(pF)	1.0 1.2	C C	C	C	G G	G G	G G	G G	J	J	J	J	J	J	J	J	J	J	J
	1.5	С	С	С	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J
	1.8 2.2	C C	C	C	G G	G G	G G	G G	J	J	J	J	J	J	J	J	J	J	J
	2.7	С	С	С	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J
	3.3	С	C	C	G G	G G	G G	G G	J	J	J	J	J	J	J	J	J	J	J
	4.7	C	C	C	G	G	G	G	J	J	J	J	J	J	J	J J	J	J	J
	5.6	С	С	С	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J
	6.8 8.2	C C	C	C	G G	G G	G	G G	J	J	J	J	J	J	J	J	J	J	J
	10	С	С	С	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J
	12 15	C C	C	C	G G	G G	G G	G G	J	J	J	J	J	J	J	J	J	J	J
	18	С	С	С	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J
	22 27	C C	C	C	G G	G G	G G	G G	J	J	J	J	J	J	J	J	J	J	J
	33	C	C	C	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J
	39 47	C C	C	C	G G	G G	G G	G G	J	J	J	J	J	J	J	J	J	J J	J
	56	C	C	C	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J
	68	С	C	C	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J
	82 100	C	C	C	G G	G G	G	G	J	J	J	J	J	J	J	J	J	J	J
	120	С	С	С	G	G	G	G	J	J	J	J	Ĵ	J	J	J	J	J	J
	150 180	C	C	C	G G	G G	G	G	J	J	J	J	J	J	J	J	J	J	J
	220	С	С	С	G	G	G	G	J	J	J	J	J	J	J	J	J	J	М
	270 330	C	C	C	G	G G	G	G	J	J	J	J	M M	J	J	J	J	J	M
	390	С	С	С	G	G	G		Ĵ	Ĵ	J	Ĵ	М	Ĵ	J	J	Ĵ	J	М
	470 560	С	С	С	G G	G G	G		J	J	J	J	M	J	J	J	J	J	M
	680				G	G	G		Ĵ	Ĵ	Ĵ	Ĵ	M	Ĵ	Ĵ	Ĵ	J	Ĵ	P
	820 1000				G G	G G	G		J	J	J	J	M	J	J	J	J	M Q	
	1200				G	G			J	J	J	J .	IVI	J	J	J	J	Q	
	1500 1800								J	J	J			J	J	J M	M	Q	
	2200								J	J	N			J	J	M	Р		
	2700 3300								J	J	N			J	J	M M	P P		
	3900								J	J				J	J	M	P		
	4700								J	J				J	J	M	Р		
	5600 6800													J M	J M	М			
	8200													М	М				
	0.010 0.012		I	_		1	147	I						М	М				
	0.015				/		_W	_											
	0.018 0.022		<	<	_)) _	ÎT											
	0.027		())		<i>ν</i> -	<u>* </u>											
	0.033				4														
	0.039				4.0			_											
	0.068				TT														
	0.082																		
	WVDC	16	25	50	16	25	50	100	16	25	50	100	200	16	25	50	100	200	500
	SIZE		AU02			AU	103				AU05					AL	J06		

^{*} Contact Factory

Letter	Α	С	Е	G	J	K	М	N	Р	Q	X	Υ	Z
Max.	0.33	0.56	0.71	0.90	0.94	1.02	1.27	1.40	1.52	1.78	2.29	2.54	2.79
Thickness	(0.013)	(0.022)	(0.028)	(0.035)	(0.037)	(0.040)	(0.050)	(0.055)	(0.060)	(0.070)	(0.090)	(0.100)	(0.110)
			PAPER						EMB	DSSED			

PREFERRED SIZES ARE SHADED

SIZE				AU10					AU12				AU13			AU14	
Solderin	na			low/Epo					flow/Epo				Reflow/Epoxy	/		Reflow/Epoxy	/
Packagi				/ire Bond er/Embos					Vire Bond				Wire Bond*	<u> </u>		Wire Bond*	
	mm			.20 ± 0.2					.50 ± 0.3				4.50 ± 0.30			5.72 ± 0.25	
(L) Length	(in.)			26 ± 0.0					177 ± 0.0	_			(0.177 ± 0.012	2)	((0.225 ± 0.010))
W) Width	mm			.50 ± 0.2					.20 ± 0.2				6.40 ± 0.40	`		6.35 ± 0.25	
	(in.) mm			098 ± 0.0 .50 ± 0.2					.61 ± 0.0				0.252 ± 0.016 0.61 ± 0.36))	(0.250 ± 0.010 0.64 ± 0.39))
(t) Terminal	(in.)		(0.0	020 ± 0.0	10)			(0.0	0.0 ± 0.0	14)			(0.024 ± 0.014			(0.025 ± 0.015	
Сар	WVDC 0.5	25	50	100	200	500	25	50	100	200	500	50	100	200	50	100	200
(pF)	1.0 1.2																
	1.5																_
	1.8 2.2																
	2.7														*	$\overline{}$) TT
	3.3 3.9)	J 4.
	4.7																-
	5.6 6.8															*t'	
	8.2 10					J											
	12 15					J											
	18					J											
	22 27					J											
	33					J											
	39 47					J											
	56 68					J											
	82					J											
	100 120					J											
	150 180					J											
	220					J											
	270 330					J	-										
	390 470					М											
	560	J	J	J	J	M											
	680 820	J J	J	J	J	M M											
	1000	J	J	J	J	М	K	K	K	K	М	M	М	М	М	М	P
	1200 1500	J	J	J	M	M	K K	K K	K	K K	M M	M M	M M	M M	M M	M M	P P
	1800 2200	J J	J	J	M Q		K K	K K	K K	K K	M P	M M	M M	M M	M M	M M	P P
	2700	J	J	J	Q		K	K	K	Р	Q	М	М	М	М	М	Р
	3300 3900	J	J	J M			K K	K K	K K	P P	Q Q	M M	M M	M M	M M	M M	P P
	4700 5600	J	J	М			K K	K K	K M	P P	Q X	M M	M M	M M	M M	M M	P P
	6800	J	J				K	К	М	X	^	М	М	M	М	М	Р
	8200 0.010	J	J				K K	M M	M			M M	M M		M M	M M	P P
	0.012 0.015	J	Ĵ				K M	M M				M M	M M		M M	M M	P Y
	0.018						М	М				P	M		М	М	Y
	0.022 0.027						M M	M M				P P			M P	Y	Y
	0.033						М	М				Р			Р		
	0.039 0.047						M M	M M				P P			P P		
	0.068 0.082						M M	M M							P Q		
	0.1	0.5	F0	100	000	500			100	000	500	F2	100	000	Q	100	000
	WVDC SIZE	25	50	100 AU10	200	500	25	50	100 AU12	200	500	50	100 AU13	200	50	100 AU14	200

* Contact Factory

1	(0.0.0)	(0.022)	PAPER	(0.000)	(0.007)	(0.0.0)	(0.000)	(0.000)	(OSSED	(0.050)	(0.100)	(0.1.0)
Thickness	(0.013)	(0.022)	(0.028)	(0.035)	(0.037)	(0.040)	(0.050)	(0.055)	(0.060)	(0.070)	(0.090)	(0.100)	(0.110)
Max.	0.33	0.56	0.71	0.90	0.94	1.02	1.27	1.40	1.52	1.78	2.29	2.54	2.79
Letter	Α	С	E	G	J	K	М	N	Р	Q	X	Υ	Z

PREFERRED SIZES ARE SHADED

Soldering Packaging	10 ((in the content of the content o	Reflow/ Wire E All P 1.00 ± 0.040 ± 0.50 ± 0.020 ± 0.25 ± 0.010 ±	3ond* aper ± 0.10 ± 0.004 ± 0.10 ± 0.004 ± 0.15	1)	63	10	0.00 0.1 0.00 0.1 0.00	ow/Epire Bo III Pap 60 ± 0 63 ± 0 81 ± 0 32 ± 0 35 ± 0 14 ± 0	nd* er .15 .006) .15 .006)		200	63	P	Wi 2.0 (0.07 1.2 (0.04 0.5 (0.02	re Bo r/Eml 01 ± 0 79 ± 0 25 ± 0	0.20 0.008 0.20 0.008 0.008	ed 3) 3)				(0)	eflow/ Wire I 0er/Er 3.20 ± .126 ± .1.60 ± .063 ± .0.50 ±	mbos ± 0.20 ± 0.00 ± 0.00 ± 0.00 ± 0.05 ± 0.05	sed))8)))8) 5	200	
Packaging (L) Length (ir (ir (ir	(i)	All P 1.00 ± 0.040 ± 0.50 ± 0.020 ± 0.25 ± 0.010 ±	aper ± 0.10 ± 0.004 ± 0.10 ± 0.004 ± 0.15 ± 0.006	(1) (5) (5) (5) (C) (C)	63	10	0.0 (0.0) (0.0) (0.0) (0.0)	NII Pap 60 ± 0 63 ± 0 81 ± 0 32 ± 0 35 ± 0 14 ± 0	.15 .006) .15 .006) .15 .006))	200	63		2.0 (0.07 1.2 (0.04 0.5 (0.02	r/Eml 01 ± (79 ± (25 ± (49 ± (0.20 0.008 0.20 0.008 0.008	3)				(0)	3.20 ± 3.20 ± 1.60 ± 1.60 ± 0.50 ±	mbos ± 0.20 ± 0.00 ± 0.20 ± 0.00 ± 0.25 ± 0.01	sed () () () () () () () () () () () () ()	200	
(L) Length (iii (iii (iii (iii (iii (iii (iii (i	(i)	1.00 ± 0.040 ± 0.50 ± 0.020 ± 0.25 ± 0.010 ±	0.10 0.004 0.10 0.004 0.004 0.15	(1) (5) (5) (5) (C) (C)	63	10	0.0 (0.0) (0.0) (0.0) (0.0)	60 ± 0 63 ± 0 81 ± 0 32 ± 0 35 ± 0 14 ± 0	.15 .006) .15 .006) .15)	200	63		2.0 (0.07 1.2 (0.04 0.5 (0.02	01 ± (79 ± (25 ± (49 ± (50 ± (0.20 0.008 0.20 0.008 0.25	3)				(0	3.20 ± 1.60 ± 1.60 ± 0.50 ± 0.	± 0.20 ± 0.00 ± 0.20 ± 0.00 ± 0.25 ± 0.01) () () () () () () () () () () ()	200	
(L) Length (ir W) Width (ir (t) Terminal (ir WVDC Cap 15 (pF) 22 33 47 68 100	(i)	0.040 ± 0.50 ± 0.020 ± 0.25 ± 0.010 ±	± 0.004 ± 0.10 ± 0.004 ± 0.15 ± 0.006	(1) (5) (5) (5) (C) (C)	63	10	(0.0) (0.0) (0.0) (0.0)	63 ± 0 81 ± 0 32 ± 0 35 ± 0 14 ± 0	.006) .15 .006) .15 .006))	200	63		(0.0 ⁷ 1.2 (0.0 ⁴ 0.9 (0.02	79 ± (25 ± (49 ± (50 ± (0.008 0.20 0.008 0.25	3)				(0)	.126 ± 1.60 ± .063 ± 0.50 ±	± 0.00 ± 0.20 ± 0.00 ± 0.25 ± 0.01	08) 08) 08) 5	200	
W) Width (ir (t) Terminal (ir WVDC 10 Cap 10 (pF) 22 33 47 68	(in the content of th	0.50 ± 0.020 ± 0.25 ± 0.010 ±	0.10 0.004 0.15 0.006	(1) (5) (5) (5) (C) (C)	63	10	0.0 (0.03 0.3 (0.03	81 ± 0 32 ± 0 35 ± 0 14 ± 0	.15 .006) .15 .006))	200	63		1.2 (0.04 0.9 (0.02	25 ± (49 ± (50 ± (0.20 0.008 0.25	3)				(0	1.60 ± .063 ± .063 ± .050 ±	± 0.20 ± 0.00 ± 0.25 ± 0.01) () () () () ()	200	
(t) Terminal (ir WVDC) Cap 10 (pF) 22 33 47 68 100	(i) ((i) (ii) (iii) (iii	0.020 ± 0.25 ± 0.010 ±	0.004 0.15 0.006	5) 50 C C	63	10	(0.03 0.3 (0.0)	32 ± 0 35 ± 0 14 ± 0	.006) .15 .006)		200	63		0.04 0.9 (0.02	49 ± (50 ± (0.008 0.25	,				(0	.063 ±	± 0.00 ± 0.25 ± 0.01	08) 5 10)	200	
(t) Terminal (iii WVDC	(i) (i) (i) (ii) (ii) (ii) (ii) (ii) (i	0.25 ± 0.010 ±	± 0.15 ± 0.006	5) 50 C C	63	10	0.0	35 ± 0 14 ± 0	.15 .006)		200	63		0.02	50 ± 0	0.25	,					0.50 ±	± 0.25 ± 0.01	5 10)	200	
(t) Ferminal (ir WVDC) Cap 10 (pF) 22 33 47 68 100	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	0.010 ±	0.006	50 C C	63	10	(0.0	14 ± 0	.006)		200	63		(0.02									± 0.01	10)	200	
Cap 10 15 (pF) 22 33 47 68 100		16	25	C	63	10	16	25	50	100	200	63	10))				10			100	200	
Cap (pF) 22 33 47 68 100				С									10	16	25		100	200	63	10	16	25	50	100	, ZUU	500
(pF) 22 33 47 68 100				С				i e																		
33 47 68 100				С																					,	
47 68 100								G																		
68 100	0			С					G	G	G]	٦	J	J	J	J	J]]	7	7		1]	ıΤ	K
100	0								G	G	G		J	J	J	J	J	J							ı	K
				С					G	G	G	Ш	J	J	J	J	J	J			igsquare			\sqcup	\longrightarrow	K
150)	1 1		С					G	G	G		J	J	J	J	J	J								K
200				C					G	G			J	J	J	J	J	J		J	J	J	J	J	J	М
220				С					G	G			J	J	J	J	J	J		J	J	J	J	J	J	M
330 470			C	C C					G G	G G			J	J	ے ۔	J	J	J		J	J	J	J	J	J	М
680		С	C	U					G	G			J	J J	J	J	J	J		J J	J	J	J	J	J	M P
0.01		C	U				G		G	G			J	J	J	J	J	J		J	J	J	J	J	J	P
Cap 0.01		C					U	G	G	U			J	J	J	J	J	J		J	J	J	J	J	М	'
(μF) 0.01		C						G	G				J	J	J	J	J	N		J	J	J	J	J	М	
0.03								G	G				J	J	J	J	N			J	J	J	J	J	М	
0.04							G	G	G				J	J	J	J	N			J	J	J	J	J	М	
0.06							G	G	G				J	J	J	J	N			J	J	J	J	J	Р	
0.1)					G	G	G	G				J	J	J	J				J	J	J	J	М	Р	
0.1	5				G	G							J	J	J	N	N			J	J	J	J	Q		
0.2					G	G							J	J	N	N	N			J	J	J	J	Q	ш	
0.3]]]	Ν	N	Ν	Ν	N]	J	٦	М	Р	Q	ıŢ]
0.4													N	N	N	N	N			М	М	М	Р	Q	ı	
0.6		\vdash							\square				N	N	N					М	M	Q	Q	Q	 	
1.													N	N	N					M	M	_	Q	Q	,	
1.															P*					P	Q	Q			,	
3.															Ρ^					Q	Q	Q		$\vdash\vdash\vdash$		
3.													P*							Q	Q				,	
1													г							0*	Ų				,	
2		\vdash							\vdash			\vdash			\vdash	\vdash			0*	٧	\vdash	\vdash		\vdash	-+	-
4																			٧						,	
10																									,	
WVD		16	25	50	63	10	16	25	50	100	200	63	10	16	25	50	100	200	63	10	16	25	50	100	200	500
SIZ	E		AU02					AU03	3			i '			AU0						-	ΔΙ	106			

^{*} Contact Factory

	Letter	Α	С	Е	G	J	K	М	N	Р	Q	Х	Υ	Z
	Max.	0.33	0.56	0.71	0.90	0.94	1.02	1.27	1.40	1.52	1.78	2.29	2.54	2.79
1	Thickness	(0.013)	(0.022)	(0.028)	(0.035)	(0.037)	(0.040)	(0.050)	(0.055)	(0.060)	(0.070)	(0.090)	(0.100)	(0.110)
				PAPER						FMRC	SSFD			

PREFERRED SIZES ARE SHADED

SIZE					AU10					AU	112		AU	113	AL	J14
Soldering					flow/Epo						/Epoxy/			/Epoxy/		/Epoxy/
Packaging					Vire Bond er/Embos					Wire	Bond* bossed		Wire I			Bond* bossed
	y mm				3.20 ± 0.2						± 0.30			± 0.30		± 0.25
(L) Length	(in.)				126 ± 0.0						± 0.012)		(0.177 :			± 0.23
\A/\ \A/: - + -	mm				2.50 ± 0.2						± 0.20		6.40 :	± 0.40		± 0.25
W) Width	(in.)				098 ± 0.0						± 0.008)		(0.252 :			± 0.010)
(t) Terminal	mm				0.50 ± 0.2					0.61 :				± 0.36		± 0.39
WVDC	(in.)	10	1.0		020 ± 0.0		000	500	F0		± 0.014)	F00	(0.024 :			± 0.015)
WVDC	100	10	16	25	50	100	200	500	50	100	200	500	50	100	50	100
Сар	150															
(pF)	220															
	330										<u> </u>	ı			10/	·
	470														_W	
	680										~	<)) -	-
	1000											(-		١	レヹ	ļ I ——
	1500	J	J	J	J	J	J	М				<u></u>	_]			
	2200	J	J	J	J	J	J	М					\sim	ĺ		
	3300	J	J	J	J	J	J	М					4 t	1		
	4700	J	J	J	J	J	J	М				ı	, , , ,	ı I	ı	1
	6800	J	J	J	J	J	J	М								_
Сар	0.010	J	J	J	J	J	J	M P	K	K	K	K P	M	М	М	Р
(μ F)	0.015 0.022	J J	J J	J	J	J	J J	0	K K	K K	K K	P	M M	M M	M M	P P
	0.022	J	J	J	J	J	J	0	K	K	K	X	M	M	M	P
	0.033	J	J	J	J	J	J	Ų	K	K	K	Ž	M	M	M	P
	0.068	Ĵ	J	Ĵ	Ĵ	Ĵ	M		K	K	K	Z	M	М	М	P
	0.10	J	J	J	J	J	М		К	К	К	Z	М	М	М	Р
	0.15	J	J	J	J	М	Z		K	K	Р		М	М	М	Р
	0.22	J	J	J	J	Р	Z		K	K	P		М	М	М	P
	0.33 0.47	J M	J M	J M	J M	Q			K K	M P	Х		M M	M M	M M	P P
	0.47	M	M M	I M P	X	Q X			K M	Q			M	M Р	M M	P
	1.0	N	N	'	X	Z			M	X			M	P	M	P
	1.5	N	N	Z	Z	Z			Z	Z			М		М	X
	2.2	Χ	Х	Z	Z	Z			Z	Z					М	
	3.3	X	X	Z	Z				Z							
	4.7	X	X	Z	Z				Z							
	10 22	Z	Z	Z						-						
	47															
	100															
	WVDC	10	16	25	50	100	200	500	50	100	200	500	50	100	50	100
	SIZE				AU10					AU	12		AU	13	AU	J14

^{*} Contact Factory

Letter	Α	С	Е	G	J	K	М	N	Р	Q	X	Υ	Z
Max.	0.33	0.56	0.71	0.90	0.94	1.02	1.27	1.40	1.52	1.78	2.29	2.54	2.79
Thickness	(0.013)	(0.022)	(0.028)	(0.035)	(0.037)	(0.040)	(0.050)	(0.055)	(0.060)	(0.070)	(0.090)	(0.100)	(0.110)
			PAPER						EMBO	DSSED			

PREFERRED SIZES ARE SHADED

SIZE				AL	102					-	AU03	3					ΑL	105						J06					-	AU1	0				Α	U12	
Solderin	ng			flow /ire							ow/E e Bo		y			Re V	flow /ire	/Epc Bonc	oxy ł*			Re V	eflow Vire	/Epo	oxy ł*			F		ow/E e Bo		y				w/Ep e Bor	oxy/ nd*
Packagi	ing			All P	ape	r				Al	l Pap	oer				Pape	er/Ei	mbo	ssec	1		Pap	er/E	mbo	ssec	1		Pa	per/	/Eml	ooss	ed		Α	All Er	nbos	ssed
(L) Length	mm (in.)			1.00 : 040 :						(0.06	60 ± 0 63 ± 0	.006))					± 0.20 ± 0.00						± 0.20					(0.12	20 ± 0 26 ± 0	.008)		(0 ± 0. 7 ± 0.	
(W) Width	mm (in.)		(0.	0.50 : 020 :	± 0.0	04)				(0.03	31 ± 0 32 ± 0	.006))			(0.	049 :	± 0.20 ± 0.00	08)			(0.	.063	± 0.20	08)				(0.09	60 ± 0	.008)		(0.126	0 ± 0. 6 ± 0.	(800
(t) Terminal	mm (in.)			0.25 : 010 :							35 ± 0 4 ± 0)					± 0.25 ± 0.01						± 0.2						50 ± 0 20 ± 0)				1 ± 0. 4 ± 0.	
WVDC	. ,	4		10			50	4	6.3	10		25		50	6.3	10		25		50	6.3	10	16	25	35	50	4	6.3		16			50	6.3		25	50
Сар	100																																				
(pF)	150								İ																												
	220								İ		İ											İ		İ													
	330						С																														
	470						С																														
	680						С																														
	1000						С																														
	1500						С																														
	2200						С				-													-							-						
	3300 4700					С	С							G																							
	6800					C								G																							
Сар	0.010					С								G																							
(μF)	0.015					C						G	G	G																							
()	0.022				С	С						G	G	G						N																	
	0.033				С							G	G	G						N																	
	0.047				С	С						G	G	G						N																	
	0.068				С							G		G						N																	
	0.10		С		С	С						G		G				N		N																	
	0.15											G						N	N																		
	0.22		C*								G	G						N	N																		
	0.33										G	G						N								Q											
	0.47	C*									G							N						Q	Q												
	0.68				_			-	_	_	G	J.L.						N		Di				_	_								X				
	1.0								G	G	G	J*			N		N	N		P*				Q	Q						Х	Х	Х				
	1.5 2.2	C*						G*	G*	J*	J*				N N	N	N	N					Q	Q							Z	X					
	3.3	U"			\vdash			J*	J*	J*	J*	\vdash			N	N	IN	IN			Q	Q	Ų	Ų								^					
	4.7							J*	J*] J*					14	N	N*	N*			Q	Q	Q	Q						Q	Z						
	10							K*							P*	P*	P*				Q	Q	Q	Q*					Х	Z	Z					Z	
	22														P*						Q*	Q*	Q*	Ì				Z	Z	Z	Z						
	47																				Q*							Z*									
	100																										Z*	Z*									
	WVDC	4	6.3	10	16	25	50	4	6.3	10	16	25	35	50	6.3	10	16	25	35	50	6.3	10	16	25	35	50	4	6.3	10	16	25	35	50	6.3	10	25	50
	SIZE			ΑL	102						AU03	3					ΑL	105					Αl	J06						AU1	0				Δ	U12	

* Contact Factory

Letter	Α	С	E	G	J	K	М	N	Р	Q	Х	Υ	Z
Max.	0.33	0.56	0.71	0.90	0.94	1.02	1.27	1.40	1.52	1.78	2.29	2.54	2.79
Thickness	(0.013)	(0.022)	(0.028)	(0.035)	(0.037)	(0.040)	(0.050)	(0.055)	(0.060)	(0.070)	(0.090)	(0.100)	(0.110)
			PAPER						EMBC	SSED			

= *Optional Specifications - Contact Factory

NOTE: Contact factory for non-specified capacitance values

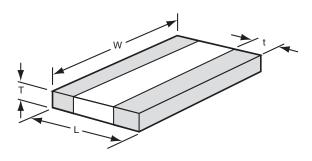
AU16/AU17/AU18

	IZE caging		(AU1 030	5)			(0	U17 508	3)			((AU1 061:	2)	
Pace	mm			31 ± 0			-		7 ± 0.			<u> </u>		0 ± 0		
Length	(in.)			32 ± 0)		0.05							.23 .010)	
Width	mm		1.6	0 ± 0	.15			2.0	0 ± 0.	25		l	3.2	0 ± 0	.25	
	(in.)		(0.06	3 ± 0	.006)	(0.08	0 ± 0.	010)			(0.12	6 ± 0	.010)	
Cap Code	WVDC	4	6.3	10	16	25	6.3	10	16	25	50	6.3	10	16	25	50
102	Cap 0.001		Α	Α	Α	Α	S	S	S	S	٧	S	S	S	S	V
222	(μF) .0022		Α	Α	Α	Α	S	S	S	S	٧	S	S	S	S	V
332	0.0033		Α	Α	Α	Α	S	S	S	S	٧	S	S	S	S	V
472	0.0047		Α	Α	Α	Α	S	S	S	S	٧	S	S	S	S	٧
682	0.0068		Α	Α	Α	Α	S	S	S	S	٧	S	S	S	S	V
103	0.01		Α	Α	Α	Α	S	S	S	S	٧	S	S	S	S	V
153	0.015		Α	Α	Α	Α	S	S	S	S	٧	S	S	S	S	W
223	0.022		Α	Α	Α	Α	S	S	S	S	٧	S	S	S	S	W
333	0.033		Α	Α	Α		S	S	S	٧	٧	S	S	S	S	W
473	0.047		Α	Α	Α		S	S	S	٧	Α	S	S	S	S	W
683	0.068		Α	Α	Α		S	S	S	Α	Α	S	S	S	٧	W
104	0.1		Α	Α	/		S	S	٧	Α	Α	S	S	S	٧	W
154	0.15		Α	Α			S	S	٧			S	S	S	W	W
224	0.22		Α	Α			S	S	Α			S	S	٧	W	
334	0.33						٧	٧	Α			S	S	٧		
474	0.47						٧	٧	M			S	S	٧		
684	0.68						Α	Α				٧	٧	W		
105	1	A					Α	Α				٧	٧	Α		
155	1.5						//					W	W			
225	2.2											Α	Α			
335	3.3											/				
475	4.7															
685	6.8															
106	10															

Solid = X7R

Mm (in.)

AU16
(0306)


Code Thickness

A 0.56 (0.022)

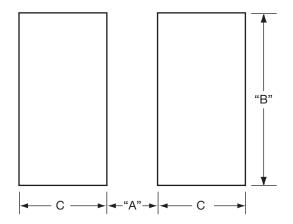
	mm (in.)
	AU16 (0508)
Code	
S	0.56 (0.022)
V	0.76 (0.030)
Α	1.02 (0.040)

	mm (in.)
	AU16 (0612)
Code	ì
S	0.56 (0.022)
V	0.76 (0.030)
W	1.02 (0.040)
Α	1.27 (0.050)

PHYSICAL DIMENSIONS AND PAD LAYOUT

PHYSICAL DIMENSIONS

MM (IN.)


	L	W	t
AU16	0.81 ± 0.15	1.60 ± 0.15	0.13 min.
(0306)	(0.032 ± 0.006)	(0.063 ± 0.006)	(0.005 min.)
AU17	1.27 ± 0.25	2.00 ± 0.25	0.13 min.
(0508)	(0.050 ± 0.010)	(0.080 ± 0.010)	(0.005 min.)
AU18	1.60 ± 0.25	3.20 ± 0.25	0.13 min.
(0612)	(0.063 ± 0.010)	(0.126 ± 0.010)	(0.005 min.)

T - See Range Chart for Thickness and Codes

PAD LAYOUT DIMENSIONS

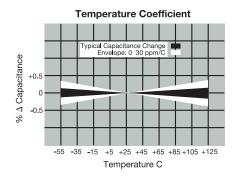
MM (IN.)

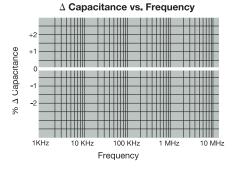

	A	В	С
AU16 (0306)	0.31 (0.012)	1.52 (0.060)	0.51 (0.020)
AU17 (0508)	0.51 (0.020)	2.03 (0.080)	0.51 (0.020)
AU18 (0612)	0.76 (0.030)	3.05 (0.120)	0.635 (0.025)

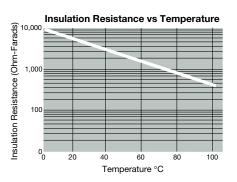
MLCC Tin/Lead Termination "B" (LD Series)

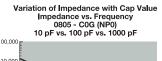
AVX Corporation will support those customers for commercial and military Multilayer Ceramic Capacitors with a termination consisting of 5% minimum lead. This termination is indicated by the use of a "B" in the 12th position of the AVX Catalog Part Number. This fulfills AVX's commitment to providing a full range of products to our customers. AVX has provided in the following pages a full range of values that we are currently offering in this special "B" termination. Please contact the factory if you require additional information on our MLCC Tin/Lead Termination "B" products.

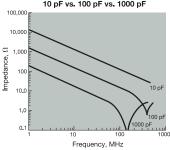
PART NUMBER (SEE PAGE 4 FOR COMPLETE PART NUMBER EXPLANATION)

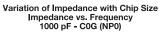

Not RoHS Compliant

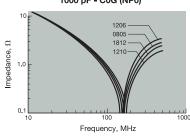

LD05	5	A	101	J	A	В	2	Α
Size	Voltage	Dielectric	Capacitance	Capacitance	Failure	Terminations	Packaging	Special
LD02 - 0402	6.3V = 6	C0G (NP0) = A	Code (In pF)	Tolerance	Rate	B = 5% min lead	2 = 7" Reel	Code
LD03 - 0603	10V = Z	X7R = C	2 Sig. Digits +	$B = \pm .10 pF (<10pF)$	A = Not	X = FLEXITERM®	4 = 13" Reel	A = Std.
LD04 - 0504*	16V = Y	X5R = D	Number of	$C = \pm .25 pF (<10 pF)$	Applicable	with 5% min	O	Product
LD05 - 0805 LD06 - 1206	25V = 3	X8R = F	Zeros	$D = \pm .50 pF (<10pF)$	4 = Automotive	lead**	Contact Factory	
LD00 - 1200 LD10 - 1210	35V = D			F = ±1% (≥ 10 pF)			For	
LD10 - 1210 LD12 - 1812	50V = 5			$G = \pm 2\% (\ge 10 \text{ pF})$		**X7R only	Multiples*	
LD13 - 1825	100V = 1			J = ±5% ` ′		,		
LD14 - 2225	200V = 2			K = ±10%				
LD20 - 2220	500V = 7			$M = \pm 20\%$				

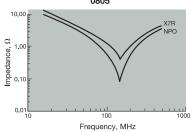

*LD04 has the same CV ranges as LD03.


See FLEXITERM® section for CV options


NOTE: Contact factory for availability of Tolerance Options for Specific Part Numbers. Contact factory for non-specified capacitance values.







Variation of Impedance with Ceramic Formulation Impedance vs. Frequency 1000 pF - C0G (NP0) vs X7R

Parame	ter/Test	NP0 Specification Limits	Measuring	Conditions			
	perature Range	-55°C to +125°C	Temperature C	ycle Chamber			
Capac	itance	Within specified tolerance	Freg.: 1.0 MHz ± 109	% for cap ≤ 1000 pF			
C	2	<30 pF: Q≥ 400+20 x Cap Value ≥30 pF: Q≥ 1000	1.0 kHz ± 10% fo Voltage: 1.0				
Insulation	Resistance	100,000ΜΩ or 1000ΜΩ - μF, whichever is less	Charge device with rated voltage for 60 ± 5 secs @ room temp/humidity				
Dielectric	: Strength	No breakdown or visual defects	Charge device with 250% of rated voltage for 1-5 seconds, w/charge and discharge current limited to 50 mA (max) Note: Charge device with 150% of rated voltage for 500V devices.				
	Appearance	No defects	Deflection: 2mm Test Time: 30 seconds 1mm/sec				
Resistance to Flexure	Capacitance Variation	±5% or ±.5 pF, whichever is greater					
Stresses	Q	Meets Initial Values (As Above)					
	Insulation Resistance	≥ Initial Value x 0.3	90 1				
Solder	rability	≥ 95% of each terminal should be covered with fresh solder	Dip device in eutection for 5.0 ± 0.				
	Appearance	No defects, <25% leaching of either end terminal					
	Capacitance Variation	≤ ±2.5% or ±.25 pF, whichever is greater	Dip device in eutectic solder at 260°C for 60				
Resistance to Solder Heat	Q	Meets Initial Values (As Above)	seconds. Store at room	temperature for 24 ± 2			
Soluei Heat	Insulation Resistance	Meets Initial Values (As Above)	hours before measuring	g electrical properties.			
	Dielectric Strength	Meets Initial Values (As Above)					
	Appearance	No visual defects	Step 1: -55°C ± 2°	30 ± 3 minutes			
	Capacitance Variation	≤ ±2.5% or ±.25 pF, whichever is greater	Step 2: Room Temp	≤ 3 minutes			
Thermal Shock	Q	Meets Initial Values (As Above)	Step 3: +125°C ± 2°	30 ± 3 minutes			
	Insulation Resistance	Meets Initial Values (As Above)	Step 4: Room Temp	≤ 3 minutes			
	Dielectric Strength	Meets Initial Values (As Above)	Repeat for 5 cycles 24 hours at roo				
	Appearance	No visual defects					
	Capacitance Variation	≤ ±3.0% or ± .3 pF, whichever is greater	Charge device with twice chamber set a				
Load Life	Q	≥ 30 pF: Q≥ 350 ≥10 pF, <30 pF: Q≥ 275 +5C/2 <10 pF: Q≥ 200 +10C	for 1000 hou	ırs (+48, -0).			
	Insulation Resistance	≥ Initial Value x 0.3 (See Above)	temperature before me	for 24 hours			
	Dielectric Strength	Meets Initial Values (As Above)					
	Appearance	No visual defects					
	Capacitance Variation	≤ ±5.0% or ± .5 pF, whichever is greater	Store in a test chamber s	set at 85°C ± 2°C/ 85% ±			
Load Humidity	Q	≥ 30 pF: Q≥ 350 ≥10 pF, <30 pF: Q≥ 275 +5C/2 <10 pF: Q≥ 200 +10C	5% relative humidi (+48, -0) with rated	d voltage applied.			
	Insulation Resistance	≥ Initial Value x 0.3 (See Above)	Remove from chamber temperature for 24 ± 2 h				
	Dielectric Strength	Meets Initial Values (As Above)					

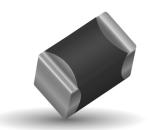
COG (NPO) - Capacitance Range

PREFERRED SIZES ARE SHADED

			-																
SIZE	_		LD02				03				LD05					LD0			
Solderi Packagi			flow/Wa All Paper				//Wave Paper				flow/War er/Embos					Reflow/ aper/Em			
	mm		.00 ± 0.1				± 0.15				.01 ± 0.20					3.20 ±			-
(L) Length	(in.)		040 ± 0.0				± 0.006)		(0.079 ± 0.008)				(0.126 ± 0.008)						
W) Width	mm		.50 ± 0.1				± 0.15		1.25 ± 0.20				1.60 ± 0.20						
,	(in.)		020 ± 0.0 .25 ± 0.1			(0.032 :	± 0.006) ± 0.15		(0.049 ± 0.008)						0.063 ±				
(t) Terminal	mm (in.)		.25 ± 0.1)10 ± 0.0			(0.014			0.50 ± 0.25 (0.020 ± 0.010)						0.50 ± (0.020 ±				
	WVDC	16	25	50	16	25	50	100	16	25	50	100	200	16	25	50	100	200	500
Сар	0.5	C	С	О	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J
(pF)	1.0	С	C	C C	G G	G G	G	G G	J	J	J	J	J	J	J	J	J	J	J
	1.2 1.5	C	C	C	G	G	G G	G	J	J	J	J	J	J	J	J	J	J	J
	1.8	C	C	C	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J
	2.2	С	С	С	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J
	2.7	C	C	C	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J
	3.3	C	C	C	G G	G G	G	G	J	J	J	J	J	J	J	J	J	J	J
	4.7	C	C	C	G	G	G	G	J	J	J	J	J	Ĵ	J	Ĵ	Ĵ	Ĵ	J
	5.6	С	С	С	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J
	6.8 8.2	C C	C	C	G G	G G	G G	G G	J	J J	J	J J	J J	J J	J	J	J	J	J J
	10	C	C	C	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J
	12	С	С	С	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J
	15	С	С	С	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J
	18 22	C C	C	C C	G G	G G	G G	G G	J	J J	J	J J	J	J	J	J	J	J	J
	27	С	С	С	G	G	G	G	Ĵ	J	, ,	J	J	Ĵ	Ĵ	Ĵ	Ĵ	Ĵ	J
	33	С	С	С	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J
	39 47	C	C	C C	G G	G G	G G	G G	J	J	J	J J	J J	J	J	J	J	J	J
	56	C	C	C	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J
İ	68	С	С	С	G	G	Ğ	G	Ĵ	Ĵ	Ĵ	Ĵ	Ĵ	Ĵ	Ĵ	Ĵ	J	J	J
	82	С	С	С	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J
	100 120	C	C	C	G G	G G	G G	G G	J	J	J	J J	J	J	J	J	J	J	J
	150	C	Č	C	G	Ğ	Ğ	Ğ	J	J	J	J	J	J	J	J	J	Ĵ	Ĵ
	180	С	С	С	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J
	220	C C	С	С	G	G G	G	G	J	J	J	J	J	J	J	J	J	J	M
	270 330	C	C	C	G G	G	G	G G	J	J	J	J	M M	J	J	J	J	J	M
	390	C	c	C	G	G	G	Ğ	Ĵ	Ĵ	Ĵ	Ĵ	M	Ĵ	Ĵ	Ĵ	J	J	M
	470	С	С	С	G	G	G		J	J	J	J	M	J	J	J	J	J	М
	560 680				G G	G G	G G		J	J	J	J	М	J	J	J	J	J	M P
	820				G	G	G		J	J	J	J		J	J	J	J	М	
	1000				G	G	G		J	J	J	J		J	J	J	J	Q	
	1200 1500					G			J	J	J			J	J	J	J	Q	
	1800								J	J	J			J	J	J M	M	Q	
	2200								J	J	N			Ĵ	J	М	Р		
	2700								J	J	N			J	J	M	P	-	\vdash
	3300 3900								J	J J				J	J	M M	l P		
	4700								J	J				J	J	M	P		
	5600													J	J	М			
	6800 8200													M M	M M				
Сар	0.010													M	M				$\vdash \vdash$
(pF)	0.012																		
	0.015		ļ	-	~	W-	_								-	1	-		\sqcup
	0.018 0.022		~			7	1												
	0.022					.لا	Ţ⊤												
	0.033		,				_												
	0.039				4														
	0.047		-		Tt l		_								-		-	-	\vdash
	0.082																		
	0.1		-					4.5		-					-				
	WVDC	16	25	50	16	25	50	100	16	25	50 LD05	100	200	16	25	50	100	200	500
	SIZE		LD02			LD	03				LD05					LD0	0		

Letter	Α	С	E	G	J	K	М	N	Р	Q	Х	Υ	Z
Max.	0.33	0.56	0.71	0.90	0.94	1.02	1.27	1.40	1.52	1.78	2.29	2.54	2.79
Thickness	(0.013)	(0.022)	(0.028)	(0.035)	(0.037)	(0.040)	(0.050)	(0.055)	(0.060)	(0.070)	(0.090)	(0.100)	(0.110)
PAPER								EMB	OSSED				

COG (NPO) - Capacitance Range


PREFERRED SIZES ARE SHADED

SIZE	:			LD10					LD12				LD1	3			LD14	
Solderi	ing		R	eflow On	ly			F	Reflow On	ıly			Reflow	Only			Reflow Only	
Packag				er/Embo					I Emboss				All Emb				All Embossed	
(L) Length	mm (in.)			3.20 + 0.2 126 ± 0.0					4.50 ± 0.3 177 ± 0.0			4.50 ± 0.30 (0.177 ± 0.012)				5.72 ± 0.25 (0.225 ± 0.010)		
W) Width	mm (in.)		2	2.50 ± 0.2 098 ± 0.0	:0			- ;	3.20 ± 0.2 126 ± 0.0	.0			6.40 ± (0.252 ±	0.40			6.35 ± 0.25 0.250 ± 0.010	
(t) Terminal	mm		C	0.50 ± 0.2	:5				0.61 ± 0.3	6			0.61 ±	0.36			0.64 ± 0.39	
(c) reminal	(in.) WVDC	25	50	020 ± 0.0 100	200	500	25	50	024 ± 0.0 100	200	500	50	(0.024 ±		200	50	0.025 ± 0.015 100	200
Cap	0.5																	
(pF)	1.0 1.2																	
	1.5																	
	1.8 2.2																>	I I
	2.7															_ <_\		
	3.3 3.9															(\mathcal{F}
	4.7															_ `	<u> </u>	
	5.6 6.8																a-t	
	8.2																1 * *	
	10 12					J												
	15					J												
	18 22					J												
	27					J												
	33 39					J												
	47					J												
	56 68					J												
	82					J												
	100 120					J												
	150					J												
	180 220					J												
	270					J												
	330 390					J M												
	470					М												
	560 680	J	J	J	J	M M												
	820	J	J	J	J	М												
	1000 1200	J	J	J	J M	M M	K K	K	K K	K K	M M	M M	M		M M	M M	M M	P P
	1500	J	J	J	М	М	K	K	K	K	М	М	М		М	М	М	Р
	1800 2200	J	J	J	M Q		K K	K	K K	K K	M P	M M	M		M M	M M	M M	P P
	2700	J	J	J	à		K	K	K	Р	Q	М	М		М	М	М	Р
	3300 3900	J	J J	J M			P P	P P	P P	P P	Q	M M	M		M M	M M	M M	P P
	4700	J	J	М			P	P	P P	P P	Ŷ	М	M		М	М	M M	P P
	5600 6800	J	J				Р	Р	Q	Q	Y	M M	М		M M	М	М	P
Сар	8200 0.010	J	J				P P	P P	Q Q	Q Q	Y	M M	M			M M	M M	P P
(pF)	0.012	J	J				Р	Р	Q	Χ	Y	М	M			М	М	P
	0.015 0.018						P P	P P	Q X	X	Y	M P	M			M M	M M	Y
	0.022						Р	Р	Х	Χ		Р	IVI			М	Υ	Y
	0.027 0.033				\vdash		Q	X	X	Z Z		P P				P P	Y	Υ
	0.039						Х	Х	Z	Z		Р				Р		
	0.047						Z	Z	Z Z	Z		Р				P P		\vdash
	0.082						Z	Z	Z							Q		
	0.1 WVDC	25	50	100	200	500	Z 25	50	Z 100	200	500	50	10)	200	Q 50	100	200
SIZE		- ,		LD10					LD12				LD1				LD14	
Letter	A	С		Е	G	J		K	М		N	Р	Q	Х	Y	Z	1	
Max.	0.33	0.56		0.71	0.90	0.9		1.02	1.27		.40	1.52	1.78	2.29	2.54	2.79	1	
Thickness	(0.013)	(0.022)		0.028)	(0.035)	(0.0		(0.040)	(0.050	1	055)	(0.060)	(0.070)	(0.090)	(0.100			
			F	PAPER								EMBO	SSED					

X8R - General Specifications

AVX Corporation will support those customers for commercial and military Multilayer Ceramic Capacitors with a termination consisting of 5% minimum lead. This termination is indicated by the use of a "B" in the 12th position of the AVX Catalog Part Number. This fulfills AVX's commitment to providing a full range of products to our customers. AVX has provided in the following pages a full range of values that we are currently offering in this special "B" termination. Please contact the factory if you require additional information on our MLCC Tin/Lead Termination "B" products.

Not RoHS Compliant

PART NUMBER (SEE PAGE 4 FOR COMPLETE PART NUMBER EXPLANATION)

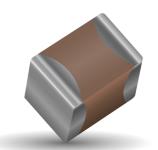
LD05	<u>5</u>	F T	101	_	<u>A</u>	<u>B</u>	<u>2</u>	<u>A</u>
Size LD02 - 0402 LD03 - 0603 LD04 - 0504* LD05 - 0805 LD06 - 1206 LD10 - 1210 LD12 - 1812 LD13 - 1825 LD14 - 2225 LD20 - 2220	Voltage 6.3V = 6 10V = Z 16V = Y 25V = 3 35V = D 50V = 5 100V = 1 200V = 2 500V = 7	Dielectric X8R = F	Capacitance Code (In pF) 2 Sig. Digits + Number of Zeros	Capacitance Tolerance B = ±.10 pF (<10pF) C = ±.25 pF (<10pF) D = ±.50 pF (<10pF) F = ±1% (≥ 10 pF) G = ±2% (≥ 10 pF) J = ±5% K = ±10% M = ±20%	Failure Rate A = Not Applicable	Terminations B = 5% min lead X = FLEXITERM® with 5% min lead** **X7R only	Packaging 2 = 7" Reel 4 = 13" Reel Contact Factory For Multiples*	Special Code A = Std. Product

LD04 has the same CV ranges as LD03.

See FLEXITERM® section for CV options

NOTE: Contact factory for availability of Tolerance Options for Specific Part Numbers. Contact factory for non-specified capacitance values.

Parame	ter/Test	X8R Specification Limits	Measuring (Conditions		
Operating Tem	perature Range	-55°C to +150°C	Temperature C	ycle Chamber		
Capac	itance	Within specified tolerance	From : 1.0 k	d I = 1 100/		
Dissipati	on Factor	≤ 2.5% for ≥ 50V DC rating ≤ 3.5% for 25V DC and 16V DC rating	Freq.: 1.0 k Voltage: 1.0			
Insulation	Resistance	100,000ΜΩ or 1000ΜΩ - μF, whichever is less	Charge device with rated voltage for 120 ± 5 secs @ room temp/humidity			
Dielectric	: Strength	No breakdown or visual defects	Charge device with 250% of rated voltage for 1-5 seconds, w/charge and discharge current limited to 50 mA (max) Note: Charge device with 150% of rated voltage for 500V devices.			
	Appearance	No defects	Deflectio	n: 2mm		
Resistance to	Capacitance Variation	≤ ±12%	Test Time: 3			
Flexure Stresses	Dissipation Factor	Meets Initial Values (As Above)				
	Insulation Resistance	≥ Initial Value x 0.3	90 r	mm		
Solder	rability	≥ 95% of each terminal should be covered with fresh solder	Dip device in eutectic for 5.0 ± 0.9			
	Appearance	No defects, <25% leaching of either end terminal				
	Capacitance Variation	≤ ±7.5%				
Resistance to Solder Heat	Dissipation Factor	Meets Initial Values (As Above)	Dip device in eutectic s seconds. Store at room	temperature for 24 ± 2		
	Insulation Resistance	Meets Initial Values (As Above)	hours before measuring	g electrical properties.		
	Dielectric Strength	Meets Initial Values (As Above)				
	Appearance	No visual defects	Step 1: -55°C ± 2°	30 ± 3 minutes		
	Capacitance Variation	≤ ±7.5%	Step 2: Room Temp ≤ 3 minutes			
Thermal Shock	Dissipation Factor	Meets Initial Values (As Above)	Step 3: +125°C ± 2°	30 ± 3 minutes		
	Insulation Resistance	Meets Initial Values (As Above)	Step 4: Room Temp	≤ 3 minutes		
	Dielectric Strength	Meets Initial Values (As Above)	Repeat for 5 cycles 24 ± 2 hours at ro			
	Appearance	No visual defects				
	Capacitance Variation	≤ ±12.5%	Charge device with 1.5 r			
Load Life	Dissipation Factor	≤ Initial Value x 2.0 (See Above)	for 1000 hou			
	Insulation Resistance	≥ Initial Value x 0.3 (See Above)	Remove from test chamb temperature for 24 ± 2 h			
	Dielectric Strength	Meets Initial Values (As Above)				
	Appearance	No visual defects				
	Capacitance Variation	≤ ±12.5%	Store in a test chamber s 5% relative humidi	ty for 1000 hours		
Load Humidity	Dissipation Factor	≤ Initial Value x 2.0 (See Above)	(+48, -0) with rated	d voltage applied.		
	Insulation Resistance	≥ Initial Value x 0.3 (See Above)	Remove from chamber temperature an	d humidity for		
	Dielectric Strength	Meets Initial Values (As Above)	24 ± 2 hours before measuring.			



