Zener Voltage Regulators

250 mW SOT-23 Surface Mount

BZX84BxxxLT1G, BZX84CxxxLT1G Series, SZBZX84BxxxLT1G, SZBZX84CxxxLT1G Series

This series of Zener diodes is offered in the convenient, surface mount plastic SOT-23 package. These devices are designed to provide voltage regulation with minimum space requirement. They are well suited for applications such as cellular phones, hand held portables, and high density PC boards.

Features

- 250 mW Rating on FR-4 or FR-5 Board
- Zener Breakdown Voltage Range - 2.4 V to 75 V
- Package Designed for Optimal Automated Board Assembly
- Small Package Size for High Density Applications
- ESD Rating of Class 3 (> 16 kV) per Human Body Model
- Tight Tolerance Series Available (See Page 4)
- SZ Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable
- These Devices are $\mathrm{Pb}-$ Free and are RoHS Compliant

Mechanical Characteristics

CASE: Void-free, transfer-molded, thermosetting plastic case
FINISH: Corrosion resistant finish, easily Solderable
MAXIMUM CASE TEMPERATURE FOR SOLDERING PURPOSES:
$260^{\circ} \mathrm{C}$ for 10 Seconds
POLARITY: Cathode indicated by polarity band
FLAMMABILITY RATING: UL $94 \mathrm{~V}-0$

[^0]COT-23
CASE 318
STYLE 8
\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

DEVICE MARKING INFORMATION

See specific marking information in the device marking column of the Electrical Characteristics table on page 3 of this data sheet.

BZX84BxxxLT1G, BZX84CxxxLT1G Series, SZBZX84BxxxLT1G, SZBZX84CxxxLT1G Series

MAXIMUM RATINGS

Rating	Symbol	Max	Unit
Total Power Dissipation on FR-5 Board,	P_{D}		
(Note 1) @ $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		250	mW
Derated above $25^{\circ} \mathrm{C}$		2.0	$\mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Thermal Resistance, Junction-to-Ambient	$\mathrm{R}_{\theta \mathrm{JA}}$	500	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Total Power Dissipation on Alumina	P_{D}		
Substrate, (Note 2) @ $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		300	mW
Derated above $25^{\circ} \mathrm{C}$		2.4	$\mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Thermal Resistance, Junction-to-Ambient	$\mathrm{R}_{\text {日JA }}$	417	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Junction and Storage Temperature Range	$\mathrm{T}_{\mathrm{J}}, \mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. $F R-5=1.0 \times 0.75 \times 0.62$ in.
2. Alumina $=0.4 \times 0.3 \times 0.024 \mathrm{in} ., 99.5 \%$ alumina.

ELECTRICAL CHARACTERISTICS

(Pinout: 1-Anode, 2-No Connection, 3-Cathode) $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted, $\mathrm{V}_{\mathrm{F}}=0.90 \mathrm{~V}$ Max. @ $\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$)

Symbol	Parameter
V_{Z}	Reverse Zener Voltage @ I_{ZT}
I_{ZT}	Reverse Current
Z_{ZT}	Maximum Zener Impedance @ I_{ZT}
I_{R}	Reverse Leakage Current @ V_{R}
V_{R}	Reverse Voltage
I_{F}	Forward Current
V_{F}	Forward Voltage @ I_{F}
$\Theta \mathrm{V}_{\mathrm{Z}}$	Maximum Temperature Coefficient of V_{Z}
C	Max. Capacitance @ $\mathrm{V}_{\mathrm{R}}=0$ and $\mathrm{f}=1 \mathrm{MHz}$

BZX84BxxxLT1G, BZX84CxxxLT1G Series, SZBZX84BxxxLT1G, SZBZX84CxxxLT1G Series

ELECTRICAL CHARACTERISTICS - BZX84CxxxLT1 SERIES (STANDARD TOLERANCE)
(Pinout: 1-Anode, 2-No Connection, 3-Cathode) ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted, $\mathrm{V}_{\mathrm{F}}=0.90 \mathrm{~V}$ Max. @ $\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$) (Devices listed in bold, italic are onsemi Preferred devices.)

