

Low Capacitance, 4-/8-Channel, ±15 V/+12 V /CMOS Multiplexers

Data Sheet

ADG1208/ADG1209

FEATURES

<1 pC charge injection over full signal range
1 pF off capacitance
33 V supply range
120 Ω on resistance
Fully specified at ±15 V/+12 V
3 V logic compatible inputs
Rail-to-rail operation
Break-before-make switching action
Available in a 16-lead TSSOP, a 16-lead LFCSP, and a
16-lead SOIC
Typical power consumption < 0.03 μW

APPLICATIONS

Audio and video routing Automatic test equipment Data-acquisition systems Battery-powered systems Sample-and-hold systems Communication systems

GENERAL DESCRIPTION

The ADG1208 and ADG1209 are monolithic, *i*CMOS* analog multiplexers comprising eight single channels and four differential channels, respectively. The ADG1208 switches one of eight inputs to a common output as determined by the 3-bit binary address lines A0, A1, and A2. The ADG1209 switches one of four differential inputs to a common differential output as determined by the 2-bit binary address lines A0 and A1. An EN input on both devices enable or disable the device. When disabled, all channels are switched off. When on, each channel conducts equally well in both directions and has an input signal range that extends to the supplies.

The industrial CMOS (*i*CMOS) modular manufacturing process combines high voltage complementary metal-oxide semiconductor (CMOS) and bipolar technologies. It enables the development of a wide range of high performance analog ICs capable of 33 V operation in a footprint that no other generation of high voltage devices has been able to achieve. Unlike analog ICs using conventional CMOS processes, *i*CMOS components can tolerate high supply voltages while providing increased performance, dramatically lower power consumption, and reduced package size.

FUNCTIONAL BLOCK DIAGRAMS

Figure 1.

The ultralow capacitance and exceptionally low charge injection of these multiplexers make them ideal solutions for data acquisition and sample-and-hold applications, where low glitch and fast settling are required. Figure 2 shows that there is minimum charge injection over the entire signal range of the device. *i*CMOS construction also ensures ultralow power dissipation, making the devices ideally suited for portable and battery-powered instruments.

Figure 2. Source to Drain Charge Injection vs. Source Voltage

Rev. E

Document Feedback
Information furnished by Analog Devices is believed to be accurate and reliable. However, no
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other
rights of third parties that may result from its use. Specifications subject to change without notice. No
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.
Trademarks and registered trademarks are the property of their respective owners.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781.329.4700 ©2006–2016 Analog Devices, Inc. All rights reserved.
Technical Support www.analog.com

TABLE OF CONTENTS

Features 1
Applications1
Functional Block Diagrams1
General Description1
Revision History2
Specifications
Dual Supply
Single Supply
Absolute Maximum Ratings
REVISION HISTORY
6/2016—Rev. D to Rev. E
Changes to Analog Inputs Parameter, Table 3
Added Digital Inputs Parameter, Table 3
Moved Figure 710
Change to Table 710
Deleted Table 8; Renumbered Sequentially11
Updated Outline Dimensions
Changes to Ordering Guide
3/2016—Rev. C to Rev. D
Changes to Table 4 Title8
Changes to Table 5 Title9
Changes to Table 7 Title10
Changes to Figure 711
Added Table 8; Renumbered Sequentially11
Changes to Table 9 Title
8/2015—Rev. B to Rev. C
Changes to Features Section1
Added Figure 4; Renumbered Sequentially8
Changes to Table 48
Changes to Figure 59
Added Table 5; Renumbered Sequentially9
Added Figure 710
Changes to Table 710
Changes to Figure 811
Added Table 811
Updated Outline Dimensions
Changes to Ordering Guide20

ESD Caution	
Pin Configurations and Function Descriptions	8
Typical Performance Characteristics	12
Terminology	16
Test Circuits	17
Outline Dimensions	20
Ordering Guide	21

1/2009—Rev. A to Rev. B

14	I _{DD} Parameter, I	Change to
26	$I_{\rm DD}$ Parameter, T	Change to

4/2007—Rev. 0 to Rev. A

Added 16-lead SOIC	Universal
Changes to Table 1	3
Changes to Table 2	5
Changes to Figure 10 and Figure 11	10
Updated Outline Dimensions	17
Changes to Ordering Guide	18

4/2006—Revision 0: Initial Version

SPECIFICATIONS

DUAL SUPPLY

 $V_{DD} = +15 \; V \pm 10\%, \ V_{SS} = -15 \; V \pm 10\%, \ GND = 0 \; V, \ unless \ otherwise \ noted. \ Temperature \ range \ is \ as follows: Y \ version: -40°C \ to \ +125°C.$

Table 1.