	SIZE	LD	03	LD	05	LD	06
	WVDC	25V	50V	25V	50V	25V	50V
271	Cap 270	G	G				
331		G	G	J	J		
471	470	G	G	J	J		
681	680	G	G	J	J		
102	1000	G	G	J	J	J	J
152	1500	G	G	J	J	J	J
182	1800	G	G	J	J	J	J
222	2200	G	G	J	J	J	J
272	2700	G	G	J	J	J	J
332	3300	G	G	J	J	J	J
392	3900	G	G	J	J	J	J
472		G	G	J	J	J	J
562	5600	G	G	J	J	J	J
682		G	G	J	J	J	J
822		G	G	J	J	J	J
103		G	G	J	J	J	J
123	0.012	G	G	J	J	J	J
153	0.015	G	G	J	J	J	J
183	0.018	G	G	J	J	J	J
223	0.022	G	G	J	J	J	J
273	0.027	G	G	J	J	J	J
333	0.033	G	G	J	J	J	J
393	0.039	G	G	J	J	J	J
473		G	G	J	J	J	J
563		G		N	N	M	М
683	0.068	G		N	N	М	М
823	0.082			N	N	М	М
104	0.1			N	N	М	М
124	0.12			N	N	М	М
154	0.15			N	N	М	М
184	0.18			N		M	М
224	0.22			N		M	М
274	0.27					M	М
334	0.33					M	М
394	0.39					М	
474	0.47					M	
684	0.68						
824	0.82						
105	1						
	WVDC	25V	50V	25V	50V	25V	50V
	SIZE	LD	03	LD	05	LD	06

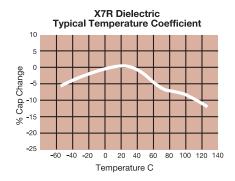
Letter	Α	С	Е	G	J	K	М	N	Р	Q	Х	Υ	Z
Max.	0.33	0.56	0.71	0.90	0.94	1.02	1.27	1.40	1.52	1.78	2.29	2.54	2.79
Thickness	(0.013)	(0.022)	(0.028)	(0.035)	(0.037)	(0.040)	(0.050)	(0.055)	(0.060)	(0.070)	(0.090)	(0.100)	(0.110)
	PAPER								EMBC	SSED			

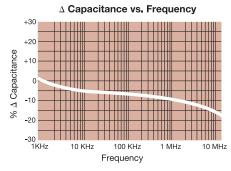
X7R - General Specifications

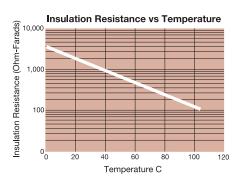
AVX Corporation will support those customers for commercial and military Multilayer Ceramic Capacitors with a termination consisting of 5% minimum lead. This termination is indicated by the use of a "B" in the 12th position of the AVX Catalog Part Number. This fulfills AVX's commitment to providing a full range of products to our customers. AVX has provided in the following pages a full range of values that we are currently offering in this special "B" termination. Please contact the factory if you require additional information on our MLCC Tin/Lead Termination "B" products.

Not RoHS Compliant

PART NUMBER (SEE PAGE 4 FOR COMPLETE PART NUMBER EXPLANATION)

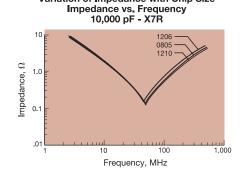

LD05	5	<u>c</u>	101	J	<u>A</u>	<u>B</u>	2	<u>A</u>
Size LD03 - 0603 LD04 - 0504* LD05 - 0805 LD06 - 1206 LD10 - 1210 LD12 - 1812 LD13 - 1825 LD14 - 2225 LD20 - 2220	Voltage 6.3V = 6 10V = Z 16V = Y 25V = 3 35V = D 50V = 5 100V = 1 200V = 2 500V = 7	Dielectric X7R = C	Capacitance Code (In pF) 2 Sig. Digits + Number of Zeros	Capacitance Tolerance B = \pm .10 pF (<10pF) C = \pm .25 pF (<10pF) D = \pm .50 pF (<10pF) F = \pm 1% (\geq 10 pF) G = \pm 2% (\geq 10 pF) J = \pm 5% K = \pm 10% M = \pm 20%	Failure Rate A = Not Applicable	Terminations B = 5% min lead X = FLEXITERM® with 5% min lead** **X7R only	Packaging 2 = 7" Reel 4 = 13" Reel Contact Factory For Multiples*	Special Code A = Std. Product


^{*}LD04 has the same CV ranges as LD03.

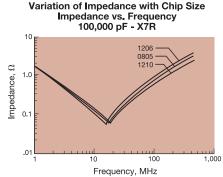

See FLEXITERM® section for CV options

NOTE: Contact factory for availability of Tolerance Options for Specific Part Numbers.

Contact factory for non-specified capacitance values.


0805

10.00 pF
10.00 pF
10.000 pF
10.000 pF

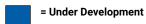

Frequency, MHz

Variation of Impedance with Cap Value

Impedance vs. Frequency 1,000 pF vs. 10,000 pF - X7R

Variation of Impedance with Chip Size

Parame	ter/Test	X7R Specification Limits	Measuring (Conditions
Operating Tem	perature Range	-55°C to +125°C	Temperature C	ycle Chamber
Capac	itance	Within specified tolerance		
Dissipati	on Factor	≤ 10% for ≥ 50V DC rating ≤ 12.5% for 25V DC rating ≤ 12.5% for 25V and 16V DC rating ≤ 12.5% for ≤ 10V DC rating	Freq.: 1.0 k Voltage: 1.0'	
Insulation	Resistance	100,000MΩ or 1000MΩ - μF, whichever is less	Charge device with 120 ± 5 secs @ roo	
Dielectric	: Strength	No breakdown or visual defects	Charge device with 250 1-5 seconds, w/charge limited to 50 Note: Charge device with for 500V	and discharge current mA (max) n 150% of rated voltage
	Appearance	No defects	Deflectio	n: 2mm
Resistance to	Capacitance Variation	≤ ±12%	Test Time: 3	
Flexure Stresses	Dissipation Factor	Meets Initial Values (As Above)	l v	
	Insulation Resistance	≥ Initial Value x 0.3	90 r	nm —
Solder	rability	≥ 95% of each terminal should be covered with fresh solder	Dip device in eutectic for 5.0 ± 0.5	
	Appearance	No defects, <25% leaching of either end terminal		
	Capacitance Variation	≤ ±7.5%		
Resistance to Solder Heat	Dissipation Factor	Meets Initial Values (As Above)	Dip device in eutectic s seconds. Store at room	temperature for 24 ± 2
	Insulation Resistance	Meets Initial Values (As Above)	hours before measuring	g electrical properties.
	Dielectric Strength	Meets Initial Values (As Above)		
	Appearance	No visual defects	Step 1: -55°C ± 2°	30 ± 3 minutes
	Capacitance Variation	≤ ±7.5%	Step 2: Room Temp	≤ 3 minutes
Thermal Shock	Dissipation Factor	Meets Initial Values (As Above)	Step 3: +125°C ± 2°	30 ± 3 minutes
	Insulation Resistance	Meets Initial Values (As Above)	Step 4: Room Temp	≤ 3 minutes
	Dielectric Strength	Meets Initial Values (As Above)	Repeat for 5 cycles 24 ± 2 hours at ro	
	Appearance	No visual defects		
	Capacitance Variation	≤ ±12.5%	Charge device with 1.5 r	
Load Life	Dissipation Factor	≤ Initial Value x 2.0 (See Above)	for 1000 hou	
	Insulation Resistance	≥ Initial Value x 0.3 (See Above)	Remove from test chamb temperature for 24 ± 2 h	
	Dielectric Strength	Meets Initial Values (As Above)		
	Appearance	No visual defects		
	Capacitance Variation	≤ ±12.5%	Store in a test chamber s 5% relative humidi	
Load Humidity	Dissipation Factor	≤ Initial Value x 2.0 (See Above)	(+48, -0) with rated	l voltage applied.
Humbulty	Insulation Resistance	≥ Initial Value x 0.3 (See Above)	Remove from chamber temperature an	d humidity for
	Dielectric Strength	Meets Initial Values (As Above)	24 ± 2 hours bef	ore measuring.

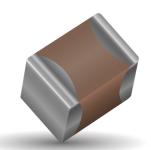


PREFERRED SIZES ARE SHADED

					1																					
	ZE lering	Def	LD02				Def	LD03						D-4	LD05 low/W							LD Reflow				
	aging		II Pap					II Pap								ossed						Reflow aper/Er				
	mm		00 ± 0					50 ± 0							01 ± 0							3.20 ±		, cu		
(L) Length	(in.)		40 ± 0					53 ± 0.							79 ± 0.						(0.126 ±		8)		
W) Width	mm		50 ± 0					31 ± 0.							25 ± 0.						,	1.60 ±				
	(in.)		20 ± 0 25 ± 0					32 ± 0. 35 ± 0.							49 ± 0. 50 ± 0.						(0.063 ± 0.50 ±		B)		
(t) Termina	al mm (in.)		25 ± 0 10 ± 0					14 ± 0.							30 ± 0. 20 ± 0.						(± 0.020 ± 0.020		n)		
W	/DC	16	25	50	6.3	10	16	25	50	100	200	6.3	10	16	25	50	100	200	6.3	10	16	25	50	100	200	500
Сар	100	10			0.0		10		00	100	200	0.0		10	20	00	100	200	0.0	10	10	20	00	100	200	000
(pF)	150																									
(P.)	220			С																						
	330			C					G	G	G		J	J	J	J	J	J								К
	470			С					G	G	G		J	J	J	J	J	J								Κ
	680			С					G	G	G		J	J	J	J	J	J								K
	1000			С					G	G	G		J	J	J	J	J	J								K
	1500			С					G	G			J	J	J	J	J	J		J	J	J	J	J	J	М
	2200			С					G	G			J	J	J	J	J	J		J	J	J	J	J	J	М
	3300		С	С					G	G			J	J	J	J	J	J		J	J	J	J	J	J	М
	4700		С	С					G	G			J	J	J	J	J	J		J	J	J	J	J	J	M
	6800	С	С						G	G			J	J	J	J	J	J		J	J	J	J	J	J	Р
Сар	0.010	С	С	ļ					G	G			J	J	J	J	J	J		J	J	J	J	J	J	Р
(µF)	0.015	С						G	G				J	J	J	J	J	J		J	J	J	J	J	M	
	0.022	С						G	G				J	J	J	J	J	N		J	J	J	J	J	М	
	0.033	С						G	G				J	J	J	J	N			J	J	J	J	J	М	
	0.047						G	G	G				J	J	J	J	N			J	J	J	J	J	M	
	0.068		C*				G	G	G G				J	J	J	J	N			J	J	J	J	J P	P	
	0.10 0.15		C*		_	G G	G	G	G				J	J	-	J	N			J	J	J	J		Р	
	0.15				G G	G							J	J	J	N N	N N			J	J J	J J	J	Q		
	0.22				G	G							N	N	N	N	N			J	J	M	P	Q		
	0.33							J*					N	N	N	N	N			M	M	M	P	Q		
	0.47												N	N	N		14			M	M	Q	Q	Q		
	1.0					J*	J*						N	N	N*					M	M	Q	0	0		\vdash
	1.5																			P	Q	Q		_		
	2.2				J*										P*					Q	Q	Q				
	3.3																									
	4.7												P*	P*						Q*	Q*	Q*				
	10											P*	Р							Q*	Q*	Q				
	22																		Q*							
	47																									
	100																									
	WVDC	16	25	50	6.3						200	6.3	10	16	25	50	100	200	6.3	10	16	25	50	100	200	500
	SIZE		LD02					LD03							LD05							LD	06			

Letter	Α	С	Е	G	J	K	М	N	Р	Q	Х	Υ	Z
Max.	0.33	0.56	0.71	0.90	0.94	1.02	1.27	1.40	1.52	1.78	2.29	2.54	2.79
Thickness	(0.013)	(0.022)	(0.028)	(0.035)	(0.037)	(0.040)	(0.050)	(0.055)	(0.060)	(0.070)	(0.090)	(0.100)	(0.110)
			PAPER						EMBC	SSED			

X7R - Capacitance Range


PREFERRED SIZES ARE SHADED

SIZE					LD10					LD	12		LD	13		LD	20		LD	14
Solderin	na			R	eflow On	lv				Reflov	v Onlv		Reflo	w Only		Reflo	v Onlv		Reflov	v Onlv
Packagii	-				er/Embos					All Emb			All Em	bossed		All Eml			All Em	oossed
	mm				20 + 0.2					4.50 ±				± 0.30			± 0.50			± 0.25
(L) Length	(in.)				26 ± 0.0					(0.177 ±				± 0.012)		(0.224 :			(0.225 :	
	mm				50 ± 0.2					3.20 ±				± 0.40			± 0.40		6.35	
W) Width	(in.)				98 ± 0.0					(0.126 ±				± 0.016)		(0.197 :			(0.250	
	mm				$.50 \pm 0.2$					0.61			_	± 0.36		0.64			0.64	
(t) Terminal	(in.)				020 ± 0.0					$(0.024 \pm$				± 0.014)			± 0.015)		(0.025	
WVDC		10	16	25	50	100	200	500	50	100	200	500	50	100	25	50	100	200	50	100
Cap	100	10	10	20	00	100	200	300	30	100	200	300	30	100	20	30	100	200	30	100
(pF)	150																			
(5.)	220																l _	ا _	<u> </u>	
	330															† .	-L	\sim	W	
	470																~)) 	.
	680															($ \sim $) _	ノノゼ	-
	1000															t		4		\dashv
	1500	J	J	J	J	J	J	М										4		
	2200	Ĵ	Ĵ	Ĵ	Ĵ	Ĵ	Ĵ	М									ı			
	3300	J	J	J	J	J	J	М												
	4700	Ĵ	J	Ĵ	Ĵ	Ĵ	Ĵ	М												
	6800	Ĵ	Ĵ	Ĵ	Ĵ	J	Ĵ	М												
Cap	0.010	J	J	J	J	J	J	М	К	K	К	K	М	М		Х	Х	Х	М	Р
	0.015	Ĵ	Ĵ	Ĵ	Ĵ	Ĵ	Ĵ	P	K	K	ĸ	P	М	М		X	X	X	M	P
VI /	0.022	Ĵ	Ĵ	Ĵ	Ĵ	Ĵ	Ĵ	0	K	K	ĸ	P.	М	М		X	X	X	M	P
	0.033	J	J	J	J	J	J	Ō	K	K	K	X	M	М		X	X	X	M	P
	0.047	Ĵ	Ĵ	Ĵ	Ĵ	Ĵ	Ĵ	٦	K	K	ĸ	Z	М	M		X	X	X	M	P
	0.068	Ĵ	Ĵ	Ĵ	Ĵ	Ĵ	M		K	K	ĸ	Z	M	M		x	x	x	M	Р
	0.10	J	J	J	J	J	М		K	K	K	Z	М	M		X	X	X	M	P
	0.15	Ĵ	Ĵ	Ĵ	Ĵ	M	Z		K	K	P	_	М	М		X	X	X	M	P
	0.22	Ĵ	Ĵ	Ĵ	Ĵ	P	Z		K	K	P.		M	M		x	X	X	M	Р
	0.33	J	J	J	J	Q			K	M	X		М	M		X	X	X	M	P
	0.47	M	M	М	М	Q			K	P			М	М		X	X	X	M	P
	0.68	М	М	P	X	X			M	Q			М	P		X	X		M	P
	1.0	N	N	P	X	Z			М	X			М	Р		X	X		М	Р
	1.5	N	N	Z	Z	Z			Z	Z			М			X	X		М	X
	2.2	X	X	Z	Z	Z			Z	Z						X	X		М	
	3.3	X	X	Z	Z				Z							X	Z			
	4.7	X	X	Z	Z				Z	Z						X	Z			
	10	Z	Z	Z	Z											Ž	Z			
	22	Z	Z												Z					
	47																			
	100																			
	WVDC	10	16	25	50	100	200	500	50	100	200	500	50	100	25	50	100	200	50	100
SIZE					LD10					LD				13			20		LD	
																				_

Letter	Α	С	E	G	J	K	М	N	Р	Q	Χ	Υ	Z
Max.	0.33	0.56	0.71	0.90	0.94	1.02	1.27	1.40	1.52	1.78	2.29	2.54	2.79
Thickness	(0.013)	(0.022)	(0.028)	(0.035)	(0.037)	(0.040)	(0.050)	(0.055)	(0.060)	(0.070)	(0.090)	(0.100)	(0.110)
			PAPER						EMBC	SSED			

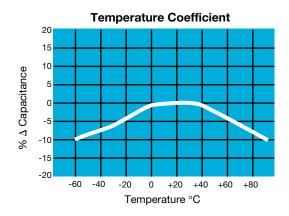
X5R - General Specifications

AVX Corporation will support those customers for commercial and military Multilayer Ceramic Capacitors with a termination consisting of 5% minimum lead. This termination is indicated by the use of a "B" in the 12th position of the AVX Catalog Part Number. This fulfills AVX's commitment to providing a full range of products to our customers. AVX has provided in the following pages a full range of values that we are currently offering in this special "B" termination. Please contact the factory if you require additional information on our MLCC Tin/Lead Termination "B" products.

Not RoHS Compliant

PART NUMBER (SEE PAGE 4 FOR COMPLETE PART NUMBER EXPLANATION)

LD05	5	D	101	Ţ	A	B	2	A
Size LD02 - 0402 LD03 - 0603 LD04 - 0504* LD05 - 0805 LD06 - 1206 LD10 - 1210 LD12 - 1812 LD13 - 1825 LD14 - 2225 LD20 - 2220	Voltage 6.3V = 6 10V = Z 16V = Y 25V = 3 35V = D 50V = 5 100V = 1 200V = 2 500V = 7	Dielectric X5R = D	Capacitance Code (In pF) 2 Sig. Digits + Number of Zeros	Capacitance Tolerance B = ±.10 pF (<10pF) C = ±.25 pF (<10pF) D = ±.50 pF (<10pF) F = ±1% (≥ 10 pF) G = ±2% (≥ 10 pF) J = ±5% K = ±10% M = ±20%	Failure Rate A = Not Applicable	Terminations B = 5% min lead X = FLEXITERM® with 5% min lead** **X7R only	Packaging 2 = 7" Reel 4 = 13" Reel Contact Factory For Multiples*	Special Code A = Std. Product


^{*}LD04 has the same CV ranges as LD03.

NOTE: Contact factory for availability of Tolerance Options for Specific Part Numbers.

Contact factory for non-specified capacitance values.

See FLEXITERM® section for CV options

TYPICAL ELECTRICAL CHARACTERISTICS

Parame	ter/Test	X5R Specification Limits	Measuring (Conditions
Operating Tem	perature Range	-55°C to +85°C	Temperature C	ycle Chamber
Capac	itance	Within specified tolerance		
Dissipati	on Factor	≤ 2.5% for ≥ 50V DC rating ≤ 3.0% for 25V, 35V DC rating ≤ 12.5% Max. for 16V DC rating and lower Contact Factory for DF by PN	Freq.: 1.0 k Voltage: 1.0 For Cap > 10 µF, 0	Vrms ± .2V
Insulation	Resistance	10,000MΩ or 500MΩ - μF, whichever is less	Charge device with 120 ± 5 secs @ roo	
Dielectric	Strength	No breakdown or visual defects	Charge device with 250 1-5 seconds, w/charge limited to 50	and discharge current
	Appearance	No defects	Deflectio	n: 2mm
Resistance to	Capacitance Variation	≤ ±12%	Test Time: 3	
Flexure Stresses	Dissipation Factor	Meets Initial Values (As Above)	The state of the s	
	Insulation Resistance	≥ Initial Value x 0.3	90 r	
Solder	rability	≥ 95% of each terminal should be covered with fresh solder	Dip device in eutectic for 5.0 ± 0.9	
	Appearance	No defects, <25% leaching of either end terminal		
	Capacitance Variation	≤ ±7.5%		
Resistance to Solder Heat	Dissipation Factor	Meets Initial Values (As Above)	Dip device in eutectic s seconds. Store at room	temperature for 24 ± 2
	Insulation Resistance	Meets Initial Values (As Above)	hours before measuring	g electrical properties.
	Dielectric Strength	Meets Initial Values (As Above)		
	Appearance	No visual defects	Step 1: -55°C ± 2°	30 ± 3 minutes
	Capacitance Variation	≤ ±7.5%	Step 2: Room Temp	≤ 3 minutes
Thermal Shock	Dissipation Factor	Meets Initial Values (As Above)	Step 3: +85°C ± 2°	30 ± 3 minutes
	Insulation Resistance	Meets Initial Values (As Above)	Step 4: Room Temp	≤ 3 minutes
	Dielectric Strength	Meets Initial Values (As Above)	Repeat for 5 cycles 24 ± 2 hours at ro	
	Appearance	No visual defects	0 1	v . I b
	Capacitance Variation	≤ ±12.5%	Charge device with 1.5 chamber set at 85°C: (+48, -0). Note: Contac	± 2°C for 1000 hours
Load Life	Dissipation Factor	≤ Initial Value x 2.0 (See Above)	specification part numl	pers that are tested at
	Insulation Resistance	≥ Initial Value x 0.3 (See Above)	Remove from test chamb	
	Dielectric Strength	Meets Initial Values (As Above)	temperature for 24 ± 2 h	ours betore measuring.
	Appearance	No visual defects		
	Capacitance Variation	≤ ±12.5%	Store in a test chamber s 5% relative humidi	
Load Humidity	Dissipation Factor	≤ Initial Value x 2.0 (See Above)	(+48, -0) with rated	voltage applied.
,	Insulation Resistance	≥ Initial Value x 0.3 (See Above)	Remove from chamber temperature an 24 ± 2 hours bef	d humidity for
	Dielectric Strength	Meets Initial Values (As Above)	24 ± 2 Hours ber	o.c.medodinig.

X5R - Capacitance Range

PREFERRED SIZES ARE SHADED

											_							11					П														
SIZE				LI	D02					L	.DO	3					LD	05					LD	06						D10)				LD.	12	
Solderi	ng		R	eflo	w/W	ave				Reflo	w/\	Nave	е			Re	flow	/Wav	/e			Re	eflow	/Wa	ve				Refl	ow/V	Vave						
Packag	ing				Pap					All					Р	аре				d	Р		r/Er			d		Pa			osse	ed					
(L) Length	mm				± 0.				,,	1.60								0.20					.20 ±					,		0 ± 0							
	(in.) mm	_			± 0.	004)		╀	((0.8								0.00					126 ± .60 ±					(6 ± 0 0 ± 0	.008)					_
W) Width	(in.)					004)			(0	0.03								0.00					063 ±					(.008)					
(t) Terminal	mm				± 0.				,,	0.3								0.2					.50 ±					,		0 ± 0							
WVDC	(in.)	4				006) 25	50	1	<u>(ر</u> 163	0.014	4 ± (J.00 125	6) 35	50	63	(U.L	120 ±	0.0	10) 135	150	63	10.0	020 ±	25	10)	50	4	(16.3	0.02	0 ± 0	.010) 35	50	63	101	25	50
Сар	100	_	0.0	10	10	20	00	7	0.0	10	1.0	120	00	00	0.0	10	10	20	00	00	0.0	10	-10	20	00	00	7	0.0	10	10	20	00	00	0.0	10	20	00
(pF)	150					İ																															
()	220					İ	С																														
	330						С				T	Ī																									\Box
	470						С																							-L'	~	~	\leq	<u>▼</u> -V	V->	_	
	680		L				С				L																	_	<	ڔٙ	\leq	_		$\bigcap_{i=1}^{\infty}$	ر	Ť	
	1000						С																						(_ `)		┸	ر ا	Ψ']
	1500						С																								<u>_</u>	4					
	2200						С																								4	- T					ļ
	3300						С																								-						
	4700					С								G																							
	6800					С		-			├	-		G	_													_					_		\Box		\vdash
Cap	0.010					С								G																							
(μF)	0.015 0.022				С	C						G	G	G						N																	
	0.022				С	C		\vdash			-	G	G	G						N															\vdash		H
	0.033				C	С						G	G	G						N																	
	0.068				С	"						G	ľ	G						N																	
	0.10			С	С	С					H	G		G				N		N																	
	0.15											G			1			N	N																		
	0.22		C*			İ					G	G						N	N							Q											
	0.33										G	G						N																			П
	0.47	C*	C*								G							N						Q	Q								Х				
	0.68										G							N																			\Box
	1.0	C*	C*	C*					G	G	G	J*					N	N		P*				Q	Q						Х	Х	Х				
	1.5																																				
	2.2	C*						G*		J*	J*	_				N	N	N					Q	Q							Z	Х					ш
	3.3							J*	J*	J*	J*				N	N		N 12			X	X								•	-						
	4.7							J*	J*	J*	1				N P	N P	N* P	N*			X	X	X	X					V	Q	Z					7	
	10 22		_	\vdash	_	-	_	K*		-	\vdash	-	\vdash		P*	Р	Р		\vdash	\vdash	X	X	X	X	_	\vdash		Z	X Z	Z	Z		_		\vdash	Z	H
	47														Ρ"						X	٨	Α.	^				Z*									
	100																				^						Z*	Z									
	WVDC	4	6.3	10	16	25	50	4	6.3	10	16	25	35	50	6.3	10	16	25	35	50	6.3	10	16	25	35	50			10	16	25	35	50	6.3	10	25	50
	SIZE				002						DO	_		_		_	LD		_				LD			_				D10					LD		

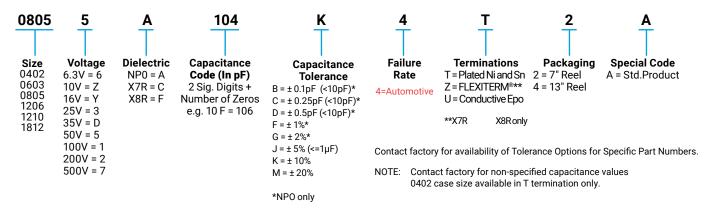
Letter	Α	С	Е	G	J	K	М	N	Р	Q	Х	Υ	Z
Max.	0.33	0.56	0.71	0.90	0.94	1.02	1.27	1.40	1.52	1.78	2.29	2.54	2.79
Thickness	(0.013)	(0.022)	(0.028)	(0.035)	(0.037)	(0.040)	(0.050)	(0.055)	(0.060)	(0.070)	(0.090)	(0.100)	(0.110)
			PAPER						EMBC	SSED			

^{*}Optional Specifications - Contact factory

NOTE: Contact factory for non-specified capacitance values

Automotive MLCC

General Specifications



GENERAL DESCRIPTION

AVX Corporation has supported the Automotive Industry requirements for Multilayer Ceramic Capacitors consistently for more than 25 years. Products have been developed and tested specifically for automotive applications and all manufacturing facilities are QS9000 and VDA 6.4 approved.

AVX is using AECQ200 as the qualification vehicle for this transition. A detailed qualification package is available on request and contains results on a range of part numbers.

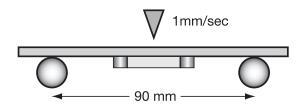
HOW TO ORDER

COMMERCIAL VS AUTOMOTIVE MLCC PROCESS COMPARISON

	Commercial	Automotive
Administrative	Standard Part Numbers. No restriction on who purchases these parts.	Specific Automotive Part Number. sed to control supply of product to Automotive customers.
Design	Minimum ceramic thickness of 0.020"	Minimum Ceramic thickness of 0.022" (0.56mm) on all X7R product.
Dicing	Side & End Margins = 0.003" min	Side & End Margins = 0.004" min Cover Layers = 0.003" min
Lot Qualification (Destructive Physical Analysis - DPA)	As per EIA RS469	Increased sample plan stricter criteria.
Visual/Cosmetic Quality	Standard process and inspection	100% inspection
Application Robustness	Standard sampling for accelerated wave solder on X7R dielectrics	Increased sampling for accelerated wave solder on X7R and NP0 followed by lot by lot reliability testing.

All Tests have Accept/Reject Criteria 0/1

Automotive MLCC


NP0/X7R Dielectric

FLEXITERM FEATURES

a) Bend Test

The capacitor is soldered to the PC Board as shown:

Typical bend test results are shown below:

Style	Conventional	Soft Term
0603	>2mm	>5
0805	>2mm	>5
1206	>2mm	>5

 a) Temperature Cycle testing FLEXITERM® has the ability to withstand at least 1000 cycles between -55°C and +125°C

Automotive MLCC-NP0

SIZ	ZE	04	02		06	03				0805						206		
Solde		Reflow	//Wave		Reflow	//Wave			Re	eflow/Wa	ive				Reflov	//Wave		
WV		25V	50V	25V	50V	100V	200V	25V	50V	100V	200V	250V	25V	50V	100V	200V	250V	500V
0R5	0.5	С	С	G	G	G	G	J	J	J	N	N	J	J	J	J	J	J
1R0	1.0	С	С	G	G	G	G	J	J	J	N	N	J	J	J	J	J	J
1R2	1.2	С	С	G	G	G	G	J	J	J	N	N	J	J	J	J	J	J
1R5	1.5	С	С	G	G	G	G	J	J	J	N	N	J	J	J	J	J	J
1R8	1.8	С	С	G	G	G	G	J	J	J	N	N	J	J	J	J	J	J
2R2	2.2	С	С	G	G	G	G	J	J	J	N	N	J	J	J	J	J	J
2R7	2.7	С	С	G	G	G	G	J	J	J	N	N	J	J	J	J	J	J
3R3	3.3	С	С	G	G	G	G	J	J	J	N	N	J	J	J	J	J	J
3R9	3.9	0	С	G	G G	G	G	J	J	J	N	N	J	J	J	J	J	J
4R7 5R6	4.7 5.6	C	C C	G G		G G	G G	J	J	J	N N	N N	J	J	J	J	J	J
6R8	6.8	C	C	G	G G	G	G	J	J	J	N	N	J	J	J	J	J	J
8R2	8.2	С	C	G	G	G	G	J	J	J	N	N	J	J	J	J	J	J
100	10.0	С	C	G	G	G	G	J	J	J	N	N	J	J	J	J	J	J
120	12	C	C	G	G	G	G	J	J	J	N	N	J	J	J	J	J	J
150	15	С	C	G	G	G	G	J	J	J	N	N	J	J	J	J	J	J
180	18	С	C	G	G	G	G	J	J	J	N	N	J	J	J	J	J	J
220	22	C	C	G	G	G	G	J	J	J	N	N	J	J	J	J	J	J
270	27	C	С	G	G	G	G	J	J	J	N	N	J	J	J	J	J	J
330	33	С	С	G	G	G	G	J	J	J	N	N	J	J	J	J	J	J
390	39	С	С	G	G	G	G	J	J	J	N	N	J	J	J	J	J	J
470	47	С	С	G	G	G	G	J	J	J	N	N	J	J	J	J	J	J
510	51	С	С	G	G	G	G	J	J	J	N	N	J	J	J	J		
560	56	С	С	G	G	G	G	J	J	J	N	N	J	J	J	J		
680	68	С	С	G	G	G	G	J	J	J	N	N	J	J	J	J		
820	82	С	С	G	G	G	G	J	J	J	N	N	J	J	J	J		
101	100	С	С	G	G	G	G	J	J	J	N	N	J	J	J	J		
121	120			G	G	G		J	J	J	N	N	J	J	J	J		
151	150			G	G	G		J	J	J	N	N	J	J	J	J		
181	180			G	G	G		J	J	J	N	N	J	J	J	J		
221	220			G	G	G		J	J	J	N	N	J	J	J	J		
271	270			G	G	G		J	J	J	N	N	J	J	J	J		
331	330			G	G	G		J	J	J	N	N	J	J	J	J		
391	390			G G	G G			J	J	J			J	J	J	J		
471 561	470 560			G	G			J	J	J			J	J	J	J		
681	680			G	G			J	J	J			J	J	J	J		
821	820			G	G			J	J	J			J	J	J	J		
102	1000							J	J	J			J	J	J	J		
122	1200							3	3	3			3	3	J			
152	1500																	
182	1800														<u> </u>			
222	2200																	
272	2700																	
	3300																	
392	3900																	
	4700																	
	10nF																	
WV	DC	25V	50V	25V	50V	100V	200V	25V	50V	100V	200V	250V	25V	50V	100V	200V	250V	500V
Siz		04	02		06	03				0805					12	206		,
		-													12			

Letter	Α	С	Е	G	J	K	М	N	Р	Q	Х	Υ	Z
Max.	0.33	0.56	0.71	0.90	0.94	1.02	1.27	1.40	1.52	1.78	2.29	2.54	2.79
Thickness	(0.013)	(0.022)	(0.028)	(0.035)	(0.037)	(0.040)	(0.050)	(0.055)	(0.060)	(0.070)	(0.090)	(0.100)	(0.110)
			PAPER						EMBO	SSED			

Automotive MLCC - X7R

	SIZE			0402	2				060	3					0	805						120	6				12	10		18	812		2220	
Sc	lderi	ina	Ref	low/W	/ave			Re	flow/\	Nave					Reflo	w/Wa	ve				Re	eflow/\	Nave				Reflo	v Only	v	Reflo	w Only	Ref	low 0	nly
	WVDO		16V	25V	50V	10V	16V	25V	50V	100V	200V	250V	16V	25V	50V	100V	200V	250V	16V	25V	50V	100V	200V	250V	500V	16V	25V	50V	100V	50V	100V	25V	50V	100V
221	Сар	220	С	С	С											С																		\neg
271	(pF)	270	С	С	С																													\neg
331		330	С	С	С																													\neg
391		390	С	С	С																													\neg
471		470	С	С	С																													
561		560	С	С	С																													\neg
681		680	С	С	С																													
821		820	С	С	С																													\neg
102		1000	С	С	С	G	G	G	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J	J	J	K	K	K	К	K	К			\neg
182		1800	С	С	С	G	G	G	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J	J	J	K	K	K	K	K	К			
222		2200	С	С	С	G	G	G	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J	J	J	K	K	K	К	K	К			
332		3300	С	С	С	G	G	G	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J	J	J	K	K	K	К	K	K			\neg
472		4700	С	С	С	G	G	G	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J	J	J	K	K	K	K	K	K			
103	Сар	0.01	С	С	С	G	G	G	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J	J	J	K	K	K	K	K	K			
123	(F)	0.012	С			G	G	G	G	G			J	J	J	N	N	N	J	J	J	J	J	J		K	K	K	K	K	K			
153		0.015	С			G	G	G	G	G			J	J	J	N	N	N	7	J	J	J	J	J		K	K	K	K	K	K			
183		0.018	С			G	G	G	G	G			J	J	J	N	N	N	7	J	J	J	J	J		K	K	K	K	K	K			
223		0.022	С			G	G	G	G	G			J	J	J	N	N	N	J	J	J	J	J	J		K	K	K	K	K	K			
273		0.027	С			G	G	G	G	J			J	J	J	N	N	N	J	J	J	J	J	J		K	K	K	K	K	K			
333		0.033	С			G	G	G	G	J			J	J	J	N	N	N	J	J	J	J	J	J		K	K	K	K	K	K			
473		0.047				G	G	G	G	J			J	J	J	N	N	N	J	J	J	М	М	М		K	K	K	K	K	K			
563		0.056				G	G	G	G	J			J	J	J	N			J	J	J	М	М	М		K	K	K	М	K	K			
683		0.068				G	G	G	G	J			J	J	J	N			J	J	J	М	М	М		K	K	K	М	K	K			
823		0.082				G	G	G	G	J			J	J	J	N			J	J	J	М	М	М		K	K	K	М	K	K			
104		0.1				G	G	G	G	J			J	J	J	N			J	J	J	М	Р	Р		K	K	K	М	K	K			
124		0.12				G							J	J	N	N			J	J	М	М	Q	Q		K	K	K	Р	K	K			
154		0.15				G							М	N	N	N			J	J	М	М	Q	Q		K	K	K	Р	K	K			
224		0.22				G							М	N	N	N			J	М	М	Q	Q	Q		М	М	М	Р	М	М			
334		0.33											N	N	N	N			J	М	P	Q				Р	Р	Р	Q	Х	Х			
474		0.47											N	N	N	N			М	М	P	Q				Р	Р	Р	Q	Х	Х			
684		0.68											N	N	N	N			М	Q	Q	Q				Р	Р	Q	X	Х	Х			
105		1											N	N	N	N			М	Q	Q	Q				Р	Q	Q	Z	Х	Х		Z	Z
155		1.5											N	N					Q	Q	Q	Q				P	Q	Z	Z	X	X		Z	Z
225		2.2											N	N					Q	Q	Q	Q				Z	Z	Z	Z	Z	Z		Z	Z
335		3.3																	Q	Q	Q					Х	Z	Z	Z	Z			Z	Z
475		4.7																	Q	Q	Q					X	Z	Z	Z	Z			Z	Z
106		10																			_					Z	Z	Z		Z		Z	Z	Z
226	AD /D /	22	16)	05)	E0) (10)/	101	05/	E0) (100) (0001	0.50) (101	05/	EOV.	1001	00011	0501	101	05)	EOV.	100) (0001	0501	E00) (161/	05)	EOV.	100) (E0).	1001	Z	E01/	1001
	WVD0 Size		16V	25V 0402		IUV	16V	25V			200V	250V	16V	25V			200V	250V	16V	25V	150V			250V	500V	16V	25V	50V 10	100V	50V	100V	_	50V 2220	IUUV
	Size			0402					0603	5					0	805						1206)				12	IU		18	812		ZZZU	

	Letter	Α	С	Е	G	J	K	М	N	Р	Q	Х	Υ	Z
	Max.	0.33	0.56	0.71	0.90	0.94	1.02	1.27	1.40	1.52	1.78	2.29	2.54	2.79
1	Thickness	(0.013)	(0.022)	(0.028)	(0.035)	(0.037)	(0.040)	(0.050)	(0.055)	(0.060)	(0.070)	(0.090)	(0.100)	(0.110)
				PAPER						FMR	OSSED			

Automotive MLCC - X8R

S	SIZE	06	03	08	305	12	06
Sol	dering	Reflow	/Wave		w/Wave	Reflow	/Wave
WVDC	WVDC	25V	50V	25V	50V	25V	50V
271	Cap 270	G	G				
331	(pF) 330	G	G	J	J		
471	470	G	G	J	J		
681	680	G	G	J	J		
102	1000	G	G	J	J	J	J
152	1500	G	G	J	J	J	J
182	1800	G	G	J	J	J	J
222	2200	G	G	J	J	J	J
272	2700	G	G	J	J	J	J
332	3300	G	G	J	J	J	J
392	3900	G	G	J	J	J	J
472	4700	G	G	J	J	J	J
562	5600	G	G	J	J	J	J
682	6800	G	G	J	J	J	J
822	8200	G	G	J	J	J	J
103	Cap 0.01	G	G	J	J	J	J
123	(F) 0.012	G	G	J	J	J	J
153	0.015	G	G	J	J	J	J
183	0.018	G	G	J	J	J	J
223	0.022	G	G	J	J	J	J
273	0.027	G	G	J	J	J	J
333	0.033	G	G	J	J	J	J
393	0.039	G	G	J	J	J	J
473	0.047	G	G	J	J	J	J
563	0.056	G		N	N	M	М
683	0.068	G		N	N	M	М
823	0.082			N	N	M	М
104	0.1			N	N	M	М
124	0.12			N	N	M	M
154	0.15			N	N	M	M
184	0.18			N		M	М
224	0.22			N		M	М
274	0.27					M	М
334	0.33					M	М
394	0.39					M	
474	0.47					M	
684	0.68						
824	0.82						
105	1						
WVDC	WVDC	25V	50V	25V	50V	25V	50V
S	SIZE	06	U3	08	305	12	Ub

	Letter	Α	С	Е	G	J	K	М	N	Р	Q	Х	Υ	Z
	Max.	0.33	0.56	0.71	0.90	0.94	1.02	1.27	1.40	1.52	1.78	2.29	2.54	2.79
ľ	Thickness	(0.013)	(0.022)	(0.028)	(0.035)	(0.037)	(0.040)	(0.050)	(0.055)	(0.060)	(0.070)	(0.090)	(0.100)	(0.110)
				PAPER						EMBC	SSED			

APS for COTS+ High Reliability Applications

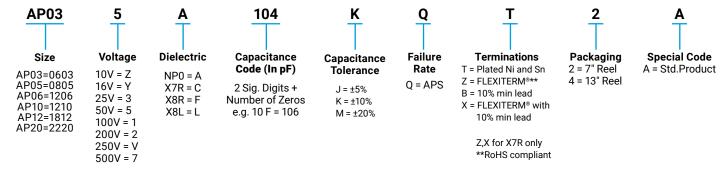
General Specifications Surface Mount NP0, X7R and X8R/L MLCCs

AVX's APS COTS+ series of multilayer ceramic capacitors offers the customer a high reliability solution with an ultralow failure rate, <1ppb, in a variety of case sizes and voltages. The APS range encompasses a wide range of dielectric types to meet the customer's requirements from low temperature/voltage capacitance change dielectric, NP0, to high preforming capacitance voltage X7R to high temperature reliability dielectrics, X8R/L.

APS capacitors have a wider capacitance range than MIL spec parts that satisfies the need for higher CV demands and board space saving requirements. Each production lot is extensively tested and removes the requirement for customer specific drawings. The testing regime uses many of the MIL-STD test methods as per MIL-PRF-55681 and has a field failure rate of less than 1 ppb. The APS testing series uses AVX's unique in-house maverick testing detection system that eliminates infant mortality failures.

Applications suitable for APS include Industrial, Telecommunications, Aviation, and Military. The APS is available with a range of different termination finishes, Flexiterm®, Nickel / Tin and Tin with Pb1. Flexiterm® technology delivers improved thermo-mechanical stress resistance.

AVX'S APS RELIABILITY TEST SUMMARY


- 100% Visual Inspection
- · DPA
- · IR, DF, Cap, DWV
- · Maverick Lot Review
- · Thermal Shocl
- 85/85 Testing
- Additional Life Testing
- · C of C with every Order
- Quarterly Data Package

FEATURES

- The APS range has been extensively reliability tested as standard resulting in an ultralow failure rate, ≤1ppb
- The APS range is available with Flexiterm® that deliver's high thermo-mechanical stress resistance.
- High CV range enabling board space saving requirements.

Dielectric	Temperature/Percentage Cap Change
NP0	-30ppm +30ppm from -55°C + 125°C
X7R	-15% +15% from -55°C to + 125°C
X8R	-15% +15% from -55°C to + 150°C
X8L	-15% +40% from -55°C to + 150°C

HOW TO ORDER

 ${\tt NOTE: Contact \ factory \ for \ availability \ of \ Termination \ and \ Tolerance \ Options \ for \ Specific \ Part \ Number.}$

APS COTS+ NP0 Series

Size	AP	03 = 060	03	AP	05 = 08	05		AF	P06 = 12	06			AP10	= 1210	
WVDC	25V	50V	100V	25V	50V	100V	25V	50V	100V	200V	500V	25V	50V	100V	200V
100 10pF	G	G	G	J	J	J	J	J	J	J	J				
120 12	G	G	G	J	J	J	J	J	J	J	J				
150 15	G	G	G	J	J	J	J	J	J	J	J				
180 18	G	G	G	J	J	J	J	J	J	J					
220 22	G	G	G	J	J	J	J	J	J	J					
270 27	G	G	G	J	J	J	J	J	J	J					
330 33	G	G	G	J	J	J	J	J	J	J					
390 39	G	G	G	J	J	J	J	J	J	J					
470 47	G	G	G	J	J	J	J	J	J	J					
510 51	G	G	G	J	J	J	J	J	J	J					
560 56	G	G	G	J	J	J	J	J	J	J					
680 68	G	G	G	J	J	J	J	J	J	J					
820 82	G	G	G	J	J	J	J	J	J	J					
101 100	G	G	G	J	J	J	J	J	J	J					
121 120	G	G	G	J	J	J	J	J	J	J					
151 150	G	G	G	J	J	J	J	J	J	J					
181 180	G	G	G	J	J	J	J	J	J	J					
221 220	G	G	G	J	J	J	J	J	J	J					
271 270	G	G	G	J	J	J	J	J	J	J					
331 330	G	G	G	J	J	J	J	J	J	J					
391 390	G	G		J	J	J	J	J	J	J					
471 470	G	G		J	J	J	J	J	J	J					
561 560				J	J	J	J	J	J	J					
681 680				J	J	J	J	J	J	J					
821 820				J	J	J	J	J	J	J					
102 1000				J	J	J	J	J	J	J		J	J	J	J
122 1200												J	J	М	М
152 1500												J	J	М	М
182 1800												J	J	М	М
222 2200	-											J	J	М	М
272 2700															
332 3300	-														
392 3900															
472 4700															
103 10nF	-														
WVDC	25V	50V	100V	25V	50V	100V	25V	50V	100V	200V	500V	25V	50V	100V	200V
Size	AP03 = 0603 AP05 = 0805						AF	P06 = 12	06			AP10	= 1210		

Letter	Α	С	Е	G	J	K	М	N	Р	Q	Х	Υ	Z
Max.	0.33	0.56	0.71	0.90	0.94	1.02	1.27	1.40	1.52	1.78	2.29	2.54	2.79
Thickness	(0.013)	(0.022)	(0.028)	(0.035)	(0.037)	(0.040)	(0.050)	(0.055)	(0.060)	(0.070)	(0.090)	(0.100)	(0.110)
			PAPER						EMBO	SSED			

APS COTS+ X7R Series

	Size		AP	03 = 06	503			AP	05 = 0	805				AP06 =	1206				AP10 :	= 1210)	AP12	= 1812	AP	20 = 22	220
,	WVDC	16V	25V	50V	100V	200V	16V	25V	50V	100V	200V	16V	25V	50V	100V	200V	500V	16V	25V	50V	100V	50V	100V	25V	50V	100V
102	Cap 1000	G	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J	K	K	K	К	K	K			
182	(pF) 1800	G	G	G	G		J	J	J	J	J	J	J	J	J	J	J	K	K	K	K	K	K			
222	2200	G	G	G	G		J	J	J	J	J	J	J	J	J	J	J	K	K	K	K	K	K			
332	3300	G	G	G	G		J	J	J	J	J	J	J	J	J	J	J	K	K	K	K	K	K			
472	4700	G	G	G	G		J	J	J	J	J	J	J	J	J	J	J	K	K	K	K	K	K			
103	0.01	G	G	G	G		J	J	J	J	J	J	J	J	J	J	J	K	K	K	K	K	K			
123	0.012	G	G	G			J	J	J	М		J	J	J	J	J		K	K	K	K	K	K			
153	0.015	G	G	G			J	J	J	М		J	J	J	J	J		K	K	K	K	K	K			
183	0.018	G	G	G			J	J	J	М		J	J	J	J	J		K	K	K	K	K	K			
223	0.022	G	G	G			J	J	J	М		J	J	J	J	J		K	K	K	K	K	K			
273	0.027	G	G	G			J	J	J	М		J	J	J	J	J		K	K	K	K	K	K			
333	0.033	G	G	G			J	J	J	М		J	J	J	J	J		K	K	K	K	K	K			
473	0.047	G	G	G			J	J	J	М		J	J	J	М	J		K	K	K	K	K	K			
563	0.056	G	G	G			J	J	J	М		J	J	J	М	J		K	K	K	М	K	K			
683	0.068	G	G	G			J	J	J	М		J	J	J	М	J		K	K	K	М	K	K			
823	0.082	G	G	G			J	J	J	М		J	J	J	М	J		K	K	K	М	K	K			
104	0.1	G	G	G			J	J	М	М		J	J	J	М	J		K	K	K	М	K	K			
124	0.12						J	J	М	N		J	J	М	М			K	K	K	Р	K	K			
154	0.15						М	N	М	N		J	J	М	М			K	K	K	Р	K	K			
224	0.22						М	N	М	N		J	М	М	Q			М	М	М	Р	М	М			
334	0.33						N	N	М	N		J	М	Р	Q			Р	P	Р	Q	X	Х			
474	0.47						Ν	N	М	N		М	М	Р	Q			Р	Р	Р	Q	Х	X			
684	0.68						N	N	N			М	Q	Q	Q			Р	Р	Q	Х	Х	Х			
105	Cap 1.0						N	N	N*			М	Q	Q	Q*			Р	Q	Q	Z*	Х	Х			
155	(μF) 1.5											Q	Q	Q				Р	Q	Z	Z	Х	Х			
225	2.2											Q	Q	Q				Z	Z	Z	Z*	Z	Z			
335	3.3											Q						Χ	Z	Z	Z	Z				
475	4.7											Q						Х	Z	Z		Z*				
106	10																	Z	Z*						Z	Z*
226	22																	Ť						Z		
	WVDC	16V	25V	50V	100V	200V	16V	25V	50V	100V	200V	16V	25V	50V	100V	200V	500V	16V	25V	50V	100V	50V	100V	25V	50V	100V
	Size		AP	03 = 06	503			AP	05 = 0	805				AP06 =	1206				AP10 :	= 1210)	AP12	= 1812	AP	20 = 22	220

^{*}Not currently available with lead plating finish, contact plant for further information.