Device*	Device Marking	$\mathrm{V}_{\mathrm{Z} 1}$ (Volts) @ $\mathrm{I}_{\mathrm{ZT} 1}=5 \mathrm{~mA}$ (Note 3)			$\begin{gathered} \mathrm{z}_{\mathrm{ZT1} 1} \\ (\Omega) \\ @ \mathrm{I}_{\mathrm{ZT1} 1}= \\ 5 \mathrm{~mA} \end{gathered}$	$\begin{gathered} \mathrm{V}_{\mathrm{Z2}}(\mathrm{~V}) \\ \text { @ } \\ \mathrm{I}_{\mathrm{ZT2} 2}=1 \mathrm{~mA} \\ (\text { Note } 3) \end{gathered}$		$\begin{gathered} \mathrm{z}_{\mathrm{ZT} 2} \\ (\Omega) \\ @ \mathrm{I}_{\mathrm{ZT} 2}= \\ 1 \mathrm{~mA} \end{gathered}$	$\begin{gathered} \mathbf{V}_{Z 3}(\mathbf{V}) \\ @ \mathrm{I}_{\mathrm{ZT3} 3}=\mathbf{2 0} \mathbf{~ m A} \\ \text { (Note 3) } \end{gathered}$		$\begin{gathered} \mathrm{z}_{\mathrm{ZT3}} \\ (\Omega) \\ @ \mathrm{I}_{\mathrm{ZT3} 3}= \\ 20 \mathrm{~mA} \end{gathered}$	Max Reverse Leakage Current		$\begin{gathered} \theta_{\mathrm{VZ}} \\ (\mathrm{mV} / \mathrm{k}) \\ @ \mathrm{I} \mathrm{ZT} 1=5 \mathrm{~mA} \end{gathered}$		$\begin{gathered} C(p F) \\ @ V_{R}=0 \\ f=1 M H z \end{gathered}$
		Min	Nom	Max		Min	Max		Min	Max		$\begin{aligned} & \mathrm{I}_{\mathrm{R}} \\ & \mu \mathrm{~A} \end{aligned}$	V_{R} Volts	Min	Max	
BZX84C2V4LT1G	Z11	2.2	2.4	2.6	100	1.7	2.1	600	2.6	3.2	50	50	1	-3.5	0	450
BZX84C2V7LT1G	Z12	2.5	2.7	2.9	100	1.9	2.4	600	3	3.6	50	20	1	-3.5	0	450
BZX84C3V0LT1G	Z13	2.8	3	3.2	95	2.1	2.7	600	3.3	3.9	50	10	1	-3.5	0	450
BZX84C3V3LT1G	Z14	3.1	3.3	3.5	95	2.3	2.9	600	3.6	4.2	40	5	1	-3.5	0	450
BZX84C3V6LT1G	Z15	3.4	3.6	3.8	90	2.7	3.3	600	3.9	4.5	40	5	1	-3.5	0	450
BZX84C3V9LT1G	Z16	3.7	3.9	4.1	90	2.9	3.5	600	4.1	4.7	30	3	1	-3.5	-2.5	450
BZX84C4V3LT1G	w9	4	4.3	4.6	90	3.3	4	600	4.4	5.1	30	3	1	-3.5	0	450
BZX84C4V7LT1/T3G	Z1	4.4	4.7	5	80	3.7	4.7	500	4.5	5.4	15	3	2	-3.5	0.2	260
BZX84C5V1LT1/T3G	z2	4.8	5.1	5.4	60	4.2	5.3	480	5	5.9	15	2	2	-2.7	1.2	225
BZX84C5V6LT1/T3G	Z3	5.2	5.6	6	40	4.8	6	400	5.2	6.3	10	1	2	-2.0	2.5	200
BZX84C6V2LT1/T3G	z4	5.8	6.2	6.6	10	5.6	6.6	150	5.8	6.8	6	3	4	0.4	3.7	185
BZX84C6V8LT1/T3G	Z5	6.4	6.8	7.2	15	6.3	7.2	80	6.4	7.4	6	2	4	1.2	4.5	155
BZX84C7V5LT1G	Z6	7	7.5	7.9	15	6.9	7.9	80	7	8	6	1	5	2.5	5.3	140
BZX84C8V2LT1G	Z7	7.7	8.2	8.7	15	7.6	8.7	80	7.7	8.8	6	0.7	5	3.2	6.2	135
BZX84C9V1LT1/T3G	Z8	8.5	9.1	9.6	15	8.4	9.6	100	8.5	9.7	8	0.5	6	3.8	7.0	130
BZX84C10LT1G	Z9	9.4	10	10.6	20	9.3	10.6	150	9.4	10.7	10	0.2	7	4.5	8.0	130
BZX84C11LT1G	Y1	10.4	11	11.6	20	10.2	11.6	150	10.4	11.8	10	0.1	8	5.4	9.0	130
BZX84C12LT1G	Y2	11.4	12	12.7	25	11.2	12.7	150	11.4	12.9	10	0.1	8	6.0	10.0	130
BZX84C13LT1G	Y3	12.4	13	14.1	30	12.3	14	170	12.5	14.2	15	0.1	8	7.0	11.0	120