Parameter	+25°C	–40°C to +85°C	−40°C to +125°C	Unit	Test Conditions/Comments
ANALOG SWITCH					
Analog Signal Range			V_{SS} to V_{DD}	V	
On Resistance, R _{ON}	120			Ωtyp	$V_s = \pm 10 \text{ V}$, $I_s = -1 \text{ mA}$, see Figure 31
	200	240	270	Ω max	$V_{DD} = +13.5 \text{ V}, V_{SS} = -13.5 \text{ V}$
On-Resistance Match Between Channels, ΔR _{ON}	3.5			Ωtyp	$V_S = \pm 10 \text{ V}, I_S = -1 \text{ mA}$
	6	10	12	Ω max	- , -
On-Resistance Flatness, R _{FLAT} (On)	20			Ωtyp	$V_s = -5 \text{ V/O V/+5 V. I}_s = -1 \text{ mA}$
011 1103 514 1100 114 11 10 11 10 11 10 11 10 11 10 11 10 11 11	64	76	83	Ω max	
LEAKAGE CURRENTS					
Source Off Leakage, Is (Off)	±0.003			nA typ	$V_D = \pm 10 \text{ V}, V_S = -10 \text{ V}, \text{ see Figure 32}$
55a.55 5.1. <u>15a.1.ag</u> 5, 15 (51.7)	±0.1	±0.6	±1	nA max	15 = 10 1, 15 10 1, 500 1 1ga 10 52
Drain Off Leakage, I _D (Off)	±0.003	_0.0		nA typ	$V_S = 1 \text{ V}/10 \text{ V}, V_D = 10 \text{ V}/1 \text{ V}, \text{ see Figure 32}$
ADG1208	±0.003	±0.6	±1	nA max	v ₃ =1 v ₇ 10 v ₇ v _D =10 v ₇ 1 v ₇ see11gate 32
ADG1200 ADG1209	±0.1	±0.6	±1	nA max	
Channel On Leakage, I _D , I _S (On)	±0.02	±0.0	<u> </u>		$V_S = V_D = \pm 10 \text{ V}$, see Figure 33
ADG1208		±0.6	1	nA typ nA max	$VS = VD = \pm 10 \text{ V, see Figure 33}$
	±0.2		±1		
ADG1209	±0.2	±0.6	±1	nA max	
DIGITAL INPUTS			2.0	., .	
Input High Voltage, V _{INH}			2.0	V min	
Input Low Voltage, V _{INL}			8.0	V max	
Input Current, I _{INL} or I _{INH}	±0.005			μA max	$V_{IN} = V_{INL} \text{ or } V_{INH}$
			±0.1	μA max	
Digital Input Capacitance, C _{IN}	2			pF typ	
DYNAMIC CHARACTERISTICS ¹					
Transition Time, t _{TRANSITION}	80			ns typ	$R_L = 300 \Omega, C_L = 35 pF$
	130	165	185	ns max	$V_s = 10 V$, see Figure 34
t _{on} (EN)	75			ns typ	$R_L = 300 \Omega, C_L = 35 pF$
	95	105	115	ns max	$V_S = 10 V$, see Figure 36
toff (EN)	83			ns typ	$R_L = 300 \Omega, C_L = 35 pF$
	100	125	140	ns max	$V_s = 10 V$, see Figure 36
Break-Before-Make Time Delay, t _{BBM}	25			ns typ	$R_L = 300 \Omega, C_L = 35 pF$
•			10	ns min	$V_{S1} = V_{S2} = 10 \text{ V, see Figure 35}$
Charge Injection	0.4			pC typ	$V_S = 0 \text{ V}, R_S = 0 \Omega, C_L = 1 \text{ nF, see Figure } 37$
Off Isolation	-85			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$, see Figure 3
Channel to Channel Crosstalk	-85			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$, see Figure 40
Total Harmonic Distortion Plus Noise	0.15			% typ	$R_L = 10 \text{ k}\Omega$, 5 V rms, $f = 20 \text{ Hz}$ to 20 kHz, see Figure 41
–3 dB Bandwidth	550			MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$, see Figure 39
C _s (Off)	1			pF typ	$f = 1 \text{ MHz}, V_S = 0 \text{ V}$
()	1.5			pF max	$f = 1 \text{ MHz}, V_S = 0 \text{ V}$ $f = 1 \text{ MHz}, V_S = 0 \text{ V}$
C _D (Off), ADG1208	6			pF typ	f = 1 MHz, Vs = 0 V f = 1 MHz, Vs = 0 V
C _D (OII), ADO 1200	7			pF typ pF max	f = 1 MHz, VS = 0 V f = 1 MHz, VS = 0 V
C _D (Off), ADG1209	3.5			pF max pF typ	f = 1 MHz, VS = 0 V f = 1 MHz, VS = 0 V
CD (OII), ADG1209	ر.د			pr ιyp	1 - 1 ΙΝΙΠΖ, VS - U V