Letter	Α	С	E	G	J	K	М	N	Р	Q	Х	Υ	Z
Max.	0.33	0.56	0.71	0.90	0.94	1.02	1.27	1.40	1.52	1.78	2.29	2.54	2.79
Thickness	(0.013)	(0.022)	(0.028)	(0.035)	(0.037)	(0.040)	(0.050)	(0.055)	(0.060)	(0.070)	(0.090)	(0.100)	(0.110)
			PAPER						EMBO	SSED			

APS COTS+ X8R/L Series

Capacitance Range

X8R

	SIZE	AP03 =	: 0603	AP05	= 0805	AP06 =	1206
,	WVDC	25V	50V	25V	50V	25V	50V
331	Cap 330	G	G	J	J		
471	(pF) 470	G	G	J	J		
681	680	G	G	J	J		
102	1000	G	G	J	J	J	J
152	1500	G	G	J	J	J	J
222	2200	G	G	J	J	J	J
332	3300	G	G	J	J	J	J
472	4700	G	G	J	J	J	J
682	6800	G	G	J	J	J	J
103	Cap 0.01	G	G	J	J	J	J
153	(μF) 0.015	G	G	J	J	J	J
223	0.022	G	G	J	J	J	J
333	0.033	G	G	J	J	J	J
473	0.047	G	G	J	J	J	J
683	0.068	G		N	N	M	М
104	0.1			N	N	M	М
154	0.15			N	N	M	М
224	0.22			N		М	М
334	0.33	·				М	М
474	0.47					М	
684	0.68	<u> </u>					<u> </u>
105	1						
	WVDC	25V	50V	25V	50V	25V	50V
	SIZE	06	03	08	305	120	6

X8L

	SIZE		AP03 = 0603	3		AP05 = 080	5		AP06 :	= 1206				
	WVDC	25V	50V	100V	25V	50V	100V	16V	25V	50V	100V			
331	Cap 330		G	G		J	J							
471	(pF) 470		G	G		J	J							
681	680		G	G		J	J							
102	1000		G	G		J	J							
152	1500		G	G		J	J			J	J			
222	2200		G	G		J	J			J	J			
332	3300		G	G		J	J			J	J			
472	4700		G	G		J	J			J	J			
682	6800		G	G		J	J			J	J			
103	Cap 0.01		G	G		J	J			J	J			
153	(μF) 0.015	G	G		J	J	J			J	J			
223	0.022	G	G		J	J	J			J	J			
333	0.033	G	G		J	J	N			J	J			
473	0.047	G	G		J	J	N			J	J			
683	0.068	G	G		J	J				J	J			
104	0.1	G	G		J	J				J	М			
154	0.15				٦	N		J	J	J	Q			
224	0.22				Ν	N		J	J	J	Q			
334	0.33				N			J	М	Р	Q			
474	0.47				N			М	М	Р				
684	0.68							М						
105	1							М						
1	WVDC	25V	50V	100V	25V	50V	100V	16V	16V 25V 50V 100V					
	SIZE		0603			0805		1206						

Letter	Α	С	Е	G	J	K	М	N	Р	Q	Х	Υ	Z
Max.	0.33	0.56	0.71	0.90	0.94	1.02	1.27	1.40	1.52	1.78	2.29	2.54	2.79
Thickness	(0.013)	(0.022)	(0.028)	(0.035)	(0.037)	(0.040)	(0.050)	(0.055)	(0.060)	(0.070)	(0.090)	(0.100)	(0.110)
			PAPER						EMBO	SSED			

General Specifications

GENERAL DESCRIPTION

With increased requirements from the automotive industry for additional component robustness, AVX recognized the need to produce a MLCC with enhanced mechanical strength. It was noted that many components may be subject to severe flexing and vibration when used in various under the hood automotive and other harsh environment applications.

To satisfy the requirement for enhanced mechanical strength, AVX had to find a way of ensuring electrical integrity is maintained whilst external forces are being applied to the component. It was found that the structure of the termination needed to be flexible and after much research and development, AVX launched FLEXITERM®. FLEXITERM® is designed to enhance the mechanical flexure and temperature cycling performance of a standard ceramic capacitor with an X7R dielectric. The industry standard for flexure is 2mm minimum. Using FLEXITERM®, AVX provides up to 5mm of flexure without internal cracks. Beyond 5mm, the capacitor will generally fail "open".

As well as for automotive applications FLEXITERM® will provide Design Engineers with a satisfactory solution when designing PCB's which may be subject to high levels of board flexure.

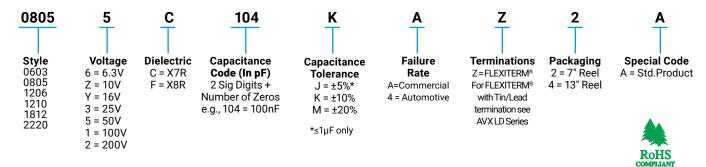
PRODUCT ADVANTAGES

- High mechanical performance able to withstand, 5mm bend test guaranteed
- Increased temperature cycling performance, 3000 cycles and beyond
- Flexible termination system
- Reduction in circuit board flex failures
- Base metal electrode system
- Automotive or commercial grade products available
- AECQ200 Qualified
- · Approved to VW 80808 Specification

APPLICATIONS

High Flexure Stress Circuit Boards

· e.g. Depanelization: Components near edges of board.


Variable Temperature Applications

- Soft termination offers improved reliability performance in applications where there is temperature variation.
- · e.g. All kind of engine sensors: Direct connection to battery rail.

Automotive Applications

- · Improved reliability.
- Excellent mechanical performance and thermo mechanical performance.

HOW TO ORDER

NOTE: Contact factory for availability of Tolerance Options for Specific Part Numbers.

Specifications and Test Methods

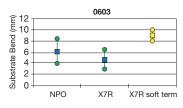
A KYOCERA GROUP COMPANY

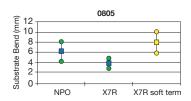
PERFORMANCE TESTING

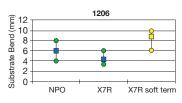
AEC-Q200 Qualification:

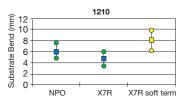
 Created by the Automotive Electronics Council

 Specification defining stress test qualification for passive components


Testing:


Key tests used to compare soft termination to AEC-Q200 qualification:

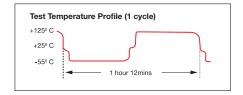

- · Bend Test
- · Temperature Cycle Test


BOARD BEND TEST RESULTS

AEC-Q200 Vrs AVX FLEXITERM® Bend Test

TABLE SUMMARY

Typical bend test results are shown below:

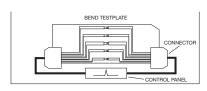

Style	Conventional Termination	FLEXITERM®
0603	>2mm	>5mm
0805	>2mm	>5mm
1206	>2mm	>5mm

TEMPERATURE CYCLE TEST PROCEDURE

Test Procedure as per AEC-Q200:

The test is conducted to determine the resistance of the component when it is exposed to extremes of alternating high and low temperatures.

- Sample lot size quantity 77 pieces
- TC chamber cycle from -55°C to +125°C for 1000 cycles
- · Interim electrical measurements at 250, 500, 1000 cycles
- Measure parameter capacitance dissipation factor, insulation resistance


BOARD BEND TEST PROCEDURE

According to AEC-Q200

Test Procedure as per AEC-Q200: Sample size: 20 components

Span: 90mm Minimum deflection spec: 2 mm

- · Components soldered onto FR4 PCB (Figure 1)
- Board connected electrically to the test equipment (Figure 2)

DIGITAL/
CALIPER

DIGITAL/
CALIPER

CONTROL
PANEL

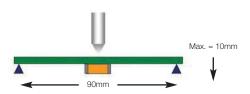

Fig 1 - PCB layout with electrical connections

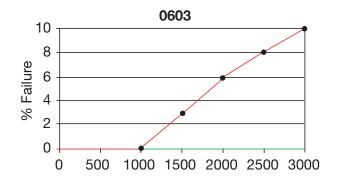
Fig 2 - Board Bend test equipment

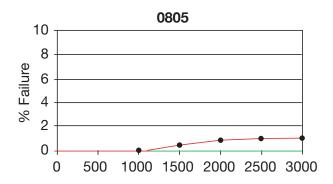
AVX ENHANCED SOFT TERMINATION BEND TEST PROCEDURE

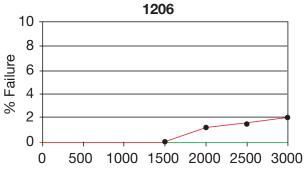
Bend Test

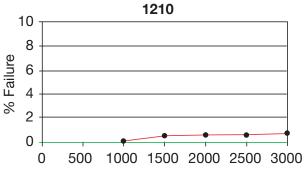
The capacitor is soldered to the printed circuit board as shown and is bent up to 10mm at 1mm per second:

- The board is placed on 2 supports 90mm apart (capacitor side down)
- The row of capacitors is aligned with the load stressing knife


- The load is applied and the deflection where the part starts to crack is recorded (Note: Equipment detects the start of the crack using a highly sensitive current detection circuit)
- The maximum deflection capability is 10mm

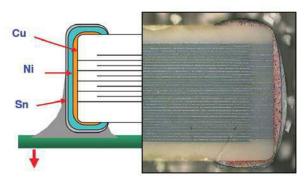



Specifications and Test Methods



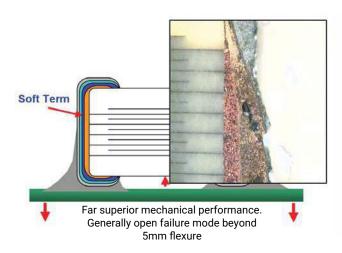
BEYOND 1000 CYCLES: TEMPERATURE CYCLE TEST RESULTS

Green = Soft Term MLCC (Flexiterm)
Red = Standard MLCC


Soft Term - No Defects up to 3000 cycles

AEC-Q200 specification states 1000 cycles compared to AVX 3000 temperature cycles.

FLEXITERM® TEST SUMMARY


- Qualified to AEC-Q200 test/specification with the exception of using AVX 3000 temperature cycles (up to +150°C bend test guaranteed greater than 5mm).
- FLEXITERM® provides improved performance compared to standard termination systems.
- · Board bend test improvement by a factor of 2 to 4 times.
- Temperature Cycling:
 - 0% Failure up to 3000 cycles
 - No ESR change up to 3000 cycle

WITHOUT SOFT TERMINATION

Major fear is of latent board flex failures.

WITH SOFT TERMINATION

Capacitance Range X8R Dielectric

	SIZE	06	03	08	305	1206			
Sc	oldering	Reflow	//Wave	Reflov	v/Wave	Reflow	/Wave		
	WVDC	25V	50V	25V	50V	25V	50V		
271	Cap 270	G	G						
331	(pF) 330	G	G	J	J				
471	470	G	G	J	J				
681	680	G	G	J	J				
102	1000	G	G	J	J	J	J		
152	1500	G	G	J	J	J	J		
182	1800	G	G	J	J	J	J		
222	2200	G	G	J	J	J	J		
272	2700	G	G	J	J	J	J		
332	3300	G	G	J	J	J	J		
392	3900	G	G	J	J	J	J		
472	4700	G	G	J	J	J	J		
562	5600	G	G	J	J	J	J		
682	6800	G	G	J	J	J	J		
822	8200	G	G	J	J	J	J		
103	Cap 0.01	G	G	J	J	J	J		
123	(μF) 0.012	G	G	J	J	J	J		
153	0.015	G	G	J	J	J	J		
183	0.018	G	G	J	J	J	J		
223 273	0.022 0.027	G	G G	J	J	J	J		
333		G G	G	J	J	J	J		
393	0.033	G	G		J		J		
473	0.039	G	G	J	J	J	J		
563	0.047	G	G	N N	N	M	M		
683	0.030	G		N	N	M	M		
823	0.082	G		N	N	M	M		
104	0.082			N	N	M	M		
124	0.12			N	N	M	M		
154	0.12			N	N	M	M		
184	0.18			N	,,	M	M		
224	0.22			N		M	M		
274	0.27			,	1	M	M		
334	0.33				İ	M	М		
394	0.39			İ	İ	М			
474	0.47					М			
684	0.68		İ	İ	į .				
824	0.82								
105	1								
	WVDC	25V	50V	25V	50V	25V 50V			
	SIZE	06	03	08	305	12	06		

Letter	Α	С	Е	G	J	K	М	N	Р	Q	Х	Υ	Z		
Max. Thickness	0.33	0.56	0.71	0.90	0.94	1.02	1.27	1.40	1.52	1.78	2.29	2.54	2.79		
Inickness	s (0.013) (0.022) (0.028) (0.035) (0.037)				(0.037)	(0.040) (0.050) (0.055) (0.060) (0.070) (0.090) (0.100) (0.110)									
			PAPER						EMBO	SSED					

Capacitance Range X7R Dielectric

	Size			0402					06	03					_	805						120	6			1210			18	12	2220			
	Solderi	na		ow/V				R		/Wave						w/Wa	VA.				Re	eflow/					Reflov		,	Reflo		Reflow Only		
	WVDC					10V	16V				200V	250V	16V	25V				250V	16V	25V				250V	1500V									100 V
221	Cap	220	C	C	C	101	101	201	001	100 1	2001	2001	101	201	001	C	2001	2001	101	201	001	100 1	2001	2001	0001	101	201	001	1001	001	100 1	201	001	100 1
271	(pF)	270		C	Č																		1											
331	(1-7)	330	C	C	Ċ																													
391		390	C	С	C																													
471		470	C	С	C																													
561		560	С	С	С		İ									İ																		
681		680	С	С	С		İ																İ											
821		820	С	С	С																													
102		1000	С	С	С		G	G	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J	J	J	К	K	К	К	N	N			
182		1800	С	С	С		G	G	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J	J	J	K	K	K	K	N	N			
222		2200	С	С	С		G	G	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J	J	J	K	K	K	K	N	N			
332		3300	С	С	С		G	G	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J	J	J	K	K	K	K	N	N			
472		4700	С	С	С		G	G	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J	J	J	K	K	K	K	N	N			
103	Сар	0.01					G	G	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J	J	J	K	K	K	K	N	N			
123	(µF)	0.012	С				G	G	G				J	J	J	N	N	N	J	J	J	J	J	J		K	K	K	K	N	N			
153		0.015	С				G	G	G				J	J	J	N	N	N	J	J	J	J	J	J		K	K	K	K	N	N			
183		0.018	С				G	G	G				J	J	J	N	N	N	J	J	J	J	J	J		K	K	K	K	N	N			
223		0.022	С				G	G	G				J	J	J	N	N	N	J	J	J	J	J	J		K	K	K	K	N	N			
273		0.027	С				G	G	G				J	J	J	N	N	N	J	J	J	J	J	J		K	K	K	K	N	N			
333		0.033	С				G	G	G				J	J	J	N	N	N	J	J	J	J	J	J		K	K	K	K	N	N			
473		0.047					G	G	G				J	J	J	N	N	N	J	J	J	М	J	J		K	K	K	K	N	N			
563		0.056					G	G	G				J	J	J	N			J	J	J	М	J	J		K	K	K	М	N	N			
683		0.068					G	G	G				J	J	J	N			J	J	J	М	J	J		K	K	K	М	N	N			
823		0.082					G	G	G				J	J	J	N			J	J	J	М	J	J		K	K	K	М	N	N			
104		0.1	С				G	G	G				J	J	J	N			J	J	J	М	J	J		K	K	K	М	N	N			
124		0.12											J	J	N	N			J	J	М	М				K	K	K	P	N	N			
154		0.15											М	N	N	N			J	J	М	М				K	K	K	Р	N	N			
224		0.22		<u> </u>		G	J	J	J				М	N	N	N			J	М	M	Q	_	_		М	M	M	Р	N	N	\vdash		
334		0.33		_	-					_	-		N	N	N	N			J	M	P	Q	-			Р	P	P	Q	X	X			
474		0.47				J	J	J					N	N	N	N			М	M	P	Q		_		Р	Р	P	Q	X	X			
684		0.68		_	-	├	\vdash				-		N	N	N	N	-		M	Q	Q	Q	-	_		Р	P	Q	X	X	X			
105	\vdash	1 1 5		_	-	-	\vdash			_	-		N	N	N	N		_	M	Q	Q	Q	-	_	_	Р	Q	Q	Z	X	X	\vdash		
155		1.5		-	_	-	-	-			-		N	N	-	-	-		Q	Q	Q	-	-	-	-	P	Q	Z	Z	X	X	\vdash		
225	\vdash	2.2		-	-	-	\vdash				-	-	N	N	\vdash	<u> </u>	-	-	Q	Q	Q	-	+	<u> </u>	-	X	Z	Z	Z	Z	Z	\vdash		
335		3.3 4.7		<u> </u>	-	 	\vdash			_	-		_						Q	Q	-	 	+		-	X		Z	Z			\vdash		7
475		4.7		-	-	-	\vdash	\vdash		-	-		-	-	-	\vdash	-		Q	Q		\vdash	+	\vdash		X		Z	Z		-	\vdash	7	Z
106 226	\vdash	22		-	-	-	\vdash			_	-		_	-	-				-	-	-	\vdash	+			Z	Z	Z				7	Z	Z
220	WVDC		16\/	251/	E0) /	101/	161/	251/	EOV.	100 1/	200V	2501/	16\/	251/	E0) /	100 \	2001	2501/	16\/	251/	E01/	100 \	/2001/	2501/	EOO!	16\/	251/	E0) /	100 1/	50V	100 V	Z 25V	EOV.	100 V
-	Size	,		0402		100	100	[Z5V	06		ZUUV	Z5UV	101	Z5V		1100 v 1805	ZUUV	125UV	101	Z5V	1000	120		J∠5UV	13000	101	∠5V 12		1100 V		100 V	Z5V	2220	
	Size			0402					- 00	US						1003						120	0				12	10		10	12		2220	

	Letter	Α	С	E	G	J	K	М	N	Р	Q	Х	Υ	Z	
ſ	Max.	0.33	0.56	0.71	0.90	0.94	1.02	1.27	1.40	1.52	1.78	2.29	2.54	2.79	
	Thickness	(0.013)	(0.022)	(0.028)	(0.035)	(0.037)	(0.040)	(0.050)	(0.055)	(0.060)	(0.070)	(0.090)	(0.100)	(0.110)	
_				PAPER			EMBOSSED								

FLEXISAFE MLC Chips

General Specifications and Capacitance Range For Ultra Safety Critical Applications

AVX have developed a range of components specifically for safety critical applications.

Utilizing the award-winning FLEXITERM™ layer in conjunction with the cascade design previously used for high voltage MLCCs, a range of ceramic capacitors is now available for customers who require components designed with an industry leading set of safety features.

The FLEXITERM™ layer protects the component from any damage to the ceramic resulting from mechanical stress during PCB assembly or use with end customers. Board flexure type mechanical damage accounts for the majority of MLCC failures. The addition of the cascade structure protects the component from low insulation resistance failure resulting from other common causes for failure; thermal stress damage, repetitive strike ESD damage and placement damage. With the inclusion of the cascade design structure to complement the FLEXITERM™ layer, the FLEXISAFE range of capacitors has unbeatable safety features. Flexisafe capacitors are qualified in accordance with AEC-Q200 standard. AEC-Q200 detailed qualification data is available on request

HOW TO ORDER

FS05 104 K Z 2 Special Size Voltage **Dielectric** Capacitance Capacitance **Failure Terminations Packaging** Code FS03 = 0603Code (In pF) **Tolerance** Z = FLEXITERM™ 2 = 7" Reel 16V = Y Rate FS05 = 0805 *X = FLEXITERM™ 4 = 13" Reel A = Std.Product $J = \pm 5\%$ 25V = 3 2 Sig. Digits + A = Commercial FS06 = 1206 K = ±10% with 5% min lead Number of 50V = 54 = Automotive FS10 = 1210 $M = \pm 20\%$ *Not RoHS Compliant Zeros 0 = APS100V = 1 e.g. $10\mu F = 106$

CAPACITANCE RANGE FLEXISAFE X7R

SI	ZE	FS03 = 0603				FS05 :	= 0805		FS	S06 = 120	6	FS10 = 1210			
W۱	/DC	16	25	50	100	16	25	50	100	16	25	50	16	25	50
102	1000	G	G	G	G	J	J	J	J	J	J	J			
182	1800	G	G	G	G	J	J	J	J	J	J	J			
222	2200	G	G	G	G	J	J	J	J	J	J	J			
332	3300	G	G	G	G	J	J	J	J	J	J	J			
472	4700	G	G	G	G	J	J	J	J	J	J	J			
682	6800	G	G	G	G	J	J	J	J	J	J	J			
103	0.01	G	G	G	G	J	J	J	J	J	J	J			
123	0.012	G	G	G		J	J	J	J	J	J	J			
153	0.015	G	G	G		J	J	J	J	J	J	J			
183	0.018	G	G	G		J	J	J	J	J	J	J			
223	0.022	G	G	G		N	N	N	N	J	J	J			
273	0.027					N	N	N	N	J	J	J			
333	0.033					N	N	N	N	J	J	J			
473	0.047					N	N	N	N	М	М	М			
563	0.056					N	N	N	N	М	M	М			
683	0.068					N	N	N	N	М	М	М			
823	0.082					N	N	N	N	М	M	М			
104	0.1					N	N	N	N	М	М	М			
124	0.12									М	М	М			
154	0.15									М	M	М	Q	Q	Q
224	0.22												Q	Q	Q
334	0.33												Q	Q	Q
474	0.47												Q	Q	Q

Letter	G	J	М	N	Q
Max. Thickness	0.90 (0.035)	0.94 (0.037)	1.27 (0.050)	1.40 (0.055)	1.78 (0.070)
	PAF	PFR		FMBOSSFD	

Capacitor Array

Capacitor Array (IPC)

BENEFITS OF USING CAPACITOR ARRAYS

AVX capacitor arrays offer designers the opportunity to lower placement costs, increase assembly line output through lower component count per board and to reduce real estate requirements.

Reduced Costs

Placement costs are greatly reduced by effectively placing one device instead of four or two. This results in increased throughput and translates into savings on machine time. Inventory levels are lowered and further savings are made on solder materials, etc.

Space Saving

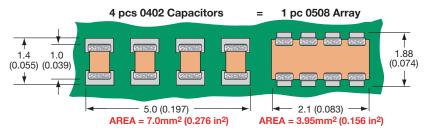
Space savings can be quite dramatic when compared to the use of discrete chip capacitors. As an example, the 0508 4-element array offers a space reduction of >40% vs. 4×0402 discrete capacitors and of >70% vs. 4×0603 discrete capacitors. (This calculation is dependent on the spacing of the discrete components.)

Increased Throughput

Assuming that there are 220 passive components placed in a mobile phone:

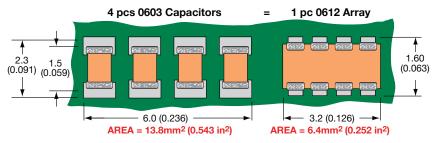
A reduction in the passive count to 200 (by replacing discrete components with arrays) results in an increase in throughput of approximately 9%.

A reduction of 40 placements increases throughput by 18%.


For high volume users of cap arrays using the very latest placement equipment capable of placing 10 components per second, the increase in throughput can be very significant and can have the overall effect of reducing the number of placement machines required to mount components:

If 120 million 2-element arrays or 40 million 4-element arrays were placed in a year, the requirement for placement equipment would be reduced by one machine.

During a 20Hr operational day a machine places 720K components. Over a working year of 167 days the machine can place approximately 120 million. If 2-element arrays are mounted instead of discrete components, then the number of placements is reduced by a factor of two and in the scenario where 120 million 2-element arrays are placed there is a saving of one pick and place machine.


Smaller volume users can also benefit from replacing discrete components with arrays. The total number of placements is reduced thus creating spare capacity on placement machines. This in turn generates the opportunity to increase overall production output without further investment in new equipment.

W2A (0508) Capacitor Arrays

The 0508 4-element capacitor array gives a PCB space saving of over 40% vs four 0402 discretes and over 70% vs four 0603 discrete capacitors.

W3A (0612) Capacitor Arrays

The 0612 4-element capacitor array gives a PCB space saving of over 50% vs four 0603 discretes and over 70% vs four 0805 discrete capacitors.

Capacitor Array (IPC)

0612 - 4 Element

0 -5 -10 -15

S21 mag. (dB) -20

-25

-30

-35 -40

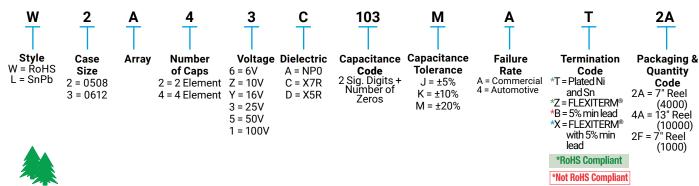
0.01

GENERAL DESCRIPTION

AVX is the market leader in the development and manufacture of capacitor arrays. The array family of products also includes the 0612 4-element device as well as 0508 2-element and 4-element series, all of which have received widespread acceptance in the marketplace.

AVX capacitor arrays are available in X5R, X7R and NP0 (C0G) ceramic dielectrics to cover a broad range of capacitance values. Voltage ratings from 6.3 Volts up to 100 Volts are offered. AVX also now offers a range of automotive capacitor arrays qualified to AEC-Q200 (see separate table).

Key markets for capacitor arrays are Mobile and Cordless Phones, Digital Set Top Boxes, Computer Motherboards and Peripherals as well as Automotive applications, RF Modems, Networking Products, etc.


S21 Magnitude 5pF 10pF 15pF 22pF 33pF 39pF 68pF

AVX Capacitor Array - W2A41A***K

HOW TO ORDER

RoHS COMPLIANT

0508 - 4 Element

Frequency (GHz)

0.1

NOTE: Contact factory for availability of Termination and Tolerance Options for Specific Part Numbers.

Capacitance Range - NP0/C0G

# Elements Solderinq Reflow/Wave Packaqinq Packaqinq Paper/Embossed Paper/Embossed Length (in.) (in.) Width (in.) Width (in.) Max. mm Thickness (in.) 0.083 ± 0.006 0.083 ± 0.006 0.083 ± 0.006 0.083 ± 0.006 0.083 ± 0.006 0.083 ± 0.006 0.083 ± 0.006 0.083 ± 0.006 0.0126 ± 0.008 0.023	SIZE		W	2 = 050	08	W	3 = 061	12
Soldering	# Eleme	ents		4			4	
Length			Re	flow/Wa	ave	Re	flow/Wa	ive
Midth	Packaqi	nq	Pap	er/Embos	ssed	Pap	er/Embos	sed
Width min (in.)	Length							
Max								
Max. mm (in.) (0.037) (0.053) (0.053) (0.053) (0.053) (0.0	Width							
WVDC		mm	,	0.94		,	1.35	
1R0 Cap 1.0 1R2 (pF) 1.2 1R5 1.5 1.8 1R8 1.8 2.2 2R7 2.7 3R3 3R9 3.9 4R7 4R7 4.7 5R6 5R6 5.6 6R8 6.8 8R2 8.2 100 10 120 12 150 15 180 18 220 22 270 27 330 33 390 39 470 47 560 56 680 68 820 82 101 100 121 120 151 150 181 180 221 220 271 270 331 330 391 391 390 471 470 470 561 560 681 680 821 821 820 102			16			16		
1R2 (pF) 1.2 1R8 1.8 2R2 2.2 2R7 2.7 3R3 3.3 3R9 3.9 4R7 4.7 5R6 5.6 6R8 6.8 8R2 8.2 100 10 120 12 150 15 180 18 220 22 270 27 330 33 390 39 470 47 560 56 680 68 820 82 101 100 121 120 151 150 181 180 221 220 271 270 331 330 391 390 471 470 561 560 681 680 821 820 102 1000 122			16	25	50	16	25	50
1R5 1.5 1R8 1.8 2R2 2.2 2R7 2.7 3R3 3.3 3R9 3.9 4R7 4.7 5R6 5.6 6R8 6.8 8R2 8.2 100 10 120 12 150 15 180 18 220 22 270 27 330 33 390 39 470 47 560 56 680 68 820 82 101 100 121 120 151 150 181 180 221 220 271 270 331 330 391 390 471 470 561 560 681 680 821 820 102 1000 122 1200	1							
1R8 1.8 2R2 2.2 2R7 2.7 3R3 3.3 3R9 3.9 4R7 4.7 5R6 5.6 6R8 6.8 8R2 8.2 100 10 120 12 150 15 180 18 220 22 270 27 330 33 390 39 470 47 560 56 680 68 820 82 101 100 121 120 151 150 181 180 221 220 271 270 331 330 391 390 471 470 561 560 681 680 821 820 102 1000 152 1500 182 1800	4.							
2R2								
2R7 2.7 3R3 3.3 3R9 3.9 4R7 4.7 5R6 5.6 6R8 6.8 8R2 8.2 100 10 120 12 150 15 180 18 220 22 270 27 330 33 390 39 470 47 560 56 680 68 820 82 101 100 121 120 151 150 181 180 221 220 271 270 331 330 391 390 471 470 561 560 681 680 821 820 102 1000 122 1200 152 1500 182 1800 222 2200								
3R9 3.9 4R7 4.7 5R6 5.6 6R8 6.8 8R2 8.2 100 10 120 12 150 15 180 18 220 22 270 27 330 33 390 39 470 47 560 56 680 68 820 82 101 100 121 120 151 150 181 180 221 220 271 270 331 330 391 390 471 470 561 560 681 680 821 820 102 1000 122 1200 152 1500 182 1800 222 2200 272 2700 332 3300 <td>2R7</td> <td>2.7</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	2R7	2.7						
4R7 4.7 5R6 5.6 6R8 6.8 8R2 8.2 100 10 120 12 150 15 180 18 220 22 270 27 330 33 390 39 470 47 560 56 680 68 820 82 101 100 121 120 151 150 181 180 221 220 271 270 331 330 391 390 471 470 561 560 681 680 821 820 102 1000 122 1200 152 1500 182 1800 222 2200 272 2700 332 3300 392 3900 </td <td>3R3</td> <td>3.3</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	3R3	3.3						
5R6 5.6 6R8 6.8 8R2 8.2 100 10 120 12 150 15 180 18 220 22 270 27 330 33 390 39 470 47 560 56 680 68 820 82 101 100 121 120 151 150 181 180 221 220 271 270 331 330 391 390 471 470 561 560 681 680 821 820 102 1000 122 1200 152 1500 182 1800 222 2200 272 2700 332	3R9	3.9						
6R8 6.8 8R2 8.2 100 10 120 12 150 15 180 18 220 22 270 27 330 33 390 39 470 47 560 56 680 68 820 82 101 100 121 120 151 150 181 180 221 220 271 270 331 330 391 390 471 470 561 560 681 680 821 820 102 1000 122 1200 152 1500 182 1800 222 2200 272 2700 332 3300 392 3900 472 4700 562 5600								
8R2 8.2 100 10 120 12 150 15 180 18 220 22 270 27 330 33 390 39 470 47 560 56 680 68 820 82 101 100 121 120 151 150 181 180 221 220 271 270 331 330 391 390 471 470 561 560 681 680 821 820 102 1000 122 1200 152 1500 182 1800 222 220 272 2700 332 3300 392 3900 472 4700 562 5600								
100	1							
120 12 150 15 180 18 220 22 270 27 330 33 390 39 470 47 560 56 680 68 820 82 101 100 121 120 151 150 181 180 221 220 271 270 331 330 391 390 471 470 561 560 681 680 821 820 102 1000 122 1200 152 1500 182 1800 222 2200 272 2700 332 3300 392 3900 472 4700 562 5600								
150 15 180 18 220 22 270 27 330 33 390 39 470 47 560 56 680 68 820 82 101 100 121 120 151 150 181 180 221 220 271 270 331 330 391 390 471 470 561 560 681 680 821 820 102 1000 122 1200 152 1500 182 1800 222 2200 272 2700 332 3300 392 3900 472 4700 562 5600								
180 18 220 22 270 27 330 33 399 39 470 47 560 56 680 68 820 82 101 100 121 120 151 150 181 180 221 220 271 270 331 330 391 390 471 470 561 560 681 680 821 820 102 1000 122 1200 152 1500 182 1800 222 220 272 2700 332 3300 392 3900 472 4700 562 5600								
220 22 270 27 330 33 390 39 470 47 560 56 680 68 820 82 101 100 121 120 151 150 181 180 221 220 271 270 331 330 391 390 471 470 561 560 681 680 821 820 102 1000 122 1200 152 1500 182 1800 222 2200 272 2700 332 3300 392 3900 472 4700 562 5600								
270 27 330 33 390 39 470 47 560 56 680 68 820 82 101 100 121 120 151 150 181 180 221 220 271 270 331 330 391 390 471 470 561 560 681 680 821 820 102 1000 122 1200 152 1500 182 1800 222 2200 272 2700 332 3300 392 3900 472 4700 562 5600								
330 33 39 470 47 560 56 680 68 820 82 101 100 121 120 151 150 181 181 180 221 220 271 270 331 330 391 390 471 470 561 560 681 680 821 820 102 1000 122 1200 152 1500 182 1800 222 2200 272 2700 332 3300 392 3900 472 4700 562 5600								
390 39 470 47 560 56 680 68 820 82 101 100 121 120 151 150 181 180 221 220 271 270 331 330 391 390 471 470 561 560 681 680 821 820 102 1000 122 1200 152 1500 182 1800 222 2200 272 2700 332 3300 392 3900 472 4700 562 5600								
560 56 680 68 820 82 101 100 121 120 151 150 181 180 221 220 271 270 331 330 391 390 471 470 561 560 681 680 821 820 102 1000 122 1200 152 1500 182 1800 222 2200 272 2700 332 3300 392 3900 472 4700 562 5600								
680 68 820 82 101 100 121 120 151 150 181 180 221 220 271 270 331 330 391 390 471 470 561 560 681 680 821 820 102 1000 122 1200 152 1500 182 1800 222 2200 277 2700 332 3300 392 3900 472 4700 562 5600	470	47						
820 82 101 100 121 120 151 150 181 180 221 220 271 270 331 330 391 390 471 470 561 560 681 680 821 820 102 1000 122 1200 152 1500 182 1800 222 2200 272 2700 332 3300 392 3900 472 4700 562 5600	560	56						
101 100 121 120 151 150 181 180 221 220 271 270 331 330 391 390 471 470 561 560 681 680 821 820 102 1000 122 1200 152 1500 182 1800 222 2200 272 2700 332 3300 392 3900 472 4700 562 5600	680	68						
121 120 151 150 181 180 221 220 271 270 331 330 391 390 471 470 561 560 681 680 821 820 102 1000 122 1200 152 1500 182 1800 222 2200 272 2700 332 3300 392 3900 472 4700 562 5600								
151 150 181 180 221 220 271 270 331 330 391 390 471 470 561 560 681 680 821 820 102 1000 122 1200 152 1500 182 1800 222 2200 272 2700 332 3300 392 3900 472 4700 562 5600								
181 180 221 220 271 270 331 330 391 390 471 470 561 560 681 680 821 820 102 1000 122 1200 152 1500 182 1800 222 2200 272 2700 332 3300 392 3900 472 4700 562 5600	1							
221 220 271 270 331 330 391 390 471 470 561 560 681 680 821 820 102 1000 122 1200 152 1500 182 1800 222 2200 272 2700 332 3300 392 3900 472 4700 562 5600								
271 270 331 330 391 390 471 470 561 560 681 680 821 820 102 1000 122 1200 152 1500 182 1800 222 2200 272 2700 332 3300 392 3900 472 4700 562 5600								
331 330 391 390 471 470 561 560 681 680 821 820 102 1000 122 1200 152 1500 182 1800 222 2200 272 2700 332 3300 392 3900 472 4700 562 5600								
391 390 471 470 561 560 681 680 821 820 102 1000 122 1200 152 1500 182 1800 222 2200 272 2700 332 3300 392 3900 472 4700 562 5600								
471 470 561 560 681 680 821 820 102 1000 122 1200 152 1500 182 1800 222 2200 272 2700 332 3300 392 3900 472 4700 562 5600								
681 680 821 820 102 1000 122 1200 152 1500 182 1800 222 2200 272 2700 332 3300 392 3900 472 4700 562 5600	471	470						
821 820 102 1000 122 1200 152 1500 182 1800 222 2200 272 2700 332 3300 392 3900 472 4700 562 5600	561	560						
102 1000 122 1200 152 1500 182 1800 222 2200 272 2700 332 3300 392 3900 472 4700 562 5600								
122 1200 152 1500 182 1800 222 2200 272 2700 332 3300 392 3900 472 4700 562 5600								
152 1500 182 1800 222 2200 272 2700 332 3300 392 3900 472 4700 562 5600								
182 1800 222 2200 272 2700 332 3300 392 3900 472 4700 562 5600		1						
222 2200 272 2700 332 3300 392 3900 472 4700 562 5600								
272 2700 332 3300 392 3900 472 4700 562 5600								
332 3300 392 3900 472 4700 562 5600	1							
392 3900 472 4700 562 5600								
472 4700 562 5600								
562 5600	1							
682 6800								
002 0000	682	6800						
822 8200	822	8200						

= Supported Values

Capacitance Range - X7R

	SIZE				N2 =	050	8			٧	V2 =	050	8				V3 =	061	2	
#	Elemen	ts				2						4					4	4		
	Soldering				Reflov		e					//Wav					Reflow			
	Packaqinq					aper				Pa		mboss					per/E			
Lengt	:h	mm (in.)		((0.051	± 0.15				(0		± 0.15 ± 0.00					1.60 ±			
NAC 111		mm				± 0.00						± 0.05						± 0.20	0)	
Width	1	(in.)		((0.083	± 0.00			(0.083 ± 0.006)					(0).126 :	£ 0.00	8)			
Max.		mm		0.94					94						35					
Thick	ness WVDC	(in.)		10		037) 25	50	100	6	10)37) 25	50	100		10	(0.0		50	100
101	Cap	100	6	10	16	25	50	100	6	10	16	25	50	100	6	10	16	25	50	100
121	(PF)	120																		1
151	` '	150																		
181		180																		
221		220																		
271 331		270 330																		
391		390																		
471		470																		
561		560																		
681		680																		
821		820																		
102 122		1000 1200																		
152		1500																		
182		1800																		
222		2200																		
272		2700																		
332 392		3300 3900																		
472		4700																		
562		5600																		
682		6800																		
822		8200																		
103		0.010																		
123 153		0.012 0.015																		
183		0.018																		
223		0.022																		
273		0.027																		
333		0.033																		
393 473		0.039 0.047																		
563		0.056																		\vdash
683		0.068																		
823		0.082																		
104		0.10																		
124 154		0.12 0.15																		
184		0.15									 		\vdash							H
224		0.22																		
274		0.27																		
334		0.33																		
474 564		0.47 0.56																		
684		0.56		\vdash					H		 		 							H
824		0.82																		
105		1.0	L			L	L_	<u> </u>	L	L		L	L_	L	L	L	L_	L	L_	
125		1.2																		7
155		1.5																		
185 225		1.8 2.2	-				<u> </u>	-	-	-	-		-				<u> </u>		-	H
335		3.3																		
475		4.7	L			L				L			L	L		L		L		<u> </u>
106		10																		
226		22																		
476		47																		
107		100																		ш

Automotive Capacitor Array (IPC)

As the market leader in the development and manufacture of capacitor arrays AVX is pleased to offer a range of AEC-Q200 qualified arrays to compliment our product offering to the Automotive industry. Both the AVX 0612 and 0508 4-element capacitor array styles are qualified to the AEC-Q200 automotive specifications.

AEC-Q200 is the Automotive Industry qualification standard and a detailed qualification package is available on request. All AVX automotive capacitor array production facilities are certified to ISO/TS 16949:2002.

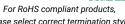
HOW TO ORDER

<u>w</u>	3	<u>A</u>	4	<u>Y</u>	<u>c</u>	<u>104</u>	K	4	<u>T</u>	2A
Style W = RoHS L = SnPb	Case Size 2 = 0508 3 = 0612	Array	Number of Caps	Voltage Z = 10V Y = 16V 3 = 25V 5 = 50V 1 = 100V	Dielectric A = NP0 C = X7R F = X8R	Capacitance Code (In pF) Significant Digits + Number of Zeros e.g. 10µF=106	Capacitance Tolerance *J = $\pm 5\%$ *K = $\pm 10\%$ *M = $\pm 20\%$	Failure Rate 4 = Automotive	Terminations *T = Plated Ni and Sn *Z = FLEXITERM® B = 5% min lead X = FLEXITERM® with 5% min lead *RoHS Compliant	Packaging & Quantity Code 2A = 7" Reel (4000) 4A = 13" Reel (10000) 2F = 7" Reel (1000)

^{*}Contact factory for availability by part number for $K = \pm 10\%$ and $J = \pm 5\%$ tolerance.

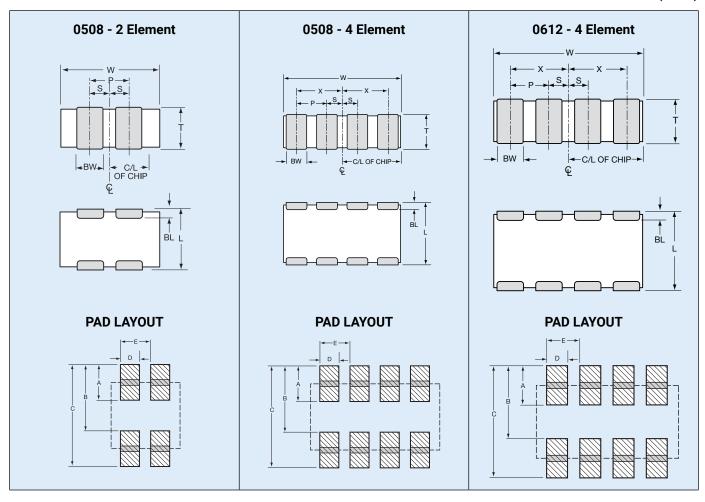
NPO/COG

;	SIZE	W3	3 = 06	12
No. o	f Elements	Re	flow/Wa	ve
١	WVDC	16	25	50
1R0	Cap 1.0		İ	
1R2	(pF) 1.2			
1R5	1.5			
1R8	1.8			
2R2	2.2			
2R7	2.7			
3R3	3.3			
3R9	3.9			
4R7	4.7			
5R6	5.6			
6R8	6.8			
8R2	8.2			
100	10			
120	12			
150	15			
180	18			
220	22 27			
270 330	33			
390	33			
470	39 47			
560	56			
680	68			
820	82			
101	100			
121	120			
151	150			
181	180			
221	220			
271	270			
331	330			
391	390			
471	470			
561	560			
681	680			
821	820			
102	1000			
122	1200			
152	1500			
182	1800			
222	2200			
272	2700			
332	3300			
392	3900			
472	4700			
562	5600			
682 822	6800 8200			


= NPO/COG

	SIZE		W2 =	0508	3		W2 =	X7F 0508			W	3 = 06	12	
No.	of Elements			2						4				
	WVDC	16	25	50	100	16	25	50	100	10	16	25	50	10
101	Cap 100	10	23	30	100	10	23	30	100	10	10	23	30	10
121	(pF) 120					l	l	l				l	ŀ	
151	150													
181	180		i	İ									İ	
221	220		İ	İ										
271	270		İ	İ										
331	330													
391	390													
471	470													
561	560													
681	680													
821	820													
102	1000													
122	1200													
152	1500													
182 222	1800 2200													
272	2700													
332	3300													
392	3900													
472	4700													
562	5600													
682	6800													
822	8200													
103	Cap 0 010													
123	(μF) 0.012													
153	0.015													
153	0.018													
223	0.022													
273	0.027													
333	0.033													
393	0.039													
473	0.047													
563	0.056											1		
683	0.068													
823 104	0.082						-	<u> </u>	<u> </u>					-
104 124	0.10 0.12													
154	0.12													
224	0.15	-	-	-	-	-	-	-	-	1	1	-	-	-

*Not RoHS Compliant



PART & PAD LAYOUT DIMENSIONS

millimeters (inches)

PART DIMENSIONS

0508 - 2 Element

L	W	T	BW	BL	P	S
1.30 ± 0.15	2.10 ± 0.15	0.94 MAX	0.43 ± 0.10	0.33 ± 0.08	1.00 REF	0.50 ± 0.10
(0.051 ± 0.006)	(0.083 ± 0.006)	(0.037 MAX)	(0.017 ± 0.004)	(0.013 ± 0.003)	(0.039 REF)	(0.020 ± 0.004)

0508 - 4 Element

L	W	T	BW	BL	Р	X	S
1.30 ± 0.15	2.10 ± 0.15	0.94 MAX	0.25 ± 0.06	0.20 ± 0.08	0.50 REF	0.75 ± 0.10	0.25 ± 0.10
(0.051 ± 0.006)	(0.083 ± 0.006)	(0.037 MAX)	(0.010 ± 0.003)	(0.008 ± 0.003)	(0.020 REF)	(0.030 ± 0.004)	(0.010 ± 0.004)

0612 - 4 Element

L	W	Т	BW	BL	Р	X	S
1.60 ± 0.20	3.20 ± 0.20	1.35 MAX	0.41 ± 0.10		0.76 REF	1.14 ± 0.10	0.38 ± 0.10
(0.063 ± 0.008)	(0.126 ± 0.008)	(0.053 MAX)	(0.016 ± 0.004)	(0.007 + 0.010) -0.003	(0.030 REF)	(0.045 ± 0.004)	(0.015 ± 0.004)

PAD LAYOUT DIMENSIONS

0508 - 2 Element

Α	В	С	D	E
0.68	1.32	2.00	0.46	1.00
(0.027)	(0.052)	(0.079)	(0.018)	(0.039)

0508 - 4 Element

Α	В	С	D	E
0.56	1.32	1.88	0.30	0.50
(0.022)	(0.052)	(0.074)	(0.012)	(0.020)

0612 - 4 Element

Α	В	С	D	E
0.89	1.65	2.54	0.46	0.76
(0.035)	(0.065)	(0.100)	(0.018)	(0.030)

Low Inductance Capacitors

Introduction

The signal integrity characteristics of a Power Delivery Network (PDN) are becoming critical aspects of board level and semiconductor package designs due to higher operating frequencies, larger power demands, and the ever shrinking lower and upper voltage limits around low operating voltages. These power system challenges are coming from mainstream designs with operating frequencies of 300MHz or greater, modest ICs with power demand of 15 watts or more, and operating voltages below 3 volts.