BZX84C15LT1/T3G	Y4	13.8	15	15.6	30	13.7	15.5	200	13.9	15.7	20	0.05	10.5	9.2	13.0	110
BZX84C16LT1G	Y5	15.3	16	17.1	40	15.2	17	200	15.4	17.2	20	0.05	11.2	10.4	14.0	105
BZX84C18LT1/T3G	Y6	16.8	18	19.1	45	16.7	19	225	16.9	19.2	20	0.05	12.6	12.4	16.0	100
BZX84C20LT1G	Y7	18.8	20	21.2	55	18.7	21.1	225	18.9	21.4	20	0.05	14	14.4	18.0	85
BZX84C22LT1G	Y8	20.8	22	23.3	55	20.7	23.2	250	20.9	23.4	25	0.05	15.4	16.4	20.0	85
BZX84C24LT1G	Y9	22.8	24	25.6	70	22.7	25.5	250	22.9	25.7	25	0.05	16.8	18.4	22.0	80
			$\begin{aligned} & I_{\mathrm{Z} 1} \text { Beld } \\ & I_{\mathrm{ZT} 1}=2 \end{aligned}$		$\mathrm{Z}_{\mathrm{ZT} 1}$ Below	$\begin{gathered} \mathrm{v}_{\mathrm{Z2}} \\ @ \mathrm{I}_{\mathrm{ZT2}} \end{gathered}$	$\begin{aligned} & \text { elow } \\ & 0.1 \mathrm{~m}- \end{aligned}$	$\mathrm{Z}_{\mathrm{ZT} 2}$ Below	$\begin{gathered} \mathrm{v}_{\mathrm{z3}} \mathrm{E} \\ @ \mathrm{I}_{\mathrm{zT3}} \end{gathered}$	$\begin{aligned} & \text { elow } \\ & 10 \mathrm{~mA} \end{aligned}$	$\mathbf{Z}_{\mathbf{Z T 3}}$ Below	Max Re Leak Curr	everse kage rent	$\begin{array}{r} \theta \\ (\mathrm{mV} / \mathrm{k} \\ @ \mathrm{I}_{\mathrm{ZT}} \end{array}$	Below 2 mA	C (pF)
Device*	Device Marking	Min	Nom	Max	$\underset{2 \mathrm{~mA} 1}{\mathrm{I}_{\mathrm{zT1}}}=$	Min	Max	$\begin{gathered} @ I_{\text {ZT4 }}= \\ 0.5 \mathrm{~mA} \end{gathered}$	Min	Max	$\begin{gathered} @ I_{\text {ZT3 }}= \\ 10 \mathrm{~mA} \end{gathered}$	$\begin{array}{ll} \mathrm{I}_{\mathrm{R}} \\ \mu \mathrm{~A} \end{array}$	$\begin{aligned} & V_{R} \\ & \text { (V) } \end{aligned}$	Min	Max	$\begin{aligned} & @ V_{R}=0 \\ & f=1 \mathrm{MHz} \end{aligned}$
BZX84C27LT1G	Y10	25.1	27	28.9	80	25	28.9	300	25.2	29.3	45	0.05	18.9	21.4	25.3	70
BZX84C30LT1G	Y11	28	30	32	80	27.8	32	300	28.1	32.4	50	0.05	21	24.4	29.4	70
BZX84C33LT1/T3G	Y12	31	33	35	80	30.8	35	325	31.1	35.4	55	0.05	23.1	27.4	33.4	70
BZX84C36LT1G	Y13	34	36	38	90	33.8	38	350	34.1	38.4	60	0.05	25.2	30.4	37.4	70
BZX84C39LT1G	Y14	37	39	41	130	36.7	41	350	37.1	41.5	70	0.05	27.3	33.4	41.2	45
BZX84C43LT1G	Y15	40	43	46	150	39.7	46	375	40.1	46.5	80	0.05	30.1	37.6	46.6	40
BZX84C47LT1G	Y16	44	47	50	170	43.7	50	375	44.1	50.5	90	0.05	32.9	42.0	51.8	40
BZX84C51LT1G	Y17	48	51	54	180	47.6	54	400	48.1	54.6	100	0.05	35.7	46.6	57.2	40
BZX84C56LT1G	Y18	52	56	60	200	51.5	60	425	52.1	60.8	110	0.05	39.2	52.2	63.8	40
BZX84C62LT1G	Y19	58	62	66	215	57.4	66	450	58.2	67	120	0.05	43.4	58.8	71.6	35
BZX84C68LT1G	Y20	64	68	72	240	63.4	72	475	64.2	73.2	130	0.05	47.6	65.6	79.8	35
BZX84C75LT1G	Y21	70	75	79	255	69.4	79	500	70.3	80.2	140	0.05	52.5	73.4	88.6	35