Parameter	+25°C	–40°C to +85°C	–40°C to +125°C	Unit	Test Conditions/Comments
C _D , C _S (On), ADG1208	7			pF typ	$f = 1 \text{ MHz}, V_S = 0 \text{ V}$
	8			pF max	$f = 1 \text{ MHz}, V_S = 0 \text{ V}$
C _D , C _S (On), ADG1209	5			pF typ	$f = 1 \text{ MHz}, V_S = 0 \text{ V}$
	6			pF max	$f = 1 \text{ MHz}, V_S = 0 \text{ V}$
POWER REQUIREMENTS					$V_{DD} = +16.5 \text{ V}, V_{SS} = -16.5 \text{ V}$
I _{DD}	0.002			μA typ	Digital inputs = 0 V or V _{DD}
			1.0	μA max	
I _{DD}	220			μA typ	Digital inputs = 5 V
			380	μA max	
Iss	0.002			μA typ	Digital inputs = 0 V or V _{DD}
			1.0	μA max	
Iss	0.002			μA typ	Digital inputs = 5 V
			1.0	μA max	
V_{DD}/V_{SS}			±5/±16.5	V min/max	$ V_{DD} = V_{SS} $

¹ Guaranteed by design, not subject to production test.

SINGLE SUPPLY

 V_{DD} = 12 V \pm 10%, V_{SS} = 0 V, GND = 0 V, unless otherwise noted. Temperature range is as follows: Y version: -40°C to +125°C.

Table 2.