The classic PDN topology is comprised of a series of capacitor stages. Figure 1 is an example of this architecture with multiple capacitor stages.

An ideal capacitor can transfer all its stored energy to a load instantly. A real capacitor has parasitics that prevent instantaneous transfer of a capacitor's stored energy. The true nature of a capacitor can be modeled as an RLC equivalent circuit. For most simulation purposes, it is possible to model the characteristics of a real capacitor with one capacitor, one resistor, and one inductor. The RLC values in this model are commonly referred to as equivalent series capacitance (ESC), equivalent series resistance (ESR), and equivalent series inductance (ESL).

The ESL of a capacitor determines the speed of energy transfer to a load. The lower the ESL of a capacitor, the faster that energy can be transferred to a load. Historically, there has been a tradeoff between energy storage (capacitance) and inductance (speed of energy delivery). Low ESL devices typically have low capacitance. Likewise, higher capacitance devices typically have higher ESLs. This tradeoff between ESL (speed of energy delivery) and capacitance (energy storage) drives the PDN design topology that places the fastest low ESL capacitors as close to the load as possible. Low Inductance MLCCs are found on semiconductor packages and on boards as close as possible to the load.

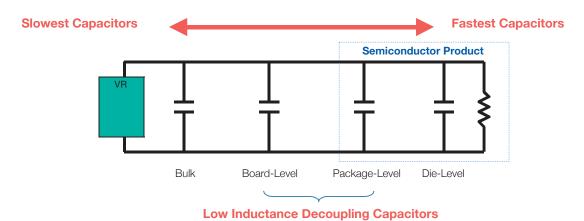


Figure 1 Classic Power Delivery Network (PDN) Architecture

LOW INDUCTANCE CHIP CAPACITORS

The key physical characteristic determining equivalent series inductance (ESL) of a capacitor is the size of the current loop it creates. The smaller the current loop, the lower the ESL. A standard surface mount MLCC is rectangular in shape with electrical terminations on its shorter sides. A Low Inductance Chip Capacitor (LICC) sometimes referred to as Reverse Geometry Capacitor (RGC) has its terminations on the longer side of its rectangular shape.

When the distance between terminations is reduced, the size of the current loop is reduced. Since the size of the current loop is the primary driver of inductance, an 0306 with a smaller current loop has significantly lower ESL then an 0603. The reduction in ESL varies by EIA size, however, ESL is typically reduced 60% or more with an LICC versus a standard MLCC.

INTERDIGITATED CAPACITORS

The size of a current loop has the greatest impact on the ESL characteristics of a surface mount capacitor. There is a secondary method for decreasing the ESL of a capacitor. This secondary method uses adjacent opposing current loops to reduce ESL. The InterDigitated Capacitor (IDC) utilizes both primary and secondary methods of reducing inductance. The IDC architecture shrinks the distance between terminations to minimize the current loop size, then further reduces inductance by creating adjacent opposing current loops.

An IDC is one single capacitor with an internal structure that has been optimized for low ESL. Similar to standard MLCC versus LICCs, the reduction in ESL varies by EIA case size. Typically, for the same EIA size, an IDC delivers an ESL that is at least 80% lower than an MLCC.

Low Inductance Capacitors

Introduction

LAND GRID ARRAY (LGA) CAPACITORS

Land Grid Array (LGA) capacitors are based on the first Low ESL MLCC technology created to specifically address the design needs of current day Power Delivery Networks (PDNs). This is the 3rd low inductance capacitor technology developed by AVX. LGA technology provides engineers with new options. The LGA internal structure and manufacturing technology eliminates the historic need for a device to be physically small to create small current loops to minimize inductance.

The first family of LGA products are 2 terminal devices. A 2 terminal 0306 LGA delivers ESL performance that is equal to or better than an 0306 8 terminal IDC. The 2 terminal 0805 LGA delivers ESL performance that approaches the 0508 8 terminal IDC. New designs that would have used 8 terminal IDCs are moving to 2 terminal LGAs because the layout is easier for a 2 terminal device and manufacturing yield is better for a 2 terminal LGA versus an 8 terminal IDC.

LGA technology is also used in a 4 terminal family of products that AVX is sampling and will formerly introduce in 2008. Beyond 2008, there are new multi-terminal LGA product families that will provide even more attractive options for PDN designers.

LOW INDUCTANCE CHIP ARRAYS (LICA®)

The LICA® product family is the result of a joint development effort between AVX and IBM to develop a high performance MLCC family of decoupling capacitors. LICA was introduced in the 1980s and remains the leading choice of designers in high performance semiconductor packages and high reliability board level decoupling applications.

LICA® products are used in 99.999% uptime semiconductor package applications on both ceramic and organic substrates. The C4 solder ball termination option is the perfect compliment to flip-chip packaging technology. Mainframe class CPUs, ultimate performance multi-chip modules, and communications systems that must have the reliability of 5 9's use LICA®.

LICA® products with either Sn/Pb or Pb-free solder balls are used for decoupling in high reliability military and aerospace applications. These LICA® devices are used for decoupling of large pin count FPGAs, ASICs, CPUs, and other high power ICs with low operating voltages.

When high reliability decoupling applications require the very lowest ESL capacitors, LICA® products are the best option.

470 nF 0306 Impedance Comparison

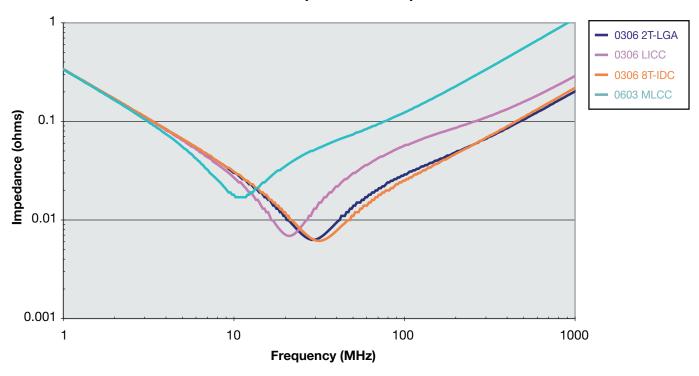
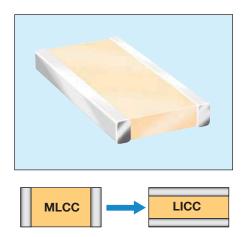


Figure 2 MLCC, LICC, IDC, and LGA technologies deliver different levels of equivalent series inductance (ESL).

Low Inductance Ceramic Capacitors

LICC (Low Inductance Chip Capacitors) 0306/0508/0612 RoHS Compliant

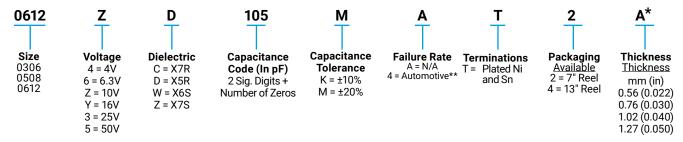

GENERAL DESCRIPTION

The key physical characteristic determining equivalent series inductance (ESL) of a capacitor is the size of the current loop it creates. The smaller the current loop, the lower the ESL.

A standard surface mount MLCC is rectangular in shape with electrical terminations on its shorter sides. A Low Inductance Chip Capacitor (LICC) sometimes referred to as Reverse Geometry Capacitor (RGC) has its terminations on the longer sides of its rectangular shape. The image on the right shows the termination differences between an MLCC and an LICC.

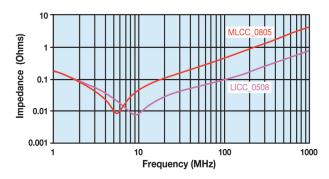
When the distance between terminations is reduced, the size of the current loop is reduced. Since the size of the current loop is the primary driver of inductance, an 0306 with a smaller current loop has significantly lower ESL then an 0603. The reduction in ESL varies by EIA size, however, ESL is typically reduced 60% or more with an LICC versus a standard MLCC.

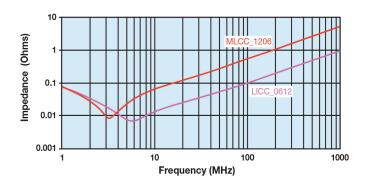
AVX LICC products are available with a lead-free finish of plated Nickel/Tin.



PERFORMANCE CHARACTERISTICS

Capacitance Tolerances	K = ±10%; M = ±20%
Operation Temperature Range	X7R = -55°C to +125°C X5R = -55°C to +85°C X7S = -55°C to +125°C
Temperature Coefficient	X7R, X5R = ±15%; X7S = ±22%
Voltage Ratings	4, 6.3, 10, 16, 25 VDC
Dissipation Factor	4V, 6.3V = 6.5% max; 10V = 5.0% max; 16V = 3.5% max; 25V = 3.0% max
Insulation Resistance (@+25°C, RVDC)	100,000MΩ min, or 1,000MΩ per μF min.,whichever is less


HOW TO ORDER



^{*}See the thickness tables on the next page.

NOTE: Contact factory for availability of Termination and Tolerance Options for Specific Part Numbers.

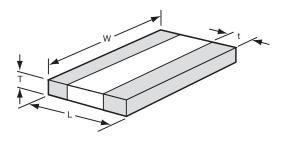
TYPICAL IMPEDANCE CHARACTERISTICS

^{**}Select voltages for Automotive version, contact factory

Low Inductance Ceramic Capacitors

LICC (Low Inductance Chip Capacitors) 0306/0508/0612 RoHS Compliant

	SIZE			0306	•			(0508	3		0612				
Pac	Packaging			nboss					nboss			Embossed				
Length	mm			31 + 0.					27 + 0.					0 + 0		
	(in.)			32 ± 0. 50 + 0.					00 ± 0.					3 ± 0.		
Width	(in.)			63 ± 0.					30 ± 0.					26 ± 0.		
Cap Code	WVDC	4	6.3	10	16	25	6.3	10	16	25	50	6.3	10	16	25	50
102	Cap 0.001		Α	Α	Α	Α	٧	٧	٧	٧	٧	S	S	S	S	٧
222	(μF) .0022		Α	Α	Α	Α	S	S	S	S	٧	S	S	S	S	٧
332	0.0033		Α	Α	Α	Α	S	S	S	S	٧	S	S	S	S	٧
472	0.0047		Α	Α	Α	Α	S	S	S	S	٧	S	S	S	S	٧
682	0.0068		Α	Α	Α	Α	S	S	S	S	٧	S	S	S	S	٧
103	0.01		Α	Α	Α	Α	S	S	S	S	٧	S	S	S	S	٧
153	0.015		Α	Α	Α	Α	S	S	S	S	٧	S	S	S	S	W
223	0.022		Α	Α	Α	Α	S	S	S	S	٧	S	S	S	S	W
333	0.033		Α	Α	Α		S	S	S	٧	٧	S	S	S	S	W
473	0.047		Α	Α	Α		S	S	S	٧	Α	S	S	S	S	W
683	0.068		Α	Α	Α		S	S	S	Α	Α	S	S	S	٧	W
104	0.1		Α	Α	1		S	S	٧	Α	Α	S	S	S	٧	W
154	0.15		Α	Α			S	S	٧			S	S	S	W	W
224	0.22		Α	Α			S	S	Α			S	S	٧	W	
334	0.33						٧	٧	Α			S	S	٧		
474	0.47						٧	٧	/K/			S	S	٧		
684	0.68						Α	Α				٧	٧	W		
105	1	A					Α	Α				V	٧	Α		
155	1.5						///					W	W			
225	2.2											Α	Α			
335	3.3											//				
475	4.7															
685	6.8															
106	10															



	mm (in.)					
0306						
Code	Thickness					
A	0.56 (0.022)					

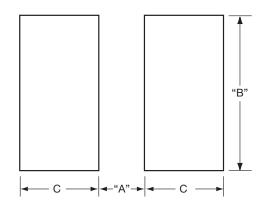
		mm (in.)						
	0508							
Cod	de .	Thickness						
S	0	.56 (0.022)						
V	0	.76 (0.030)						
Α	1	.02 (0.040)						

	mm (in.)					
0612						
Code	Thickness					
S	0.56 (0.022)					
V	0.76 (0.030)					
W	1.02 (0.040)					
Α	1.27 (0.050)					

PHYSICAL DIMENSIONS AND PAD LAYOUT

PHYSICAL DIMENSIONS

mm (in.)


Size	L	W	t
0306	0.81 ± 0.15	1.60 ± 0.15	0.13 min.
0306	(0.032 ± 0.006)	(0.063 ± 0.006)	(0.005 min.)
0508	1.27 ± 0.25	2.00 ± 0.25	0.13 min.
0306	(0.050 ± 0.010)	(0.080 ± 0.010)	(0.005 min.)
0612	1.60 ± 0.25	3.20 ± 0.25	0.13 min.
0012	(0.063 ± 0.010)	(0.126 ± 0.010)	(0.005 min.)

T - See Range Chart for Thickness and Codes

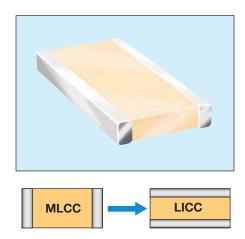
PAD LAYOUT DIMENSIONS

mm (in.)

Size	Α	В	С
0306	0.31 (0.012)	1.52 (0.060)	0.51 (0.020)
0508	0.51 (0.020)	2.03 (0.080)	0.76 (0.030)
0612	0.76 (0.030)	3.05 (0.120)	0.635 (0.025)

Low Inductance Capacitors with SnPb Terminations

LD16/LD17/LD18 Tin-Lead Termination "B"


GENERAL DESCRIPTION

The key physical characteristic determining equivalent series inductance (ESL) of a capacitor is the size of the current loop it creates. The smaller the current loop, the lower the ESL.

A standard surface mount MLCC is rectangular in shape with electrical terminations on its shorter sides. A Low Inductance Chip Capacitor (LICC) sometimes referred to as Reverse Geometry Capacitor (RGC) has its terminations on the longer sides of its rectangular shape. The image on the right shows the termination differences between an MLCC and an LICC.

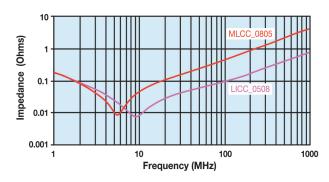
When the distance between terminations is reduced, the size of the current loop is reduced. Since the size of the current loop is the primary driver of inductance, an 0306 with a smaller current loop has significantly lower ESL then an 0603. The reduction in ESL varies by EIA size, however, ESL is typically reduced 60% or more with an LICC versus a standard MLCC.

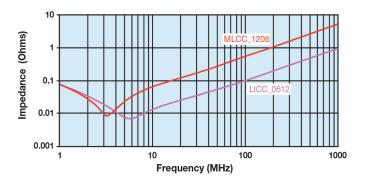
AVX LICC products are available with a lead termination for high reliability military and aerospace applications that must avoid tin whisker reliability issues

PERFORMANCE CHARACTERISTICS

Capacitance Tolerances	K = ±10%; M = ±20%		
Operation Temperature Range	X7R = -55°C to +125°C X5R = -55°C to +85°C X7S = -55°C to +125°C		
Temperature Coefficient	X7R, X5R = ±15%; X7S = ±22%		
Voltage Ratings	4, 6.3, 10, 16, 25 VDC		
Dissipation Factor	4V, 6.3V = 6.5% max; 10V = 5.0% max; 16V = 3.5% max; 25V = 3.0% max		
Insulation Resistance (@+25°C, RVDC)	100,000MΩ min, or 1,000MΩ per μF min.,whichever is less		

*Not RoHS Compliant


HOW TO ORDER



*See the thickness tables on the next page.

NOTE: Contact factory for availability of Termination and Tolerance Options for Specific Part Numbers.

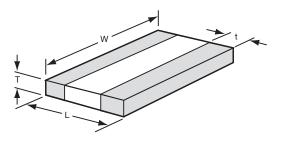
TYPICAL IMPEDANCE CHARACTERISTICS

Low Inductance Capacitors with SnPb Terminations

LD16/LD17/LD18 Tin-Lead Termination "B"

	SIZE		LD (03	06)			(LD17	3)		LD18 (0612) Embossed			2)	
Length	mm		0.81 ±	0.15		Embossed 1.27 ± 0.25				1.60 ± 0.25					
Width	(in.) mm (in.)		0.032 ± 1.60 ± 0.063 ±	0.15				00 ± 0. 00 ± 0. 30 ± 0.					53 ± 0. 20 ± 0. 26 ± 0.		
Cap Code	WVDC	6.3	10	16	25	6.3	10	16	25	50	6.3	10	16	25	50
102	Cap 0.001	Α	Α	Α	Α	S	S	S	S	٧	S	S	S	S	٧
222	(μF) .0022	Α	Α	Α	Α	S	S	S	S	٧	S	S	S	S	٧
332	0.0033	Α	Α	Α	Α	S	S	S	S	٧	S	S	S	S	٧
472	0.0047	Α	Α	Α	Α	S	S	S	S	٧	S	S	S	S	٧
682	0.0068	Α	Α	Α	Α	S	S	S	S	٧	S	S	S	S	٧
103	0.01	Α	Α	Α	Α	S	S	S	S	٧	S	S	S	S	٧
153	0.015	Α	Α	Α	Α	S	S	S	S	٧	S	S	S	S	W
223	0.022	Α	Α	Α	Α	S	S	S	S	٧	S	S	S	S	W
333	0.033	Α	Α	Α		S	S	S	٧	٧	S	S	S	S	W
473	0.047	Α	Α	Α		S	S	S	٧	Α	S	S	S	S	W
683	0.068	Α	Α	Α		S	S	S	Α	Α	S	S	S	٧	W
104	0.1	Α	Α	/N/		S	S	٧	Α	Α	S	S	S	٧	W
154	0.15	Α	Α			S	S	٧			S	S	S	W	W
224	0.22	Α	Α			S	S	Α			S	S	٧	W	
334	0.33					٧	٧	Α			S	S	٧		
474	0.47					٧	٧	//			S	S	٧		
684	0.68					Α	Α				V	٧	W		
105	1					Α	Α				V	٧	Α		
155	1.5					//					W	W			
225	2.2										Α	Α			
335	3.3										/				
475	4.7														
685	6.8														
106	10														

Solid = X7R



mm (in.)					
LD16					
(0306)					
Code	Thickness				
Δ	0.56 (0.022)				

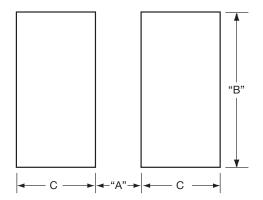
mm (in.)					
LD17					
(0508)					
Code	Thickness				
S	0.56 (0.022)				
V	0.76 (0.030)				
Α	1.02 (0.040)				

	mm (in.)						
	LD18						
((0612)						
Code	Thickness						
S	0.56 (0.022)						
V	0.76 (0.030)						
W	1.02 (0.040)						
Α	1.27 (0.050)						

PHYSICAL DIMENSIONS AND PAD LAYOUT

PHYSICAL DIMENSIONS

mm (in.)


Size	L	W	t
LD16	0.81 ± 0.15	1.60 ± 0.15	0.13 min.
(0306)	(0.032 ± 0.006)	(0.063 ± 0.006)	(0.005 min.)
LD17	1.27 ± 0.25	2.00 ± 0.25	0.13 min.
(0508)	(0.050 ± 0.010)	(0.080 ± 0.010)	(0.005 min.)
LD18	1.60 ± 0.25	3.20 ± 0.25	0.13 min.
(0612)	(0.063 ± 0.010)	(0.126 ± 0.010)	(0.005 min.)

T - See Range Chart for Thickness and Codes

PAD LAYOUT DIMENSIONS

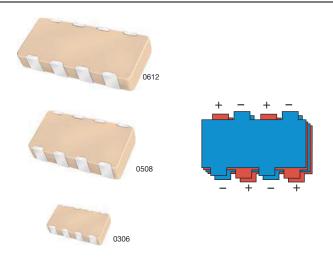
mm (in.)

			,
Size	Α	В	С
LD16 (0306)	0.31 (0.012)	1.52 (0.060)	0.51 (0.020)
LD17 (0508)	0.51 (0.020)	2.03 (0.080)	0.76 (0.030)
LD18 (0612)	0.76 (0.030)	3.05 (0.120)	0.635 (0.025)

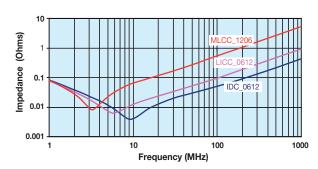
IDC Low Inductance Capacitors (RoHS)

IDC (InterDigitated Capacitors) 0306/0612/0508

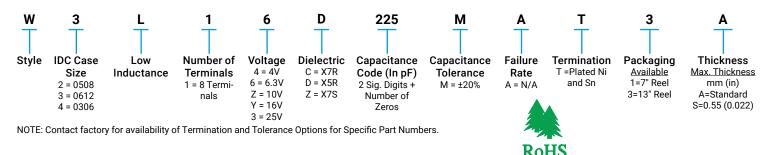
GENERAL DESCRIPTION


Inter-Digitated Capacitors (IDCs) are used for both semiconductor package and board level decoupling. The equivalent series inductance (ESL) of a single capacitor or an array of capacitors in parallel determines the response time of a Power Delivery Network (PDN). The lower the ESL of a PDN, the faster the response time. A designer can use many standard MLCCs in parallel to reduce ESL or a low ESL Inter-Digitated Capacitor (IDC) device. These IDC devices are available in versions with a maximum height of 0.95mm or 0.55mm.

IDCs are typically used on packages of semiconductor products with power levels of 15 watts or greater. Inter-Digitated Capacitors are used on CPU, GPU, ASIC, and ASSP devices produced on 0.13µ, 90nm, 65nm, and 45nm processes. IDC devices are used on both ceramic and organic package substrates. These low ESL surface mount capacitors can be placed on the bottom side or the top side of a package substrate. The low profile 0.55mm maximum height IDCs can easily be used on the bottom side of BGA packages or on the die side of packages under a heat spreader.


IDCs are used for board level decoupling of systems with speeds of 300MHz or greater. Low ESL IDCs free up valuable board space by reducing the number of capacitors required versus standard MLCCs. There are additional benefits to reducing the number of capacitors beyond saving board space including higher reliability from a reduction in the number of components and lower placement costs based on the need for fewer capacitors.

The Inter-Digitated Capacitor (IDC) technology was developed by AVX. This is the second family of Low Inductance MLCC products created by AVX. IDCs are a cost effective alternative to AVX's first generation low ESL family for high-reliability applications known as LICA (Low Inductance Chip Array).


AVX IDC products are available with a lead-free finish of plated Nickel/Tin.

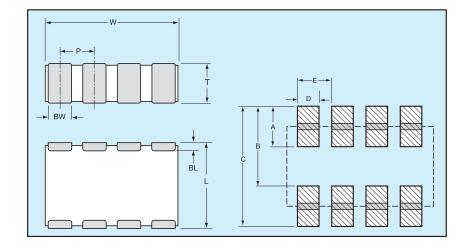
TYPICAL IMPEDANCE

HOW TO ORDER

PERFORMANCE CHARACTERISTICS

Capacitance Tolerance	±20% Preferred
Operation Temperature Range	X7R = -55°C to +125°C X5R = -55°C to +85°C X7S = -55°C to +125°C
Temperature Coefficient	±15% (0VDC), ±22% (X7S)
Voltage Ratings	4, 6.3, 10, 16, 25 VDC
Dissipation Factor	≤ 6.3V = 6.5% max; 10V = 5.0% max; ≥ 16V = 3.5% max
Insulation Resistance (@+25°C, RVDC)	100,000MΩ min, or 1,000MΩ per μ F min.,whichever is less

Dissipation Factor	No problems observed after 2.5 x RVDC for 5 seconds at 50mA max current
CTE (ppm/C)	12.0
Thermal Conductivity	4-5W/M K
Terminations Available	Plated Nickel and Solder


IDC Low Inductance Capacitors (RoHS)

SIZE	W4 =	0306		W2 =	Thin	0508	3		W2	2 = 05	808		W	3= Th	nin 06	12		W3	3 = 00	612		W3	= THI	ICK 0	612
Max. mm	0.	55			0.55					0.95				0.	.55				0.95	i			1.:	22	
Thickness (in.)	(0.0)22)		(0.022	2)			(0.037	')			(0.0	022)			(0.03	7)		(0.			
WVDC	4	6.3	4	6.3	10	16	25	4	6.3	10	16	25	4	6.3	10	16	4	6.3	10	16	25	4	6.3	10	16
Cap (µF) 0.010																									
0.022																									
0.033																									
0.047																									
0.068																									
0.10																									
0.22																									
0.33																									
0.47																									
0.68																									
1.0																									
1.5																									П
2.2																									
3.3																									

PHYSICAL DIMENSIONS AND PAD LAYOUT

Consult factory for additional requirements

PHYSICAL CHIP DIMENSIONS

MILLIMETERS (INCHES)

SIZE	W	L	BW	BL	Р
0306	1.60 ± 0.20	0.82 ± 0.10	0.25 ± 0.10	0.20 ± 0.10	0.40 ± 0.05
0306	(0.063 ± 0.008)	(0.032 ± 0.006	(0.010 ± 0.004)	(0.008± 0.004)	(0.015 ± 0.002)
0508	2.03 ± 0.20	1.27 ± 0.20	0.30 ± 0.10	0.25 ± 0.15	0.50 ± 0.05
0508	(0.080 ± 0.008)	(0.050 ± 0.008)	(0.012 ± 0.004)	(0.010± 0.006)	(0.020 ± 0.002)
0612	3.20 ± 0.20	1.60 ± 0.20	0.50 ± 0.10	0.25 ± 0.15	0.80 ± 0.10
0012	(0.126 ± 0.008)	(0.063 ± 0.008)	(0.020 ± 0.004)	(0.010 ± 0.006)	(0.031 ± 0.004)

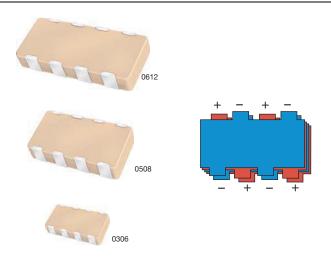
PAD LAYOUT DIMENSIONS

SIZE	Α	В	С	D	E
0306	0.38	0.89	1.27	0.20	0.40
	(0.015)	(0.035)	(0.050)	(0.008)	(0.015)
0508	0.64	1.27	1.91	0.28	0.50
	(0.025)	(0.050)	(0.075)	(0.011)	(0.020)
0612	0.89	1.65	2.54	0.45	0.80
	(0.035)	(0.065)	(0.010)	(0.018)	(0.031)

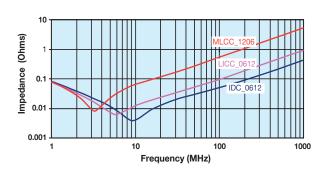
IDC Low Inductance Capacitors (SnPb)

IDC (InterDigitated Capacitors) 0306/0612/0508

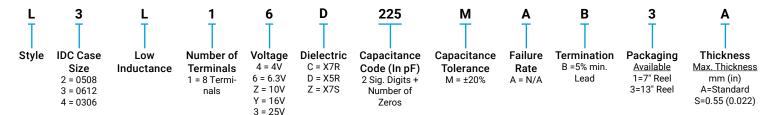
GENERAL DESCRIPTION


Inter-Digitated Capacitors (IDCs) are used for both semiconductor package and board level decoupling. The equivalent series inductance (ESL) of a single capacitor or an array of capacitors in parallel determines the response time of a Power Delivery Network (PDN). The lower the ESL of a PDN, the faster the response time. A designer can use many standard MLCCs in parallel to reduce ESL or a low ESL Inter-Digitated Capacitor (IDC) device. These IDC devices are available in versions with a maximum height of 0.95mm or 0.55mm.

IDCs are typically used on packages of semiconductor products with power levels of 15 watts or greater. Inter-Digitated Capacitors are used on CPU, GPU, ASIC, and ASSP devices produced on 0.13µ, 90nm, 65nm, and 45nm processes. IDC devices are used on both ceramic and organic package substrates. These low ESL surface mount capacitors can be placed on the bottom side or the top side of a package substrate. The low profile 0.55mm maximum height IDCs can easily be used on the bottom side of BGA packages or on the die side of packages under a heat spreader.


IDCs are used for board level decoupling of systems with speeds of 300MHz or greater. Low ESL IDCs free up valuable board space by reducing the number of capacitors required versus standard MLCCs. There are additional benefits to reducing the number of capacitors beyond saving board space including higher reliability from a reduction in the number of components and lower placement costs based on the need for fewer capacitors.

The Inter-Digitated Capacitor (IDC) technology was developed by AVX. This is the second family of Low Inductance MLCC products created by AVX. IDCs are a cost effective alternative to AVX's first generation low ESL family for high-reliability applications known as LICA (Low Inductance Chip Array).


AVX IDC products are available with a lead termination for high reliability military and aerospace applications that must avoid tin whisker reliability issues.

TYPICAL IMPEDANCE

HOW TO ORDER

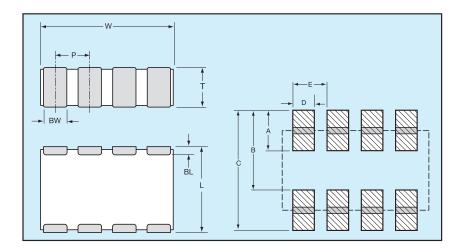
NOTE: Contact factory for availability of Termination and Tolerance Options for Specific Part Numbers.

*Not RoHS Compliant

PERFORMANCE CHARACTERISTICS

Capacitance Tolerance	±20% Preferred
Operation Temperature Range	X7R = -55°C to +125°C X5R = -55°C to +85°C
remperature Kange	X7S = -55°C to +125°C
Temperature Coefficient	±15% (0VDC), ±22% (X7S)
Voltage Ratings	4, 6.3, 10, 16, 25 VDC
Dissipation Factor	≤ 6.3V = 6.5% max; 10V = 5.0% max; ≥ 16V = 3.5% max
Insulation Resistance (@+25°C, RVDC)	100,000MΩ min, or 1,000MΩ per μF min.,whichever is less

Dissipation Factor	No problems observed after 2.5 x RVDC for 5 seconds at 50mA max current
CTE (ppm/C)	12.0
Thermal Conductivity	4-5W/M K
Terminations Available	Plated Nickel and Solder


IDC Low Inductance Capacitors (SnPb)

IDC (InterDigitated Capacitors) with Sn/Pb Termination 0306/0612/0508

SIZE	W4 =	0306		W2 =	Thin	0508	3		W2	2 = 05	508		W	3= Th	nin 06	12		W3	3 = 06	512		W3	= TH	ICK 0	612
Max. mm	0.	55			0.55.					0.95			0.55						0.95			1.22			
Thickness (in.)	(0.0)22)			(0.022)		(0.037)						(0.022)				(0.037)					(0.048)		
WVDC	4	6.3	4	6.3	10	16	25	4	6.3	10	16	25	4	6.3	10	16	4	6.3	10	16	25	4	6.3	10	16
Cap (μF) 0.010																									
0.022																									
0.033																									
0.047																									
0.068																									
0.10																									
0.22																									
0.33																									
0.47																									
0.68																									
1.0																									
1.5																									
2.2																									
3.3																									

PHYSICAL DIMENSIONS AND PAD LAYOUT

Consult factory for additional requirements

PHYSICAL CHIP DIMENSIONS

MILLIMETERS (INCHES)

l	SIZE	W	L	BW	BL	P
ĺ	0206	1.60 ± 0.20	0.82 ± 0.10	0.25 ± 0.10	0.20 ± 0.10	0.40 ± 0.05
l	0306	(0.063 ± 0.008)	(0.032 ± 0.006)	(0.010 ± 0.004)	(0.008± 0.004)	(0.015 ± 0.002)
Ī	0508	2.03 ± 0.20	1.27 ± 0.20	0.30 ± 0.10	0.25 ± 0.15	0.50 ± 0.05
	0508	(0.080 ± 0.008)	(0.050 ± 0.008)	(0.012 ± 0.004)	(0.010± 0.006)	(0.020 ± 0.002)
Ì	0612	3.20 ± 0.20	1.60 ± 0.20	0.50 ± 0.10	0.25 ± 0.15	0.80 ± 0.10
	0012	(0.126 ± 0.008)	(0.063 ± 0.008)	(0.020 ± 0.004)	(0.010 ± 0.006)	(0.031 ± 0.004)

PAD LAYOUT DIMENSIONS

SIZE	Α	В	С	D	Е
0306	0.38	0.89	1.27	0.20	0.40
	(0.015)	(0.035)	(0.050)	(0.008)	(0.015)
0508	0.64	1.27	1.91	0.28	0.50
	(0.025)	(0.050)	(0.075)	(0.011)	(0.020)
0612	0.89	1.65	2.54	0.45	0.80
	(0.035)	(0.065)	(0.010)	(0.018)	(0.031)

LGA Low Inductance Capacitors

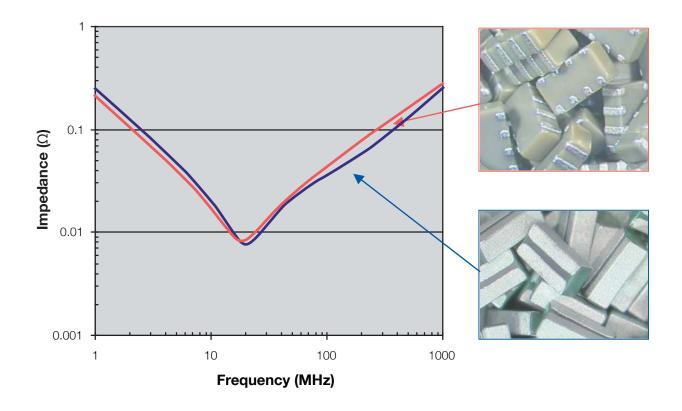
0204/0306 Land Grid Array

Land Grid Array (LGA) capacitors are the latest family of low inductance MLCCs from AVX. These new LGA products are the third low inductance family developed by AVX. The innovative LGA technology sets a new standard for low inductance MLCC performance.

Our initial 2 terminal versions of LGA technology deliver the performance of an 8 terminal IDC low inductance MLCC with a number of advantages including:

- · Simplified layout of 2 large solder pads compared to 8 small pads for IDCs
- Opportunity to reduce PCB or substrate contribution to system ESL by using multiple parallel vias in solder pads
- Advanced FCT manufacturing process used to create uniformly flat terminations on the capacitor that resist "tombstoning"
- · Better solder joint reliability

APPLICATIONS

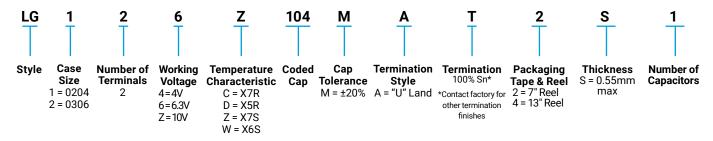

Semiconductor Packages

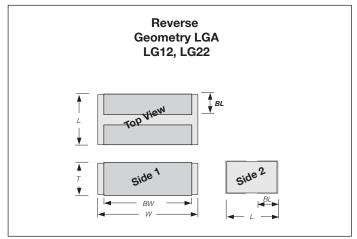
- · Microprocessors/CPUs
- Graphics Processors/GPUs
- Chipsets
- FPGAs
- ASICs

Board Level Device Decoupling

- Frequencies of 300 MHz or more
- · ICs drawing 15W or more
- · Low voltages
- · High speed buses

0306 2 TERMINAL LGA COMPARISON WITH 0306 8 TERMINAL IDC


LGA Low Inductance Capacitors



SIZE		L	G12 ((0204	l)					LG2	2 (03	306)				
Length mm (in.)			0.50 (0	0.020)			0.76 (0.030)									
Width mm (in.)			1.00 (0	0.039)						1.6	0.0)	63)				
Temp. Char.	X5R	(D)	X78	(Z)	X6S	(W)	Х	7R (C	:)	X5R	(D)	X7S	(Z)	X6S	(W)	
Working Voltage	6.3	4	6.3	4	6.3	4	10	6.3	4	6.3	4	6.3	4	6.3	4	
	(6)	(4)	(6)	(4)	(6)	(4)	(Z)	(6)	(4)	(6)	(4)	(6)	(4)	(6)	(4)	
Cap (µF) 0.010 (103)																
0.022 (223)																
0.047 (473)																
0.100 (104)																
0.220 (224)																
0.330 (334)																
0.470 (474)																
1.000 (105)																
2.200 (225)																
, , ,		= X7	R		= X5	R		= X7	S		= X6	S				

HOW TO ORDER

PART DIMENSIONS

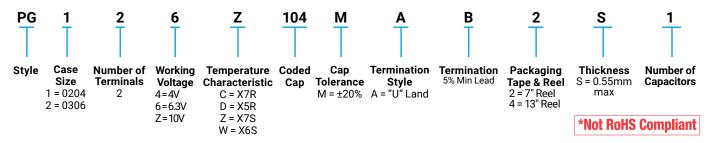
MM (INCHES)

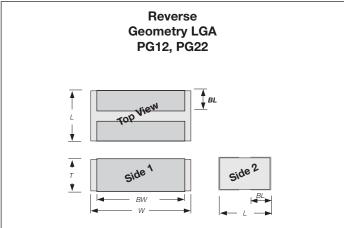
Series	L	w	Т	BW	BL
LG12 (0204)	0.5 ± 0.05	1.00 ± 0.10	0.50 ± 0.05	0.8 ± 0.10	0.13 ± 0.08
	(0.020±0.002)	(0.039 ± 0.004)	(0.020 ± 0.002)	(0.031 ± 0.004)	(0.005 ± 0.003)
LG22 (0306)	0.76 ± 0.10	1.60 ± 0.10	0.50 ± 0.05	1.50 ±0.10	0.28 ± 0.08
	(0.030 ± 0.004)	(0.063 ± 0.004)	(0.020 ± 0.002)	(0.059 ± 0.004)	(0.011 ± 0.003)

RECOMMENDED SOLDER PAD DIMENSIONS

MM (INCHES)

Series	PL	PW1	G
LG12 (0204)	0.50 (0.020)	1.00 (0.039)	0.20 (0.008)
LG22 (0306)	0.65 (0.026)	1.50 (0.059)	0.20 (0.008)


LGA Low Inductance Capacitors



0204/0306 Land Grid Array - Tin/Lead Termination "B"

SIZE		PG12 (0204)						PG22 (0306)							
Length mm (in.)			0.50 (0.020)			0.76 (0.030)								
Width mm (in.)			1.00 (0.039)						1.6	0.0)	63)			
Temp. Char.	X5R	(D)	X7S	(Z)	X6S	(W)	Х	7R (C)	X5R	(D)	X7S	(Z)	X6S	(W)
Working Voltage	6.3	4	6.3	4	6.3	4	10	6.3	4	6.3	4	6.3	4	6.3	4
	(6)	(4)	(6)	(4)	(6)	(4)	(Z)	(6)	(4)	(6)	(4)	(6)	(4)	(6)	(4)
Cap (µF) 0.010 (103)															
0.022 (223)															
0.047 (473)															
0.100 (104)															
0.220 (224)															
0.330 (334)															
0.470 (474)															
1.000 (105)															
2.200 (225)															
		= X7	R		= X5	R	= X7S = X6S								

HOW TO ORDER

PART DIMENSIONS

MM (INCHES)

Series	L	w	Т	BW	BL
PG12 (0204)	0.5 ± 0.05	1.00 ± 0.10	0.50 ± 0.05	0.8 ± 0.10	0.13 ± 0.08
	(0.020±0.002)	(0.039 ± 0.004)	(0.020 ± 0.002)	(0.031 ± 0.004)	(0.005 ± 0.003)
PG22 (0306)	0.76 ± 0.10	1.60 ± 0.10	0.50 ± 0.05	1.50 ±0.10	0.28 ± 0.08
	(0.030 ± 0.004)	(0.063 ± 0.004)	(0.020 ± 0.002)	(0.059 ± 0.004)	(0.011 ± 0.003)

RECOMMENDED SOLDER PAD DIMENSIONS

MM (INCHES)

Series	PL	PW1	G
PG12 (0204)	0.50 (0.020)	1.00 (0.039)	0.20 (0.008)
PG22 (0306)	0.65 (0.026)	1.50 (0.059)	0.20 (0.008)

AT Series - 200°C & 250°C Rated

Present military specifications, as well as a majority of commercial applications, require a maximum operating temperature of 125°C. However, the emerging market for high temperature electronics demands capacitors operating reliably at temperatures beyond 125°C. AVX's high temperature chip capacitor product line, has been extended with the BME COG chip. All AT chips have verified capabilities of long term operation up to 250°C for applications in both military and commercial businesses. These capacitors demonstrate high volumetric efficiency, high insulation resistance and low ESR/ESL for the most demanding applications, such as "downhole" oil exploration and aerospace programs.

HOW TO ORDER

AT10	3	Т	104	K	Α	Т	2	Α
	Τ	Τ	\top	T	T	T	Τ	Τ
AVX	Voltage	Temperature	Capacitance Code	Capacitance	Test Level	Termination	Packaging	Special
Style	Code	Coefficient	(2 significant digits	Tolerance	A = Standard	1 = Pd/Ag	2 = 7" Reel	Code
AT03 = 0603	16V = Y	PME	+ no. of zeros)	$J = \pm 5\%$		T = 100% Sn Plated	4 = 13" Reel	A = Standard
AT05 = 0805	25V = 3	C0G 250°C = A	101 = 100pF	$K = \pm 10\%$		(RoHS Compliant)	9 = Bulk	
AT06 = 1206	50V = 5	COG 200°C = 2	102 = 1nF	$M = \pm 20\%$		7 = Ni/Au Plated		
AT10 = 1210		VHT 250°C = T	103 = 10nF			(For 250°C BME		
AT12 = 1812		VHT 200°C = 4	104 = 100nF			COG Only)		
AT14 = 2225		BME	105 = 1µF					
		C0G 250°C = 5	·					
		COG 200°C = 3						

ELECTRICAL SPECIFICATIONS

Temperature Coefficient

PME COG 0±30ppm/°C, -55C to 250°C BME COG 0±30ppm/°C, -55C to 200°C

See TCC Plot for +250°C

VHT: T ±15%, -55°C to +150°C

See TCC Plot for +250°C

Capacitance Test (MIL-STD-202, Method 305) 25°C, 1.0 ± 0.2 Vrms (open circuit voltage) @ 1kHz

Dissipation factor 25°C

C0G: 0.15% Max at 1.0 ± 0.2 Vrms (open circuit voltage) @ 1kHz VHT: 2.5% Max at 1.0 ± 0.2 Vrms (open circuit voltage) @ 1kHz

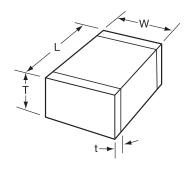
Insulation Resistance 25°C (MIL-STD-202, Method 302) $100G\Omega$ or $1000M\Omega$ -μF (whichever is less)

Insulation Resistance 125°C (MIL-STD-202, Method 302)

10GΩ or 100MΩ- μ F (whichever is less)

Insulation Resistance 200°C (MIL-STD-202, Method 302) $1G\Omega$ or $10M\Omega$ -μF (whichever is less)

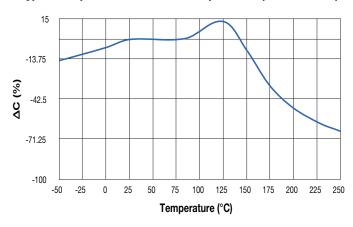
Insulation Resistance 250°C (MIL-STD-202, Method 302)


100MΩ or 1MΩ- μ F (whichever is less)

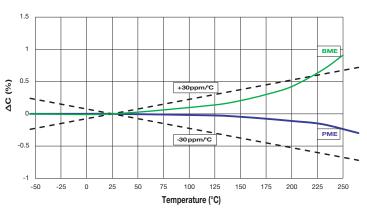
Direct Withstanding Voltage 25°C (Flash Test)

250% rated voltage for 5 seconds with 50mA max charging current

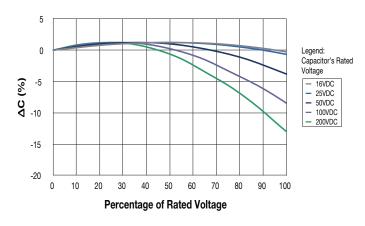
DIMENSIONS:

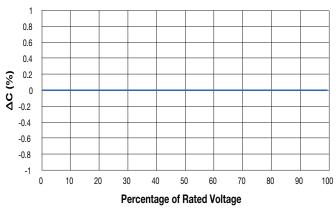

Size	AT03 = 0603	AT05= 0805	AT06=1206	AT10=1210	AT12=1812	AT14=2225
(L) Length	1.60 ± 0.15	2.01 ± 0.20	3.20 ± 0.20	3.20 ± 0.20	4.50 ± 0.30	5.72 ± 0.25
(L) Lengui	(0.063 ± 0.006)	(0.079 ± 0.008)	(0.126 ± 0.008)	(0.126 ± 0.008)	(0.177 ± 0.012)	(0.225 ± 0.010)
(W) Width	0.81 ± 0.15	1.25 ± 0.20	1.60 ± 0.20	2.50 ± 0.20	3.20 ± 0.20	6.35 ± 0.25
(vv) vvidu i	(0.032 ± 0.006)	(0.049 ± 0.008)	(0.063 ± 0.008) (0.098 ± 0.008)		(0.126 ± 0.008)	(0.250 ± 0.010)
(T) Thickness Max	1.02	1.30	1.52	1.70	2.54	2.54
(1) THICKHESS Wax	(0.040)	(0.051)	(0.060)	(0.067)	(0.100)	(0.100)
(t) min.	0.25 (0.010)	0.25 (0.010)	0.25 (0.010)	0.25 (0.010)	0.25 (0.010)	0.25 (0.010)
terminal max.	0.75 (0.030)	0.75 (0.030)	0.75 (0.030)	0.75 (0.030)	1.02 (0.040)	1.02 (0.040)
	•					

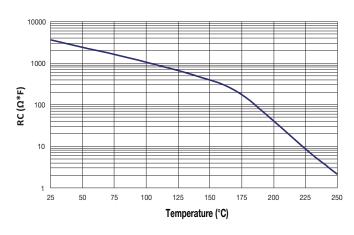
AT Series - 200°C & 250°C Rated

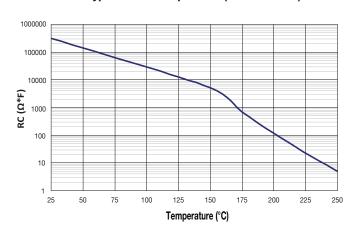


PERFORMANCE CHARACTERISTICS

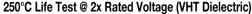

Typical Temperature Coefficient of Capacitance (VHT Dielectric)

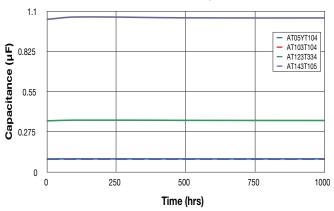

Typical Temperature Coefficient of Capacitance (COG Dielectric)


Typical Voltage Coefficient of Capacitance (VHT Dielectric)


Typical Voltage Coefficient of Capacitance (COG Dielectric)

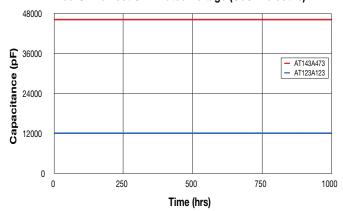
Typical RC vs Temperature (VHT Dielectric)


Typical RC vs Temperature (COG Dielectric)



AT Series - 200°C & 250°C Rated

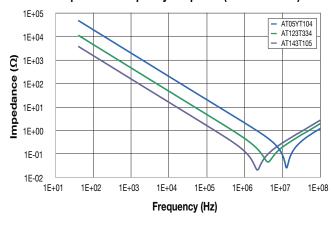
RELIABILITY



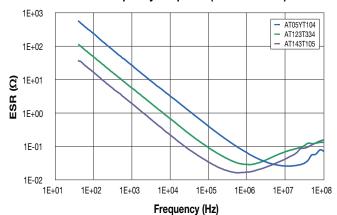
VHT - Failure Rate @ 90% Confidence Level (%/1000 hours)									
Temperature (°C)	50% Rated Voltage	100% Rated Voltage							
200	0.002	0.017							
250	0.026	0.210							

^{*}Typical 1210, 1812, 2225 Failure Rate Analysis based on 250°C testing and voltage ratings specified on the following page.