3. Zener voltage is measured with a pulse test current I_{Z} at an ambient temperature of $25^{\circ} \mathrm{C}$.
*Includes SZ-prefix devices where applicable.

BZX84BxxxLT1G, BZX84CxxxLT1G Series, SZBZX84BxxxLT1G, SZBZX84CxxxLT1G Series

ELECTRICAL CHARACTERISTICS - BZX84BxxxL (Tight Tolerance Series)
(Pinout: 1-Anode, 2-No Connection, 3-Cathode) ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted, $\mathrm{V}_{\mathrm{F}}=0.90 \mathrm{~V}$ Max. @ $\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$)

Device	Device Marking	$\mathrm{V}_{\mathrm{Z}} \text { (Volts) @ } \mathrm{I}_{\mathrm{ZT}}=5 \mathrm{~mA}$ (Note 4)			$\begin{gathered} \begin{array}{c} \mathbf{Z}_{\mathbf{Z T}}(\boldsymbol{\Omega}) @ \\ \mathbf{I}_{\mathrm{ZT}}=\mathbf{5} \mathbf{~ m A} \\ (\text { Note 4) } \end{array} \\ \text { Max } \end{gathered}$	Max Reverse Leakage Current		$\begin{gathered}\theta \mathrm{VZ} \\ (\mathrm{mV} / \mathrm{k}) \\ @ \mathrm{I}_{\mathrm{ZT}}=5 \mathrm{~mA}\end{gathered}, ~$		$\begin{gathered} C(p F) \\ @ V_{R}=0, \\ f=1 \mathrm{MHz} \end{gathered}$
						V_{R} Volts				
		Min	Nom	Max			Min	Max		
BZX84B3V3LT1G	T2A	3.23	3.3	3.37	95	5	1	-3.5	0	450
BZX84B4V7LT1G	T10	4.61	4.7	4.79	80	3	2	-3.5	0.2	260
BZX84B5V1LT1G	T11	5.00	5.1	5.20	60	2	2	-2.7	1.2	225
BZX84B5V6LT1G	T12	5.49	5.6	5.71	40	1	2	-2	2.5	200
BZX84B6V2LT1G	T13	6.08	6.2	6.32	10	3	4	0.4	3.7	185
BZX84B6V8LT1G	T14	6.66	6.8	6.94	15	2	4	1.2	4.5	155
BZX84B7V5LT1G	T15	7.35	7.5	7.65	15	1	5	2.5	5.3	140
BZX84B8V2LT1G	T16	8.04	8.2	8.36	15	0.7	5	3.2	6.2	135
BZX84B9V1LT1G, T3G	T17	8.92	9.1	9.28	15	0.5	6	3.8	7	130
BZX84B10LT1G	T2E	9.8	10	10.2	20	0.2	7	4.5	8	130
BZX84B12LT1G	T18	11.8	12	12.2	25	0.1	8	6	10	130
BZX84B15LT1G	T22	14.7	15	15.3	30	0.05	10.5	9.2	13	110
BZX84B16LT1G	T19	15.7	16	16.3	40	0.05	11.2	10.4	14	105
BZX84B18LT1G	T20	17.6	18	18.4	45	0.05	12.6	12.4	16	100
BZX84B22LT1G	T24	21.6	22	22.4	55	0.05	15.4	16.4	20	85
BZX84B24LT1G	T25	23.5	24	24.5	70	0.05	16.8	18.4	22	80