Parameter	+25°C	–40°C to +85°C	–40°C to +125°C	Unit	Test Conditions/Comments
ANALOG SWITCH					
Analog Signal Range			$0 \ to \ V_{\text{DD}}$	V	
On Resistance, R _{ON}	300			Ω typ	$V_S = 0 \text{ V to } 10 \text{ V}, I_S = -1 \text{ mA}, \text{ see Figure } 31$
	475	567	625	Ω max	$V_{DD} = 10.8 \text{ V}, V_{SS} = 0 \text{ V}$
On-Resistance Match Between Channels, ΔR_{ON}	5			Ωtyp	$V_S = 0 \text{ V to } 10 \text{ V}, I_S = -1 \text{ mA}$
	16	26	27	Ω max	
On-Resistance Flatness, R _{FLAT} (On)	60			Ω typ	$V_S = 3 \text{ V/6 V/9 V}, I_S = -1 \text{ mA}$
LEAKAGE CURRENTS					$V_{DD} = 13.2 \text{ V}$
Source Off Leakage, Is (Off)	±0.003			nA typ	$V_S = 1 \text{ V}/10 \text{ V}, V_D = 10 \text{ V}/1 \text{ V}, \text{ see Figure 32}$
	±0.1	±0.6	±1	nA max	
Drain Off Leakage, I _D (Off)	±0.003			nA typ	$V_S = 1 \text{ V}/10 \text{ V}, V_D = 10 \text{ V}/1 \text{ V}, \text{ see Figure 32}$
ADG1208	±0.1	±0.6	±1	nA max	_
ADG1209	±0.1	±0.6	±1	nA max	
Channel On Leakage ID, IS (On)	±0.02			nA typ	$V_S = V_D = 1 \text{ V or } 10 \text{ V, see Figure } 33$
ADG1208	±0.2	±0.6	±1	nA max	_
ADG1209	±0.2	±0.6	±1	nA max	
DIGITAL INPUTS					
Input High Voltage, V _{INH}			2.0	V min	
Input Low Voltage, V _{INL}			0.8	V max	
Input Current, I _{INL} or I _{INH}	±0.001				
			±0.1	μA max	$V_{IN} = V_{INL}$ or V_{INH}
Digital Input Capacitance, C _{IN}	3			pF typ	
DYNAMIC CHARACTERISTICS ¹					
Transition Time, transition	100			ns typ	$R_L = 300 \Omega, C_L = 35 pF$
	170	210	235		$V_S = 8 \text{ V}$, see Figure 34
ton (EN)	90			ns typ	$R_L = 300 \Omega, C_L = 35 pF$
	110	140	160	1	$V_S = 8 \text{ V}$, see Figure 36
t _{OFF} (EN)	105			ns typ	$R_L = 300 \Omega, C_L = 35 pF$
	130	155	175	1	$V_S = 8 \text{ V}$, see Figure 36
Break-Before-Make Time Delay, t _{BBM}	45			ns typ	$R_L = 300 \Omega, C_L = 35 pF$
			20	ns min	$V_{S1} = V_{S2} = 8 \text{ V}$, see Figure 35
Charge Injection	-0.2			pC typ	$V_S = 6 \text{ V}$, $R_S = 0 \Omega$, $C_L = 1 \text{ nF}$, see Figure 37
Off Isolation	-85			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$, see Figure 38
Channel to Channel Crosstalk	-85			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$, see Figure 40
−3 dB Bandwidth	450			MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$, see Figure 39
C _s (Off)	1.2			pF typ	$f = 1 \text{ MHz}, V_S = 6 \text{ V}$
	1.8			pF max	$f = 1 MHz, V_S = 6 V$
C _D (Off), ADG1208	7.5			pF typ	$f = 1 \text{ MHz}, V_S = 6 \text{ V}$
	9			pF max	$f = 1 MHz, V_S = 6 V$
C _D (Off), ADG1209	4.5			pF typ	$f = 1 \text{ MHz}, V_S = 6 \text{ V}$
	5.5			pF max	$f = 1 \text{ MHz}, V_S = 6 \text{ V}$
C _D , C _s (On), ADG1208	9			pF typ	$f = 1 \text{ MHz}, V_S = 6 \text{ V}$
• •	10.5			pF max	$f = 1 \text{ MHz}, V_S = 6 \text{ V}$
C _D , C _s (On), ADG1209	6			pF typ	$f = 1 \text{ MHz}, V_S = 6 \text{ V}$
	7.5			pF max	$f = 1 \text{ MHz}, V_S = 6 \text{ V}$

Parameter	+25°C	–40°C to +85°C	–40°C to +125°C	Unit	Test Conditions/Comments
POWER REQUIREMENTS					V _{DD} = 13.2 V
I _{DD}	0.002			μA typ	Digital inputs = 0 V or V _{DD}
			1.0	μA max	
I _{DD}	220			μA typ	Digital inputs = 5 V
			380	μA max	
V_{DD}			5/16.5	V min/max	$V_{SS} = 0 \text{ V}, \text{GND} = 0 \text{ V}$

¹ Guaranteed by design, not subject to production test.

ABSOLUTE MAXIMUM RATINGS

 $T_A = 25$ °C, unless otherwise noted.

Table 3.

Tuble 5.	
Parameter	Rating
V _{DD} to V _{SS}	35 V
V _{DD} to GND	−0.3 V to +25 V
V _{SS} to GND	+0.3 V to −25 V
Analog Inputs ¹	$V_{SS} - 0.3 \text{ V to } V_{DD} + 0.3 \text{ V or}$ 30 mA (whichever occurs first)
Digital Inputs ¹	$GND - 0.3 V$ to $V_{DD} + 0.3 V$ or 30 mA (whichever occurs first)
Continuous Current, S or D	30 mA
Peak Current, S or D (Pulsed at 1 ms, 10% Duty Cycle Maximum)	100 mA
Operating Temperature Range	
Industrial (Y Version)	-40°C to +125°C
Storage Temperature	−65°C to +150°C
Junction Temperature	150°C
θ_{JA} Thermal Impedance	
TSSOP	112°C/W
LFCSP	30.4°C/W
SOIC	77°C/W
Reflow Soldering Peak Temperature (Pb-Free)	260(+0/-5)°C

¹ Overvoltages at A, EN, S, or D are clamped by internal diodes. Current should be limited to the maximum ratings given.