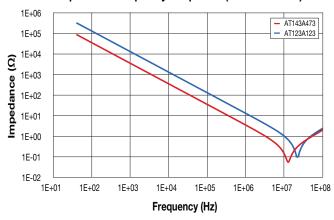
250°C Life Test @ 2x Rated Voltage (C0G Dielectric)

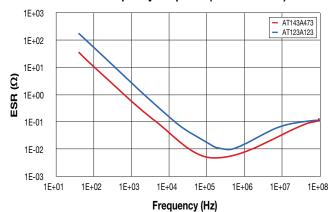


COG - Failure Rate @ 90% Confidence Level (%/1000 hours)								
Temperature (°C)	50% Rated Voltage	100% Rated Voltage						
200	0.006	0.047						
250	0.074	0.590						


^{*}Typical 1812 and 2225 Failure Rate Analysis based on 250°C testing and voltage ratings specified on the following page.

FREQUENCY RESPONSE


Impedance Frequency Response (VHT Dielectric)


ESR Frequency Response (VHT Dielectric)

Impedance Frequency Response (COG Dielectric)

ESR Frequency Response (C0G Dielectric)

The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.avx.com/disclaimer/ by reference and should be reviewed in full before placing any order

AT Series - 200°C & 250°C Rated

CAPACITANCE RANGE PREFERRED SIZES ARE SHADED

			AT03 =	ATO)5 =	ΔΤ	06 =	AT1	0 =	AT12 =	AT14 =
(Case S	ize	0603	08		1206			10	1812	2225
-	Solderi	ina	Reflow/Wave				v/Wave	Reflov		Reflow Only	Reflow Only
		mm	1.60±0.15	2.01 :			±0.20	3.20±0.20		4.50±0.30	5.72±0.25
(L) I	Length	(in.)	(0.063±0.006)	(0.079			±0.008)		0.008)	(0.177±0.012)	(0.225±0.010
(W)	Width	mm	0.81 ± 0.15		±0.20		±0.20	2.50 :		3.20±0.20	6.35±0.25
(,		(in.)	(0.032±0.006) 1.02	(0.049 :			±0.008) 52	(0.098±		(0.126±0.008) 2.54	(0.250±0.010 2.54
(T) 1	Thickness	mm (in.)	(0.040)		30 151)		060)	(0.0		(0.100)	(0.100)
		min	0.25(0.010)	0.25(0.010)		0.010)	0.25(0		0.25 (0.010)	0.25(0.010)	
(t) T	Terminal	max	0.75 (0.030)	0.75(0.030)	0.75(1.02 (0.040)	1.02 (0.040)
Ra	ted Tem	p. (°C)	200	_	00		00	20		200	200
	np. Coef		4	4			4			4	4
	/oltage		25	25	50	25	50	25	50	50	50
	1000	102									
	1200	122									
	1500	152									
	1800	182									
	2200	222					\vdash				
	2700	272					\vdash				
Cap (pF)	3300	332									
(Pi)		-									
	3900	392									
	4700	472									
	5600	562									
	6800	682									
	8200	822									
	0.010	103									
	0.012	123									
	0.015	153									
	0.018	183									
	0.022	223									
	0.027	273									
		-									
	0.033	333									
	0.039	393									
	0.047	473									
	0.056	563									
	0.068	683									
	0.082	823									
Cap (µF)	0.100	104									
μι)	0.120	124									
	0.150	154									
	0.180	184									
	0.220	224									
	0.270	274									
	0.270	334					\vdash				
		394					 				
	0.390	<u> </u>					 				
	0.470	474									
	0.560	564					<u> </u>	L			
	0.680	684									
	0.820	824									
	1.000	105									
١	/oltage	(V)	25	25	50	25	50	25	50	50	50
Ra	ted Tem	p. (°C)	200	20	00	2	00	20	00	200	200
			AT03 =	ATO			06 =	AT1		AT12 =	AT14 =
(Case S	ıze	0603		05		206		10	1812	2225

			AT03 =	AT()5 =	ΔΤ)6 =	ΔT1	0 =	AT12 =	AT14 =	
	Case	Size	0603		05		206	12		1812	2225	
_	Solde	ring	Reflow/Wave		/Wave		//Wave	Reflo		Reflow Only	Reflow Only	
_		mm	1.60±0.15		±0.20		±0.20	3.20:		4.50±0.30	5.72±0.25	
L) I	ength	(in.)	(0.063±0.006)					(0.126±0.008)		(0.177±0.012)	(0.225±0.010)	
140	\A/: Jala	mm	0.81±0.15		±0.20		±0.20		±0.20	3.20±0.20	6.35±0.25	
(vv	Width	(in.)	(0.032±0.006)	(0.049	£0.008)	(0.063	±0.008)	(0.098:	±0.008)	(0.126±0.008)	(0.250±0.010	
T) T	hickness	mm	1.02		30		52		70	2.54	2.54	
'', '	TIICKI ICOO	(in.)	(0.040)	(0.0			060)	(0.0		(0.100)	(0.100)	
t) T	erminal	min	0.25(0.010)	0.25(0.010)	0.25 (0.010)		0.25(0.010)	0.25(0.010)	
_		max	0.75 (0.030)	0.75(0.030)	0.75(1.02 (0.040)	1.02 (0.040)	
	Rated Ter		250	2	50	2	50	2	50	250	250	
	emp. Co		T	4.6	0.5	4.6	0.5	46	0.5	T	T	
_	Voltag		16	16	25	16	25	16	25	25	25	
	1000	102										
	1200	122										
	1500	152										
	1800	182										
ı	2200	222										
Сар	2700	272										
pF)	3300	332						┢				
. /	3900	392										
	4700	472										
	5600	562										
								_				
	6800	682										
_	8200	822										
	0.010	103										
	0.012	123										
	0.015	153										
	0.018	183										
	0.022	223										
	0.027	273										
	0.033	333										
	0.039	393										
	0.047	473										
	0.056	563										
ı	0.068	683										
	0.082	823										
Сар	0.100	104										
(μF)	0.120	124										
	0.150	154										
			—		-				\vdash			
	0.180	184	-									
	0.220	224										
	0.270	274										
	0.330	334										
	0.390	394										
	0.470	474										
ı	0.560	564										
	0.680	684										
	0.820	824						\vdash				
								\vdash				
_	1.000	105	46	4.0	- 0.5	4.5	0.5	16	0.5	0.5	05	
	Voltag		16	16	25	16	25	16	25	25	25	
Rated Temp. (°C)		250	2	50	2	50	2	50	250	250		
F	kated Fer	iip. (C)	AT03 =)5 =		06 =		0 =	AT12 =	AT14 =	

Voltage rating per table. Capacitance values specified at 25°C, derate capacitance value based on TCC and VCC Plots on page 107. NOTE: Contact factory for non-specified capacitance values.

AT Series - 200°C & 250°C Rated

CAPACITANCE RANGE
PREFERRED SIZES ARE SHADED

BME COG	Temp. Coefficient: 4	200°C Rated

B	ME	CC)G Tem	p. Coefficie	nt: 4 200	O°C Rated		
(Case Siz	ze	AT03:	=0603	AT05	=0805	AT06:	=1206
	Solderir	ng	Reflow	/Wave	Reflov	v/Wave	Reflow	/Wave
_	Length	mm	1.60:	±0.15	2.01	±0.20	3.20:	±0.20
		(in.)	(0.063:			±0.008)	(0.126:	
(W)	Width	mm	0.81 :			±0.20	1.60:	
(T) 1	hickness	(in.) mm	(0.032±			±0.008) 30	(0.063:	
(1)	HIGHIGGS	(in.)	(0.0			051)	(0.0	
(t) 1	erminal	min	0.25(0.010)	0.25(
		max	0.75(0	0.030)		0.030)	0.75 (
Rat	ed Temp	.(°C)	20	00	2	00	20	00
	Temp.		3	3	:	3	3	3
	Coefficei	$\overline{}$	25	E0.	25	E0.	25	F0
Сар	/oltage (39	v) 390	25	50	25	50	25	50
(pF)	47	470						
	56	560						
	68	680						
	82	820						
	100	101						
	120	121						
	150	151						
	180	181						
	220	221						
	270	271						
	330	331						
	390	391						
	470	471						
	560	561						
	680 820	681 821						
	1000	102						
	1200	122						
	1500	152						
	1800	182						
	2200	222						
	2700	272						
	3300	332						
	3900	392						
	4700	472						
	5600	562						
	6800	682 822						
Сар	8200 0.010	103						
(μF)	0.010	123						
	0.012							
	0.018	183						
	0.022	223						
	0.027	273						
	0.033	333						
	0.039	393						
	0.047	473						
	0.056	563						
	0.068	683						
	0.082	823						
١,	0.100 104 Voltage (V)		25	50	25	50	25	50
	rottage (red Temp		200	200	200	200	200	200
	Case Si		AT03:			=0805	AT06:	
	ال عدد ا	LC	MIU3-	-0003	AIUS	-0003	AIU0-	1200

Case Size	AT03=0603	AT05=0805	AT06 = 120
Soldering	Reflow/Wave	Reflow/Wave	Reflow/Wave
) Length mm	1.60±0.15	2.01±0.20	3.20±0.20
(in.)	(0.063±0.006)	(0.079±0.008)	(0.126±0.008)
W) Width mm	0.81 ± 0.15	1.25±0.20	1.60±0.20
(in.)	(0.032±0.006)	(0.049±0.008)	(0.063±0.008)
nm mm	1.02	1.30	1.52
hickness (in.)	(0.040)	(0.051)	(0.060)
erminal max	0.25 (0.010)	0.25(0.010)	0.25(0.010)
ated Temp. (°C)	0.75 (0.030) 250	0.75(0.030) 250	0.75 (0.030) 250
Temp.	230	230	230
Coefficeint	5	5	5
Voltage (V)	25	25	25
p 39 390	20	20	20
47 470			
56 560			
68 680			
82 820			
100 101			
120 121			
150 151			
180 181			
220 221			
270 271			
330 331			
390 391			
470 471			
560 561			
680 681			
820 821			
1000 102			
1200 122			
1500 152			
1800 182			
2200 222			
2700 272			
3300 332			
3900 392		-	
4700 472			
5600 562			
6800 682			
8200 822			
0.010 103			
0.012 123			
0.015 153			
0.018 183			
0.022 223			
0.027 273			
0.033 333			
0.039 393			
0.047 473			
0.056 563			
0.068 683			
0.082 823			
0.100 104			
/oltage (V)	25	25	25
ted Temn (°C)	250	250	250

Voltage rating per table. Capacitance values specified at 25°C, derate capacitance value based on TCC and VCC Plots on page 107. NOTE: Contact factory for non-specified capacitance values.

Rated Temp. (°C)

Case Size

250

AT03=0603

250

AT05=0805

250

AT06=1206

CAPACITANCE RANGE
PREFERRED SIZES ARE SHADED

P	ME	CO	G Temp. (Coefficient: 2	200°C Rate	ed		P	ME	C0	G Temp. C	coefficient: A	250°C Rate	ed	
	Case S	Size	AT05 = 0805	AT06 = 1206	AT10 = 1210	AT12 = 1812	AT14 = 2225		Case S	ize	AT05 = 0805	AT06 = 1206	AT10 = 1210	AT12 = 1812	AT14 = 2225
	Solder	ing	Reflow/Wave	Reflow/Wave	Reflow Only	Reflow Only	Reflow Only		Solder	ing	Reflow/Wave	Reflow/Wave	Reflow Only	Reflow Only	Reflow Only
0.11	ength	mm	2.01 ± 0.20	3.20 ± 0.20	3.20 ± 0.20	4.50 ± 0.30	2.75 ± 0.25	(1) 1	_ength	mm	2.01 ± 0.20	3.20 ± 0.20	3.20 ± 0.20	4.50 ± 0.30	2.75 ± 0.25
(L) L	engtn	(in.)	(0.079 ± 0.008)	(0.126 ± 0.008)	(0.126 ± 0.008)	(0.177 ± 0.012)	(0.225 ± 0.010)	(L) L	_engtn	(in.)	(0.079 ± 0.008)	(0.126 ± 0.008)	(0.126 ± 0.008)	(0.177 ± 0.012)	(0.225 ± 0.010)
(MA)	Nidth	mm	1.25 ± 0.20	1.60 ± 0.20	2.50 ± 0.20	3.20 ± 0.20	6.35 ± 0.25	(140	Width	mm	1.25 ± 0.20	1.60 ± 0.20	2.50 ± 0.20	3.20 ± 0.20	6.35 ± 0.25
(vv)	Midili	(in.)	(0.049 ± 0.008)	(0.063 ± 0.008)	(0.098 ± 0.008)	(0.126 ± 0.008)	(0.250 ± 0.010)	(vv)	WIUIII	(in.)	(0.049 ± 0.008)	(0.063 ± 0.008)	(0.098 ± 0.008)	(0.126 ± 0.008)	(0.250 ± 0.010)
(T) T	hickness	mm	1.30	1.52	1.70	2.54	2.54	(T) 7	Thickness	mm	1.30	1.52	1.70	2.54	2.54
(1)	HILKHESS	(in.)	(0.051)	(0.060)	(0.067)	(0.100)	(0.100)	(1)	HILKHESS	(in.)	(0.051)	(0.060)	(0.067)	(0.100)	(0.100)
(t) T	erminal	min	0.25 (0.010)	0.25 (0.010)	0.25 (0.010)	0.25 (0.010)	0.25 (0.010)	(t) T	erminal	min	0.25 (0.010)	0.25 (0.010)	0.25 (0.010)	0.25 (0.010)	0.25 (0.010)
		max	0.75 (0.030)	0.75 (0.030)	0.75 (0.030)	1.02 (0.040)	1.02 (0.040)			max	0.75 (0.030)	0.75 (0.030)	0.75 (0.030)	1.02 (0.040)	1.02 (0.040)
Ra	ted Tem	ıр. (°С)	200	200	200	200	200	Ra	ated Tem	p. (°C)	250	250	250	250	250
Te	mp. Coe	fficeint	2	2	2	2	2	Te	mp. Coe	fficeint	A	A	Α	Α	A
	Voltage	(V)	50	50	50	50	50		Voltage	(V)	25	25	25	25	25
	100	101							100	101					
	120	121							120	121					
	150	151							150	151					
	180	181							180	181					
	220	221							220	221					
	270	271							270	271					
	330	331							330	331					
	390	391							390	391					
	470	471							470	471					
	560	561							560	561					
	680	681							680	681					
Cap (pF)	820	821						Cap (pF)	820	821					
(pF)	1000	102						(pF)	1000	102					
	1200	122							1200	122					
	1500	152							1500	152					
	1800	182							1800	182					
	2200								2200	222					
	2700								2700	272					
	3300								3300	332					
	3900								3900	392					
	4700	_							4700	472					
	5600	_							5600	562					
	6800	_							6800	682					
	8200	_							8200	822					
	0.010	_							0.010	103					
	0.012								0.012	123					
	0.015	_							0.015	153					
	0.018								0.018	183					
	0.022	-							0.022	223					
Cap	0.027							Cap	0.027	273					
Cap (µF)	0.033	_						Cap (µF)	0.033	333					
	0.039	_							0.039	393					
	0.047	_							0.047	473					
	0.056	_							0.056	563 683					
	0.068	_							0.068	823					
	0.082	_							0.082						
			50	50	50	50	50				25	25	25	25	25
_	/oltage								Voltage	<u> </u>	25	25	25	25	
_		ıp. (°C)	200	200	200	200	200		ted Tem			250	250	250	250
	Case S	Size	AT05 = 0805	AT06 = 1206	AT10 = 1210	AT12 = 1812	AT14 = 2225		Case S	ize	AT05 = 0805	AT06 = 1206	AT10 = 1210	AT12 = 1812	AT14 = 2225

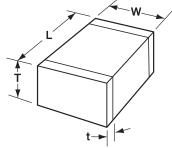
Voltage rating per table. Capacitance values specified at 25°C, derate capacitance value based on TCC and VCC Plots on page 107. NOTE: Contact factory for non-specified capacitance values.

For 600V to 5000V Applications

High value, low leakage and small size are difficult parameters to obtain in capacitors for high voltage systems. AVX special high voltage MLC chip capacitors meet these performance characteristics and are designed for applications such as snubbers in high frequency power converters, resonators in SMPS, and high voltage coupling/dc blocking. These high voltage chip designs exhibit low ESRs at high frequencies.

Larger physical sizes than normally encountered chips are used to make high voltage MLC chip products. Special precautions must be taken in applying these chips in surface mount assemblies. The temperature gradient during heating or cooling cycles should not exceed 4°C per second. The preheat temperature must be within 50°C of the peak temperature reached by the ceramic bodies through the soldering process. Chip sizes 1210 and larger should be reflow soldered only. Capacitors may require protective surface coating to prevent external arcing.

For 1825, 2225 and 3640 sizes, AVX offers leaded version in either thru-hole or SMT configurations (for details see section on high voltage leaded MLC chips)


NEW 630V RANGE

HOW TO ORDER

1808	A T	A T	<u>271</u>	<u>M</u>	<u>A</u>	1 T	2	<u>A</u>
AVX Style 0805 1206 1210 1808 1812 1825 2220 2225 3640	Voltage 600V/630V = C 1000V = A 1500V = S 2000V = G 2500V = W 3000V = H 4000V = J 5000V = K	Temperature Coefficient NPO (COG) = A X7R = C	Capacitance Code (2 significant digits + no. of zeros) Examples: 10 pF = 100 100 pF = 101 1,000 pF = 102 22,000 pF = 223 220,000 pF = 224 1 µF = 105	Capacitance Tolerance C0G: J = ±5% K = ±10% M = ±20% X7R: K = ±10% M = ±20% Z = +80%, -20%	Test Level A = Standard	Termination* 1 = Pd/Ag T = Plated Ni and Sn (RoHS Compliant)	Packaging 1 or 2 = 7" Reel** 3 or 4 = 13" Reel	Special Code A = Standard

Notes:

- Capacitors with X7R dielectrics are not intended for applications across AC supply mains or AC line filtering with polarity reversal. Contact plant for recommendations. Contact factory for availability of Termination and Tolerance options for Specific Part Numbers.
- *Terminations with 5% minimum lead (Pb) is available, see pages 100 and 101 for LD style. Leaded terminations are available, see pages 102-106.
- **The 3640 Style is not available on 7" Reels.
- *** AVX offers nonstandard chip sizes. Contact factory for details.

DIMENSIONS millimeters (inches)

SIZE	0805	1206	1210*	1808*	1812*	1825*	2220*	2225*	3640*
(L) Length	2.10 ± 0.20	3.30 ± 0.30	3.30 ± 0.40	4.60 ± 0.50	4.60 ± 0.50	4.60 ± 0.50	5.70 ± 0.50	5.72 ± 0.25	9.14 ± 0.25
	(0.083 ± 0.008)	(0.130 ± 0.012)	(0.130 ± 0.016)	(0.181 ± 0.020)	(0.181 ± 0.020)	(0.181 ± 0.020)	(0.224 ± 0.020)	(0.225 ± 0.010)	(0.360 ± 0.010)
(W) Width	1.25 ± 0.20	1.60 ± 0.20	2.50 ± 0.30	2.00 ± 0.20	3.20 ± 0.30	6.30 ± 0.40	5.00 ± 0.40	6.35 ± 0.25	10.2 ± 0.25
	(0.049 ±0.008)	(0.063 ± 0.008)	(0.098 ± 0.012)	(0.079 ± 0.008)	(0.126 ± 0.012)	(0.248 ± 0.016)	(0.197 ± 0.016)	(0.250 ± 0.010)	(0.400 ± 0.010)
(T) Thickness	1.35	1.80	2.80	2.20	2.80	3.40	3.40	2.54	2.54
Max.	(0.053)	(0.071)	(0.110)	(0.087)	(0.110)	(0.134)	(0.134)	(0.100)	(0.100)
(t) terminal min. max.	0.50 ± 0.20	0.60 ± 0.20	0.75 ± 0.35	0.75 ± 0.35	0.75 ± 0.35	0.75 ± 0.35	0.85 ± 0.35	0.85 ± 0.35	0.76 (0.030)
	(0.020 ± 0.008)	(0.024 ± 0.008)	(0.030 ± 0.014)	(0.030 ± 0.014)	(0.030 ± 0.014)	(0.030 ± 0.014)	(0.033 ± 0.014)	(0.033 ± 0.014)	1.52 (0.060)

^{*}Reflow Soldering Only

For 600V to 5000V Applications

NPO (COG) DIELECTRIC - PERFORMANCE CHARACTERISTICS

Capacitance Range	10 pF to 0.100 μF (25°C, 1.0 ±0.2 Vrms at 1kHz, for ≤ 1000 pF use 1 MHz)
Capacitance Tolerances	±5%, ±10%, ±20%
Dissipation Factor	0.1% max. (+25°C, 1.0 ±0.2 Vrms, 1kHz, for ≤ 1000 pF use 1 MHz)
Operating Temperature Range	-55°C to +125°C
Temperature Characteristic	0 ±30 ppm/°C (0 VDC)
Voltage Ratings	600, 630, 1000, 1500, 2000, 2500, 3000, 4000 & 5000 VDC (+125°C)
Insulation Resistance (+25°C, at 500 VDC)	100K MΩ min. or 1000 MΩ - μF min., whichever is less
Insulation Resistance (+125°C, at 500 VDC)	10K MΩ min. or 100 MΩ - μF min., whichever is less
Dielectric Strength	Minimum 120% rated voltage for 5 seconds at 50 mA max. current

NPO (COG) CAPACITANCE RANGE - PREFERRED SIZES ARE SHADED

Case			080				1206						210							808							18				
(L) Length	ering mm		flow/\ .10 ± 0				low/W 30 + 0.				2.50 + 0.30							Reflov 4 60 -	<u>w Only</u> + 0.50	/			-			Reflov 4.60 -	v Only				
, , -	(in.)	(0.0	085 ± 0	(800.0		(0.13	30 + 0.	012)			(0.130	+ 0.01	6)				(().181 ·	+ 0.02).177 -	0.012	2)		
W) Width	mm (in.)		.25 ± 0)49 ± 0		((· 1.60 + 0.063	+0.30/				(1							((· 2.00 · 0.079	+ 0.20 + 0.00						((3.20 -	+ 0.30 + 0.008	5)		
(T) Thickness	mm	10.0	1.35				1.80		J -1)			2.	.80	<u> </u>					2.	20	0)						2.	80	<i></i>	_	
(t) Terminal	(in.) mm	10	$\frac{(0.05)}{.50 + 0}$				$\frac{(0.071)}{50 + 0}$					0.75	110) + 0.35)87) + 0.35				-			(0.1 0.75 ·	00) - 0.35			
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	(in.)	(0.0	20 + 0	(800.0		(0.0)	4 + 0.	(800				(.030)	0.014)					(.030)	0.014							(.030)	0.014)			
Voltag			630	1000	600	630	1000	1500	2000	600	630	1000	1500	2000	3000	600	630	1000	1500	2000	2500	3000	4000	600	630	1000	1500	2000	2500	3000	4000
Cap (pF)	.5 OR:)	A	C																											
	1.2 1R2	2	Α	С																											
	1.5 1R		A	C	X	X	X	X	X										_				_	ļ							
	1.8 1R 2.2 2R		A	C	X	X	X	X	X								С	С		С		С	С								
	2.7 2R		A	C	X	X	X	X	X								C	C	С	C	С	C	C								
	3.3 3R3		A	C	X	X	X	X	X								C	C	C	C	C	C	C								
	3.9 3R9 4.7 4R		A	C	X	X	X	X	X								C	C	C	C	C	C	C								
	5.6 5R		A	C	X	X	X	X	X								С	C	C	C	C	C	C								
	6.8 6R		A	С	X	X	X	X	X			\vdash					С	С	С	С	С	С	С								
	8.2 8R2 10 100		A	C	C	C	C	C	C	C	М	М	D	М	F	С	C	C	C	C	C	C	C	С	С	С	С	С	С	С	F
	12 120) A	Α	С	С	С	С	С	С	Č	М	М	D	М	F	С	С	С	С	С	С	С	С	С	С	С	C	C	C	C	Е
	15 150		A	С	C	С	C	C	C	С	M	M	D D	M	F	C	С	C	С	С	С	С	С	С	С	С	С	С	C	O	E
	18 180 22 220		A	C	C	C	C	C	C	C	M	M	D	M	F	C	C	C	C	C	C	C	C E	C	C	C	C	C	C	C	F
	27 27		A	C	Č	Č	C	Č	Č	Č	M	M	D	М	F	С	C	C	C	C	C	С	E	C	C	С	C	F	C	C	E
	33 330		A	C	C	C	C	C	Ç	C	М	M	D	М	F	С	C	C	С	C	C	С	F	C	C	С	C	F	С	С	E
	39 390 47 470		A	C	C	C	C	C	C	C	M	M	D D	M	F	C	C	C	C	C	C	C	C	C	C	C	C	F	C	C	F
	56 560		A	C	Č	Č	C	Č	Č	Č	M	M	C	С	F	С	C	C	C	C	C	С		C	C	С	C	F	С	C	F
	68 680		A	С	C	C	С	С	C	C	М	М	C	С	F	С	С	С	С	С	С	С		С	С	С	С	F	С	O	F
	82 820 100 10		X	X	C	C	C	C	C	C	M	M C	C	C	F	C	C	C	C	C	C F	C		C	C	C	C	F	C	C	F
	120 12		C	Ĉ	Č	č	Č	Ē	Ē	C	M	Č	Č	C	F	С	C	Ċ	C	C	F	F		C	C	C	C	F	C	C	G
	150 15		С	С	С	C	Č	E	E	С	М	Č	E	E	F	С	С	С	F	F	F	F		С	С	С	С	F	С	С	G
	180 18° 220 22°		C	C	C	C	F	E F	E F	C	M	E	늗	E	F	C	C	C	F	F	F	F		C	C	C	C	F	F	F	
	270 27		C	C	Č	Č	Ē	Ē	Ē	Č	M	Ē	Ē	E	G	C	F	C	F	F	F	F		C	C	C	C	F	F	F	
	330 33		C	С	C	C	E	E	Ē	С	М	E	Ē	E		С	F	F	F	F	F	F		С	С	С	F	F	F	ᆔ	
	390 39 470 47		C	С	C	C	F	E F	E F	C	M	E	F	E		C	F	F	F	F	F	F		C	C	C	F	F	F	F	
	560 56		C		С	С	Ē			Č	М	Е	Ē	Ε		С	F	F	F	F		F		C	C	F	F	F	F	F	
	680 68		C		C	C	E F		_	С	М	E	F	Ē		С	F	F	F	F			_	С	C	F	F	F	G	G	
	750 75° 820 82°		C		E	E	E			C	M	E	G	E		C	F	F	E	F				C	C	F	F	F	G	G	
	1000 103	2	С		Е	Е	E			С	С	Е	F	F		С	F	F	E	F				С	С	F	F	F	G	G	
	1200 12		C	_	E	E F	Е		<u> </u>	С	C	E F		F		C E	F	F	Е	F				С	C	F	E	F			
	1500 15 1800 18		C		E	E		\vdash		C	C	G		G		E	F	F		F			 	C	C	F	G	F			
	2200 22	2	C		Е	Е				Е	С	G				Е	F	F						С	С	Ē	G	G			
	2700 273 3300 333		1	1	E	E	-	_	-	E F	C	G		_	-	E	F	F	-		_	 	-	C	C	E F	G	G			
	3900 39		+	+	E	E			<u> </u>	E	C	G				E	F						1	C	C	F		G			
	4700 473	2			Е	Е				E	С					Е	F							С	С	G					
	5600 563 6800 682		+	\vdash	\vdash	\vdash	-	<u> </u>	-	Е	E		-	<u> </u>	-	E	F	-	-	_	<u> </u>	\vdash	-	C	C	G		-			
	8200 822		+	 	\vdash	\vdash	1		 		F		 				F		1			\vdash	1	E	C		<u> </u>	 	\vdash		
Cap (µF)	0.010 103	3									F						F							F	F		<u> </u>				
	0.012 123 0.015 153		+	\vdash	\vdash	\vdash	-	<u> </u>	-	<u> </u>	G	-	-	<u> </u>	-		_	-	-	_	<u> </u>	\vdash	-	F G	F G		-	-			
	0.018 183		+	 	\vdash	\vdash	1		 			\vdash	 					 	1			\vdash	1	G	G		<u> </u>	 	\vdash		
	0.022 223	3																							F		<u> </u>				
	0.027 273 0.033 333		+	\vdash	\vdash	\vdash	-	-	-	\vdash	\vdash	-	-	-	-		-	-	-		<u> </u>	-	-	-	G		-	-			
	0.033 333		+												<u> </u>										G						
	0.056 563						ļ												ļ				ļ	ļ							
	0.068 683		+-	\vdash	-	\vdash	-	_	-	_		_		_	-			-	-		_	_	-	-	-	-	-				
Voltag	ge (V)	600	630	1000	600	630	1000	1500	2000	600	630	1000	1500	2000	3000	600	630	1000	1500	2000	2500	3000	4000	600	630	1000	1500	2000	2500	3000	4000
Case	Size		0805	5			1206					12	210						18	808							18	12			

Letter	Α	С	Е	F	G	Х	7
Max.	0.813	1.448	1.8034	2.2098	2.794	0.940	3.30
Thickness	(0.032)	(0.057)	(0.071)	(0.087)	(0.110)	(0.037)	(0.130)

NPO (COG) CAPACITANCE RANGE - PREFERRED SIZES ARE SHADED

Case Size	$\overline{}$					25								2220									2225									3640				
Soldering	$\overline{}$				Reflo	w Onl ± 0.50								70 0.5									flow (70 ± 0									flow 0				
I (L) Length	nm in.)			(0.181									224 0.0									25 ± 0									60 ± 0.				
(W) Width	nm					± 0.40								.00 0.4									.30 0.4									0.2 ± 0.				
. (1	in.) nm			(0.248	± 0.01 40	6)						(0.1	3.40	116)							(0.2	50 ± 0 3.40	.010)							(0.4	00 ± 0. 2.54	010)			
I (I) Thickness	in.)					134)								(0.134)								(0.100)								(0.100)			
(t) Lerminal	nm				0.75									.85 0.3									85 ± 0									76 (0.0	,			
Voltage (V)	nax	600	630		0.030			13000	4000	600	630	1000		33 ± 0.		3000	4000	5000	600	630	1000		33 ± 0		3000	4000	5000	600	630	1000		2000		3000	4000	5000
	1R5	000	000	1000	1300	2000	2500	3000	4000	000	000	1000	1000	2000	2000	3000	4000	3000	000	000	1000	1300	2000	2000	3000	4000	3000	000	000	1000	1300	2000	2000	3000	4000	3000
	1R8							_																												\Box
	2R2 2R7						-	+	-													-				-								\vdash	-	\vdash
	3R3																																			
	3R9																																			
	4R7 5R6						-		-																	-										
	6R8																																		-	
	8R2																																			
10	100 120	E	E	G G	E	F	E	F	F	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	F	F				-			\vdash		\vdash
15	150	E	E	G	E	F	E	F	F	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	F	F			L		L				
18	180	Е	E	G	Е	F	E	F	F	E	Е	E	E	E	E	E	E	E	E	E	E	E	E	E	E	F	F									
22	220 270	E	E	G	E	F	E	F	F	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	F	F				-		-	\vdash	\vdash	\vdash
33	330	E	E	G	E	F	E	F	F	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	F	F									
39	390	Е	E	G	E	F	E	F	F	Е	E	E	Е	Е	E	E	E	Е	E	E	E	E	Е	Е	Е	F	F									
47 56	470 560	E	E	G G	E	F	E	F	F	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	F	G G							\vdash	\vdash	G
68	680	E	Е	G	E	F	E	F	F	E	E	E	Е	Е	Е	E	E	E	E	Е	Е	E	Е	E	Е	F	G									G
82	820	E	E	G	E	F	E	F	F	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	F	G									G
100	101 121	E	E	G G	E	F	E	F	F	E	E	E	E	E	E E	E	E	E	E	E	E	E	E	E	E	G	G G				G	G	G	G	G G	G G
150	151	E	Е	G	E	F	E	F	F	E	E	E	Е	Е	Е	Е	E	Е	E	Е	E	Е	Е	Е	E	G	G				G	G	G	G	G	G
180	181	E	E	G	E	F	E	F	F	E	E	E	E	E	E	E	F	F	E	E	E	E	E	E	E	G	G				G	G	G	G	G	G G
220 270	221 271	E	E	G G	E	F	E	F	F	E	E	E	E	E	E	E	F	Г	E	E	E	E	E	E	E	G	G G				G	G G	G	G G	G G	G
330	331	Е	Е	G	Е	F	Е	F	F	Е	Е	Е	Е	Е	Е	Е			Е	Е	Е	Е	Е	Е	Е	G					G	G	G	G	G	G
390 470	391 471	E	E	G G	E	F	E	F		E	E	E	E	E	E	E			E	E	E	E	E	E	E	G					G G	G	G G	G G	G G	G
560	561	E	E	G	E	F	E	F		E	E	E	E	E	E	E			E	E	E	E	E	E	E	G					G	G	G	G	G	G
680	681	Е	Е	G	Е	F	F	G		Е	Е	Е	Е	Е	F	F			Е	Е	Е	Е	Е	Е	Е						G	G	G	G	G	G
750 820	751 821	E	E	G G	E	F	F	G		E	E	E	E	E	F	F			E	E	E	E	E	E F	E						G	G	G	G	G G	G
1000	102	E	E	G	E	F	F	G		E	E	E	E	E	F	F			E	E	E	E	E	E	E			G	G	G	G	G	G	G	G	
1200	122	Ε	Е	G	Е	F	G	G		Е	Е	Е	Е	Е	G	G			Е	Ε	Е	Е	Е	F	F			G	G	G	G	G	G	G	G	
1500 1800	152 182	E	E	G G	F	G	G	G		E	E	E	F	F	G G	G G			E	E	E	E	E	F G	F G			G G	G	G	G	G	G	G G		\vdash
2200	222	E	E	G	G	G		G		E	E	E	G	G					E	E	E	E	E					G	G	G	G	G	G	G		
2700	272	E	E	G	G	G		G		E	E	E	G	G					E	E	E	F	F					G	G	G	G	G	G	G		Щ
3300 3900	332 392	E	E	G	G G	G		_	\vdash	E	E	E	G	G					E	E	E	F G	F G					G G	G	G	G	G	G	\vdash	-	$\vdash\vdash$
4700	472	E	E	G	G	G				Е	Е	Е	G	G					F	F	F	G	G					G	G	G	G	G				
5600	562	F	F	G	G	G				F	F	F	G	G					F	F	F	G	G					G	G	G	G	G		\Box		\Box
6800 8200	682 822	F	F	G G		G		1	1	G	G	G							G	G	G	G	G					G G	G G	G	G	G		\vdash		\vdash
Cap (µF) 0.010	103	F	F	G						7	7	7							G	G	G							G	G	G	G					
0.012 0.015		F	F	G			<u> </u>	<u> </u>	1										G	G		<u> </u>				<u> </u>		G	G	G				\square	<u> </u>	\vdash
0.015		F	F	\vdash	\vdash		\vdash	\vdash	\vdash		\vdash				\vdash			\vdash	G G	G G	\vdash							G G	G	G				\vdash		H
0.022	223	F	F																G	G								G	G	G						
0.027	273 333	F	F				1	1	1										G	G								G	G							\vdash
	393	G	G				\vdash													U								G	9					\vdash		\vdash
0.047	473	G	G																G	G								G	G							
0.056 0.068	563 683	G G	G G	\vdash	<u> </u>		\vdash	\vdash	-	-	\vdash				\vdash	_		<u> </u>	G G	G G	<u> </u>	-							<u> </u>		-			$\vdash\vdash$	<u> </u>	$\vdash\vdash$
0.100	_	,	3																	- 3																
Voltage (V)		600	630	1000			2500	3000	4000	600	630	1000				3000	4000	5000	600	630	1000	1500			3000	4000	5000	600	630	1000				3000	4000	5000
Case Size					18	25								2220									2225	i								3640				

Letter	Α	С	Е	F	G	Χ	7
Max.	0.813	1.448	1.8034	2.2098	2.794	0.940	3.30
Thickness	(0.032)	(0.057)	(0.071)	(0.087)	(0.110)	(0.037)	(0.130)
THIORITCOS	(0.002)	(0.007)	(0.071)	(0.007)	(0.110)	(0.007)	(0.100

For 600V to 5000V Applications

X7R Dielectric

Performance Characteristics

Capacitance Range	10 pF to 0.82 μF (25°C, 1.0 ±0.2 Vrms at 1kHz)
Capacitance Tolerances	±10%; ±20%; +80%, -20%
Dissipation Factor	2.5% max. (+25°C, 1.0 ±0.2 Vrms, 1kHz)
Operating Temperature Range	-55°C to +125°C
Temperature Characteristic	±15% (0 VDC)
Voltage Ratings	600, 630, 1000, 1500, 2000, 2500, 3000, 4000 & 5000 VDC (+125°C)
Insulation Resistance (+25°C, at 500 VDC)	100K M Ω min. or 1000 M Ω - μF min., whichever is less
Insulation Resistance (+125°C, at 500 VDC)	10K MΩ min. or 100 MΩ - μF min., whichever is less
Dielectric Strength	Minimum 120% rated voltage for 5 seconds at 50 mA max. current

X7R CAPACITANCE RANGE - PREFERRED SIZES ARE SHADED

Case Size			0805				1206					1210						18	308							18	12			
Soldering		Ref	low/W	lave		Ref	low/W				Ref	flow O	nly					Reflo								Reflov				
	mm în.)	(0.0	.10 0.2 85 ± 0.0	.0 008)			30 ± 0. 30 ± 0.					.30 0.4 30 0.0						4.60	± 0.50 ± 0.020	1)						4.60 ±)		
M Width 1	mm (in.)	1.3	25 ± 0.: 49 ± 0.	20	(1.60 (0.063	+0.30/	-0.10	1)		2	.50 0.3 98 0.0	0					2.00	0.20 ± 0.008								£ 0.30			
(T) Thickness 1	mm (in.)		1.35 (0.053)		,		1.80 (0.071					2.80 (0.110)						2.	.20 087)							(0.1	80			
(t) Terminal	nm nax	0.	50 ± 0.2 20 ± 0.0	20		0.	60 ± 0. 24 ± 0.	20			0	.75 0.3 30 ± 0.0	5					0.75	± 0.35 ± 0.014	1)						0.75	₹ 0.35	١		
Voltage (V)	IIdA	600		1000	600			1500	2000	600			1500	2000	600	630	1000	1500	2000	2500	3000	4000	600	630		1500			3000	4000
Cap (pF) 100	101	Χ	Х	С	С	С	Е	Е	Е	Е	Е	Е	Е	Е																
120	121	Х	Х	С	С	С	Е	Е	Е	Е	Е	Е	Е	Е																
150	151	Х	Х	С	С	С	Е	Е	Е	Е	Е	Е	Е	Е																
180	181	Х	Х	С	С	С	Е	Е	Е	Е	Е	Е	Е	Е																
220	221	Х	Х	С	С	С	Е	Е	Е	Е	Е	Е	Е	Е																
270	271	Х	Х	С	С	С	Е	Е	Е	Е	Е	Е	Е	Е									Е	E	E	E	Е			
330	331	Х	Х	С	С	С	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	E	Е	Е	F		Е	Е	Е	Е	Е			
390	391	Х	Х	С	С	С	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	F		Е	Е	Е	Е	Е			
470	471	Х	Х	С	С	С	E	E	Е	E	Е	E	E	Е	Е	Е	Е	E	Е	E	F		E	E	E	E	Е	E	E	
560	561	X	Х	С	С	С	E	E	E	E	E	E	E	E	E	E	E	E	E	F	F		E	E	E	E	E	E	E	
680	681 751	X	X	С	С	С	E	E	E	E	E	E	E	E	E	E	E	E	E	F	F		E	E	E	E	E	F	F F	_
750 820	821	X	X	C	C	C	E	E	E	E	E	E	E	E	E	E	E	E	E	F	F		E	E	E	E	E	F	F	
1000	102	X	X	X	С	C	E	E	E	E	E	E	E	E	E	E	E	E	E	F	F		E	E	E	E	E	F	F	
1200	122	X	X	X	С	С	E	E	E	E	E	E	E	E	E	E	E	E	E	F	F		F	F	F	F	F	F	F	
1500	152	X	X	X	С	С	E	E	E	E	E	E	E	E	E	E	E	E	E	F	F		F	F	F	F	F	G	G	
1800	182	X	X	C	С	С	E	E	E	E	E	E	E	E	E	E	E	E	E	F	F		F	F	F	F	F	G	G	
2200	222	X	Х	X	С	C	E	E	E	E	E	E	F	E	E	E	E	F	F	F			F	F	F	F	F	G	G	
2700	272	C	C	^	С	С	E	E	_	E	E	E	F	E	E	E	E	F	F				F	F	F	F	F	G	G	
3300	332	С	С		С	C	E	_		E	E	E	F	E	E	E	E	F	F				F	F	F	F	F	G	G	
3900	392	С	С		С	С	Е			Е	Е	Е	F		Е	Е	Е	F					F	F	F	F	F	G	G	
4700	472	С	С		С	С	Е			Е	Е	Е	F		Е	Е	Е	F					F	F	F	F	F	G	G	
5600	562	С	С		С	С	Е			Е	Е	Е	F		Е	Е	Е	F					F	F	F	G	G	G		
6800	682	С	С		С	С	Е			Е	Е	Е			Е	Е	Е	F					F	F	F	G	G			
8200	822	С	С		С	С	Е			Е	Е	Е			Е	Е	Е						F	F	F	G	G			
Cap (µF) 0.010	103	С	С		С	С	Е			Е	Е	Е			Е	Е	Е						F	F	F	G	G			
0.015	153	С	С		Е	Е	Е			Е	Е	Е			F	F	F						F	F	F	G				
0.018	183	С	С		Е	Е				Е	Е	Е			F	F	F						F	F	G					
0.022	223	С	С		Е	Е				Е	Е	F			F	F							F	F	G					
0.027	273				Е	Е				Е	Е				F	F							F	F	G					
0.033	333				Е	Е				Е	Е				F	F					_		F	F	G					
0.039	393			_			_			E	E			_	F	F	_	<u> </u>	-	-	-	_	F	F	G			-		-
0.047	473		-	-	-	-	-	-		E	E F				F	F		-	-	-	-		F	F	G			-	-	\vdash
0.056	563									F	F				F	F		-		-			F	F		-		-		
0.068	683 823					-				F	F				г	F			-	+	-		F	F		-		-		-
0.082	104		-		-	-		\vdash		F	F		_				 	 		-	 		F	F	-	-		 	-	-
0.100	154							-			Г							 	 	_			G	G						-
0.130	224							<u> </u>									\vdash	<u> </u>	\vdash	 			G	G				\vdash		\vdash
0.270	274			 		 													<u> </u>		\vdash									1
0.330	334																													
0.390	394																													i –
0.470	474																	İ	İ											İ
0.560	564																													
0.680	684																													
0.820	824																													
1.000	105																													
Voltage (V)		600	630	1000	600	630	1000		2000	600	630	1000	1500	2000	600	630	1000		2000	2500	3000	4000	600	630	1000		2000	2500	3000	4000
Case Size			0805				1206					1210						18	308							18	12			

Letter	Α	С	Е	F	G	Χ	7
Max.	0.813	1.448	1.8034	2.2098	2.794	0.940	3.30
Thickness	(0.032)	(0.057)	(0.071)	(0.087)	(0.110)	(0.037)	(0.130)

X7R CAPACITANCE RANGE PREFERRED SIZES ARE SHADED

Case Siz	ze				18	25								2220									222	5								3640)			
Solderin	_					w Only								low 0									flow (Reflow Only								
(L) Length	mm (in.)				4.60 : 0.181 :	± 0.50 ± 0.02								0 ± 0. 4 ± 0.									70 ± 0 25 ± 0									14 ± 0 60 ± 0				
W) Width	mm				6.30 :	± 0.40							5.0	0 ± 0.	40							6.3	30 ± 0	1.40							10	0.2 ± 0	.25			
(T)	(in.) mm			((3.	± 0.01 40	0)							7 ± 0. 3.40							_		3.40							_	(0.4	00 ± 0 2.54				
Thickness	(in.) mm				0.75	134)								0.134 5 ± 0.									(0.100 85 ± 0								0	(0.100 76 (0.0				
(t) Terminal	max			(0	0.030 :	± 0.01	4)						(0.03	3 ± 0.	014)							(0.0	33 ± 0	.014)							1.3	52 (0.0	060)			
Voltage (600	630	1000	1500	2000	2500	3000	4000	600	630	1000	1500	2000	2500	3000	4000	5000	600	630	1000	1500	2000	2500	3000	4000	5000	600	630	1000	1500	2000	2500	3000	4000	5000
Cap (pF) 100						ļ	<u> </u>	<u> </u>	ļ														_										ļ	Ш	<u> </u>	
120	_					-	-	-	-																								-	\vdash	<u> </u>	
150									1																									H	\vdash	
220	_								1														1											Н	\vdash	\vdash
270																																		H	H	
330									1														\vdash										1	Н	\vdash	\vdash
390	_																																	H	М	
470																																		\Box	Г	
560									1							П						İ	T	İ										П	Г	
680	681								İ																								1		\Box	
750	751																																		Г	
820	821																																			
1000	102	F	F	F	F	F	F	F		F	F	F	F	F	F	G			F	F	F	F	F	F	F			G	G	G	G	G	G	G	G	G
1200	122	F	F	F	F	F	F	F		F	F	F	F	F	F	G			F	F	F	F	F	F	F			G	G	G	G	G	G	G	G	G
1500		F	F	F	F	F	F	F		F	F	F	F	F	F	G			F	F	F	F	F	F	F			G	G	G	G	G	G	G	G	G
1800	_	F	F	F	F	F	F	F		F	F	F	F	F	F	G			F	F	F	F	F	F	F			G	G	G	G	G	G	G	G	G
2200	_	F	F	F	F	F	F	F		F	F	F	F	F	F	G			F	F	F	F	F	F	F			G	G	G	G	G	G	G	G	G
2700	_	F	F	F	F	F	F	F	_	F	F	F	F	F	F	G			F	F	F	F	F	F	F			G	G	G	G	G	G	G	G	G
3300	_	F	F	F	F	F	F	F		F	F	F	F	F	F	G			F	F	F	F	F	F	F			G	G	G	G	G	G	G	G	G
3900	_	F	F	F	F	F	F	F	_	F	F	F	F	F	F	G			F	F	F	F	F	F	F			G G	G	G	G	G	G	G	G	\vdash
4700 5600		F	F	F	F	F	F	F	-	F	F	F	F	F	F	G G			F	F	F	F	F	F	F			G	G G	G	G G	G G	G	G G	G G	
6800	_	F	F	F	G	G	G	G		F	F	F	F	F	G	G			F	F	F	F	F	G	G			G	G	G	G	G	G	G	G	
8200		F	F	F	G	G	G	G		F	F	F	G	G	G	G			F	F	F	F	F	G	G			G	G	G	G	G	G	G		
Cap (µF) 0.010		F	F	F	G	G	G	G		F	F	F	G	G	G	G			F	F	F	F	F	G	G			G	G	G	G	G	G	G	\Box	
0.015		F	F	F	G	G	G			F	F	F	G	G	G				F	F	F	G	G	G	G			G	G	G	G	G	G	G		
0.018	183	F	F	F	G	G				F	F	F	G	G	G				F	F	F	G	G	G				G	G	G	G	G	G	G		
0.022	223	F	F	F	G	G			ĺ	F	F	F	G	G					F	F	F	G	G	G				G	G	G	G	G	G			
0.027	273	F	F	F	G					F	F	F	G	G					F	F	F	G	G					G	G	G	G	G				
0.033	333	F	F	F	G					F	F	F	G						F	F	F	G	G					G	G	G	G					
0.039	393	F	F	F	G					F	F	F	G						F	F	F	G						G	G	G	G					
0.047	473	F	F	F	Р				ļ	F	F	F	G						F	F	F	G						G	G	G	G				<u> </u>	
0.056	_	F	F	F	G				<u> </u>	F	F	F	G						F	F	F	G						G	G	G	G			Ш	<u> </u>	
0.068		F	F	G					ļ	F	F	G							F	F	F	G						G	G	G	G			Ш	<u> </u>	
0.082		F	F	G		-	-	-	<u> </u>	F	F	G							F	F	G							G	G				-	╙	<u> </u>	
0.100		F	F	G		-	-	-	-	F	F	G							F	F	G		-					G	G					\vdash	⊢-'	
0.150		F	F			-	\vdash	\vdash	-	F	F	G							F	F	G		-					G	G				-	₩		\vdash
0.220		F	F			-	\vdash	\vdash	1	F	F	G			\vdash	\vdash			F	F			\vdash					G G	G G		\vdash		-	\vdash	 '	$\vdash\vdash\vdash$
0.270		F	F				\vdash	\vdash	+	F	F					\vdash			F	F			\vdash		\vdash			G	G		\vdash			\vdash	-	$\vdash\vdash\vdash$
0.390		F	F			\vdash			+-	F	F		 		\vdash	\vdash			F	F		<u> </u>	\vdash	<u> </u>	\vdash			G	G				\vdash	\vdash	ш	\vdash
0.470		F	F				\vdash	\vdash	1	F	F					\vdash			F	F								G	G				\vdash	Н	ш	$\vdash \vdash \vdash$
0.560		G	G				\vdash	\vdash	1	G	G								F	F			\vdash					G	G					H	г	
0.680							t	t	1	G	G								G	G														М	\Box	
0.820									i i										G	G		l		l										П	Г	
1.000	105								İ																											
Voltage ((V)	600	630	1000	1500	2000	2500	3000	4000	600	630	1000	1500	2000	2500	3000	4000	5000	600	630	1000	1500	2000	2500	3000	4000	5000	600	630	1000	1500	2000	2500	3000	4000	5000
Case Siz	ze				18	25								2220									222	5								3640)			

	Letter	Α	С	E	F	G	Χ	7
	Max. Thickness	0.813 (0.032)	1.448 (0.057)	1.8034 (0.071)	2.2098 (0.087)	2.794 (0.110)	0.940 (0.037)	3.30 (0.130)
L	THIORITCOO	(0.002)	(0.007)	(0.071)	(0.007)	(0.110)	(0.007)	(0.100)

Tin/Lead Termination "B" - 600V to 5000V Applications

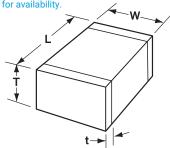
AVX Corporation will support those customers for commercial and military Multilayer Ceramic Capacitors with a termination consisting of 5% minimum lead. This termination is indicated by the use of a "B" in the 12th position of the AVX Catalog Part Number. This fulfills AVX's commitment to providing a full range of products to our customers. AVX has provided in the following pages, a full range of values that we are offering in this "B" termination.

