## FEATURES

<1 pC charge injection over full signal range
1 pF off capacitance
33 V supply range
$120 \Omega$ on resistance
Fully specified at $\pm 15 \mathrm{~V} /+12 \mathrm{~V}$
3 V logic compatible inputs
Rail-to-rail operation
Break-before-make switching action
Available in a 16-lead TSSOP, a 16-lead LFCSP, and a
16-lead SOIC
Typical power consumption < $0.03 \boldsymbol{\mu W}$

## APPLICATIONS

## Audio and video routing

Automatic test equipment
Data-acquisition systems
Battery-powered systems
Sample-and-hold systems

## Communication systems

## GENERAL DESCRIPTION

The ADG1208 and ADG1209 are monolithic, $i$ CMOS $^{\circledR}$ analog multiplexers comprising eight single channels and four differential channels, respectively. The ADG1208 switches one of eight inputs to a common output as determined by the 3-bit binary address lines A0, A1, and A2. The ADG1209 switches one of four differential inputs to a common differential output as determined by the 2 -bit binary address lines A0 and A1. An EN input on both devices enable or disable the device. When disabled, all channels are switched off. When on, each channel conducts equally well in both directions and has an input signal range that extends to the supplies.

The industrial CMOS (iCMOS) modular manufacturing process combines high voltage complementary metal-oxide semiconductor (CMOS) and bipolar technologies. It enables the development of a wide range of high performance analog ICs capable of 33 V operation in a footprint that no other generation of high voltage devices has been able to achieve. Unlike analog ICs using conventional CMOS processes, iCMOS components can tolerate high supply voltages while providing increased performance, dramatically lower power consumption, and reduced package size.

FUNCTIONAL BLOCK DIAGRAMS


Figure 1.

The ultralow capacitance and exceptionally low charge injection of these multiplexers make them ideal solutions for data acquisition and sample-and-hold applications, where low glitch and fast settling are required. Figure 2 shows that there is minimum charge injection over the entire signal range of the device. $i$ CMOS construction also ensures ultralow power dissipation, making the devices ideally suited for portable and batterypowered instruments.


Figure 2. Source to Drain Charge Injection vs. Source Voltage

## TABLE OF CONTENTS

Features ..... 1
Applications. ..... 1
Functional Block Diagrams ..... 1
General Description .....  1
Revision History ..... 2
Specifications ..... 3
Dual Supply ..... 3
Single Supply ..... 5
Absolute Maximum Ratings ..... 7
REVISION HISTORY
6/2016-Rev. D to Rev. E
Changes to Analog Inputs Parameter, Table 3 ..... 7
Added Digital Inputs Parameter, Table 3 ..... 7
Moved Figure 7 ..... 10
Change to Table 7 ..... 10
Deleted Table 8; Renumbered Sequentially ..... 11
Updated Outline Dimensions ..... 20
Changes to Ordering Guide ..... 21
3/2016—Rev. C to Rev. D
Changes to Table 4 Title .....  8
Changes to Table 5 Title. ..... 9
Changes to Table 7 Title. ..... 10
Changes to Figure 7 ..... 11
Added Table 8; Renumbered Sequentially ..... 11
Changes to Table 9 Title. ..... 12
8/2015-Rev. B to Rev. C
Changes to Features Section .....  1
Added Figure 4; Renumbered Sequentially ..... 8
Changes to Table 4 ..... 8
Changes to Figure 5 ..... 9
Added Table 5; Renumbered Sequentially ..... 9
Added Figure 7 ..... 10
Changes to Table 7 ..... 10
Changes to Figure 8 ..... 11
Added Table 8 . ..... 11
Updated Outline Dimensions ..... 19
Changes to Ordering Guide ..... 20
ESD Caution .....  7
Pin Configurations and Function Descriptions .....  8
Typical Performance Characteristics ..... 12
Terminology ..... 16
Test Circuits ..... 17
Outline Dimensions ..... 20
Ordering Guide ..... 21
1/2009—Rev. A to Rev. B
Change to I ${ }_{D D}$ Parameter, Table 1 .....  4
Change to $\mathrm{I}_{\mathrm{DD}}$ Parameter, Table 2 ..... 6
4/2007—Rev. 0 to Rev. A
Added 16-lead SOIC ..... Universal
Changes to Table 1 .....  3
Changes to Table 2 .....  5
Changes to Figure 10 and Figure 11 ..... 10
Updated Outline Dimensions ..... 17
Changes to Ordering Guide ..... 18ESD Cation
4/2006-Revision 0: Initial Version