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS

Figure 3. 16-Lead TSSOP Pin Configuration (ADG1208)

Figure 4. 16-Lead SOIC Pin Configuration (ADG1208)

Table 4. 16-Lead TSSOP and 16-Lead SOIC Pin Function Descriptions (ADG1208)

Pin No.	Mnemonic	Description
1	A0	Logic Control Input.
2	EN	Active High Digital Input. When low, the device is disabled and all switches are off. When high, Ax logic inputs determine on switches.
3	V _{SS}	Most Negative Power Supply Potential. In single-supply applications, it can be connected to ground.
4	S1	Source Terminal 1. Can be an input or an output.
5	S2	Source Terminal 2. Can be an input or an output.
6	S3	Source Terminal 3. Can be an input or an output.
7	S4	Source Terminal 4. Can be an input or an output.
8	D	Drain Terminal. Can be an input or an output.
9	S8	Source Terminal 8. Can be an input or an output.
10	S7	Source Terminal 7. Can be an input or an output.
11	S6	Source Terminal 6. Can be an input or an output.
12	S5	Source Terminal 5. Can be an input or an output.
13	V_{DD}	Most Positive Power Supply Potential.
14	GND	Ground (0 V) Reference.
15	A2	Logic Control Input.
16	A1	Logic Control Input.

1. THE EXPOSED PAD IS CONNECTED INTERNALLY. FOR INCREASED RELIABILITY OF THE SOLDER JOINTS AND MAXIMUM THERMAL CAPABILITY, IT IS RECOMMENDED THAT THE PAD BE SOLDERED TO THE SUBSTRATE, V_{SS}.

Figure 5. 16-Lead LFCSP Pin Configuration (ADG1208)

Table 5. 16-Lead LFCSP Pin Function Descriptions (ADG1208)

Pin No.	Mnemonic	Description
1	V _{SS}	Most Negative Power Supply Potential. In single-supply applications, it can be connected to ground.
2	S1	Source Terminal 1. Can be an input or an output.
3	S2	Source Terminal 2. Can be an input or an output.
4	S3	Source Terminal 3. Can be an input or an output.
5	S4	Source Terminal 4. Can be an input or an output.
6	D	Drain Terminal. Can be an input or an output.
7	S8	Source Terminal 8. Can be an input or an output.
8	S7	Source Terminal 7. Can be an input or an output.
9	S6	Source Terminal 6. Can be an input or an output.
10	S5	Source Terminal 5. Can be an input or an output.
11	V_{DD}	Most Positive Power Supply Potential.
12	GND	Ground (0 V) Reference.
13	A2	Logic Control Input.
14	A1	Logic Control Input.
15	A0	Logic Control Input.
16	EN	Active High Digital Input. When low, the device is disabled and all switches are off. When high, Ax logic inputs determine on switches.
	EPAD	Exposed Pad. The exposed pad is connected internally. For increased reliability of the solder joints and maximum thermal capability, it is recommended that the pad be soldered to the substrate, V_{SS} .

Table 6. ADG1208 Truth Table

A2	A1	A0	EN	On Switch	
X	X	Х	0	None	
0	0	0	1	1	
0	0	1	1	2	
0	1	0	1	3	
0	1	1	1	4	
1	0	0	1	5	
1	0	1	1	6	
1	1	0	1	7	
1	1	1	1	8	

Figure 6. 16-Lead TSSOP Pin Configuration (ADG1209)

Figure 7.16-Lead SOIC Pin Configuration (ADG1209)

Table 7. 16-Lead TSSOP and 16-Lead SOIC Pin Function Descriptions (ADG1209)