Larger physical sizes than normally encountered chips are used to make high voltage MLC chip product. Special precautions must be taken in applying these chips in surface mount assemblies. The temperature gradient during heating or cooling cycles should not exceed 4°C per second.

The preheat temperature must be within 50°C of the peak temperature reached by the ceramic bodies through the soldering process. Chip sizes 1210 and larger should be reflow soldered only. Capacitors may require protective surface coating to prevent external arcing.

For 1825, 2225 and 3640 sizes, AVX offers leaded version in either thru-hole or SMT configurations (for details see section on high voltage leaded MLC chips).

NEW 630V RANGE


HOW TO ORDER

LD08	Α	Α	271	K	Α	В	1	Α
\top	Ţ	Ţ	T	T	T	Ţ	Ţ	Ţ
AVX	Voltage	Temperature	Capacitance	Capacitance	Test Level	Termination*	Packaging	Special
Style	600V/630V = C	Coefficient	Code	Tolerance	A = Standard	B = 5% Min Pb	2 = 7" Reel**	Code
LD05 - 0805	1000V = A	C0G = A	(2 significant digits	COG: $J = \pm 5\%$	4 = Automotive*	X = FLEXITERM®	4 = 13" Reel	A = Standard
LD06 - 1206	1500V = S	X7R = C	+ no. of zeros)	$K = \pm 10\%$		5% min. Pb*		
LD10 - 1210	2000V = G		Examples:	$M = \pm 20\%$				
LD08 - 1808	2500V = W		10 pF = 100	X7R: $K = \pm 10\%$				
LD12 - 1812	3000V = H		100 pF = 101	$M = \pm 20\%$				
LD13 - 1825	4000V = J		1.000 pF = 102	Z = +80%, -2	20%			
LD20 - 2220	5000V = K		22.000 pF = 223					
LD14 - 2225			220,000 pF = 224					
LD40 - 3640			1 uF =105					
***			. р					

Notes: Capacitors with X7R dielectrics are not intended for applications across AC supply mains or AC line filtering with polarity reversal. Contact plant for recommendations. Contact factory for availability of Termination and Tolerance options for Specific Part Numbers.

- * FLEXITERM is not available in the LD40 Style
- ** The LD40 Style is not available on 7" Reels.
- *** AVX offers nonstandard chip sizes. Contact factory for details.

* Not all values are supported in Automotive grade. Please contact factory for availability

NOT RoHS Compliant

millimeters (inches)

DIMENSIONS

SIZE		LD05 (0805)	LD06 (1206)	LD10* (1210)	LD08* (1808)	LD12* (1812)	LD13* (1825)	LD20* (2220)	LD14* (2225)	LD40* (3640)
(L) Length		2.10 ± 0.20	3.30 ± 0.30	3.30 ± 0.40	4.60 ± 0.50	4.60 ± 0.50	4.60 ± 0.50	5.70 ± 0.50	5.70 ± 0.50	9.14 ± 0.25
(=) =0gu.	'	(0.083 ± 0.008)	(0.130 ± 0.012)	(0.130 ± 0.016)	(0.181 ± 0.020)	(0.181 ± 0.020)	(0.181 ± 0.020)	(0.224 ± 0.020)	(0.224 ± 0.020)	(0.360 ± 0.010)
(W) Width		1.25 ± 0.20	1.60 ± 0.20	2.50 ± 0.30	2.00 ± 0.20	3.20 ± 0.30	6.30 ± 0.40	5.00 ± 0.40	6.30 ± 0.40	10.2 ± 0.25
(VV) VVIGUI		(0.049 ± 0.008)	(0.063 ± 0.008)	(0.098 ± 0.012)	(0.079 ± 0.008)	(0.126 ± 0.012)	(0.248 ± 0.016)	(0.197 ± 0.016)	(0.248 ± 0.016)	(0.400 ± 0.010)
(T) Thickr	ness	1.35	1.80	2.80	2.20	2.80	3.40	3.40	3.40	2.54
Max.		(0.053)	(0.071)	(0.110)	(0.087)	(0.110)	(0.134)	(0.134)	(0.134)	(0.100)
(t)	min.	0.50 ± 0.20	0.60 ± 0.20	0.75 ± 0.35	0.75 ± 0.35	0.75 ± 0.35	0.75 ± 0.35	0.85 ± 0.35	0.85 ± 0.35	0.76 (0.030)
terminal	max.	(0.020 ± 0.008)	(0.024 ± 0.008)	(0.030 ± 0.014)	(0.030 ± 0.014)	(0.030 ± 0.014)	(0.030 ± 0.014)	(0.033 ± 0.014)	(0.033 ± 0.014)	1.52 (0.060)

*Reflow Soldering Only

Performance of ceramic capacitors can be simulated by using the online SpiMLCC software program - http://spicat.avx.com/mlcc Custom values, ratings and configurations are also available.

Tin/Lead Termination "B" - 600V to 5000V Applications

NP0 (C0G) Dielectric

Performance Characteristics

Capacitance Range	10 pF to 0.047 μF (25°C, 1.0 ±0.2 Vrms at 1kHz, for ≤ 1000 pF use 1 MHz)
Capacitance Tolerances	±5%, ±10%, ±20%
Dissipation Factor	0.1% max. (+25°C, 1.0 ±0.2 Vrms, 1kHz, for ≤ 1000 pF use 1 MHz)
Operating Temperature Range	-55°C to +125°C
Temperature Characteristic	0 ±30 ppm/°C (0 VDC)
Voltage Ratings	600, 630, 1000, 1500, 2000, 2500, 3000, 4000 & 5000 VDC (+125°C)
Insulation Resistance (+25°C, at 500 VDC)	100K MΩ min. or 1000 MΩ - μF min., whichever is less
Insulation Resistance (+125°C, at 500 VDC)	10K M Ω min. or 100 M Ω - μF min., whichever is less
Dielectric Strength	Minimum 120% rated voltage for 5 seconds at 50 mA max. current

HIGH VOLTAGE COG CAPACITANCE VALUES

VOLTA	GE	LD05 (0805)	LD06 (1206)	LD10 (1210)	LD08 (1808)	LD12 (1812)	LD13 (1825)	LD20 (2220)	LD14 (2225)	LD40 (3640)
600/630	min.	10 pF	10 pF	100 pF	100 pF	100 pF	1000 pF	1000 pF	1000 pF	1000 pF
000/030	max.	330 pF	1200 pF	2700 pF	3300 pF	5600 pF	0.012 μF	0.012 pF	0.018 μF	0.047 μF
1000	min.	10 pF	10 pF	10 pF	100 pF	100 pF	100 pF	1000 pF	1000 pF	1000 pF
1000	max.	180 pF	560 pF	1500 pF	2200 pF	3300 pF	8200 pF	0.010 pF	0.010 μF	0.022 μF
1500	min.	_	10 pF	10 pF	10 pF	10 pF	100 pF	100 pF	100 pF	100 pF
1300	max.	_	270 pF	680 pF	820 pF	1800 pF	4700 pF	4700 pF	5600 pF	0.010 μF
2000	min.	_	10 pF	10 pF	10 pF	10 pF	100 pF	100 pF	100 pF	100 pF
2000	max.	-	120 pF	270 pF	330 pF	1000 pF	1800 pF	2200 pF	2700 pF	6800 pF
2500	min.	-	-	_	10 pF	10 pF	10 pF	100 pF	100 pF	100 pF
2300	max.	-	-	_	180 pF	470 pF	1200 pF	1500 pF	1800 pF	3900 pF
3000	min.	_	-	_	10 pF	10 pF	10 pF	10 pF	10 pF	100 pF
3000	max.	-	-	-	120 pF	330 pF	820 pF	1000 pF	1200 pF	2700 pF
4000	min.	_	-	_	10 pF	10 pF	10 pF	10 pF	10 pF	100 pF
4000	max.	-	-	-	47 pF	150 pF	330 pF	470 pF	560 pF	1200 pF
5000	min.	_	_	_	_	_	_	10 pF	10 pF	10 pF
3000	max.	_	_	_	_	_	_	220 pF	270 pF	820 pF

X7R Dielectric

Performance Characteristics

Capacitance Range	10 pF to 0.56 μF (25°C, 1.0 ±0.2 Vrms at 1kHz)
Capacitance Tolerances	±10%; ±20%; +80%, -20%
Dissipation Factor	2.5% max. (+25°C, 1.0 ±0.2 Vrms, 1kHz)
Operating Temperature Range	-55°C to +125°C
Temperature Characteristic	±15% (0 VDC)
Voltage Ratings	600, 630, 1000, 1500, 2000, 2500, 3000, 4000 & 5000 VDC (+125°C)
Insulation Resistance (+25°C, at 500 VDC)	100K MΩ min. or 1000 MΩ - μF min., whichever is less
Insulation Resistance (+125°C, at 500 VDC)	10K M Ω min. or 100 M Ω - μF min., whichever is less
Dielectric Strength	Minimum 120% rated voltage for 5 seconds at 50 mA max. current

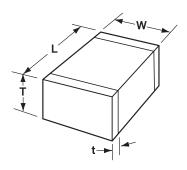
HIGH VOLTAGE X7R MAXIMUM CAPACITANCE VALUES

VOLTA	IGE	0805	1206	1210	1808	1812	1825	2220	2225	3640
600/630	min.	100 pF	1000 pF	1000 pF	1000 pF	1000 pF	0.010 μF	0.010 μF	0.010 μF	0.010 μF
000/030	max.	6800 pF	0.022 μF	0.056 μF	0.068 μF	0.120 μF	0.390 μF	0.270 μF	0.330 μF	0.560 μF
1000	min.	100 pF	100 pF	1000 pF	1000 pF	1000 pF	1000 pF	1000 pF	1000 pF	0.010 μF
1000	max.	1500 pF	6800 pF	0.015 μF	0.018 μF	0.039 µF	0.100 μF	0.120 µF	0.150 μF	0.220 μF
1500	min.	-	100 pF	100 pF	100 pF	100 pF	1000 pF	1000 pF	1000 pF	1000 pF
1300	max.	-	2700 pF	5600 pF	6800 pF	0.015 μF	0.056 μF	0.056 μF	0.068 μF	0.100 μF
2000	min.	_	10 pF	100 pF	100 pF	100 pF	100 pF	1000 pF	1000 pF	1000 pF
2000	max.	-	1500 pF	3300 pF	3300 pF	8200 pF	0.022 µF	0.027 µF	0.033 μF	0.027 µF
2500	min.	-	-	-	10 pF	10 pF	100 pF	100 pF	100 pF	1000 pF
2300	max.	-	-	_	2200 pF	5600 pF	0.015 μF	0.018 μF	0.022 μF	0.022 μF
3000	min.	-	-	-	10 pF	10 pF	100 pF	100 pF	100 pF	1000 pF
3000	max.	-	-	_	1800 pF	3900 pF	0.010 μF	0.012 μF	0.015 μF	0.018 μF
4000	min.	-	-	-	_	_	_	_	_	100 pF
4000	max.	_	_	_	_	-	_	_	_	6800 pF
5000	min.	_	_	-	_	_	_	_	_	100 pF
3000	max.	-	_	_	_	_	_	_	_	3300 pF

FLEXITERM® - 600V to 5000V Applications

High value, low leakage and small size are difficult parameters to obtain in capacitors for high voltage systems. AVX special high voltage MLC chips capacitors meet these performance characteristics and are designed for applications such as snubbers in high frequency power converters, resonators in SMPS, and high voltage coupling/DC blocking. These high voltage chip designs exhibit low ESRs at high frequencies.

To make high voltage chips, larger physical sizes than are normally encountered are necessary. These larger sizes require that special precautions be taken in applying these chips in surface mount assemblies. In response to this, and to follow from the success of the FLEXITERM® range of low voltage parts, AVX is delighted to offer a FLEXITERM® high voltage range of capacitors, FLEXITERM®.


The FLEXITERM® layer is designed to enhance the mechanical flexure and temperature cycling performance of a standard ceramic capacitor, giving customers a solution where board flexure or temperature cycle damage are concerns.

HOW TO ORDER

1808	A	C	272	K	Α	Z	1	Α
	T	T	T	T	T	T .	T	T
AVX	Voltage	Temperature	Capacitance Code	Capacitance	Test Level	Termination*	Packaging	Special
Style	600V/630V = C	Coefficient	(2 significant digits	Tolerance		Z=FLEXITERM®	2 = 7" Reel	Code
0805	1000V = A	C0G = A	+ no. of zeros)	C0G: $J = \pm 5\%$		100% Tin	4 = 13" Reel	A = Standard
1206	1500V = S	X7R = C	Examples:	K = ±10%		(RoHS Compliar	nt)	
1210	2000V = G		10 pF = 100	$M = \pm 20\%$		(. to. 10 00.11p.iid.	,	
1808	2500V = W		100 pF = 101	X7R: K = ±10%				
1812	3000V = H		1,000 pF = 102	$M = \pm 20\%$				
1825	4000V = J		22,000 pF = 223	Z = +80%				
2220	5000V = K		220,000 pF = 224	-20%				
2225			1 μF =105					
444								

Notes: Capacitors with X7R dielectrics are not intended for applications across AC supply mains or AC line filtering with polarity reversal. Contact plant for recommendations. Contact factory for availability of Termination and Tolerance options for Specific Part Numbers.

^{***} AVX offers nonstandard chip sizes. Contact factory for details.

DIMENSIONS

MILLIMETERS (INCHES)

SIZE	0805	1206	1210*	1808*	1812*	1825*	2220*	2225*
(L) Length	2.10 ± 0.20	3.30 ± 0.30	3.30 ± 0.40	4.60 ± 0.50	4.60 ± 0.50	4.60 ± 0.50	5.70 ± 0.50	5.70 ± 0.50
	(0.083 ± 0.008)	(0.130 ± 0.012)	(0.130 ± 0.016)	(0.181 ± 0.020)	(0.181 ± 0.020)	(0.181 ± 0.020)	(0.224 ± 0.020)	(0.224 ± 0.020)
(W) Width	1.25 ± 0.20	1.60 ^{+0.30} _{-0.10}	2.50 ± 0.30	2.00 ± 0.20	3.20 ± 0.30	6.30 ± 0.40	5.00 ± 0.40	6.30 ± 0.40
	(0.049 ±0.008)	(0.063 ^{+0.012} _{-0.004})	(0.098 ± 0.012)	(0.079 ± 0.008)	(0.126 ± 0.012)	(0.248 ± 0.016)	(0.197 ± 0.016)	(0.248 ± 0.016)
(T) Thickness Max	1.35	1.80	2.80	2.20	2.80	3.40	3.40	3.40
	(0.053)	(0.071)	(0.110)	(0.087)	(0.110)	(0.134)	(0.134)	(0.134)
(t) terminal min	/	0.60 ± 0.20 (0.024 ± 0.008)	0.75 ± 0.35 (0.030 ± 0.014)	0.75 ± 0.35 (0.030 ± 0.014)	0.75 ± 0.35 (0.030 ± 0.014)	0.75 ± 0.35 (0.030 ± 0.014)	0.85 ± 0.35 (0.033 ± 0.014)	0.85 ± 0.35 (0.033 ± 0.014)

^{*}Reflow Soldering Only

Performance of SMPS capacitors can be simulated by downloading SpiCalci software program - http://www.avx.com/SpiApps/default.asp#spicalci
Custom values, ratings and configurations are also available.

FLEXITERM® - 600V to 5000V Applications

NP0 (COG) Dielectric Performance Characteristics

Capacitance Range	10 pF to 0.100 μF (+25°C, 1.0 ±0.2 Vrms, 1kHz)
Capacitance Tolerances	±5%, ±10%, ±20%
Dissipation Factor	0.1% max. (+25°C, 1.0 ±0.2 Vrms, 1kHz)
Operating Temperature Range	-55°C to +125°C
Temperature Characteristic	0 ±30 ppm/°C (0 VDC)
Voltage Ratings	600, 630, 1000, 1500, 2000, 2500, 3000, 4000 & 5000 VDC (+125°C)
Insulation Resistance (+25°C, at 500 VDC)	100K MΩ min. or 1000 MΩ - μF min., whichever is less
Insulation Resistance (+125°C, at 500 VDC)	10K MΩ min. or 100 MΩ - μF min., whichever is less
Dielectric Strength	Minimum 120% rated voltage for 5 seconds at 50 mA max. current

NPO (COG) CAPACITANCE RANGE PREFERRED SIZES ARE SHADED

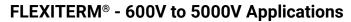
Case Size		0805				1206					1210						18	808							18	12			
Soldering	R	Reflow/V			Ref	low/W					flow 0	nly					Reflo								Reflov				
(L) Length mm (in.)		2.10 ± 0. 0.083 ± 0.				.30 ± 0. 30 ± 0.					30 ± 0. 30 ± 0.							± 0.50 ± 0.020))						4.60 ± 0.181 ±)		
W) Width mm		1.25 ± 0.	20	1	1.60	± 0.30	/-0.10	4)		2.	50 ± 0. 50 ± 0.	30					2.00	± 0.20 ± 0.008							3.20 ±	₹ 0.30			
(T) Thickness (in.)		0.049 ± 0. 1.35		<u> </u>	(0.063	1.80		4)			2.80						2.	20)						0.126 ± 2.8	80)		
mm (III.)	+	(0.053 0.50 ± 0.) 20		0	(0.071 .60 ± 0.					(0.110) 75 ± 0.							087) ± 0.35							(0.1 0.75 ±				
(t) Ferminal max	(0	$0.020 \pm 0.$	(800.		(0.0	24 ± 0.	(800.			(0.0	30 ± 0.	014)					(0.030)	± 0.014							$0.030 \pm$	0.014			
Voltage (V) Cap (pF) 1.5 1F		0 630	1000	600	630	1000	1500	2000	600	630	1000	1500	2000	600	630	1000	1500	2000	2500	3000	4000	600	630	1000	1500	2000	2500	3000	4000
1.8 1F		A		X	X	X	X	X																					
2.2 2F				Х	X	Х	Х	Х																					
2.7 2F 3.3 3F				X	X	X	X	X								C	C	C	C	C									
3.9 3F		Α		Х	Х	Х	Х	Х								С	С	С	С	С									
4.7 4F 5.6 5F				X	X	X	X	X								C	C	C	C	C				-					
6.8 6F				X	X	X	X	X								C	C	C	C	C				1					
8.2 8F				Х	Х	Х	Х	Х								С	С	С	С	С									_
10 10			A	X	X	X	X	X	C	C	D D	D D	D D	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	E
15 15	50 A	Α	Α	Х	Х	Х	Х	Х	С	С	D	D	D	С	С	С	С	С	С	С	С	С	С	С	С	С	С	С	E
18 18			A	X	X	X	X	X	C	C	D D	D D	D D	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	E F
27 27	70 A	Α	Α	X	Х	Х	Х	Х	С	С	D	D	D	С	С	С	С	С	С	С	С	С	С	С	С	С	С	С	Ē
33 33			A	X	X	X	D D	D D	СС	C	D D	D D	D D	СС	C	C	C	C	C	C	C	C	C	C	C	C	C	C	E
39 39 47 47		, ,,	A	X	X	M	D	D	C	C	D	D	D	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	E
56 56	50 A		Α	Х	Х	М	С	С	С	С	D	С	С	С	С	С	С	С	С	С		С	С	С	С	С	С	С	F
68 68 82 82			A X	X	X	M C	C	C	C	C	D D	C	C	C	C	C	C	C	C	C		C	C	C	C	C	C	C C	F
100 10	_		X	X	X	C	C	C	C	С	С	C	С	C	C	C	C	C	F	F		C	C	C	C	C	C	C	F
120 12			С	Х	Х	С	E	E	С	С	С	С	С	С	С	С	С	С	F	F		С	С	С	С	С	С	С	G
150 15 180 18		C	C	X	X	C E	E	E	C	C	C E	E	E	C	C	C	F	F	F	F		C	C	C	C	C	C F	C F	G
220 22	21 C	С	Ŭ	Х	Х	Е	Е	E	С	С	Е	E	Е	С	С	С	F	F	F	F		С	С	С	С	С	F	F	
270 27 330 33				C	C	E	E	E F	C	C	E	E	E	C	C	C F	F	F	F	F	_	C	C	C	C	C F	F	F	
390 39				C	C	E	E	E	С	C	E	E	E	С	C	F	F	F	F	F		C	C	C	F	F	F	F	
470 47		_		С	С	E	Е	Е	С	С	E	E	E	С	С	F	F	F	F	F		С	С	F	F	F	F	F	
560 56 680 68				C	C	E F			C	C	E F	E F	E F	C C	C	F	F	F				C	C	F	F	F	F G	F G	
750 75	51 C	С		Е	Е	Е			С	С	Е	G	G	С	С	F	F	F				С	С	F	F	F	G	G	
820 82 1000 10		С		E E	E F	E			C C	C	E	G	G	C	C	F	E F	E F				C	C	F	F	F	G	G G	
1200 12	22			Е	E				С	C	Е			E	E	F	E	E				С	C	F	E	E		J	
1500 15 1800 18		_	<u> </u>	E	E				C	C	G G			E E	E	F						C	C	F	F	F			
2200 22				E	E				E	E	G			E	E							C	C	E	G	G			
2700 27				E	E				E	E				E	E							С	С	E	G	G			
3300 33 3900 39		+	 	E	E		1	<u> </u>	E	E			\vdash	E	E		1		1		 	C	C	F	<u> </u>		 		
4700 47	72								Е	Е				Е	Е							С	С	G					
5600 56 6800 68		-	-	\vdash	1	1			Е	Е				E	E		1		-		-	C	C					-	
8200 82																						E	E						
Cap (μF) 0.010 10)3																					Е	Е						
0.012 12	_				_																	F	F						
0.015 15	_		_	<u> </u>	-																-	G	G						
0.018 18	_		-	-	1															-		G	G						
0.022 22	_	+		\vdash					<u> </u>					<u> </u>															
0.033 33	_	+		\vdash	\vdash		1	 	 					 					-				1	1					
0.056 56	_	+			 																								
0.068 68	_																												
0.100 10																													
Voltage (V)	60	0 630 0805		600	630	1000 1206		2000	600	630	1000 1210	1500	2000	600	630	1000		2000 08	2500	3000	4000	600	630	1000			2500	3000	4000
Case Size		0805				1206					1210						18	υδ							18	12			

NPO (COG) CAPACITANCE RANGE PREFERRED SIZES ARE SHADED

Case Size					1	825				2220 Reflow Only											2225									
Soldering	1				Refle	ow Only	/						R	eflow (Only				Reflow Only											
(L) Length mm						± 0.50								.70 ± 0									72 ± 0							
W) Width	ı				6.30	± 0.40)						5	.00 ± 0	.40							6.	35 ± 0	.25						
(in.) (T) Thickness	ı		_			3 ± 0.01 3.40	6)						(0.	3.40									3.40							
(t) Terminal (in.)						.134) 5 ± 0.35	;						0	(0.13 ² .85 ± 0									(0.134 85 ± 0							
Voltage (V)		500	630	1000		2000 ± 0.01		3000	4000	600	630	1000		033 ± 0 2000		3000	4000	5000	600	630	1000				3000	4000	5000			
Cap (pF) 1.5 1F																														
1.8 11																		-				-								
2.2 2	_	\dashv								-								-	-			-								
3.3 3																														
3.9 3	₹9																													
4.7 4																														
5.6 5F 6.8 6F																														
8.2 8	_																		<u> </u>											
10 10		Е	Ε	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	F	F			
12 1:		Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	F	F			
15 15		E E	E	E	E	E	E	E	E	E E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	F	F			
		E	Ė	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	F	F			
27 2		Е	Ε	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	F	F			
33 33		E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	F	F			
39 39		E E	E	E	E	E	E	E	E F	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	F	F G			
56 56		È	Ė	E	E	E	E	E	F	E	E	E	E	E	E	E	E	E	Ē	Ē	E	Ē	E	E	E	F	G			
68 68		Е	Ε	Е	Е	Е	Е	Е	F	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	F	G			
82 83		Е	Ε	Е	Е	Е	Е	Е	F	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	F	G			
100 10		E E	E	E	E	E	E	E	F	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	G G	G			
150 1		E	Ē	E	E	E	E	E	F	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	G	G			
180 18	31	Е	Е	Е	Е	Е	Е	Е	F	Е	Е	Е	Е	Е	Е	Е	F	F	Е	Е	Е	Е	Е	Е	Е	G	G			
220 23		E	E	E	E	E	E	E	F	E	E	E	E	Е	E	E	F	F	E	E	E	E	E	E	E	G	G			
270 27 330 33		E E	E E	E	E	E	E	E	F	E	E	E	E	E	E	E			E	E	E	E	E	E	E	G G	G			
390 39		Ē	Ē	E	E	E	E	E	·	E	E	E	E	E	E	E			E	E	E	E	E	E	E	G				
470 4		Е	Ε	Е	Е	Е	Е	Е		Е	Е	Е	Е	Е	Е	Е			Е	Е	Е	Е	Е	Е	Е	G				
560 56		E E	E	E	E	E	E F	E F		E	E	E	E	E	E F	E F		-	E	E	E	E	E	E	E	G				
750 75	_	E	E	E	E	E	F	F		E	E	E	E	E	F	F			E	E	E	E	E	E	E					
820 83		Ē	Ē	E	E	E	F	F		E	E	E	E	E	F	F			E	E	E	E	E	F	E					
1000 10		Е	Е	Е	Е	Е	F	F		Е	Е	Е	Е	Е	F	F		ļ	Е	Е	Е	Е	Е	Е	Е					
1200 12 1500 12		E E	E	E	E F	E F	G G	G G		E	E	E	E F	E F	G G	G G		-	E	E	E	E	E	F	F					
	32	E	Ė	E	F	F	G	G		E	E	E	F	F	G	G			E	E	E	E	E	G	G					
2200 22	22	Е	Ε	Е	G	G				Е	Е	Е	G	G					Е	Е	Е	Е	Е							
2700 2		E	E	E	G	G				E	E	E	G	G				-	E	E	E	F	F							
3300 33		E E	E	E	G G	G G				E	E	E	G G	G G				<u> </u>	E	E	E	G	F G							
4700 4		E	Ē	E	G	G				E	E	E	G	G					F	F	F	G	G							
5600 50	_	F	F	F	G	G				F	F	F							F	F	F	G	G							
6800 68		F	F	F						F	F	F						ļ	F	F	F	G	G							
8200 83 Cap (μF) 0.010 10		G	G	G						G	G	G						<u> </u>	G G	G G	G G	-		-	-					
0.012 12																			G	G	G									
0.015 1	53																		G	G	G									
0.018 18		[G	G	G									
0.022 22		_						-		-						-	-	-	G	G	G	-	-	-	-	-	-			
0.033 33 0.047 4										-									G G	G	G G									
0.056 50																			G	G	G									
0.068 68	_																		G	G	G									
0.100 10 Voltage (V)		500	620	1000	1500	2000	2500	2000	4000	600	620	1000	1500	2000	2500	2000	4000	5000	G 600	G 620	1000	1500	2000	2500	2000	4000	5000			
Case Size	1	000	บฮบ	1000		825	2300	3000	4000	000	030	1000	1300	2220	2300	3000	4000	1 2000	000	030	1000	1 1300	2225	2300	3000	4000	1 3000			

Letter	Α	С	E	F	G	Х
Max.	0.813	1.448	1.803	2.210	2.794	0.940
Thickness	(0.032)	(0.057)	(0.071)	(0.087)	(0.110)	(0.037)

FLEXITERM® - 600V to 5000V Applications


X7R Dielectric

Performance Characteristics

Capacitance Range	10 pF to 0.82 μF (25°C, 1.0 ±0.2 Vrms at 1kHz)
Capacitance Tolerances	±10%; ±20%; +80%, -20%
Dissipation Factor	2.5% max. (+25°C, 1.0 ±0.2 Vrms, 1kHz)
Operating Temperature Range	-55°C to +125°C
Temperature Characteristic	±15% (0 VDC)
Voltage Ratings	600, 630, 1000, 1500, 2000, 2500, 3000, 4000 & 5000 VDC (+125°C)
Insulation Resistance (+25°C, at 500 VDC)	100K MΩ min. or 1000 MΩ - μF min., whichever is less
Insulation Resistance (+125°C, at 500 VDC)	10K MΩ min. or 100 MΩ - μF min., whichever is less
Dielectric Strength	Minimum 120% rated voltage for 5 seconds at 50 mA max. current