4/2006-Revision 0: Initial Version

## SPECIFICATIONS

## DUAL SUPPLY

$V_{D D}=+15 \mathrm{~V} \pm 10 \%, V_{S S}=-15 \mathrm{~V} \pm 10 \%, G N D=0 \mathrm{~V}$, unless otherwise noted. Temperature range is as follows: Y version: $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.
Table 1.

| Parameter | $+25^{\circ} \mathrm{C}$ | $\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +85^{\circ} \mathrm{C} \end{aligned}$ | $\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$ | Unit | Test Conditions/Comments |
| :---: | :---: | :---: | :---: | :---: | :---: |
| ANALOG SWITCH |  |  |  |  |  |
| Analog Signal Range |  |  | $\mathrm{V}_{\text {SS }}$ to V ${ }_{\text {DD }}$ | V |  |
| On Resistance, Ron | 120 |  |  | $\Omega$ typ | $\mathrm{V}_{\mathrm{s}}= \pm 10 \mathrm{~V}, \mathrm{I}_{\mathrm{s}}=-1 \mathrm{~mA}$, see Figure 31 |
|  | 200 | 240 | 270 | $\Omega$ max | $\mathrm{V}_{\mathrm{DD}}=+13.5 \mathrm{~V}, \mathrm{~V}_{S S}=-13.5 \mathrm{~V}$ |
| On-Resistance Match Between Channels, $\triangle$ Ron | 3.5 |  |  | $\Omega$ typ | $\mathrm{V}_{\mathrm{S}}= \pm 10 \mathrm{~V}, \mathrm{I}_{\mathrm{s}}=-1 \mathrm{~mA}$ |
|  | 6 | 10 | 12 | $\Omega$ max |  |
| On-Resistance Flatness, $\mathrm{R}_{\text {fLat }}$ (On) | 20 |  |  | $\Omega$ typ | $\mathrm{V}_{\mathrm{s}}=-5 \mathrm{~V} / 0 \mathrm{~V} /+5 \mathrm{~V}, \mathrm{I}_{\mathrm{s}}=-1 \mathrm{~mA}$ |
|  | 64 | 76 | 83 | $\Omega$ max |  |
| LEAKAGE CURRENTS |  |  |  |  |  |
| Source Off Leakage, Is (Off) | $\pm 0.003$ |  |  | nA typ | $V_{D}= \pm 10 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=-10 \mathrm{~V}$, see Figure 32 |
|  | $\pm 0.1$ | $\pm 0.6$ | $\pm 1$ | nA max |  |
| Drain Off Leakage, $\mathrm{l}_{\mathrm{D}}$ (Off) | $\pm 0.003$ |  |  | nA typ | $\mathrm{V}_{\mathrm{S}}=1 \mathrm{~V} / 10 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=10 \mathrm{~V} / 1 \mathrm{~V}$, see Figure 32 |
| ADG1208 | $\pm 0.1$ | $\pm 0.6$ | $\pm 1$ | nA max |  |
| ADG1209 | $\pm 0.1$ | $\pm 0.6$ | $\pm 1$ | nA max |  |
| Channel On Leakage, $\mathrm{I}_{\mathrm{D}}, \mathrm{I}_{5}(\mathrm{On})$ | $\pm 0.02$ |  |  | nA typ | $\mathrm{V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}= \pm 10 \mathrm{~V}$, see Figure 33 |
| ADG1208 | $\pm 0.2$ | $\pm 0.6$ | $\pm 1$ | nA max |  |
| ADG1209 | $\pm 0.2$ | $\pm 0.6$ | $\pm 1$ | nA max |  |
| DIGITAL INPUTS |  |  |  |  |  |
| Input High Voltage, $\mathrm{V}_{\text {INH }}$ |  |  | 2.0 | $\checkmark$ min |  |
| Input Low Voltage, $\mathrm{V}_{\text {INL }}$ |  |  | 0.8 | $\checkmark$ max |  |
| Input Current, IINL or linh | $\pm 0.005$ |  |  | $\mu \mathrm{A}$ max | $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {INL }}$ or $\mathrm{V}_{\text {INH }}$ |
|  |  |  | $\pm 0.1$ | $\mu \mathrm{A}$ max |  |
| Digital Input Capacitance, $\mathrm{Cl}_{\text {IN }}$ | 2 |  |  | pF typ |  |
| DYNAMIC CHARACTERISTICS ${ }^{1}$ |  |  |  |  |  |
| Transition Time, ttransition | 80 |  |  | ns typ | $\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$ |
|  | 130 | 165 | 185 | ns max | $\mathrm{V}_{\mathrm{s}}=10 \mathrm{~V}$, see Figure 34 |
| ton (EN) | 75 |  |  | ns typ | $\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$ |
|  | 95 | 105 | 115 | ns max | $\mathrm{V}_{\mathrm{S}}=10 \mathrm{~V}$, see Figure 36 |
| toff (EN) | 83 |  |  | ns typ | $\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$ |
|  | 100 | 125 | 140 | ns max | $\mathrm{V}_{\mathrm{S}}=10 \mathrm{~V}$, see Figure 36 |
| Break-Before-Make Time Delay, $\mathrm{t}_{\text {BBM }}$ | 25 |  |  | ns typ | $\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$ |
|  |  |  | 10 | ns min | $\mathrm{V}_{51}=\mathrm{V}_{52}=10 \mathrm{~V}$, see Figure 35 |
| Charge Injection | 0.4 |  |  | pC typ | $\mathrm{V}_{s}=0 \mathrm{~V}, \mathrm{R}_{s}=0 \Omega, \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}$, see Figure 37 |
| Off Isolation | -85 |  |  | dB typ | $R_{L}=50 \Omega, C_{L}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz}$, see Figure 38 |
| Channel to Channel Crosstalk | -85 |  |  | dB typ | $R_{L}=50 \Omega, C_{L}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz}$, see Figure 40 |
| Total Harmonic Distortion Plus Noise | 0.15 |  |  | \% typ | $\begin{aligned} & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, 5 \mathrm{~V} \mathrm{rms}, \mathrm{f}=20 \mathrm{~Hz} \text { to } 20 \mathrm{kHz}, \\ & \text { see Figure } 41 \end{aligned}$ |
| -3 dB Bandwidth | 550 |  |  | MHz typ | $\mathrm{R}_{\mathrm{L}}=50 \Omega, C_{L}=5 \mathrm{pF}$, see Figure 39 |
| $\mathrm{C}_{5}$ (Off) | 1 |  |  | pF typ | $\mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{s}}=0 \mathrm{~V}$ |
|  | 1.5 |  |  | pF max | $\mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{s}}=0 \mathrm{~V}$ |
| $C_{\text {d }}$ (Off), ADG1208 | 6 |  |  | pF typ | $\mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{s}}=0 \mathrm{~V}$ |
|  | 7 |  |  | pF max | $\mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{s}}=0 \mathrm{~V}$ |
| $C_{\text {d }}$ (Off), ADG1209 | 3.5 |  |  | pF typ | $\mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{s}}=0 \mathrm{~V}$ |
|  | 4.5 |  |  | pF max | $\mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{s}}=0 \mathrm{~V}$ |