Pin No.	Mnemonic	Description
1	A0	Logic Control Input.
2	EN	Active High Digital Input. When low, the device is disabled and all switches are off. When high, Ax logic inputs determine on switches.
3	V_{SS}	Most Negative Power Supply Potential. In single-supply applications, it can be connected to ground.
4	S1A	Source Terminal 1A. Can be an input or an output.
5	S2A	Source Terminal 2A. Can be an input or an output.
6	S3A	Source Terminal 3A. Can be an input or an output.
7	S4A	Source Terminal 4A. Can be an input or an output.
8	DA	Drain Terminal A. Can be an input or an output.
9	DB	Drain Terminal B. Can be an input or an output.
10	S4B	Source Terminal 4B. Can be an input or an output.
11	S3B	Source Terminal 3B. Can be an input or an output.
12	S2B	Source Terminal 2B. Can be an input or an output.
13	S1B	Source Terminal 1B. Can be an input or an output.
14	V_{DD}	Most Positive Power Supply Potential.
15	GND	Ground (0 V) Reference.
16	A1	Logic Control Input.

1. THE EXPOSED PAD IS CONNECTED INTERNALLY. FOR INCREASED RELIABILITY OF THE SOLDER JOINTS AND MAXIMUM THERMAL CAPABILITY, IT IS RECOMMENDED THAT THE PAD BE SOLDERED TO THE SUBSTRATE, V_{SS}.

Figure 8. 16-Lead LFCSP Pin Configuration (ADG1209)

Table 8. 16-Lead LFCSP Pin Function Descriptions (ADG1209)

Pin No.	Mnemonic	Description
1	Vss	Most Negative Power Supply Potential. In single-supply applications, it can be connected to ground.
2	S1A	Source Terminal 1A. Can be an input or an output.
3	S2A	Source Terminal 2A. Can be an input or an output.
4	S3A	Source Terminal 3A. Can be an input or an output.
5	S4A	Source Terminal 4A. Can be an input or an output.
6	DA	Drain Terminal A. Can be an input or an output.
7	DB	Drain Terminal B. Can be an input or an output.
8	S4B	Source Terminal 4B. Can be an input or an output.
9	S3B	Source Terminal 3B. Can be an input or an output.
10	S2B	Source Terminal 2B. Can be an input or an output.
11	S1B	Source Terminal 1B. Can be an input or an output.
12	V_{DD}	Most Positive Power Supply Potential.
13	GND	Ground (0 V) Reference.
14	A1	Logic Control Input.
15	A0	Logic Control Input.
16	EN	Active High Digital Input. When low, the device is disabled and all switches are off. When high, Ax logic inputs determine on switches.
	EPAD	Exposed Pad. The exposed pad is connected internally. For increased reliability of the solder joints and maximum thermal capability, it is recommended that the pad be soldered to the substrate, Vss.

Table 9. ADG1209 Truth Table

A1	A0	EN	On Switch Pair
X	Х	0	None
0	0	1	1
0	1	1	2
1	0	1	3
1	1	1	4

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 9. On Resistance as a Function of V_D (V_S) for Dual Supply

Figure 10. On Resistance as a Function of V_D (V_S) for Dual Supply

Figure 11. On Resistance as a Function of V_D (V_S) for Single Supply

Figure 12. On Resistance as a Function of V_D (V_S) for Different Temperatures, Dual Supply

Figure 13. On Resistance as a Function of V_D (V_S) for Different Temperatures, Single Supply

Figure 14. ADG1208 Leakage Currents as a Function of Temperature, Dual Supply

Figure 15. ADG1208 Leakage Currents as a Function of Temperature, Single Supply

Figure 16. IDD vs. Logic Level

Figure 17. Source-to-Drain Charge Injection vs. Source Voltage

Figure 18. Drain-to-Source Charge Injection vs. Source Voltage

Figure 19. t_{ON}/t_{OFF} Times vs. Temperature

Figure 20. Off Isolation vs. Frequency

Figure 21. ADG1208 Crosstalk vs. Frequency

Figure 22. ADG1209 Crosstalk vs. Frequency

Figure 23. On Response vs. Frequency

Figure 24. THD + N vs. Frequency

Figure 25. ADG1208 Capacitance vs. Source Voltage, ±15 V Dual Supply

Figure 26. ADG1208 Capacitance vs. Source Voltage, 12 V Single Supply

Figure 27. ADG1208 Capacitance vs. Source Voltage, ±5 V Dual Supply

Figure 28. ADG1209 Capacitance vs. Source Voltage, ±15 V Dual Supply

Figure 29. ADG1209 Capacitance vs. Source Voltage, 12 V Single Supply

Figure 30. ADG1209 Capacitance vs. Source Voltage, ±5 V Dual Supply

TERMINOLOGY

RON

Ohmic resistance between D and S.