X7R CAPACITANCE RANGE PREFERRED SIZES ARE SHADED

Case Size	ا د		0805				1206	5			1210 1808 Reflow Only									1812										
Soldering			low/W			Ref	low/W																			Reflov				
(L) Longth r	nm	2	.10 0.2	0		3.	30 ± 0.	.30			3	30 0.4	0					4.60	± 0.50	,						4.60 :	£ 0.50			
	in.) nm		83 ± 0.0 .25 0.2				30 ± 0.					130 0.0 2.50 0.3					(± 0.020 0.20)						3.20)		
	in.)	(0.0	49 ± 0.0	008)		(0.063	+0.012	/-0.004	1)		(0.	0.0 890	12)				(0.079	± 0.008)						$(0.126 \pm$	0.012)		
(T) Thickness T	nm		1.35				1.80					2.80						2.	20							2.	80			
```	in.) nm	0	(0.053) 50 ± 0.1	20		n	(0.071 .60 ± 0.	.20			-	(0.110)	5					0.75	087) ± 0.35							0.75				
(t) Ferminal n	nax	(0.0	20 ± 0.0	(800		(0.0	24 ± 0.	(800.			(0.0	30 ± 0.	014)					0.030	± 0.014							(0.030 ±	0.014			
Voltage (V)			630		600			1500		600					600	630	1000	1500	2000	2500	3000	4000	600	630	1000	1500	2000	2500	3000	4000
Cap (pF) 100	101	Х	Х	С	С	С	Е	Е	Е	Е	Е	Е	Е	Е																
120	121	Х	Х	С	С	С	Е	Е	Е	Е	Е	Е	Е	Е					_											
150	151	Х	Х	С	С	С	Е	Е	Е	Е	Е	Е	Е	Е					_		_				_					
180	181	Х	Х	С	С	С	Е	Е	Е	Е	Е	Е	Е	Е																
220	221	Х	Х	С	С	С	Е	Е	Е	Е	Е	Е	Е	Е					ļ											
270	271	Х	Х	С	С	С	Е	Е	Е	Е	Е	Е	Е	Е									Е	Е	Е	Е	Е			
330	331	Х	Х	С	С	С	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	F		Е	Е	Е	Е	Е			
390	391	Х	Х	С	С	С	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	F		Е	Е	Е	Е	Е			
470	471	Χ	Х	С	С	С	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	F		Е	Е	Е	Е	Е	Е	Е	
560	561	Х	Х	С	С	С	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	F	F		Е	Е	Е	Е	Е	Е	Е	
680	681	Χ	Х	С	С	С	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	F	F		Е	Е	Е	Е	Е	F	F	
750	751	Х	Х	С	С	С	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	F	F		Е	Е	Е	Е	Е	F	F	
820	821	Х	Х	С	С	С	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	F	F		Е	Е	Е	Е	Е	F	F	
1000	102	Х	Х	С	С	С	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	F	F		Е	Е	Е	Е	Е	F	F	
1200	122	Х	Х	С	С	С	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	F	F		F	F	F	F	F	F	F	
1500	152	Х	Х	С	С	С	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	F	F		F	F	F	F	F	G	G	
1800	182	Х	Х		С	С	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	F	F		F	F	F	F	F	G	G	
2200	222	Х	Х		С	С	Е	Е	Е	Е	Е	Е	F	Е	Е	Е	Е	F	F	F			F	F	F	F	F	G	G	
2700	272	Х	Х		С	С	Е	Е		Е	Е	Е	F	Е	Е	Е	Е	F	F				F	F	F	F	F	G	G	
3300	332	Х	Х		С	С	Е			Е	Е	Е	F	Е	Е	Е	Е	F	F				F	F	F	F	F	G	G	
3900	392	Х	Х		С	С	Е			Е	Е	Е	G		Е	Е	Е	F					F	F	F	F	F	G	G	
4700	472	Х	Х		С	С	Е			Е	Е	Е	G		Е	Е	Е	F					F	F	F	F	F	G	G	
5600	562	Х	Х		С	С	Е			Е	Е	Е	G		Е	Е	Е	F					F	F	F	G	G			
6800	682	Х	Х		С	С	Е			Е	Е	Е			Е	Е	Е	F					F	F	F	G	G			
8200	822	Х	Х		С	С	Е			Е	Е	Е			Е	Е	Е						F	F	Е	G	G			
Cap (µF) 0.010	103	С	С		С	С	Е			Е	Е	Е			Е	Е	Е						F	F	F	G	G			
0.015	153	С	С		Е	Е	Е			Е	Е	Е			F	F	F						F	F	F	G				
0.018	183	С	С		Е	Е				Е	Е	Е			F	F	F						F	F	G					
0.022	223	С	С		Е	Е				Е	Е	Е			F	F							F	F	G					
0.027	273				Е	Е				Е	Е				F	F							F	F	G					
0.033	333				Е	Е				Е	Е				F	F							F	F	G					
0.039	393									Е	Е		l		F	F							F	F	G		İ	İ		
0.047	473						<b>†</b>			Е	Е				F	F							F	F	G					
0.056	563									F	F				F	F							F	F						
0.068	683									F	F				F	F							F	F						
0.082	823									F	F												F	F						
0.100	104					1				F	F												F	F						
0.150	154																						G	G						
0.220	224					1																	G	G						
0.270	274						t																							
0.330	334														$\vdash$															
0.390	394					t	<u> </u>			$\vdash$					$\vdash$								t							$\vdash$
0.470	474			<del>                                     </del>	t	1	<u> </u>		<del>                                     </del>					$\vdash$	$\vdash$		<del>                                     </del>						<del>                                     </del>							$\vdash$
0.560	564				$\vdash$	<b>+</b>				$\vdash$	$\vdash$			$\vdash$	$\vdash$	$\vdash$			<b>†</b>		<u> </u>	$\vdash$	$\vdash$							$\vdash$
0.680	684				$\vdash$	$\vdash$		$\vdash$		$\vdash$	$\vdash$	$\vdash$		$\vdash$	$\vdash$	$\vdash$			<del>                                     </del>		<u> </u>	$\vdash$	$\vdash$		$\vdash$					$\vdash$
0.820	824		<del>                                     </del>	<b>-</b>	H	<del>                                     </del>	<del>                                     </del>	$\vdash$	<b>-</b>	$\vdash$		$\vdash$		<u> </u>	$\vdash$		<b>-</b>		$\vdash$		$\vdash$		<del>                                     </del>	<u> </u>	$\vdash$	<b>-</b>				$\vdash$
1.000	105			-	1	1		+	-	$\vdash$		+		-	$\vdash$	-	-		+		$\vdash$		1	-	$\vdash$	-				
Voltage (V)	103	600	630	1000	600	630	1000	1500	2000	600	630	1000	1500	2000	600	630	1000	1500	2000	2500	3000	4000	600	630	1000	1500	2000	2500	3000	4000
Case Size			0805				1206					1210							808								12			





# X7R CAPACITANCE RANGE PREFERRED SIZES ARE SHADED

Case Size					25			$\Box$	2220 Reflow Only									2225 Reflow Only									3640 Reflow Only									
Soldering mm	_				w Only 0.50	<u>'                                     </u>							low 0 70 0.5									flow 0					_				eflow 0					
(L) Length (in.)				(0.181	0.020	))						(0.2	24 0.0	20)							(0.22	25 ± 0	.010)							(0.3	360 ± 0	.010)				
W) Width mm (in.)			((		0.40 ± 0.01	6)							00 0.4 97 0.0									35 ± 0 50 ± 0									.72 ± 0 225 ± 0					
(T) mm				3.	40	0)			_				3.40									2.54								(0.2	2.54					
Thickness (in.)	_				134)			$\dashv$					0.134 85 0.3				_					0.100 35 ± 0					-				(0.100 76 (0.0					
(t) Terminal mm max				0.030	± 0.01							(0.03	3 ± 0.	014)							(0.03	33 ± 0	.014)							1.	52 (0.0	162)				
Voltage (V)	600	630	1000	1500	2000	2500	3000	4000	600	630	1000	1500	2000	2500	3000	4000	5000	600	630	1000	1500	2000	2500	3000	4000	5000	600	630	1000	1500	2000	2500	3000	4000	5000	
Cap (pF) 100 101 120 121	_	-		-	-		-	$\vdash$	_						_		-							-			-			-						
150 151	_	$\vdash$		-	$\vdash$		-	$\vdash$	$\dashv$						_		-										<u> </u>									
180 181		1																																		
220 221																																				
270 271																																				
330 331																	$\Box$																			
390 391	_	-		-	-		-	Ш	_															-			<u> </u>									
470 471 560 561	-	+	-	-	$\vdash$	-	-	$\vdash \vdash$	-						-		$\vdash\vdash$						-	-			├			-	-	-	-		$\vdash \vdash \mid$	
680 681	$\vdash$		$\vdash$			$\vdash$		$\vdash$	$\dashv$								$\vdash$										<del>                                     </del>								$\vdash$	
750 751					t			$\Box$	$\exists$								$\vdash$										l								$\vdash \vdash$	
820 821																																				
1000 102	F	F	F	F	F	F	F		F	F	F	F	F	F	G			F	F	F	F	F	F	F			G	G	G	G	G	G	G	G	G	
1200 122	F	F	F	F	F	F	F	Ш	F	F	F	F	F	F	G			F	F	F	F	F	F	F			G	G	G	G	G	G	G	G	G	
1500 152	F	F	F	F	F	F	F	ш	F	F	F	F	F	F	G			F	F	F	F	F	F	F			G	G	G	G	G	G	G	G	G	
1800 182 2200 222	F	F	F	F	F	F	F	Н	F	F	F	F	F	F	G G			F	F	F	F	F	F	F			G G	G G	G G	G	G G	G G	G	G G	G	
2700 272	F	F	F	F	F	F	F	Н	F	F	F	F	F	F	G			F	F	F	F	F	F	F			G	G	G	G	G	G	G	G	G	
3300 332	F	F	F	F	F	F	F		F	F	F	F	F	F	G			F	F	F	F	F	F	F			G	G	G	G	G	G	G	G	G	
3900 392	F	F	F	F	F	F	F	П	F	F	F	F	F	F	G			F	F	F	F	F	F	F			G	G	G	G	G	G	G	G		
4700 472	F	F	F	F	F	F	F		F	F	F	F	F	F	G			F	F	F	F	F	F	F			G	G	G	G	G	G	G	G		
5600 562	F	F	F	F	F	F	F		F	F	F	F	F	F	G			F	F	F	F	F	F	F			G	G	G	G	G	G	G	G		
6800 682	F	F	F	G	G	G	G		F	F	F	F	F	G	G			F	F	F	F	F	G	G			G	G	G	G	G	G	G	G		
8200 822	F	F	F	G	G	G	G	ш	F	F	F	G	G	G	G			F	F	F	F	F	G	G			G	G	G	G	G	G	G			
Cap (µF) 0.010 103	F	F	F	G	G	G	G		F	F	F	G	G	G	G			F	F	F	F	F	G	G			G	G	G	G	G	G	G			
0.015 153	F	F	F	G	G	G			F	F	F	G	G	G				F	F	F	G	G	G	G			G	G	G	G	G	G	G			
0.018 183	F	F	F	G	G				F	F	F	G G	G G	G		-		F	F	F	G G	G G	G G		_		G G	G G	G G	G	G	G	G			
0.022 223	-	F	F	G	G				F	F	F	G	G					F	F	F	G	G	G				G	G	G	G	G G	G				
0.033 333	F	F	F	G					F	F	F	G	G					F	F	F	G	G		-			G	G	G	G	G					
0.039 393	F	F	F	G					F	F	F	G						F	F	F	G	0					G	G	G	G						
0.047 473	F	F	F	Р					F	F	F	G						F	F	F	G						G	G	G	G						
0.056 563	F	F	F	G				П	F	F	F	G						F	F	F	G						G	G	G	G					М	
0.068 683	F	F	G						F	F	G							F	F	F	G						G	G	G	G						
0.082 823	F	F	G						F	F	G							F	F	G							G	G								
0.100 104	F	F	G						F	F	G							F	F	G							G	G								
0.150 154	F	F		_	_	_	_		F	F	G				_			F	F	G		<u> </u>		_	<u> </u>		G	G							Ш	
0.220 224	F	F	_	_	_	-	_	$\vdash$	F	F	G				_		$\square$	F	F				-	-	_		G	G	<u> </u>	<u> </u>				_	$\vdash \vdash \vdash$	
0.270 274 0.330 334	F	F		-		-	-		F	F					-			F	F					-			G G	G G		-						
0.390 394	F	F			$\vdash$	1			F	F					$\vdash$		$\vdash$	F	F			$\vdash$					G	G	$\vdash$	<u> </u>	<del>                                     </del>	<del>                                     </del>	<u> </u>	<u> </u>	$\vdash$	
0.470 474	F	F							F	F								F	F								G	G							$\vdash$	
0.560 564	G	G							G	G								F	F								G	G								
0.680 684									G	G								G	G																	
0.820 824								$\sqcup$	G	G								G	G								<u> </u>								Ш	
1.000 105	600	620	1000	1500	2000	2500	2000	4000	G 600	G 620	1000	1500	2000	2500	2000	4000	5000	G 600	G 620	1000	1500	2000	2500	2000	4000	5000	600	620	1000	1500	2000	2500	2000	4000	5000	
Voltage (V) Case Size	000	1 030	11000		12000 3 <b>25</b>	₁ ∠500	13000	4000	OUU	030	1000		2000 <b>2220</b>	2500	3000	14000	5000	OUU	030	1000		2000 2225		13000	14000	JOUUU	600	030	1000	1500	3640		13000	4000	5000	
2000 0.20																															50 70					

Letter	Α	С	Е	F	G	Р	Х
Max.	0.813	1.448	1.8034	2.2098	2.794	3.048	0.940
Thickness	(0.032)	(0.057)	(0.071)	(0.087)	(0.110)	(0.120)	(0.037)

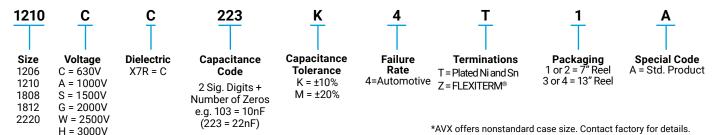


### **High Voltage MLC Chip Capacitors**







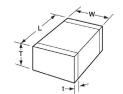

Modern automotive electronics could require components capable to work with high voltage (e.g. xenon lamp circuits or power converters in hybrid cards). AVX offers high voltage ceramic capacitors qualified according to AEC-Q200 standard.

High value, low leakage and small size are diffocult parameters to obtain in cpacitors for high voltage systems. AVX special hgih voltage MLC chip capacitors meet these performance characteristics and are designed for applications such as snubbers in high frequency power converters, resonators in SMPS, and high voltage coupling/dc blocking. These high voltage chip designs exhibit low ESRs at high frequencies.

Due to high voltage nature, larger physical dimensions are necessary. These larger sizes require special precautions to be taken in applying of MLC chips. The temperature gradient during heating or cooling cycles should not exceed 4°C per second. The preheat temperature must be within 50°C of the peak temperature reached by the ceramic bodies through the soldering process. Chip sizes 1210 and larger should be reflow soldered only. Capacitors may require protective surface coating to prevent external arcing.

To improve mechanical and thermal resistance, AVX recommend to use flexible terminations system -FLEXITERM®.

#### **HOW TO ORDER**




*AVX offers nonstandard case size. Contact factory for details.

Notes: Capacitors with X7R dielectrics are not indeded for applications across AC supply mains or AC line filtering with polarity reversal. Please contact AVX for recommendations

#### CHIP DIMENSIONS DESCRIPTION

(See capacitance range chart on page 128)



L = Length W = Width T = Thickness

#### X7R DIELECTRIC PERFORMANCE CHARACTERISTICS

Parameter/Test	Specification Limits	Measuring Conditions
Operating Temperature Range	-55°C to +125°C	Temperature Cycle Chamber
Capacitance Dissipation Factor Capacitance Tolerance	within specified tolerance 2.5% max. ±5% (J), ±10% (K), ±20% (M)	Freq.: 1kHz ±10% Voltage: 1.0Vrm s ±0.2Vrms T = +25°C, V = 0Vdc
Temperature Characteristics	X7R = ±15%	Vdc = 0V, T = (-55°C to +125°C)
Insulation Resistance	100GΩ min. or 1000MΩ • μF min. (whichever is less) 10GΩ min. or 100MΩ • μF min. (whichever is less)	T = +25°C, V = 500Vdc T = +125°C, V = 500Vdc (t ≥ 120 sec, I ≤ 50mA)
Dielectric Strength	No breakdown or visual defect	120% of rated voltage t ≤ 5 sec, l ≤ 50mA

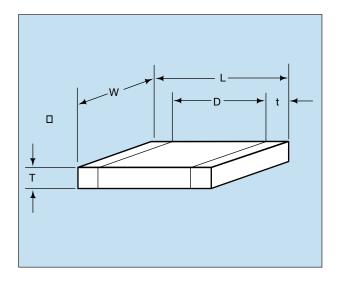
# **High Voltage MLC Chips FLEXITERM®**



### For 600V to 3000V Automotive Applications - AEC-Q200

# X7R CAPACITANCE RANGE PREFERRED SIZES ARE SHADED

Case Siz	:e			1206				12	10				18	08					18	12					2220		
Solderin	g			low/W				Reflow		е			Reflov							w Only					flow O		
(L) Length	mm		3.3	30 ± 0.	.30			3.30	± 0.4				4.60 :	£ 0.50					4.60 :	± 0.50				5.7	70 ± 0.	50	
(L) Length	(in.)		$\overline{}$	3 ± 0.0			(1	$0.130 \pm$		5)		(0	).181 :		0)			((		± 0.02					25 ± 0.		
W) Width	mm		1.6	50 ± 0.	.20			$2.50 \pm 0.20$ $2.00 \pm 0.20$						± 0.20			5.00 ± 0.40										
w) width	(in.)			53 ± 0.			(0	0.098 ±		8)	(0.079 ± 0.008)			(0.126 ± 0.008)				(0.197 ± 0.016)									
(t) Terminal	mm			60 ± 0.			0.75 ± 0.35		0.75 ± 0.35 (0.030 ± 0.014)				0.75 ± 0.35				0.85 ± 0.35										
	max			24 ± 0.			(0.030 ± 0.014) 630   1000   1500   2000											± 0.01					33 ± 0.				
Voltage (		630			2000		630	1000	1500	2000	630	1000	1500	2000	2500	3000	630	1000	1500	2000	2500	3000	630	1000	1500	2000	3000
Cap (pF) 101	100	С	E	E	E	E											<u> </u>									<u> </u>	
121	120	С	E	Е	E	E											<u> </u>									<u> </u>	
151	150	С	E	E	E	E											<u> </u>									<u> </u>	
181	180	С	E	E	E	E					_	_	_	_	_	_										<u> </u>	
221	220	С	E	E	E	E	_	_	_	_	E	E	E	E	E	E	<u> </u>									<u> </u>	
271	270	С	E	E	E	E	E	E	E	E	E	E	E	E	E	E	_									<u> </u>	
331	330	С	E	E	E	E	E	E	E	E	E	E	E	E	E	F	E									$\vdash$	
391	390	С	E	E	E	E	E	E	E	E	E	E	E	E	E	F	E	_	_	-	-	-				<u> </u>	
471	470	С	Е	E	E	E	E	E	E	Е	E	E	E	E	F	F	E	E	E	E	E	E	<u> </u>	-		<del></del>	-
561	560	С	Е	E	E	Е	Е	Е	E	Е	Е	E	E	E F	F	F	E	Е	E	E	E	Е				$\vdash$	
681 821	680 820	C	E	E	E	E	E	E	E	E	E E	E	F	F	F	F	E E	E	E	E	F	F		-	-	<del></del>	-
102	1000	C	E	E	E	E	E	E	E	E	E	E	F	F	F	F	E	E	E	E	F	F	F	F	F	F	G
102	1220	C	E	E	E		E	E	E	E							F	F	F	F	G		F	F	F	F	G
152	1500	C	E	E	E		E	E	E	E	<del>                                     </del>						F	F	F	F	G		F	F	F	F	G
182	1800	C	E	E	-		E	E	E	E							F	F	F	F	G		F	F	F	F	G
222	2200	C	E	E			E	E	E	E							F	F	F	F	G		F	F	F	F	G
272	2700	C	E	E			E	E	E	E							F	F	F	F			F	F	F	F	
332	3300	С	E				E	E	E	E							F	F	F	F			F	F	F	F	
392	3900	С	Е				Е	Е	Е								F	F	F	F			F	F	F	F	
472	4700	С	Е				Е	Е	Е								F	F	G	G			F	F	F	F	
562	5600	С	Е				Е	Е	Е								F	F	G	G			F	F	F	F	
682	6800	Е	Е				Е	Е									F	F	G	G			F	F	F	F	
822	8200	Е					Е	Е									F	F	G	G			F	F	G	G	
103	0.01	Е					Е	Е									F	F	G				G	G	G	G	
123	0.012						Е	Е									F	F	G				G	G	G	G	
153	0.015						Е	Е									F	F	G				G	G	G	G	
183	0.018						E	Е									F	F			<u> </u>		G	G	G	G	
223	0.022						E										F	F					G	G	G	G	_
273 333	0.027 0.033						Q										F				-		G G	G		<del></del>	
393	0.033				-												F						G	G		$\vdash$	-
473				_							-						Х				-		G	G		$\vdash \!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$	
563	0.056				1						-												G	Y		<u> </u>	1
683	0.068										$\vdash$						$\vdash$						G	Y			
823	0.082																						G	Y			1
104	0.1										İ						İ						G	Υ			
124	0.12																İ						G				
154	0.15																						G				
224	0.22																										
334	0.33																										
474	0.47																										
684	0.68																									<u> </u>	
105	1				ļ						<u> </u>						<u> </u>									<u> </u>	ļ
155	1.5				-						<u> </u>						<u> </u>			<u> </u>	<u> </u>		<u> </u>			<u> </u>	<u> </u>
225	2.2				-						<u> </u>						<u> </u>				-					<u> </u>	-
335	3.3			-	-						<del>                                     </del>	-				-	├			-	-	-	<u> </u>	-		<del></del>	-
475 106	4.7 10										-						<del>                                     </del>				-		-			<del></del>	-
226	22				-						$\vdash$						<del>                                     </del>	-	-		-		$\vdash$	-	-	$\vdash$	1
WVDC	22	630	1000	1500	2000	2500	630	1000	1500	2000	630	1000	1500	2000	2500	3000	630	1000	1500	2000	2500	3000	630	1000	1500	2000	3000
Size		000		1206		2000	000		10	12000	000	1 1000		08	2000	10000	030	1000		12000 12	2000	10000	000	1000	2220		10000
3120				1200				12	. 0				10	JU					10	12					2220		


NOTE: Contact factory for non-specified capacitance values

Letter	Α	С	E	F	G	Q	Х	Υ
Max	0.813	1.448	1.8034	2.2098	2.794	1.78	2.29	2.54
Thickness	(0.032)	(0.057)	(0.071)	(0.087)	(0.110)	(0.07)	(0.09)	(0.1)



# Part Number Example CDR01 thru CDR06





**MILITARY DESIGNATION PER MIL-PRF-55681** 

MIL Style
Voltage-temperature
Limits
Capacitance
Rated Voltage

NOTE: Contact factory for availability of Termination and Tolerance Options for Specific Part Numbers.

MIL Style: CDR01, CDR02, CDR03, CDR04, CDR05,

CDR06

#### **Voltage Temperature Limits:**

BP =  $0 \pm 30$  ppm/°C without voltage;  $0 \pm 30$  ppm/°C with rated voltage from -55°C to +125°C

BX =  $\pm 15\%$  without voltage;  $\pm 15 - 25\%$  with rated voltage from -55°C to  $\pm 125$ °C

**Capacitance:** Two digit figures followed by multiplier (number of zeros to be added) e.g., 101 = 100 pF

Rated Voltage: A = 50V, B = 100V

Capacitance Tolerance: J ± 5%, K ± 10%, M ± 20%

#### **Termination Finish:**

M = Palladium silver

N = Silver-nickel-gold

S = Solder coated final with a minimum of 4 percent lead

T = Silver

Capacitance Tolerance

Failure Rate

U = Base metallization-barrier metal-solder coated (tin/lead alloy, with a minimum of 4 percent lead)

W = Base metallization-barrier metal-tinned (tin or tin/lead alloy)

Y = Base metallization-barrier metal-tin (100 percent)

Z = Base metallization-barrier metal-tinned (tin/lead alloy, with a minimum of 4 percent lead)

*See MIL-PRF-55681 Specification for more details

**Failure Rate Level:** M = 1.0%, P = .1%, R = .01%,

S = .001%

**Packaging:** Bulk is standard packaging. Tape and reel per RS481 is available upon request.

*Not RoHS Compliant

### CROSS REFERENCE: AVX/MIL-PRF-55681/CDR01 THRU CDR06*

Per	AVX	Length (L)	Width (W)	Thickr	ness (T)		D	Termination Band (t)		
MIL-PRF-55681	Style			Min.	Max.	Min.	Max.	Min.	Max.	
CDR01	0805	.080 ± .015	.050 ± .015	.022	.055	.030	_	.010	_	
CDR02	1805	.180 ± .015	.050 ± .015	.022	.055	_	_	.010	.030	
CDR03	1808	.180 ± .015	.080 ± .018	.022	.080	_	_	.010	.030	
CDR04	1812	.180 ± .015	.125 ± .015	.022	.080	_	_	.010	.030	
CDR05	1825	.180 + .020 015	+.020 .250 ₀₁₅	.020	.080	_	_	.010	.030	
CDR06	2225	.225 ± .020	.250 ± .020	.020	.080	_	_	.010	.030	

*For CDR11, 12, 13, and 14 see AVX Microwave Chip Capacitor Catalog

# Military Part Number Identification CDR01 thru CDR06

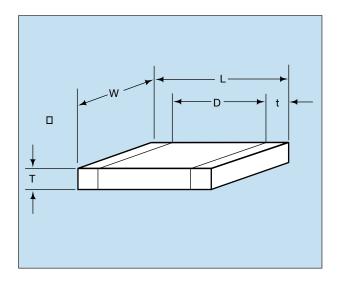


#### CDR01 thru CDR06 to MIL-PRF-55681

Military Type Designation	Capacitance in pF	Capacitance tolerance	Rated temperature and voltage-temperature limits	WVDC
AVX Style 080	5/CDR01		temperature imme	
CDR01BP100B	10	J,K	BP	100
CDR01BP120B	12	J	BP	100
CDR01BP150B	15	J,K	BP	100
CDR01BP180B	18	J	BP	100
CDR01BP220B	22	J,K	BP	100
CDR01BP270B	27	J	BP BP	100
CDR01BP330B	33	J,K	BP	100
CDR01BP390B	39	J	BP	100
CDR01BP470B	47	J,K	BP	100
CDR01BP560B	56	J	BP	100
CDR01BP680B	68	J,K	BP	100
CDR01BP820B	82	J	BP	100
CDR01BP101B	100	J,K	BP	100
CDR01B121B	120	J,K	BP,BX	100
CDR01B151B	150	J,K	BP,BX	100
CDR01B181B	180	J,K	BP,BX	100
CDR01BX221B	220	K,M	BX	100
CDR01BX271B	270	K	BX	100
CDR01BX271B	330	K,M	BX	100
CDR01BX331B	390	K,ivi	BX	100
CDR01BX391B	470	K,M	BX	100
CDR01BX471B	560	K,ivi	BX	100
CDR01BX561B	680	K,M	BX	100
CDR01BX821B	820	K	BX	100
CDR01BX021B	1000	K,M	BX	100
CDR01BX102B	1200	K,IVI	BX	100
CDR01BX152B	1500	K,M	BX	100
CDR01BX132B	1800	K,IVI	BX	100
CDR01BX222B	2200	K.M	BX	100
CDR01BX272B	2700	K,IVI	BX	100
CDR01BX272B	3300	K,M	BX	100
CDR01BX392A	3900	K,IVI	BX	50
CDR01BX472A	4700	K,M	BX	50
AVX Style 180		N,IVI	BX	] 50
CDR02BP221B	220	J,K	BP	100
	-		BP	
CDR02BP271B CDR02BX392B	270 3900	J K	BX	100 100
CDR02BX472B	4700	K,M	BX	100
CDR02BX562B	5600	K	BX BX	100 100
CDR02BX682B	6800	K,M		
CDR02BX822B	8200	K	BX	100
CDR02BX103B	10,000	K,M	BX	100
CDR02BX123A	12,000	K	BX	50
CDR02BX153A	15,000	K,M	BX	50
CDR02BX183A	18,000	K	BX	50
CDR02BX223A	22,000	K,M	BX	50
	<ul> <li>Add appropriat</li> </ul>	e failure rate		
L	<ul> <li>Add appropriat</li> </ul>	e termination f	inish	

		1	Rated temperature	
Military Type	Capacitance	Capacitance	and voltage-	WVDC
Designation/	in pF	tolerance		WVDC
AV/V OL 1 4000	(ODD00		temperature limits	
AVX Style 1808				
CDR03BP331B	330	J,K	BP	100
CDR03BP391B	390	J	BP	100
CDR03BP471B	470	J,K	BP	100
CDR03BP561B	560	J	BP	100
CDR03BP681B	680	J,K	BP	100
CDR03BP821B	820	J	BP	100
CDR03BP102B	1000	J,K	BP	100
CDR03BX123B	12,000	K	BX	100
CDR03BX153B	15.000	K,M	BX	100
CDR03BX183B	18.000	K	BX	100
CDR03BX223B	22,000	K,M	BX	100
CDR03BX273B	27.000	K	BX	100
CDR03BX333B	33.000	K,M	BX	100
CDR03BX393A	39.000	K	BX	50
CDR03BX473A	47.000	K,M	BX	50
CDR03BX563A	56.000	K	BX	50
CDR03BX683A	68.000	K,M	BX	50
AVX Style 1812	/CDR04			
CDR04BP122B	1200	J	BP	100
CDR04BP152B	1500	J,K	BP	100
CDR04BP182B	1800	j	BP	100
CDR04BP222B	2200	J,K	BP	100
CDR04BP272B	2700	Ĵ	BP	100
CDR04BP332B	3300	J,K	BP	100
CDR04BX393B	39.000	K	BX	100
CDR04BX473B	47.000	K,M	BX	100
CDR04BX563B	56.000	K	BX	100
CDR04BX823A	82.000	K	BX	50
CDR04BX104A	100,000	K,M	BX	50
CDR04BX124A	120,000	K	BX	50
CDR04BX154A	150.000	K,M	BX	50
CDR04BX184A	180.000	K	BX	50
AVX Style 1825				•
CDR05BP392B	3900	J,K	BP	100
CDR05BP472B	4700	J,K	BP	100
CDR05BP562B	5600	J,K	BP	100
CDR05BX683B	68,000	K,M	BX	100
CDR05BX823B	82,000	K	BX	100
CDR05BX104B	100,000	K,M	BX	100
CDR05BX124B	120,000	K	BX	100
CDR05BX154B	150.000	K,M	BX	100
CDR05BX224A	220.000	K,M	BX	50
CDR05BX274A	270,000	K	BX	50
CDR05BX274A	330,000	K,M	BX	50
AVX Style 2225		13,141	1 5/	
CDR06BP682B	6800	I IV	BP	100
CDR06BP682B	8200	J,K	BP BP	100
		J,K	BP BP	100
CDR06BP103B	10,000	J,K K		
CDR06BX394A	390.000		BX	50 50
CDR06BX474A	470.000	K,M	BX	50

Add appropriate failure rate


Add appropriate termination finish

Capacitance Tolerance

Capacitance Tolerance

### **Part Number Example** CDR31 thru CDR35





#### **MILITARY DESIGNATION PER MIL-PRF-55681**

**Part Number Example** (example) CDR31 BP 101 В K S M MIL Style Voltage-Temperature Limits Capacitance Rated Voltage Capacitance Tolerance **Termination Finish** Failure Rate

NOTE: Contact factory for availability of Termination and Tolerance Options for Specific Part Numbers.

MIL Style: CDR31, CDR32, CDR33, CDR34, CDR35

#### **Voltage-Temperature Limits:**

BP = 0 ± 30 ppm/°C without voltage; 0 ± 30 ppm/°C with rated voltage from -55°C to +125°C

BX =  $\pm 15\%$  without voltage;  $\pm 15 - 25\%$  with rated voltage from -55°C to +125°C

Capacitance: Two digit figures followed by multiplier (number of zeros to be added) e.g., 101 = 100 pF

Rated Voltage: A = 50V. B = 100V

**Capacitance Tolerance:** B  $\pm$  .10 pF, C  $\pm$  .25 pF, D  $\pm$  .5

pF, F ± 1%, J ± 5%, K ± 10%,

M ± 20%

#### **Termination Finish:**

M = Palladium silver

N = Silver-nickel-gold

S = Solder coated final with a minimum of 4 percent lead

U = Base metallization-barrier metal-solder coated (tin/lead alloy, with a minimum of 4 percent lead)

W = Base metallization-barrier metal-tinned (tin or tin/lead alloy)

Y = Base metallization-barrier metal-tin (100 percent)

Z = Base metallization-barrier metal-tinned (tin/lead alloy, with a minimum of 4 percent lead)

*See MIL-PRF-55681 Specification for more details

Failure Rate Level: M = 1.0%, P = .1%, R = .01%,

S = .001%

Packaging: Bulk is standard packaging. Tape and reel per RS481 is available upon request.

*Not RoHS Compliant

### CROSS REFERENCE: AVX/MIL-PRF-55681/CDR31 THRU CDR35

Per MIL-PRF-55681	AVX Style	Length (L)	Width (W)	Thickness (T)	D	Termination Band (t)		
Per WIL-PRF-5500 I	AVA Style	(mm)	(mm)	Max. (mm)	Max. (mm)	Min. (mm)	Max. (mm)	
CDR31	0805	2.00	1.25	1.3	.50	.70	.30	
CDR32	1206	3.20	1.60	1.3	-	.70	.30	
CDR33	1210	3.20	2.50	1.5	_	.70	.30	
CDR34	1812	4.50	3.20	1.5	_	.70	.30	
CDR35	1825	4.50	6.40	1.5	_	.70	.30	





#### CDR31 to MIL-PRF-55681/7

Military Type Designation <u>1</u> /	Capacitance in pF	Capacitance tolerance	Rated temperature and voltage- temperature limits	WVDC
AVX Style 08	05/CDR31	(BP)		
CDR31BP1R0B	1.0	B,C	BP	100
CDR31BP1R1B	1.1	B,C	BP	100
CDR31BP1R2B	1.2	B,C	BP	100
CDR31BP1R3B	1.3	B,C	BP	100
CDR31BP1R5B	1.5	B,C	BP	100
CDR31BP1R6B	1.6	B,C	BP	100
CDR31BP1R8B	1.8	B,C	BP	100
CDR31BP2R0B	2.0	B,C	BP	100
CDR31BP2R2B	2.2	B,C	BP	100
CDR31BP2R4B	2.4	B,C	BP	100
CDR31BP2R7B	2.7	B,C,D	BP	100
CDR31BP3R0B	3.0	B,C,D	BP	100
CDR31BP3R3B	3.3	B,C,D	BP	100
CDR31BP3R6B	3.6	B,C,D	BP	100
CDR31BP3R9B	3.9	B,C,D	BP	100
CDR31BP4R3B	4.3	B,C,D	BP	100
CDR31BP4R7B	4.7	B,C,D	BP	100
CDR31BP5R1B	5.1	B,C,D	BP	100
CDR31BP5R6B	5.6	B,C,D	BP	100
CDR31BP6R2B	6.2	B,C,D	BP	100
CDR31BP6R8B	6.8	B,C,D	BP	100
CDR31BP7R5B	7.5	B,C,D	BP	100
CDR31BP8R2B	8.2	B,C,D	BP	100
CDR31BP9R1B	9.1	B,C,D	BP	100
CDR31BP100B	10	FJ,K	BP	100
CDR31BP110B	11	FJ,K	BP	100
CDR31BP120B	12	FJ,K	BP	100
CDR31BP130B	13	FJ,K	BP	100
CDR31BP150B	15	FJ,K	BP	100
CDR31BP160B	16	FJ,K	BP	100
CDR31BP180B	18	FJ,K	BP	100
CDR31BP200B	20	F,J,K	BP	100
CDR31BP220B	22	FJ,K	BP	100
CDR31BP240B	24	F,J,K	BP	100
CDR31BP270B	27	FJ,K	BP	100
CDR31BP300B	30	FJ,K	BP	100
CDR31BP330B	33	F,J,K	BP	100
CDR31BP360B	36	FJ,K	BP	100
CDR31BP390B	39	F,J,K	BP	100
CDR31BP430B	43	FJ,K	BP	100
CDR31BP470B	47	FJ,K	BP	100
CDR31BP510B	51	F,J,K	BP	100
CDR31BP560B	56	FJ,K	BP	100
CDR31BP620B	62	F,J,K	BP	100
CDR31BP680B	68	FJ,K	BP	100
CDR31BP750B	75	FJ,K	BP	100
CDR31BP820B	82	F,J,K	BP	100
CDR31BP910B	91	FJ,K	BP	100

	- Add appropriate failure rate
	- Add appropriate termination finish
	- Capacitance Tolerance

Military Type Designation 1/	Capacitance in pF	Capacitance tolerance	Rated temperature and voltage- temperature limits	WVDC
AVX Style 08	05/CDR31	(BP) con	t'd	
CDR31BP101B	100	F,J,K	BP	100
CDR31BP111B	110	F,J,K	BP	100
CDR31BP121B	120	F,J,K	BP	100
CDR31BP131B	130	F,J,K	BP	100
CDR31BP151B	150	F,J,K	BP	100
CDR31BP161B	160	F,J,K	BP	100
CDR31BP181B	180	F,J,K	BP	100
CDR31BP201B	200	F,J,K	BP	100
CDR31BP221B	220	F,J,K	BP	100
CDR31BP241B	240	F,J,K	BP	100
CDR31BP271B	270	F,J,K	BP	100
CDR31BP301B	300	F,J,K	BP	100
CDR31BP331B	330	F,J,K	BP	100
CDR31BP361B	360	F,J,K	BP	100
CDR31BP391B	390	F,J,K	BP	100
CDR31BP431B	430	F,J,K	BP	100
CDR31BP471B	470	F,J,K	BP	100
CDR31BP511A	510	F,J,K	BP	50
CDR31BP561A	560	F,J,K	BP	50
CDR31BP621A	620	F,J,K	BP	50
CDR31BP681A	680	F,J,K	BP	50
AVX Style 08	05/CDR31	(BX)		
CDR31BX471B	470	K,M	BX	100
CDR31BX561B	560	K,M	BX	100
CDR31BX681B	680	K,M	BX	100
CDR31BX821B	820	K,M	BX	100
CDR31BX102B	1,000	K,M	BX	100
CDR31BX122B	1,200	K,M	BX	100
CDR31BX152B	1,500	K,M	BX	100
CDR31BX182B	1,800	K,M	BX	100
CDR31BX222B	2,200	K,M	BX	100
CDR31BX272B	2,700	K,M	BX	100
CDR31BX332B	3,300	K,M	BX	100
CDR31BX392B	3,900	K,M	BX	100
CDR31BX472B	4,700	K,M	BX	100
CDR31BX562A	5,600	K,M	BX	50
CDR31BX682A	6,800	K,M	BX	50
CDR31BX822A	8,200	K,M	BX	50
CDR31BX103A	10,000	K,M	BX	50
CDR31BX123A	12,000	K,M	BX	50
CDR31BX153A	15.000	K,M	BX	50
CDR31BX183A	18.000	K,M	BX	50

Add appropriate failure rate

Add appropriate termination finish

Capacitance Tolerance

^{1/} The complete part number will include additional symbols to indicate capacitance tolerance, termination and failure rate level.

### **Military Part Number Identification CDR32**



#### CDR32 to MIL-PRF-55681/8

Military Type Designation 1/	Capacitance in pF	Capacitance Tolerance	Rated temperature and Voltage- Temperature Limits	WVDC
AVX Style 12	206/CDR32	(BP)		
CDR32BP1R0B	1.0	B,C	BP	100
CDR32BP1R1B	1.1	B,C	BP	100
CDR32BP1R2B	1.2	B,C	BP	100
CDR32BP1R3B	1.3	B,C	BP	100
CDR32BP1R5B	1.5	B,C	BP	100
CDR32BP1R6B	1.6	B,C	BP	100
CDR32BP1R8B	1.8	B,C	BP	100
CDR32BP2R0B	2.0	B,C	BP	100
CDR32BP2R2B	2.2	B,C	BP	100
CDR32BP2R4B	2.4	B,C	BP	100
CDR32BP2R7B CDR32BP3R0B CDR32BP3R3B	2.7 3.0 3.3	B,C,D B,C,D B,C,D	BP BP BP BP	100 100 100
CDR32BP3R6B CDR32BP3R9B CDR32BP4R3B	3.6 3.9 4.3	B,C,D B,C,D B,C,D	BP BP	100 100 100
CDR32BP4R7B	4.7	B,C,D	BP	100
CDR32BP5R1B	5.1	B,C,D	BP	100
CDR32BP5R6B	5.6	B,C,D	BP	100
CDR32BP6R2B	6.2	B,C,D	BP	100
CDR32BP6R8B CDR32BP7R5B CDR32BP8R2B CDR32BP9R1B CDR32BP100B	6.8 7.5 8.2 9.1	B,C,D B,C,D B,C,D B,C,D FJ,K	BP BP BP BP BP	100 100 100 100 100
CDR32BP110B	11	F,J,K	BP	100
CDR32BP120B	12	FJ,K	BP	100
CDR32BP130B	13	FJ,K	BP	100
CDR32BP150B	15	FJ,K	BP	100
CDR32BP160B CDR32BP180B CDR32BP200B CDR32BP220B CDR32BP240B	16	FJ,K	BP	100
	18	FJ,K	BP	100
	20	F,J,K	BP	100
	22	FJ,K	BP	100
	24	F,J,K	BP	100
CDR32BP270B CDR32BP300B CDR32BP330B CDR32BP360B	27	FJ,K	BP	100
	30	FJ,K	BP	100
	33	F,J,K	BP	100
	36	FJ,K	BP	100
CDR32BP390B	39	F,J,K	BP	100
CDR32BP430B	43	FJ,K	BP	100
CDR32BP470B	47	FJ,K	BP	100
CDR32BP510B	51	F,J,K	BP	100
CDR32BP560B	56	FJ,K	BP	100
CDR32BP620B	62	F,J,K	BP	100
CDR32BP680B	68	FJ,K	BP	100
CDR32BP750B	75	FJ,K	BP	100
CDR32BP820B CDR32BP910B	82 91	F,J,K FJ,K	BP BP	100 100 100

Add appropriate failure rate	
Add appropriate termination finish	
Capacitance Tolerance	

Military Type Designation <u>1</u> /	Capacitance in pF	Capacitance Tolerance	Rated Temperature and Voltage- Temperature Limits	WVDC
AVX Style 12	206/CDR32	(BP) con	t'd	
CDR32BP101B CDR32BP111B CDR32BP121B CDR32BP151B CDR32BP151B	100 110 120 130 150	FJ,K FJ,K FJ,K FJ,K	BP BP BP BP	100 100 100 100 100
CDR32BP161B CDR32BP201B CDR32BP221B CDR32BP241B CDR32BP271B	160 180 200 220 240 270	FJ,K F,J,K FJ,K FJ,K FJ,K FJ.K	BP BP BP BP BP	100 100 100 100 100 100
CDR32BP301B CDR32BP331B CDR32BP361B CDR32BP391B CDR32BP431B	300 330 360 390 430	F,J,K FJ,K F,J,K FJ,K FJ,K	BP BP BP BP BP	100 100 100 100 100
CDR32BP471B CDR32BP511B CDR32BP561B CDR32BP621B CDR32BP681B	470 510 560 620 680	F,J,K FJ,K F,J,K FJ,K FJ,K	BP BP BP BP	100 100 100 100 100
CDR32BP751B CDR32BP821B CDR32BP911B CDR32BP102B CDR32BP112A	750 820 910 1,000 1,100	F,J,K FJ,K F,J,K FJ,K FJ,K	BP BP BP BP BP	100 100 100 100 50
CDR32BP122A— CDR32BP132A— CDR32BP152A— CDR32BP162A— CDR32BP182A—	1,200 1,300 1,500 1,600 1,800	F,J,K FJ,K F,J,K FJ,K FJ,K	BP BP BP BP	50 50 50 50 50
CDR32BP202A CDR32BP222A AVX Style 12	2,000 2,200 206/CDR32	F,J,K FJ,K ( <b>BX</b> )	BP BP	50 50
CDR32BX472B CDR32BX562B CDR32BX682B CDR32BX822B	4,700 5,600 6,800 8,200	K,M K,M K,M K,M	BX BX BX BX	100 100 100 100
CDR32BX103B CDR32BX123B CDR32BX153B CDR32BX183A	10,000 12,000 15.000 18.000	K,M K,M K,M K,M	BX BX BX BX	100 100 100 50
CDR32BX223A CDR32BX273A CDR32BX333A CDR32BX393A	22,000 27,000 33.000 39.000	K,M K,M K,M K,M	BX BX BX BX	50 50 50 50

Add appropriate failure rate

Add appropriate termination finish

Capacitance Tolerance

^{1/} The complete part number will include additional symbols to indicate capacitance tolerance, termination and failure rate level.





#### CDR33/34/35 to MIL-PRF-55681/9/10/11

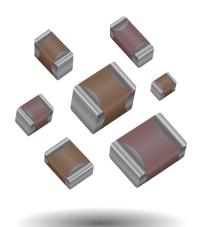
Military Type Designation <u>1</u> /	Capacitance in pF	Capacitance tolerance	Rated temperature and voltage- temperature limits	WVDC
AVX Style 12	10/CDR33	(BP)		
CDR33BP102B CDR33BP112B CDR33BP122B	1,000 1,100 1,200	FJ,K FJ,K FJ,K	BP BP BP	100 100 100
CDR33BP132B CDR33BP152B	1,300 1,500	FJ,K FJ,K	BP BP	100
CDR33BP162B CDR33BP182B CDR33BP202B CDR33BP222B CDR33BP242A	1,600 1,800 2,000 2,200 2,400	FJ,K F,J,K FJ,K F,J,K FJ,K	BP BP BP BP BP	100 100 100 100 50
CDR33BP272A CDR33BP302A CDR33BP332A	2,700 3,000 3,300	FJ,K F,J,K FJ,K	BP BP BP	50 50 50
AVX Style 12	10/CDR33	(BX)		
CDR33BX153B— CDR33BX183B— CDR33BX223B— CDR33BX273B— CDR33BX393A— CDR33BX473A— CDR33BX563A— CDR33BX683A— CDR33BX823A— CDR33BX823A— CDR33BX104A—	15.000 18.000 22,000 27.000 39.000 47.000 56.000 68.000 82,000 100,000	K,M K,M K,M K,M K,M K,M K,M K,M	BX BX BX BX BX BX BX BX BX BX	100 100 100 100 50 50 50 50 50
AVX Style 18	12/CDR34	(BP)		
CDR34BP222B— CDR34BP242B— CDR34BP302B— CDR34BP332B— CDR34BP362B— CDR34BP392B— CDR34BP432B— CDR34BP472B— CDR34BP472B— CDR34BP512A— CDR34BP562A— CDR34BP622A— CDR34BP622A— CDR34BP752A— CDR34BP752A— CDR34BP822A— CDR34BP822A—	2,200 2,400 2,700 3,000 3,300 3,600 3,900 4,300 4,700 5,100 5,600 6,200 6,800 7,500 8,200 9,100	67 K 67 K 67 K 67 K 67 K 67 K 67 K 67 K	BP BP BP BP BP BP BP BP BP BP BP	100 100 100 100 100 100 100 100 50 50 50 50 50 50

- Add appropriate failure rate
- Add appropriate termination finish
Canacitance Tolerance

Military Type Designation 1/	Capacitance in pF	Capacitance tolerance	Rated temperature and voltage- temperature limits	WVDC		
AVX Style 18	12/CDR34	(BX)				
CDR34BX273B CDR34BX333B CDR34BX393B CDR34BX473B CDR34BX1563B CDR34BX104A CDR34BX154A CDR34BX154A CDR34BX184A	27.000 33.000 39.000 47.000 56.000 100,000 120,000 150.000 180.000	K,M K,M K,M K,M K,M K,M K,M	BX BX BX BX BX BX BX BX BX	100 100 100 100 100 50 50 50		
AVX Style 18	25/CDR35	(BP)				
CDR35BP472B— CDR35BP562B— CDR35BP62B— CDR35BP622B— CDR35BP622B— CDR35BP822B— CDR35BP912B— CDR35BP912B— CDR35BP13A— CDR35BP13A— CDR35BP153A— CDR35BP153A— CDR35BP163A— CDR35BP163A— CDR35BP163A— CDR35BP163A— CDR35BP163A— CDR35BP163A— CDR35BP163A— CDR35BP163A— CDR35BP163A— CDR35BP163A— CDR35BP163A— CDR35BP163A— CDR35BP163A— CDR35BP23A—	4,700 5,100 5,600 6,200 6,800 7,500 8,200 9,100 10,000 11,000 12,000 13,000 15,000 16,000 18,000 20,000 22,000	(BX) E1'K E1'K E1'K E1'K E1'K E1'K E1'K E1'K	BP BP BP BP BP BP BP BP BP BP BP BP BP B	100 100 100 100 100 100 100 100 50 50 50 50 50 50 50		
AVX Style 18	325/CDR35	(RX)	T	1		
CDR35BX563B CDR35BX8633B CDR35BX104B CDR35BX124B CDR35BX154B CDR35BX124A CDR35BX224A CDR35BX2274A CDR35BX334A CDR35BX394A CDR35BX394A CDR35BX34A CDR35BX34A CDR35BX34A	56.000 68.000 82,000 100,000 120,000 150.000 180.000 220,000 270.000 330.000 470.000	K,M K,M K,M K,M K,M K,M K,M K,M K,M K,M	BX BX BX BX BX BX BX BX BX BX BX BX	100 100 100 100 100 100 50 50 50 50 50		

Add appropriate failure rate

Add appropriate termination finish


Capacitance Tolerance

^{1/} The complete part number will include additional symbols to indicate capacitance tolerance, termination and failure rate level.

### **MLCC Medical Applications – MM Series**

### **General Specifications**



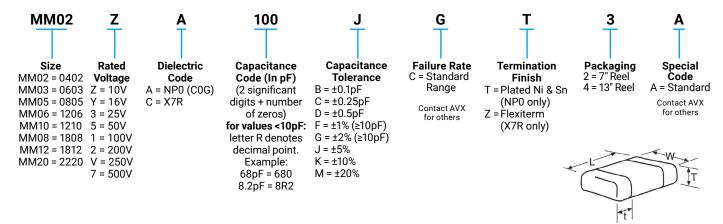


The AVX MM series is a multi-layer ceramic capacitor designed for use in medical applications other than implantable/life support. These components have the design & change control expected for medical devices and also offer enhanced LAT including reliability testing and 100% inspection.

#### **APPLICATIONS**

#### Implantable, Non-Life Supporting Medical Devices

· e.g. implanted temporary cardiac monitor, insulin pumps


#### **External, Life Supporting Medical Devices**

· e.g. heart pump external controller

#### **External Devices**

· e.g. patient monitoring, diagnostic equipment

#### **HOW TO ORDER**



#### **COMMERCIAL VS MM SERIES PROCESS COMPARISON**

	Commercial	MM Series				
Administrative	Standard part numbers; no restriction on who purchases these parts	Specific series part number, used to control supply of product				
Design	Minimum ceramic thickness of 0.020" on all X7R product	Minimum ceramic thickness of 0.022" (0.56mm)				
Dicing	Side & end margins = 0.003" min	Side & end margins = 0.004" min Cover layers = 0.003" min				
Lot Qualification Destructive Physical Analysis (DPA)	As per EIA RS469	Increased sample plan – stricter criteria				
Visual/Cosmetic Quality	Standard process and inspection	100% inspection				
Application Robustness	Standard sampling for accelerated wave solder on X7R dielectrics	Increased sampling for accelerated wave solder on X7R and NP0 followed by lot by lot reliability testing				
Design/Change Control	Required to inform customer of changes in:     form     fit     function	AVX will qualify and notify customers before making any change to the following materials or processes:  • Dielectric formulation, type, or supplier  • Metal formulation, type, or supplier  • Termination material formulation, type, or supplier  • Manufacturing equipment type  • Quality testing regime including sample size and accept/ reject criteria				



### NP0 (C0G) - Specifications & Test Methods

Parame	ter/Test	NP0 Specification Limits	Measuring Conditions					
Operating Tem		-55°C to +125°C	Temperature Cycle Chamber					
	itance Q	Within specified tolerance <30 pF: Q≥ 400+20 x Cap Value ≥30 pF: Q≥ 1000	Freq.: 1.0 MHz ± 10% for cap ≤ 1000 pF 1.0 kHz ± 10% for cap > 1000 pF Voltage: 1.0Vrms ± .2V					
Insulation	Resistance	100,000MΩ or 1000MΩ - μF, whichever is less	Charge device with rated voltage for 60 ± 5 secs @ room temp/humidity					
Dielectric	: Strength	No breakdown or visual defects	Charge device with 300% of rated voltage for 1-5 seconds, w/charge and discharge current limited to 50 mA (max) Note: Charge device with 150% of rated voltage for 500V devices.					
	Appearance	No defects	Deflection: 2mm					
Resistance to	Capacitance Variation	±5% or ±.5 pF, whichever is greater	Test Time: 30 seconds  7 1mm/sec					
Flexure Stresses	Q	Meets Initial Values (As Above)						
	Insulation Resistance	≥ Initial Value x 0.3	90 mm —					
Solder	rability	≥ 95% of each terminal should be covered with fresh solder	Dip device in eutectic solder at 230 ± 5°C for 5.0 ± 0.5 seconds					
	Appearance	No defects, <25% leaching of either end terminal	-					
	Capacitance Variation	≤ ±2.5% or ±.25 pF, whichever is greater						
Resistance to Solder Heat	Q	Meets Initial Values (As Above)	Dip device in eutectic solder at 260°C for 60 seconds. Store at room temperature for 24 ± 2					
	Insulation Resistance	Meets Initial Values (As Above)	hours before measuring electrical properties.					
	Dielectric Strength	Meets Initial Values (As Above)						
	Appearance	No visual defects	Step 1: -55°C ± 2° 30 ± 3 minutes					
	Capacitance Variation	≤ ±2.5% or ±.25 pF, whichever is greater	Step 2: Room Temp ≤ 3 minutes					
Thermal Shock	Q	Meets Initial Values (As Above)	Step 3: +125°C ± 2° 30 ± 3 minutes					
	Insulation Resistance	Meets Initial Values (As Above)	Step 4: Room Temp ≤ 3 minutes					
	Dielectric Strength	Meets Initial Values (As Above)	Repeat for 5 cycles and measure after 24 hours at room temperature					
	Appearance	No visual defects	-					
	Capacitance Variation	≤ ±3.0% or ± .3 pF, whichever is greater	Charge device with twice rated voltage in test chamber set at 125°C ± 2°C					
Load Life	Q	≥ 30 pF: Q≥ 350 ≥10 pF, <30 pF: Q≥ 275 +5C/2 <10 pF: Q≥ 200 +10C	for 1000 hours (+48, -0).					
	Insulation Resistance	≥ Initial Value x 0.3 (See Above)	room temperature for 24 hours before measuring.					
	Dielectric Strength	Meets Initial Values (As Above)	before measuring.					
	Appearance	No visual defects						
	Capacitance Variation	≤ ±5.0% or ± .5 pF, whichever is greater	Store in a test chamber set at 85°C ± 2°C/ 85%					
Load Humidity	Q	≥ 30 pF: Q≥ 350 ≥10 pF, <30 pF: Q≥ 275 +5C/2 <10 pF: Q≥ 200 +10C	± 5% relative humidity for 1000 hours (+48, -0) with rated voltage applied.  Remove from chamber and stabilize at room temperature for 24 ± 2 hours before measuring.					
	Insulation Resistance	≥ Initial Value x 0.3 (See Above)						
	Dielectric Strength	Meets Initial Values (As Above)						



### **NP0/C0G Capacitance Range**

#### **PREFERRED SIZES ARE SHADED**

S	ΖE			06	03				0805		1206				
	١	NVDC	16	25	50	100	16	25	50	100	16	25	50	100	
Cap (	0.5	0R5													
	1.0	1R0													
	1.2	1R2													
	1.5	1R5													
	1.8	1R8													
	2.2	2R2													
	2.7	2R7													
	3.3	3R3													
	3.9	3R9													
	1.7	4R7													
	5.6	5R6													
	5.8	6R8													
	3.2	8R2													
	10	100													
	12	120													
	15	150													
	18	180													
	22 27	220 270													
		330													
	33 39	330													
	47 47	470													
	56	560													
	68	680				-									
	82	820													
	00	101													
	20	121													
	50	151													
	80	181													
	20	221													
	70	271													
	30	331													
3	90	391				İ									
	70	471				İ									
5	60	561				ĺ									
	80	681													
	20	821													
	00	102													
	00	122													
	00	152													
W	VDC		16	25	50	100	16	25	50	100	16	25	50	100	
SIZE				06	03				0805		1206				



### **X7R Specifications and Test Methods**

Parame	ter/Test	X7R Specification Limits	Measuring (	Conditions				
	perature Range	-55°C to +125°C	Temperature C	ycle Chamber				
Capac	itance	Within specified tolerance						
C	)	$\leq$ 10% for $\geq$ 50V DC rating $\leq$ 12.5% for 25V DC rating $\leq$ 12.5% for 25V and 16V DC rating $\leq$ 12.5% for $\leq$ 10V DC rating	Freq.: 1.0 kHz ± 10% Voltage: 1.0Vrms ± .2V					
Insulation	Resistance	100,000MΩ or 1000MΩ - μF, whichever is less	Charge device with rate secs @ room to					
Dielectric	: Strength	No breakdown or visual defects	Charge device with 300% of rated voltage for 1-5 seconds, w/charge and discharge current limited to 50 mA (max) Note: Charge device with 150% of rated voltage for 500V devices.					
	Appearance	No defects	Deflectio	n: 2mm				
Resistance to	Capacitance Variation	≤ ±12%	Test Time: 3					
Flexure Stresses	Dissipation Factor	Meets Initial Values (As Above)	V V					
	Insulation Resistance	≥ Initial Value x 0.3	90 n					
Solder		≥ 95% of each terminal should be covered with fresh solder	Dip device in eutectic for 5.0 ± 0.5					
	Appearance	No defects, <25% leaching of either end terminal	_					
	Capacitance Variation	≤ ±7.5%						
Resistance to Solder Heat	Dissipation Factor	Meets Initial Values (As Above)	Dip device in eutectic solder at 260°C for 60 seconds. Store at room temperature for 24 ± 2 hours before measuring electrical properties.					
Coluct Float	Insulation Resistance	Meets Initial Values (As Above)	hours before measuring	g electrical properties.				
	Dielectric Strength	Meets Initial Values (As Above)						
	Appearance	No visual defects	Step 1: -55°C ± 2°	30 ± 3 minutes				
	Capacitance Variation	≤ ±7.5%	Step 2: Room Temp	≤ 3 minutes				
Thermal Shock	Dissipation Factor	Meets Initial Values (As Above)	Step 3: +125°C ± 2°	30 ± 3 minutes				
	Insulation Resistance	Meets Initial Values (As Above)	Step 4: Room Temp	≤ 3 minutes				
	Dielectric Strength	Meets Initial Values (As Above)	Repeat for 5 cycles 24 ± 2 hours at ro					
	Appearance	No visual defects	_					
	Capacitance Variation	≤ ±12.5%	Charge device with 1.5 r test chamber set	ated voltage (≤ 10V) in at 125°C ± 2°C				
Load Life	Dissipation Factor	≤ Initial Value x 2.0 (See Above)	for 1000 hou	, ,				
	Insulation Resistance	≥ Initial Value x 0.3 (See Above)	Remove from test cha room temperature for	24 ± 2 hours before				
	Dielectric Strength	Meets Initial Values (As Above)	measu	iring.				
	Appearance	No visual defects						
	Capacitance Variation	≤ ±12.5%	Store in a test chamber:					
Load	Dissipation Factor	≤ Initial Value x 2.0 (See Above)	± 5% relative humidity for 1000 hours (+48, -0) with rated voltage applied.  Remove from chamber and stabilize at room temperature and humidity for 24 ± 2 hours before measuring.					
Humidity	Insulation Resistance	≥ Initial Value x 0.3 (See Above)						
	Dielectric Strength	Meets Initial Values (As Above)						



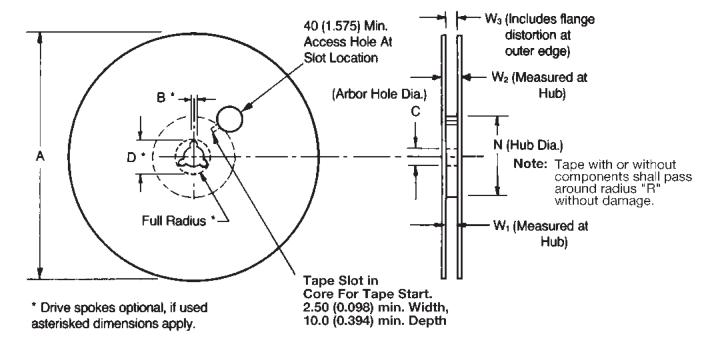
### **X7R Capacitance Range**

#### **PREFERRED SIZES ARE SHADED**

	SIZE	<b>.</b>	(	040	2			06	503					(	080	5						12	06							12	10				1	808	В		18	12		:	222	0
		WVDC	16	25	50	10	16	25	50	100	200	10	16	25	50	100	200	250	10	16	25	50	100	200	250	500	10	16	25	50	100	200	250	500	50	100	200	50	100	200	250	25	50	100
Сар	220	221			00		1.0	1	100	1.00	200						200	200				- 00	1.00		200	000						200		000	- 00						200			
(pF)	270	271																					t		$\Box$				T		$\Box$	$\neg$					П				т	П	г	$\overline{}$