| Parameter | $+25^{\circ} \mathrm{C}$ | $\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +85^{\circ} \mathrm{C} \end{aligned}$ | $\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$ | Unit | Test Conditions/Comments |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{C}_{\mathrm{D},} \mathrm{C}_{S}(\mathrm{On}), \mathrm{ADG1208}$ | 7 |  |  | pF typ | $\mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{s}}=0 \mathrm{~V}$ |
|  | 8 |  |  | pF max | $\mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{s}}=0 \mathrm{~V}$ |
| $C_{\text {d }}, C_{S}(O n)$, ADG1209 | 5 |  |  | pF typ | $\mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{s}}=0 \mathrm{~V}$ |
|  | 6 |  |  | pF max | $\mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{s}}=0 \mathrm{~V}$ |
| POWER REQUIREMENTS IdD | 0.002 |  |  |  | $\mathrm{V}_{\mathrm{DD}}=+16.5 \mathrm{~V}, \mathrm{~V}_{\text {SS }}=-16.5 \mathrm{~V}$ |
|  |  |  |  | $\mu \mathrm{A}$ typ | Digital inputs $=0 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{DD}}$ |
|  |  |  | 1.0 | $\mu \mathrm{A}$ max |  |
| ldo | 220 |  |  | $\mu \mathrm{A}$ typ | Digital inputs $=5 \mathrm{~V}$ |
|  |  |  | 380 | $\mu \mathrm{A}$ max |  |
| Iss | 0.002 |  |  | $\mu \mathrm{A}$ typ | Digital inputs $=0 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{DD}}$ |
|  |  |  | 1.0 | $\mu \mathrm{A}$ max |  |
| Iss | 0.002 |  |  | $\mu \mathrm{A}$ typ | Digital inputs $=5 \mathrm{~V}$ |
|  |  |  | 1.0 | $\mu \mathrm{A}$ max |  |
| $\mathrm{V}_{\mathrm{DD}} / \mathrm{V}_{\text {SS }}$ |  |  | $\pm 5 / \pm 16.5$ | $\checkmark$ min/max | $\left\|\mathrm{V}_{\text {DD }}\right\|=\left\|\mathrm{V}_{S S}\right\|$ |