 ΔR_{ON}

Difference between the R_{ON} of any two channels.

Is (Off)

Source leakage current when the switch is off.

I_D (Off)

Drain leakage current when the switch is off.

 I_D , I_S (On)

Channel leakage current when the switch is on.

 $\mathbf{V}_{\mathrm{D}}\left(\mathbf{V}_{\mathrm{S}}\right)$

Analog voltage on Terminal D, Terminal S.

Cs (Off)

Channel input capacitance for off condition.

C_D (Off)

Channel output capacitance for off condition.

 C_D , C_S (On)

On switch capacitance.

 C_{IN}

Digital input capacitance.

ton (EN)

Delay time between the 50% and 90% points of the digital input and switch on condition.

toff (EN)

Delay time between the 50% and 90% points of the digital input and switch off condition.

ttransition

Delay time between the 50% and 90% points of the digital inputs and the switch on condition when switching from one address state to another.

 T_{BBM}

Off time measured between the 80% point of both switches when switching from one address state to another.

 \mathbf{V}_{INL}

Maximum input voltage for Logic 0.

VINE

Minimum input voltage for Logic 1.

 $I_{INL}(I_{INH})$

Input current of the digital input.

 I_{DD}

Positive supply current.

 I_{SS}

Negative supply current.

Off Isolation

A measure of unwanted signal coupling through an off channel.

Charge Injection

A measure of the glitch impulse transferred from the digital input to the analog output during switching.

Bandwidth

The frequency at which the output is attenuated by 3 dB.

On Response

The frequency response of the on switch.

Total Harmonic Distortion Plus Noise (THD + N)

The ratio of the harmonic amplitude plus noise of the signal to the fundamental.

TEST CIRCUITS

Figure 33. On Leakage

Figure 34. Address to Output Switching Times, ttransition

Figure 35. Break-Before-Make Delay, tbbm

Figure 36. Enable Delay, ton (EN), toff (EN)

Figure 37. Charge Injection

Figure 38. Off Isolation

Figure 39. Bandwidth

Figure 40. Channel to Channel Crosstalk

Figure 41. THD + N

OUTLINE DIMENSIONS

COMPLIANT TO JEDEC STANDARDS MO-153-AB

Figure 42. 16-Lead Thin Shrink Small Outline Package [TSSOP] (RU-16) Dimensions shown in millimeters

COMPLIANT TO JEDEC STANDARDS MO-220-WGGC.

Figure 43. 16-Lead Lead Frame Chip Scale Package [LFCSP] 4 mm × 4 mm Body and 0.75 mm Package Height (CP-16-23) Dimensions shown in millimeters

COMPLIANT TO JEDEC STANDARDS MS-012-AC

CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.

Figure 44. 16-Lead Standard Small Outline Package [SOIC_N] Narrow Body (R-16) Dimensions shown in millimeters and (inches)

ORDERING GUIDE

Model ¹	Temperature Range	Package Description	Package Option
ADG1208YRUZ	−40°C to +125°C	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG1208YRUZ-REEL7	-40°C to +125°C	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG1208YCPZ-REEL	−40°C to +125°C	16-Lead Lead Frame Chip Scale Package [LFCSP]	CP-16-23
ADG1208YCPZ-REEL7	-40°C to +125°C	16-Lead Lead Frame Chip Scale Package [LFCSP]	CP-16-23
ADG1208YRZ	−40°C to +125°C	16-Lead Narrow Body Small Outline Package [SOIC_N]	R-16
ADG1208YRZ-REEL7	-40°C to +125°C	16-Lead Narrow Body Small Outline Package [SOIC_N]	R-16
ADG1209YRUZ	−40°C to +125°C	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG1209YRUZ-REEL7	-40°C to +125°C	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG1209YCPZ-REEL7	-40°C to +125°C	16-Lead Lead Frame Chip Scale Package [LFCSP]	CP-16-23
ADG1209YRZ	-40°C to +125°C	16-Lead Narrow Body Small Outline Package [SOIC_N]	R-16
ADG1209YRZ-REEL7	-40°C to +125°C	16-Lead Narrow Body Small Outline Package [SOIC_N]	R-16

¹ Z = RoHS Compliant Part.

www.analog.com