(pi )	330	331						1															t								$\Box$	$\neg$									$\vdash$	П	г	$\overline{}$
	390	391						<del>                                     </del>	t	1	<del>                                     </del>														$\vdash$			$\vdash$	t	t	$\Box$										$\vdash$	М	М	$\overline{}$
	470	471						1		1	<u> </u>										$\vdash$		H		$\vdash$			$\vdash$	-		$\vdash$	_	$\neg$								$\vdash$	П	г	$\overline{}$
	560	561							1	1													$\vdash$		$\vdash$				t		$\vdash$	$\neg$				$\vdash$				$\vdash$	т	Н	г	$\overline{}$
	680	681						1		1													H						$\vdash$		H	$\dashv$								H	$\vdash$	Н	H	$\vdash$
	820	821						1		+													$\vdash$						<del>                                     </del>		$\vdash$	$\neg$									$\vdash$	М	М	$\vdash$
	1000	102						+		+													$\vdash$		$\vdash$			$\vdash$	$\vdash$		$\vdash$	$\dashv$					H				Н	Н	М	$\vdash$
	1200	122								+													$\vdash$		$\vdash$			$\vdash$	$\vdash$		$\vdash$	$\dashv$	_			$\vdash$				$\vdash$	Н	Н	Н	$\vdash$
	1500	152						╁	1	+					_																						H				$\vdash$	Н	H	$\vdash$
																									$\vdash$						$\vdash$				-	$\vdash$	$\vdash$		$\vdash$	$\vdash$	$\vdash$	Н	ш	$\vdash$
	1800	182																							$\vdash$											$\vdash$	Н		$\vdash$	$\vdash$	Н	Н	ш	$\vdash$
	2200	222																							$\vdash$						$\vdash$					$\vdash$	$\vdash$			$\vdash$	$\vdash$	Н	$\vdash$	$\vdash$
	2700	272																							$\vdash$						$\vdash$					$\vdash$	Н		$\vdash$	$\vdash$	$\vdash$	Н	$\vdash$	$\vdash$
	3300	332																							$\vdash$						$\vdash$		-			$\vdash$	Н		$\vdash$	$\vdash$	$\vdash$	Н	$\vdash$	$\vdash$
	3900	392			-		+-	+-	+-	+	-								-	-			┢		$\vdash$			-	-	-	$\vdash$	-	-			$\vdash$			-	-	₩	Н	$\vdash$	$\vdash$
	4700	472						1	1	+	-												⊢		$\vdash$				-		$\vdash$		_								$\vdash$	Н	$\vdash$	$\vdash$
	5600	562			-		-	+	$\vdash$	+	_				_								⊢		$\vdash$				-		$\vdash$	$\dashv$	-			$\vdash$			$\vdash$	H	$\vdash$	Н	<del></del>	$\vdash$
	6800	682			-		-	₩	-	+	-				_				-	-			⊢		$\vdash$			-	-	1	$\vdash$	-	-			$\vdash$			┢	<u> </u>	⊢	$\vdash$	├-	$\vdash$
	8200	822			₩		$\vdash$	₩	┈	╀	-								┢	┢			┢		$\vdash$		┝	-	┢	┢	H		-						┢			$\vdash$	ሥ	$\vdash$
	0.010	103						-	-	-	-									-	<u> </u>		⊢		$\vdash$				-	-	$\vdash$	-	-			H					$\blacksquare$	$\vdash$	⊢-'	$\vdash$
uF	0.012	123		L	-		-	-	<u> </u>	-	-				_								⊢		Н			-	-	-	$\vdash$		-						_			$\vdash$	⊢-'	⊢
	0.015	153		L	-		-	├	-														┡						_		$\vdash$								_			$\vdash$	<u> </u>	$\vdash$
	0.018	183		_	-		-	╄	-	-										_	_		┡					_	₩	-	$\sqcup$		_						-		$\blacksquare$	$\vdash$	<u> </u>	$\vdash$
	0.022	223		<u> </u>			-	₩	_	_	_									<u> </u>	_		┡		$\vdash$			<u> </u>	_	_	$\sqcup$		_						_		$\blacksquare$	$\vdash$	<b>└</b>	⊢
	0.027	273		<u> </u>			_	_	_											_			_						_		Ш					<u> </u>			_		$\blacksquare$	ш	<u> </u>	_
	0.033	333			_		_	_	<u> </u>											_									_	_	Ш		_									ш	<u> </u>	$\vdash$
	0.039	393			_		_	_	_											_	_		╙		$\sqcup$			_	_		ш		_			lacksquare						$\sqcup$	<u> </u>	$\vdash$
	0.047	473					<u> </u>	<u> </u>	_														_						_		Ш					_						ш	<u> </u>	
	0.056	563							<u> </u>																Ш						Ш											Ш	<u> </u>	
	0.068	683		$oxed{oxed}$	_						_						Ш								$\sqcup$											$\vdash$	Ш					$\sqcup$	<u> </u>	_
	0.082	823	_	$ldsymbol{ldsymbol{ldsymbol{eta}}}$	1												Ш								ш											$ldsymbol{ldsymbol{ldsymbol{eta}}}$	Ш					$\square$	<u> </u>	_
	0.10	104		$ldsymbol{ldsymbol{ldsymbol{eta}}}$													Ш								Ш											$oxed{oxed}$	Ш						<u> </u>	
	0.12	124		$oxed{oxed}$	_				_	_							Щ							$ldsymbol{ldsymbol{ldsymbol{eta}}}$	$\sqcup$											$oxed{oxed}$	Ш							
	0.15	154	_	$ldsymbol{ldsymbol{ldsymbol{eta}}}$	1				_	_							Щ							$oxed{oxed}$	$\sqcup$											$ldsymbol{ldsymbol{ldsymbol{eta}}}$	Ш							
	0.22	224		$oxedsymbol{oxed}$													Ш								Ш							[				$oxedsymbol{oxed}$	Ш							
	0.33	334																							$\sqcup$												$\Box$				$\Box$			
	0.47	474	L	L		L	L	L	$\perp$	$\perp$							oxdot						L	$\Box$	ШΙ						ШΙ	_]	I			L	oxdot			L	oxdot			
	0.56	564							L																Ш						$\Box$													
	0.68	684																													ШΤ		$\Box$ T											
	0.82	824																							Ш																			
	1.0	105																																										
	1.2	125																																										
	1.5	155																							П						П													
	WVD0		16	25	50	10	16	25	50	100	200	10	16	25	50	100	200	250	10	16	25	50	100	200	250	500	10	16	25	50	100	200	250	500	50	100	200	50	100	200	250	25	50	100
							, .,				,									, .,				,	,			, .,	,_,															
	SIZE	-	(	040	2			U	503					_ (	080	อ						12	U6							12	10				1	808	5		18	12			222	U

## **Packaging of Chip Components**






#### **TAPE & REEL QUANTITIES**

All tape and reel specifications are in compliance with RS481.

	4mm	8mm	12mm	
Paper or Embossed Carrier		0612, 0508, 0805, 1206, 1210		
Embossed Only	0101		1808	1812, 1825 2220, 2225
Paper Only		0101, 0201, 0306, 0402, 0603		
Qty. per Reel/7" Reel	4,000	1,000, 2,000, 3,000 or 4,000, 10,000, 15,000, 20,000 Contact factory for exact quantity	3,000	500, 1,000 Contact factory for exact quantity
Qty. per Reel/13" Reel		5,000, 10,000, 50,000 Contact factory for exact quantity	10,000	4,000

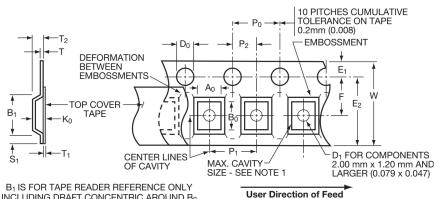
#### **REEL DIMENSIONS**

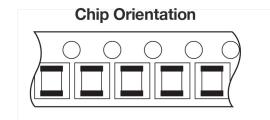


Tape Size ⁽¹⁾	A Max.	B* Min.	С	D* Min.	N Min.	<b>W</b> ₁	W ₂ Max.	W ₃
4mm	1.80 (7.087)	1.5 (0.059)	13.0±0.5 (0.522±0.020)	20.2 (0.795)	60.0 (2.362)	4.35±0.3 (0.171±0.011)	7.95 (0.312)	
8mm	330	1.5	13.0 ^{+0.50}	20.2	50.0	8.40 ^{+1.5} (0.331 ^{+0.059} )	14.4 (0.567)	7.90 Min. (0.311) 10.9 Max. (0.429)
12mm	(12.992)	(0.059)	(0.512 ^{+0.020} _{-0.008} )	(0.795)	(1.969)	12.4 ^{+2.0} (0.488 ^{+0.079} )	18.4 (0.724)	11.9 Min. (0.469) 15.4 Max. (0.607)

Metric dimensions will govern.

English measurements rounded and for reference only.


⁽¹⁾ For tape sizes 16mm and 24mm (used with chip size 3640) consult EIA RS-481 latest revision.




### **Embossed Carrier Configuration**

### 4, 8 & 12mm Tape Only



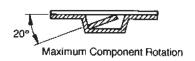


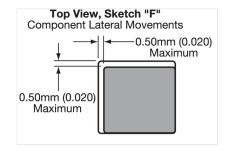


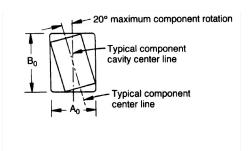
## INCLUDING DRAFT CONCENTRIC AROUND Bo

## 4, 8 & 12mm Embossed Tape Metric Dimensions Will Govern

#### **CONSTANT DIMENSIONS**


Tape Size	D _o	E ₁	P ₀	P ₂	S ₁ Min.	T Max.	T₁ Max.
4mm	0.80±0.04	0.90±0.05	2.0±0.04	1.00±0.02	1.075	0.26	0.06
	(0.031±0.001)	(0.035±0.001)	(0.078±0.001)	(0.039±0.0007)	(0.042)	(0.010)	(0.002)
8mm	$1.50_{ -0.0}^{ +0.10} \\ (0.059_{ -0.0}^{ +0.004})$	1.75 ± 0.10	4.0 ± 0.10	2.0 ± 0.05	0.60	0.60	0.10
& 12mm		(0.069 ± 0.004)	(0.157 ± 0.004)	(0.079 ± 0.002)	(0.024)	(0.024)	(0.004)

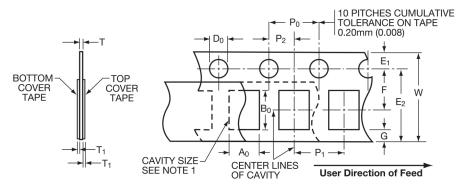

#### **VARIABLE DIMENSIONS**


Tape Size	B ₁ Max.	D ₁ Min.	E ₂ Min.	F	P ₁ See Note 5	R Min. See Note 2	T ₂	W Max.	$A_0 B_0 K_0$
8mm	4.35 (0.171)	1.00 (0.039)	6.25 (0.246)	3.50 ± 0.05 (0.138 ± 0.002)	4.00 ± 0.10 (0.157 ± 0.004)	25.0 (0.984)	2.50 Max. (0.098)	8.30 (0.327)	See Note 1
12mm	8.20 (0.323)	1.50 (0.059)	10.25 (0.404)	5.50 ± 0.05 (0.217 ± 0.002)	4.00 ± 0.10 (0.157 ± 0.004)	30.0 (1.181)	6.50 Max. (0.256)	12.3 (0.484)	See Note 1
8mm 1/2 Pitch	4.35 (0.171)	1.00 (0.039)	6.25 (0.246)	3.50 ± 0.05 (0.138 ± 0.002)	2.00 ± 0.10 (0.079 ± 0.004)	25.0 (0.984)	2.50 Max. (0.098)	8.30 (0.327)	See Note 1
12mm Double Pitch	8.20 (0.323)	1.50 (0.059)	10.25 (0.404)	5.50 ± 0.05 (0.217 ± 0.002)	8.00 ± 0.10 (0.315 ± 0.004)	30.0 (1.181)	6.50 Max. (0.256)	12.3 (0.484)	See Note 1

#### NOTES

- The cavity defined by A0, B0, and K0 shall be configured to provide the following: Surround the component with sufficient clearance such that:
  - b) the component does not protrude beyond the sealing plane of the cover tape.
  - c) the component can be removed from the cavity in a vertical direction without mechanical restriction, after the cover tape has been removed.
  - d) rotation of the component is limited to 20° maximum (see Sketches D & E).
  - e) lateral movement of the component is restricted to 0.5mm maximum (see Sketch F).
- 2. Tape with or without components shall pass around radius "R" without damage.
- 3. Bar code labeling (if required) shall be on the side of the reel opposite the round sprocket holes. Refer to EIA-556.
- 4. B₁ dimension is a reference dimension for tape feeder clearance only. 5. If P₁ = 2.0mm, the tape may not properly index in all tape feeders.








### **Paper Carrier Configuration**

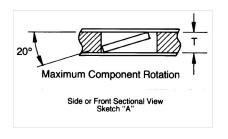
### 8 & 12mm Tape Only

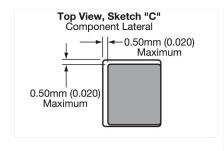


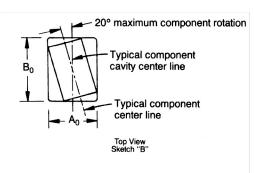


# 4, 8 & 12mm Embossed Tape Metric Dimensions Will Govern

#### **CONSTANT DIMENSIONS**


Tape Size	D _o	Е	P ₀	P ₂	T ₁	G. Min.	R Min.
8mm and 12mm	1.50 ^{+0.10} (0.059 ^{+0.004} )	1.75 ± 0.10 (0.069 ± 0.004)	4.00 ± 0.10 (0.157 ± 0.004)	2.00 ± 0.05 (0.079 ± 0.002)	0.10 (0.004) Max.	0.75 (0.030) Min.	25.0 (0.984) See Note 2 Min.


#### **VARIABLE DIMENSIONS**


Tape Size	P ₁ See Note 4	E ₂ Min.	F	w	A ₀ B ₀	Т
8mm	4.00 ± 0.10 (0.157 ± 0.004)	6.25 (0.246)	3.50 ± 0.05 (0.138 ± 0.002)	8.00 ^{+0.30} (0.315 ^{+0.012} (0.315 ^{+0.004} )	See Note 1	1.10mm (0.043) Max.
12mm	4.00 ± 0.10 (0.157 ± 0.004)	10.25 (0.404)	5.50 ± 0.05 (0.217 ± 0.002)	12.0 ± 0.30 (0.472 ± 0.012)		for Paper Base Tape and
8mm 1/2 Pitch	2.00 ± 0.05 (0.079 ± 0.002)	6.25 (0.246)	3.50 ± 0.05 (0.138 ± 0.002)	8.00 ^{+0.30} -0.10 (0.315 ^{+0.012} (0.304 )		1.60mm
12mm Double Pitch	8.00 ± 0.10 (0.315 ± 0.004)	10.25 (0.404)	5.50 ± 0.05 (0.217 ± 0.002)	12.0 ± 0.30 (0.472 ± 0.012)		(0.063) Max. for Non-Paper Base Compositions

#### NOTES:

- 1. The cavity defined by A0, B0, and T shall be configured to provide sufficient clearance surrounding the component so that:
  - a) the component does not protrude beyond either surface of the carrier tape;
- b)) the component can be removed from the cavity in a vertical direction without mechanical restriction after the top cover tape has been removed;
- c) rotation of the component is limited to 20° maximum (see Sketches A & B);
- d) lateral movement of the component is restricted to 0.5mm maximum (see Sketch C).
- 2. Tape with or without components shall pass around radius "R" without damage.
- Bar code labeling (if required) shall be on the side of the reel opposite the sprocket holes. Refer to EIA-556.
- 4. If  $P_1$  = 2.0mm, the tape may not properly index in all tape feeders.







# **Bar Code Labeling Standard**

AVX bar code labeling is available and follows latest version of EIA-556







#### I. Capacitance (farads)

English: 
$$C = \frac{.224 \text{ K A}}{T_{\text{D}}}$$
  
Metric:  $C = \frac{.0884 \text{ K A}}{T_{\text{D}}}$ 

#### II. Energy stored in capacitors (Joules, watt - sec)

$$E = \frac{1}{2} CV^2$$

#### III. Linear charge of a capacitor (Amperes)

$$I = C \frac{dV}{dt}$$

#### IV. Total Impedance of a capacitor (ohms)

$$Z = \sqrt{R_S^2 + (X_C - X_L)^2}$$

#### V. Capacitive Reactance (ohms)

$$x_{C} = \frac{1}{2 \pi fC}$$

#### VI. Inductive Reactance (ohms)

$$x_1 = 2 \pi fL$$

#### VII. Phase Angles:

Ideal Capacitors: Current leads voltage 90° Ideal Inductors: Current lags voltage 90° Ideal Resistors: Current in phase with voltage

#### VIII. Dissipation Factor (%)

D.F.= 
$$\tan \delta$$
 (loss angle) =  $\frac{\text{E.S.R.}}{\text{X}_{\text{C}}}$  = (2  $\pi$ fC) (E.S.R.)

#### IX. Power Factor (%)

P.F. = Sine (loss angle) =  $\cos \varphi$  (phase angle)

P.F. = (when less than 10%) = DF

#### X. Quality Factor (dimensionless)

Q = Cotan 
$$\delta$$
 (loss angle) =  $\frac{1}{D.F.}$ 

#### XI. Equivalent Series Resistance (ohms)

E.S.R. = (D.F.) (Xc) = (D.F.) / (2 
$$\pi$$
 fC)

#### XII. Power Loss (watts)

Power Loss =  $(2 \pi fCV^2)$  (D.F.)

#### XIII. KVA (Kilowatts)

 $KVA = 2 \pi fCV^2 \times 10^{-3}$ 

#### XIV. Temperature Characteristic (ppm/°C)

T.C. = 
$$\frac{Ct - C_{25}}{C_{25} (T_t - 25)} \times 10^6$$

#### XV. Cap Drift (%)

C.D. = 
$$\frac{C_1 - C_2}{C_1}$$
 x 100

#### XVI. Reliability of Ceramic Capacitors

$$\begin{array}{c} L_{o} = \left( \frac{V_{t}}{V_{o}} \right) X & \left( \frac{T_{t}}{T_{o}} \right) \end{array} \label{eq:loss_problem}$$

#### XVII. Capacitors in Series (current the same)

Any Number: 
$$\frac{1}{C_T} = \frac{1}{C_1} + \frac{1}{C_2} - \cdots \frac{1}{C_N}$$
 Two:  $C_T = \frac{C_1 C_2}{C_1 + C_2}$ 

#### XVIII. Capacitors in Parallel (voltage the same)

$$C_T = C_1 + C_2 --- + C_N$$

#### XIX. Aging Rate

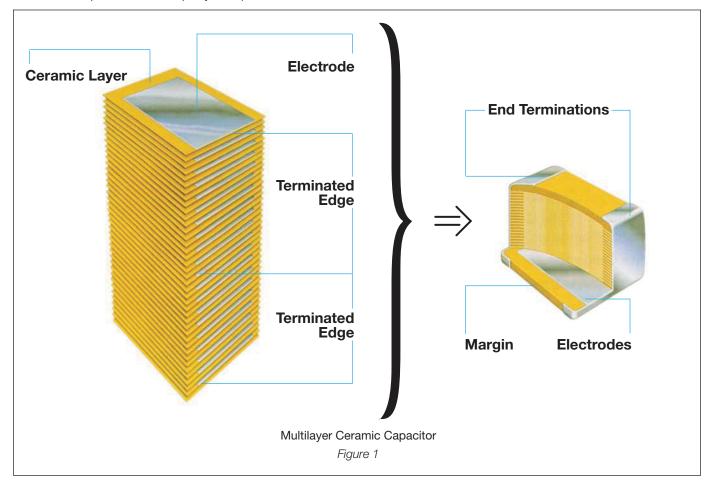
A.R. =  $\%\Delta$  C/decade of time

#### XX. Decibels

$$db = 20 \log \frac{V_1}{V_2}$$

#### **METRIC PREFIXES**

Dies	V 10-12
Pico	X 10 ⁻¹²
Nano	X 10 ⁻⁹
Micro	X 10 ⁻⁶
Milli	X 10 ⁻³
Deci	X 10 ⁻¹
Deca	X 10 ⁺¹
Kilo	X 10 ⁺³
Mega	X 10 ⁺⁶
Giga	X 10 ⁺⁹
Tera	X 10 ⁺¹²


#### **SYMBOLS**

K = Dielectric Constant	f = frequency	L _t = Test life
A = Area	L = Inductance	V _t = Test voltage
T _D = Dielectric thickness	δ = Loss angle	V _o = Operating voltage
V = Voltage	φ = Phase angle	T _t = Test temperature
t = time	X & Y = exponent effect of voltage and temp.	T _o = Operating temperature
R _s = Series Resistance	L _o = Operating life	



**Basic Construction** – A multilayer ceramic (MLC) capacitor is a monolithic block of ceramic containing two sets of offset, interleaved planar electrodes that extend to two opposite surfaces of the ceramic dielectric. This simple structure requires a considerable amount of sophistication, both in material and manufacture, to produce it in the quality and quantities needed in

today's electronic equipment.



Formulations – Multilayer ceramic capacitors are available in both Class 1 and Class 2 formulations. Temperature compensating formulation are Class 1 and temperature stable and general application formulations are classified as Class 2.

Class 1 – Class 1 capacitors or temperature compensating capacitors are usually made from mixtures of titanates where barium titanate is normally not a major part of the mix. They have predictable temperature coefficients and in general, do not have an aging characteristic. Thus they are the most stable capacitor available. The most popular Class 1 multilayer ceramic capacitors are COG (NPO) temperature compensating capacitors (negative-positive 0 ppm/°C).

Class 2 – EIA Class 2 capacitors typically are based on the chemistry of barium titanate and provide a wide range of capacitance values and temperature stability. The most commonly used Class 2 dielectrics are X7R and Y5V. The X7R provides intermediate capacitance values which vary only ±15% over the temperature range of -55°C to 125°C. It finds applications where stability over a wide temperature range is required.

The Y5V provides the highest capacitance values and is used in applications where limited temperature changes are expected. The capacitance value for Y5V can vary from 22% to -82% over the -30°C to 85°C temperature range.

All Class 2 capacitors vary in capacitance value under the influence of temperature, operating voltage (both AC and DC), and frequency. For additional information on performance changes with operating conditions, consult AVX's software, SpiCap.





Table 1: EIA and MIL Temperature Stable and General Application Codes

EIA CODE Percent Capacity Change Over Temperature Range						
RS198	Temperature Range					
X7	-55°C to +125°C					
X6	-55°C to +105°C					
X5	-55°C to +85°C					
Y5	-30°C to +85°C					
Z5	+10°C to +85°C					
Code	Percent Capacity Change					
D	±3.3%					
l E	±4.7%					
F	±7.5%					
Р	±10%					
R	±15%					
S	±22%					
Т Т	+22%, -33%					
U	+22%, - 56%					
V	+22%, -82%					

EXAMPLE – A capacitor is desired with the capacitance value at 25°C to increase no more than 7.5% or decrease no more than 7.5% from -30°C to +85°C. EIA Code will be Y5F.

MIL CODE								
Symbol	Tempera	Temperature Range						
Α	-55°C t	to +85°C						
В	-55°C to	o +125°C						
С	-55°C to	o +150°C						
Oh al	Cap. Change	Cap. Change						
Symbol	Zero Volts	Rated Volts						
R	+15%, -15%	+15%, -40%						
S	+22%, -22%	+22%, -56%						
W	+22%, -56%	+22%, -66%						
X	+15%, -15%	+15%, -25%						
Y	+30%, -70%	+30%, -80%						
<b>l</b> 7	+20%, -20%	+20%30%						

Temperature characteristic is specified by combining range and change symbols, for example BR or AW. Specification slash sheets indicate the characteristic applicable to a given style of capacitor.

In specifying capacitance change with temperature for Class 2 materials, EIA expresses the capacitance change over an operating temperature range by a 3 symbol code. The first symbol represents the cold temperature end of the temperature range, the second represents the upper limit of the operating temperature range and the third symbol represents the capacitance change allowed over the operating temperature range. Table 1 provides a detailed explanation of the EIA system.

Effects of Voltage – Variations in voltage have little effect on Class 1 dielectric but does affect the capacitance and dissipation factor of Class 2 dielectrics. The application of DC voltage reduces both the capacitance and dissipation factor while the application of an AC voltage within a reasonable range tends to increase both capacitance and dissipation factor readings. If a high enough AC voltage is applied, eventually it will reduce capacitance just as a DC voltage will. Figure 2 shows the effects of AC voltage.

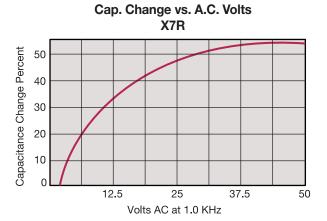



Figure 2

Capacitor specifications specify the AC voltage at which to measure (normally 0.5 or 1 VAC) and application of the wrong voltage can cause spurious readings. Figure 3 gives the voltage coefficient of dissipation factor for various AC voltages at 1 kilohertz. Applications of different frequencies will affect the percentage changes versus voltages.

# D.F. vs. A.C. Measurement Volts X7R

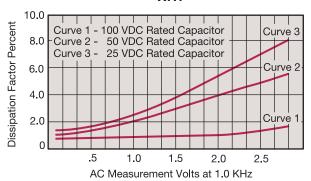
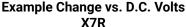
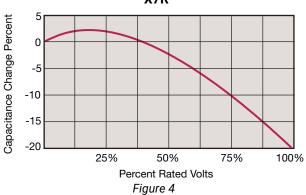





Figure 3

Typical effect of the application of DC voltage is shown in Figure 4. The voltage coefficient is more pronounced for higher K dielectrics. These figures are shown for room temperature conditions. The combination characteristic known as voltage temperature limits which shows the effects of rated voltage over the operating temperature range is shown in Figure 5 for the military BX characteristic.







#### **Example Cap. Change vs. Temperature** X7R

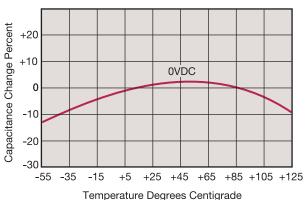



Figure 5

Effects of Time - Class 2 ceramic capacitors change capacitance and dissipation factor with time as well as temperature, voltage and frequency. This change with time is known as aging. Aging is caused by a gradual re-alignment of the crystalline structure of the ceramic and produces an exponential loss in capacitance and decrease in dissipation factor versus time. A typical curve of aging rate for semistable ceramics is shown in Figure 6.

If a Class 2 ceramic capacitor that has been sitting on the shelf for a period of time, is heated above its curie point, (125°C for 4 hours or 150°C for 1/2 hour will suffice) the part will de-age and return to its initial capacitance and dissi-pation factor readings. Because the capacitance changes rapidly, immediately after de-aging, the basic capacitance measurements are normally referred to a time period sometime after the de-aging process. Various manufacturers use different time bases but the most popular one is one day or twentyfour hours after "last heat." Change in the aging curve can be caused by the application of voltage and other stresses. The possible changes in capacitance due to de-aging by heating the unit explain why capacitance changes are allowed after test, such as temperature cycling, moisture resistance, etc., in MIL specs. The application of high voltages such as dielectric withstanding voltages also tends to de-age capacitors and is why re-reading of capacitance after 12 or 24 hours is allowed in military specifications after dielectric strength tests have been performed.

#### **Example Curve of Aging Rate** X7R

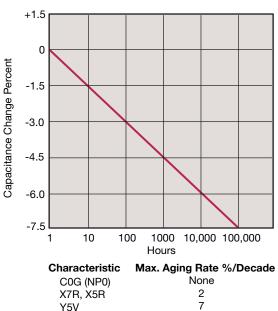



Figure 6

Effects of Frequency - Frequency affects capacitance and impedance characteristics of capacitors. This effect is much more pronounced in high dielectric constant ceramic formulation than in low K formulations. AVX's SpiCap software generates impedance, ESR, series inductance, series resonant frequency and capacitance all as functions of frequency, temperature and DC bias for standard chip sizes and styles. It is available free from AVX and can be downloaded for free from AVX website: www.avx.com.







**Effects of Mechanical Stress** – High "K" dielectric ceramic capacitors exhibit some low level piezoelectric reactions under mechanical stress. As a general statement, the piezoelectric output is higher, the higher the dielectric constant of the ceramic. It is desirable to investigate this effect before using high "K" dielectrics as coupling capacitors in extremely low level applications.

**Reliability** – Historically ceramic capacitors have been one of the most reliable types of capacitors in use today. The approximate formula for the reliability of a ceramic capacitor is:

$$\frac{L_o}{L_t} = \left(\frac{V_t}{V_o}\right) X \left(\frac{T_t}{T_o}\right) Y$$

where

 $L_o$  = operating life  $T_t$  = test temperature and  $L_t$  = test life  $T_o$  = operating temperature  $V_t$  = test voltage  $T_o$  = operating temperature

 $V_0$  = operating voltage X,Y = see text

Historically for ceramic capacitors exponent X has been considered as 3. The exponent Y for temperature effects typically tends to run about 8.

A capacitor is a component which is capable of storing electrical energy. It consists of two conductive plates (electrodes) separated by insulating material which is called the dielectric. A typical formula for determining capacitance is:

$$C = \frac{.224 \text{ KA}}{t}$$

C = capacitance (picofarads)

K = dielectric constant (Vacuum = 1)

A = area in square inches

t = separation between the plates in inches (thickness of dielectric)

.224 = conversion constant (.0884 for metric system in cm)

**Capacitance** – The standard unit of capacitance is the farad. A capacitor has a capacitance of 1 farad when 1 coulomb charges it to 1 volt. One farad is a very large unit and most capacitors have values in the micro (10-6), nano (10-9) or pico (10-12) farad level.

**Dielectric Constant** – In the formula for capacitance given above the dielectric constant of a vacuum is arbitrarily chosen as the number 1. Dielectric constants of other materials are then compared to the dielectric constant of a vacuum.

**Dielectric Thickness** – Capacitance is indirectly proportional to the separation between electrodes. Lower voltage requirements mean thinner dielectrics and greater capacitance per volume.

**Area** – Capacitance is directly proportional to the area of the electrodes. Since the other variables in the equation are usually set by the performance desired, area is the easiest parameter to modify to obtain a specific capacitance within a material group.

**Energy Stored** – The energy which can be stored in a capacitor is given by the formula:

$$E = \frac{1}{2}CV^2$$

E = energy in joules (watts-sec)

V = applied voltage

C = capacitance in farads

**Potential Change** – A capacitor is a reactive component which reacts against a change in potential across it. This is shown by the equation for the linear charge of a capacitor:

$$I_{ideal} = C \frac{dV}{dt}$$

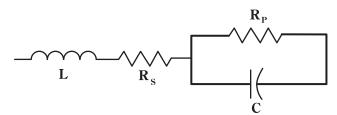
where

I = Current

C = Capacitance

dV/dt = Slope of voltage transition across capacitor

Thus an infinite current would be required to instantly change the potential across a capacitor. The amount of current a capacitor can "sink" is determined by the above equation.


**Equivalent Circuit** – A capacitor, as a practical device, exhibits not only capacitance but also resistance and inductance. A simplified schematic for the equivalent circuit is:

C = Capacitance

L = Inductance

**R**_s = Series Resistance

R_p = Parallel Resistance



**Reactance** – Since the insulation resistance (Rp) is normally very high, the total impedance of a capacitor is:

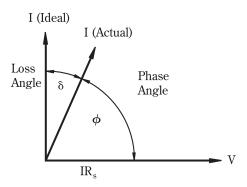
$$Z = \sqrt{R_S^2 + (X_C - X_L)^2}$$

where

**Z** = Total Impedance

R_s = Series Resistance

 $X_c$  = Capacitive Reactance =  $\frac{1}{2\pi}$ 


 $X_1$  = Inductive Reactance = 2

 $= \frac{1}{2 \pi fC}$ 

The variation of a capacitor's impedance with frequency determines its effectiveness in many applications.

**Phase Angle** – Power Factor and Dissipation Factor are often confused since they are both measures of the loss in a capacitor under AC application and are often almost identical in value. In a "perfect" capacitor the current in the capacitor will lead the voltage by 90°.





In practice the current leads the voltage by some other phase angle due to the series resistance RS. The complement of this angle is called the loss angle and:

Power Factor (P.F.) = Cos  $\phi$  or Sine  $\delta$  Dissipation Factor (D.F.) =  $\tan \delta$ 

for small values of the tan and sine are essentially equal which has led to the common interchangeability of the two terms in the industry.

**Equivalent Series Resistance** – The term E.S.R. or Equivalent Series Resistance combines all losses both series and parallel in a capacitor at a given frequency so that the equivalent circuit is reduced to a simple R-C series connection.

**Dissipation Factor** – The DF/PF of a capacitor tells what percent of the apparent power input will turn to heat in the capacitor.

Dissipation Factor = 
$$\frac{\text{E.S.R.}}{X_{\odot}}$$
 = (2  $\pi$  fC) (E.S.R.)

The watts loss are:

Watts loss =  $(2 \pi fCV^2)$  (D.F.)

Very low values of dissipation factor are expressed as their reciprocal for convenience. These are called the "Q" or Quality factor of capacitors.

Parasitic Inductance – The parasitic inductance of capacitors is becoming more and more important in the decoupling of today's high speed digital systems. The relationship between the inductance and the ripple voltage induced on the DC voltage line can be seen from the simple inductance equation:

$$V = L \frac{di}{dt}$$

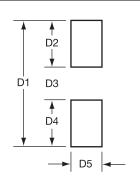
The  $\frac{cli}{cl}$  seen in current microprocessors can be as high as 0.3 A/ns, and up to 10A/ns. At 0.3 A/ns, 100pH of parasitic inductance can cause a voltage spike of 30mV. While this does not sound very drastic, with the Vcc for microprocessors decreasing at the current rate, this can be a fairly large percentage.

Another important, often overlooked, reason for knowing the parasitic inductance is the calculation of the resonant frequency. This can be important for high frequency, bypass capacitors, as the resonant point will give the most signal attenuation. The resonant frequency is calculated from the simple equation:

$$f_{res} = \frac{1}{2\pi\sqrt{LC}}$$

**Insulation Resistance** – Insulation Resistance is the resistance measured across the terminals of a capacitor and consists principally of the parallel resistance RP shown in the equivalent circuit. As capacitance values and hence the area of dielectric increases, the I.R. decreases and hence the product (C x IR or RC) is often specified in ohm farads or more commonly megohm-microfarads. Leakage current is determined by dividing the rated voltage by IR (Ohm's Law).

**Dielectric Strength** – Dielectric Strength is an expression of the ability of a material to withstand an electrical stress. Although dielectric strength is ordinarily expressed in volts, it is actually dependent on the thickness of the dielectric and thus is also more generically a function of volts/mil.


**Dielectric Absorption** – A capacitor does not discharge instantaneously upon application of a short circuit, but drains gradually after the capacitance proper has been discharged. It is common practice to measure the dielectric absorption by determining the "reappearing voltage" which appears across a capacitor at some point in time after it has been fully discharged under short circuit conditions.

**Corona** – Corona is the ionization of air or other vapors which causes them to conduct current. It is especially prevalent in high voltage units but can occur with low voltages as well where high voltage gradients occur. The energy discharged degrades the performance of the capacitor and can in time cause catastrophic failures.

### **MLC Chip Capacitors**



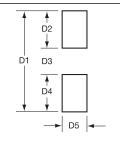
#### **REFLOW SOLDERING**



Case Size	D1	D2	D3	D4	D5
0201	0.85 (0.033)	0.30 (0.012)	0.25 (0.010)	0.30 (0.012)	0.35 (0.014)
0402	1.70 (0.067)	0.60 (0.024)	0.50 (0.020)	0.60 (0.024)	0.50 (0.020)
0603	2.30 (0.091)	0.80 (0.031)	0.70 (0.028)	0.80 (0.031)	0.75 (0.030)
0805	3.00 (0.118)	1.00 (0.039)	1.00 (0.039)	1.00 (0.039)	1.25 (0.049)
1206	4.00 (0.157)	1.00 (0.039)	2.00 (0.079)	1.00 (0.039)	1.60 (0.063)
1210	4.00 (0.157)	1.00 (0.039)	2.00 (0.079)	1.00 (0.039)	2.50 (0.098)
1808	5.60 (0.220)	1.00 (0.039)	3.60 (0.142)	1.00 (0.039)	2.00 (0.079)
1812	5.60 (0.220)	1.00 (0.039)	3.60 (0.142)	1.00 (0.039)	3.00 (0.118)
1825	5.60 (0.220)	1.00 (0.039)	3.60 (0.142)	1.00 (0.039)	6.35 (0.250)
2220	6.60 (0.260)	1.00 (0.039)	4.60 (0.181)	1.00 (0.039)	5.00 (0.197)
2225	6.60 (0.260)	1.00 (0.039)	4.60 (0.181)	1.00 (0.039)	6.35 (0.250)

Dimensions in millimeters (inches)

#### **Component Pad Design**


Component pads should be designed to achieve good solder filets and minimize component movement during reflow soldering. Pad designs are given below for the most common sizes of multilayer ceramic capacitors for both wave and reflow soldering. The basis of these designs is:

· Pad width equal to component width. It is permissible to

decrease this to as low as 85% of component width but it is not advisable to go below this.

- · Pad overlap 0.5mm beneath component.
- Pad extension 0.5mm beyond components for reflow and 1.0mm for wave soldering.

#### **WAVE SOLDERING**



Case Size	D1	D2	D3	D4	D5
0603	3.10 (0.12)	1.20 (0.05)	0.70 (0.03)	1.20 (0.05)	0.75 (0.03)
0805	4.00 (0.15)	1.50 (0.06)	1.00 (0.04)	1.50 (0.06)	1.25 (0.05)
1206	5.00 (0.19)	1.50 (0.06)	2.00 (0.09)	1.50 (0.06)	1.60 (0.06)

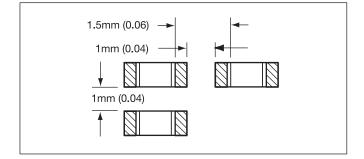
Dimensions in millimeters (inches)

#### **Component Spacing**

For wave soldering components, must be spaced sufficiently far apart to avoid bridging or shadowing (inability of solder to penetrate properly into small spaces). This is less important for reflow soldering but sufficient space must be allowed to enable rework should it be required.

#### **Preheat & Soldering**

The rate of preheat should not exceed 4°C/second to prevent thermal shock. A better maximum figure is about 2°C/second.


For capacitors size 1206 and below, with a maximum thickness of 1.25mm, it is generally permissible to allow a temperature differential from preheat to soldering of 150°C. In all other cases this differential should not exceed 100°C.

For further specific application or process advice, please consult AVX.

#### Cleaning

Care should be taken to ensure that the capacitors are thoroughly cleaned of flux residues especially the space beneath the capacitor. Such residues may otherwise become conductive and effectively offer a low resistance bypass to the capacitor.

Ultrasonic cleaning is permissible, the recommended conditions being 8 Watts/litre at 20-45 kHz, with a process cycle of 2 minutes vapor rinse, 2 minutes immersion in the ultrasonic solvent bath and finally 2 minutes vapor rinse.



### **Recommended Soldering Profiles**



#### **REFLOW SOLDER PROFILES**

AVX RoHS compliant products utilize termination finishes (e.g.Sn or SnAg) that are compatible with all Pb-Free soldering systems and are fully reverse compatible with SnPb soldering systems. A recommended SnPb profile is shown for comparison; for Pb-Free soldering, IPC/ JEDECJ- STD-020C may be referenced. The upper line in the chart shows the maximum envelope to which products are qualified (typically 3x reflow cycles at 260°C max). The center line gives the recommended profile for optimum wettability and soldering in Pb-Free Systems.

#### Preheat:

The pre-heat stabilizes the part and reduces the temperature differential prior to reflow. The initial ramp to 125°C may be rapid, but from that point (2-3)°C/sec is recommended to allow ceramic parts to heat uniformly and plastic encapsulated parts to stabilize through the glass transition temperature of the body ( $\sim 180$ °C).

#### Reflow:

In the reflow phase, the maximum recommended time > 230°C is 40secs. Time at peak reflow is 10secs max.; optimum reflow is achieved at 250°C, (see wetting balance chart opposite) but products are qualified to 260°C max. Please reference individual product datasheets for maximum limits

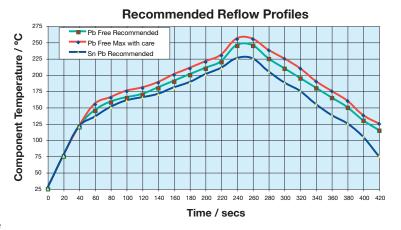
#### Cool Down

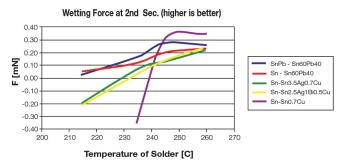
Cool down should not be forced and 6°C/sec is recommended. A slow cool down will result in a finer grain structure of the reflow solder in the solder fillet.

#### **WAVE SOLDER PROFILES**

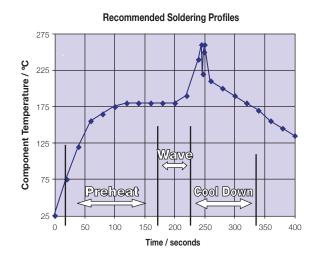
For wave solder, there is no change in the recommended wave profile; all standard Pb-Free (SnCu/SnCuAg) systems operate at the same 260°C max recommended for SnPb systems.

#### **Preheat:**


This is more important for wave solder; a higher temperature preheat will reduce the thermal shock to SMD parts that are immersed (please consult individual product data sheets for SMD parts that are suited to wave solder). SMD parts should ideally be heated from the bottom-Side prior to wave. PTH (Pin through hole) parts on the topside should not be separately heated.


#### Wave:

250°C - 260°C recommended for optimum solderability.


#### **Cool Down:**

As with reflow solder, cool down should not be forced and 6°C/sec is recommended. Any air knives at the end of the 2nd wave should be heated.





IMPORTANT NOTE: Typical Pb-Free reflow solders have a more dull and grainy appearance compared to traditional SnPb. Elevating the reflow temperature will not change this, but extending the cool down can help improve the visual appearance of the joint.





#### **MLC Chip Capacitors**



#### **APPLICATION NOTES**

#### **Storage**

The components should be stored in their "as received packaging" where possible. If the components are removed from their original packaging then they should be stored in an airtight container (e.g. a heat sealed plastic bag) with desiccant (e.g. silica gel). Storage area temperature should be kept between +5 degrees C and +30 degrees C with humidity < 70% RH. Storage atmosphere must be free of gas containing sulfur and chlorine. Avoid exposing the product to saline moisture or to temperature changes that might result in the formation of condensation. To assure good solderability performance we recommend that the product be used within 6 months from our shipping date, but can be used for up to 12 months. Chip capacitors may crack if exposed to hydrogen (H2) gas while sealed or if coated with silicon, which generates hydrogen gas.

#### Solderability

Terminations to be well soldered after immersion in a 60/40 tin/lead solder bath at  $245^{\circ}\text{C}$  +/-  $5^{\circ}\text{C}$  for 5 +0/-0.5 seconds.

#### Leaching

Terminations will resist leaching for at least the immersion times and conditions shown below.

Termination Type	Solder Tin/	Solder	Immersion
	Lead/Silver	Temp °C	Time Seconds
Nickel Barrier	60/40/0	260 ± 5	30 ± 1

#### **Lead-Free Wave Soldering**

The recommended peak temperature for lead-free wave soldering is 250°C-260°C for 3-5 seconds. The other parameters of the profile remains the same as above.

The following should be noted by customers changing from lead based systems to the new lead free pastes.

- A. The visual standards used for evaluation of solder joints will need to be modified as lead free joints are not as bright as with tin-lead pastes and the fillet may not be as large.
- B. Lead-free solder pastes do not allow the same self alignment as lead containing systems. Standard mounting pads are acceptable, but machine set up may need to be modified.

#### General

Surface mounting chip multilayer ceramic capacitors are designed for soldering to printed circuit boards or other substrates. The construction of the components is such that they will withstand the time/temperature profiles used in both wave and reflow soldering methods.

#### Handling

Chip multilayer ceramic capacitors should be handled with care to avoid damage or contamination from perspiration and skin oils. The use of tweezers or vacuum pick ups is strongly recommended for individual components. Bulk handling should ensure that abrasion and mechanical shock are minimized. Taped and reeled components provides the ideal medium for direct presentation to the placement machine. Any mechanical shock should be minimized during handling chip multilayer ceramic capacitors.

#### **Preheat**

It is important to avoid the possibility of thermal shock during soldering and carefully controlled preheat is therefore required. The rate of preheat should not exceed 4°C/second and a target figure 2°C/second is recommended. Although an 80°C to 120°C temperature differential is preferred, recent developments allow a temperature differential between the component surface and the soldering temperature of 150°C (Maximum) for capacitors of 1210 size and below with a maximum thickness of 1.25mm. The user is cautioned that the risk of thermal shock increases as chip size or temperature differential increases.

#### Soldering

Mildly activated rosin fluxes are preferred. The minimum amount of solder to give a good joint should be used. Excessive solder can lead to damage from the stresses caused by the difference in coefficients of expansion between solder, chip and substrate. AVX terminations are suitable for all wave and reflow soldering systems. If hand soldering cannot be avoided, the preferred technique is the utilization of hot air soldering tools.

#### Cooling

Natural cooling in air is preferred, as this minimizes stresses within the soldered joint. When forced air cooling is used, cooling rate should not exceed 4°C/second. Quenching is not recommended but if used, maximum temperature differentials should be observed according to the preheat conditions above.

#### Cleaning

Flux residues may be hygroscopic or acidic and must be removed. AVX MLC capacitors are acceptable for use with all of the solvents described in the specifications MIL-STD-202 and EIA-RS-198. Alcohol based solvents are acceptable and properly controlled water cleaning systems are also acceptable. Many other solvents have been proven successful, and most solvents that are acceptable to other components on circuit assemblies are equally acceptable for use with ceramic capacitors.

#### Prevention of Metallic Migration

Note that when components with Sn plating on the end terminations are to be used in applications that are likely to experience conditions of high humidity under bias voltage, we strongly recommend that the circuit boards be conformally coated to protect the Sn from moisture that might lead to migration and eventual current leakage.

When using Capacitor Arrays we recommend that there is no differential in applied voltage between adjacent elements.



### **MLC Chip Capacitors**



#### **POST SOLDER HANDLING**

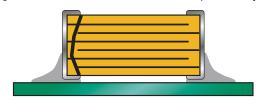
Once SMP components are soldered to the board, any bending or flexure of the PCB applies stresses to the soldered joints of the components. For leaded devices, the stresses are absorbed by the compliancy of the metal leads and generally don't result in problems unless the stress is large enough to fracture the soldered connection.

Ceramic capacitors are more susceptible to such stress because they don't have compliant leads and are brittle in nature. The most frequent failure mode is low DC resistance or short circuit. The second failure mode is significant loss of capacitance due to severing of contact between sets of the internal electrodes.

Cracks caused by mechanical flexure are very easily identified and generally take one of the following two general forms:

Mechanical cracks are often hidden underneath the termination and are difficult to see externally. However, if one end termination falls off during the removal process from PCB, this is one indication that the cause of failure was excessive mechanical stress due to board warping.

# COMMON CAUSES OF MECHANICAL CRACKING

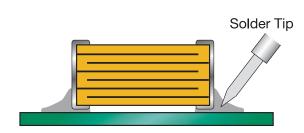

The most common source for mechanical stress is board depanelization equipment, such as manual breakapart, v-cutters and shear presses. Improperly aligned or dull cutters may cause torqueing of the PCB resulting in flex stresses being transmitted to components near the board edge. Another common source of flexural stress is contact during parametric testing when test points are probed. If the PCB is allowed to flex during the test cycle, nearby ceramic capacitors may be broken.

A third common source is board to board connections at vertical connectors where cables or other PCBs are connected to the PCB. If the board is not supported during the plug/unplug cycle, it may flex and cause damage to nearby components.

Special care should also be taken when handling large (>6" on a side) PCBs since they more easily flex or warp than smaller boards.



Type A: Angled crack between bottom of device to top of solder joint.



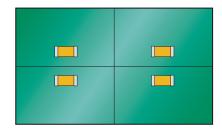

Type B: Fracture from top of device to bottom of device.

#### **REWORKING OF MLCS**

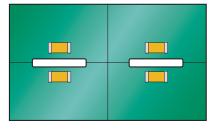
Thermal shock is common in MLCs that are manually attached or reworked with a soldering iron. AVX strongly recommends that any reworking of MLCs be done with hot air reflow rather than soldering irons. It is practically impossible to cause any thermal shock in ceramic capacitors when using hot air reflow.

However direct contact by the soldering iron tip often causes thermal cracks that may fail at a later date. If rework by soldering iron is absolutely necessary, it is recommended that the wattage of the iron be less than 30 watts and the tip temperature be <300°C. Rework should be performed by applying the solder iron tip to the pad and not directly contacting any part of the ceramic capacitor.




Preferred Method - No Direct Part Contact




Poor Method - Direct Contact with Part

#### **PCB BOARD DESIGN**

To avoid many of the handling problems, AVX recommends that MLCs be located at least .2" away from nearest edge of board. However when this is not possible, AVX recommends that the panel be routed along the cut line, adjacent to where the MLC is located.



No Stress Relief for MLCs



Routed Cut Line Relieves Stress on MLC





# FOLLOW US: O 🗷 🖪 D in

VISIT US AT WWW.AVX.COM ▶

**North America** 

Tel: +1 864-967-2150

**Central America** Tel: +55 11-46881960 Europe

Tel: +44 1276-697000

Asia

Tel: +65 6286-7555

Japan

Tel: +81 740-321250