4. Zener voltage is measured with a pulse test current I_{Z} at an ambient temperature of $25^{\circ} \mathrm{C}$.

ELECTRICAL CHARACTERISTICS - BZX84BxxxL (Tight Tolerance Series)
(Pinout: 1-Anode, 2-No Connection, 3-Cathode) $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted, $\mathrm{V}_{\mathrm{F}}=0.90 \mathrm{~V}$ Max. @ $\left.\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}\right)$

Device*	Device Marking				$\begin{gathered} \begin{array}{c} \mathbf{z}_{\mathbf{Z T}}(\Omega) @ \\ \mathrm{I}_{\mathrm{zT}}=2 \mathrm{~mA} \\ (\text { Note } 4) \end{array} \\ \hline \text { Max } \end{gathered}$	Max Reverse Leakage Current			$\begin{gathered} \theta_{\mathrm{VZ}} \\ (\mathrm{mV} / \mathrm{k}) \\ @ \mathrm{I}_{\mathrm{ZT}}=2 \mathrm{~mA} \end{gathered}$		$\begin{gathered} c(p F) \\ @ V_{R}=0, \\ f=1 M H z \end{gathered}$
					I_{R} $\mu \mathrm{A}$	@	$\begin{gathered} V_{R} \\ \text { Volts } \end{gathered}$				
		Min	Nom	Max				Min	Max		
BZX84B27LT1G	T27	26.5	27	27.5	80	0.05		18.9	21.4	25.3	70

*Includes SZ-prefix devices where applicable.

TYPICAL CHARACTERISTICS

Figure 1. Temperature Coefficients (Temperature Range $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$)

Figure 3. Effect of Zener Voltage on Zener Impedance

Figure 2. Temperature Coefficients (Temperature Range $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$)

Figure 4. Typical Forward Voltage

TYPICAL CHARACTERISTICS

Figure 5. Typical Capacitance

Figure 7. Zener Voltage versus Zener Current (V_{Z} Up to 12 V)

Figure 6. Typical Leakage Current

Figure 8. Zener Voltage versus Zener Current (12 V to 91 V)

SOT-23 (TO-236)
CASE 318
ISSUE AT
DATE 01 MAR 2023

SCALE 4:1

DETAIL

NDTES:

1. DIMENSIDNING AND TQLERANCING PER ASME Y14.5M,1994.
2. CDNTRDLLING DIMENSIDN: MILLIMETERS
3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS DF THE BASE MATERIAL.
4. DIMENSIUNS D AND E DO NDT INCLUDE MDLD FLASH, PRDTRUSIINS, DR GATE BURRS.

DIM	MILLIMETERS		INCHES			
	MIN.	NDM.	MAX.	MIN.	NDM.	MAX.
A	0.89	1.00	1.11	0.035	0.039	0.044
A1	0.01	0.06	0.10	0.000	0.002	0.004
b	0.37	0.44	0.50	0.015	0.017	0.020
C	0.08	0.14	0.20	0.003	0.006	0.008
D	2.80	2.90	3.04	0.110	0.114	0.120
E	1.20	1.30	1.40	0.047	0.051	0.055
e	1.78	1.90	2.04	0.070	0.075	0.080
L	0.30	0.43	0.55	0.012	0.017	0.022
L1	0.35	0.54	0.69	0.014	0.021	0.027
H_{E}	2.10	2.40	2.64	0.083	0.094	0.104
T	0°	---	10°	0°	---	10°

XXX = Specific Device Code
M = Date Code

- = Pb-Free Package
*This information is generic. Please refer to device data sheet for actual part marking. $\mathrm{Pb}-\mathrm{Fr}$ dee indicator, " G " or microdot " P ", may or may not be present. Some products may not follow the Generic Marking.

RECDMMENDED M MUNTING FOUTPRINT

* For additional information on our Pb-Free strategy and soldering details, please download the QN Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

STYLES ON PAGE 2

| DOCUMENT NUMBER: | 98ASB42226B | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | SOT-23 (TO-236) | PAGE 1 OF 2 |

[^1] the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

STYLE 1 THRU 5: CANCELLED	STYLE 6: PIN 1. BASE 2. EMITTER 3. COLLECTOR	STYLE 7: PIN 1. EMITTER 2. BASE 3. COLLECTOR	STYLE 8: PIN 1. ANODE 2. NO CONNECTION 3. CATHODE		
STYLE 9: PIN 1. ANODE 2. ANODE 3. CATHODE	STYLE 10: PIN 1. DRAIN 2. SOURCE 3. GATE	STYLE 11: PIN 1. ANODE 2. CATHODE 3. CATHODE-ANODE	STYLE 12: PIN 1. CATHODE 2. CATHODE 3. ANODE	STYLE 13: PIN 1. SOURCE 2. DRAIN 3. GATE	STYLE 14: PIN 1. CATHODE 2. GATE 3. ANODE
STYLE 15: PIN 1. GATE 2. CATHODE 3. ANODE	STYLE 16: PIN 1. ANODE 2. CATHODE 3. CATHODE	STYLE 17: PIN 1. NO CONNECTION 2. ANODE 3. CATHODE	STYLE 18: PIN 1. NO CONNECTION 2. CATHODE 3. ANODE	STYLE 19: PIN 1. CATHODE 2. ANODE 3. CATHODE-ANODE	STYLE 20 : PIN 1. CATHODE 2. ANODE 3. GATE
STYLE 21: PIN 1. GATE 2. SOURCE 3. DRAIN	STYLE 22: PIN 1. RETURN 2. OUTPUT 3. INPUT	STYLE 23: PIN 1. ANODE 2. ANODE 3. CATHODE	STYLE 24: PIN 1. GATE 2. DRAIN 3. SOURCE	STYLE 25: PIN 1. ANODE 2. CATHODE 3. GATE	STYLE 26: PIN 1. CATHODE 2. ANODE 3. NO CONNECTION
STYLE 27: PIN 1. CATHODE 2. CATHODE 3. CATHODE	STYLE 28: PIN 1. ANODE 2. ANODE 3. ANODE				

DOCUMENT NUMBER:	98ASB42226B	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	SOT-23 (TO-236)		PAGE 2 OF 2

[^2]onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

[^0]: *For additional information on our $\mathrm{Pb}-$ Free strategy and soldering details, please download the onsemi Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

[^1]: onsemi and ONSEMi. are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves

[^2]: onsemi and OnSemi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