[^0]
## SINGLE SUPPLY

$\mathrm{V}_{\mathrm{DD}}=12 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}$, unless otherwise noted. Temperature range is as follows: Y version: $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.
Table 2.


## ADG1208/ADG1209

| Parameter | $+25^{\circ} \mathrm{C}$ | $\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +85^{\circ} \mathrm{C} \end{aligned}$ | $\begin{aligned} & \hline-40^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$ | Unit | Test Conditions/Comments |
| :---: | :---: | :---: | :---: | :---: | :---: |
| POWER REQUIREMENTS | 0.002 |  | 1.0 |  | $\mathrm{V}_{\mathrm{DD}}=13.2 \mathrm{~V}$ |
| IdD |  |  | $\mu \mathrm{A}$ typ | Digital inputs $=0 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{DD}}$ |
|  |  |  | $\mu \mathrm{A}$ max |  |
| IDD | 220 |  |  | $\mu \mathrm{A}$ typ | Digital inputs $=5 \mathrm{~V}$ |
|  |  |  |  | 380 | $\mu \mathrm{A}$ max |  |
| $V_{D D}$ |  |  |  | 5/16.5 | $V$ min/max | $\mathrm{V}_{s S}=0 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}$ |

[^1]
## ABSOLUTE MAXIMUM RATINGS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.
Table 3.

| Parameter | Rating |
| :---: | :---: |
| $\mathrm{V}_{\text {DD }}$ to $\mathrm{V}_{\text {SS }}$ | 35 V |
| VDD to GND | -0.3 V to +25 V |
| $V_{\text {ss }}$ to GND | +0.3 V to -25 V |
| Analog Inputs ${ }^{1}$ | $\mathrm{V}_{S S}-0.3 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$ or 30 mA (whichever occurs first) |
| Digital Inputs ${ }^{1}$ | GND - 0.3 V to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$ or 30 mA (whichever occurs first) |
| Continuous Current, S or D | 30 mA |
| Peak Current, S or D (Pulsed at 1 ms, 10\% Duty Cycle Maximum) | 100 mA |
| Operating Temperature Range |  |
| Industrial (Y Version) | $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ |
| Storage Temperature | $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ |
| Junction Temperature | $150^{\circ} \mathrm{C}$ |
| $\theta_{\text {JA }}$ Thermal Impedance |  |
| TSSOP | $112^{\circ} \mathrm{C} / \mathrm{W}$ |
| LFCSP | $30.4^{\circ} \mathrm{C} / \mathrm{W}$ |
| SOIC | $77^{\circ} \mathrm{C} / \mathrm{W}$ |
| Reflow Soldering Peak Temperature (Pb-Free) | $260(+0 /-5)^{\circ} \mathrm{C}$ |

[^2]Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

## ESD CAUTION

|  | ESD (electrostatic discharge) sensitive device. <br> Charged devices and circuit boards can discharge <br> without detection. Although this product features <br> patented or proprietary protection circuitry, damage <br> may occur on devices subjected to high energy ESD. <br> Therefore, proper ESD precautions should be taken to <br> avoid performance degradation or loss of functionality. |
| :--- | :--- |

## PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS



Figure 3. 16-Lead TSSOP Pin Configuration (ADG1208)


Figure 4. 16-Lead SOIC Pin Configuration (ADG1208)

Table 4. 16-Lead TSSOP and 16-Lead SOIC Pin Function Descriptions (ADG1208)

| Pin No. | Mnemonic | Description |
| :--- | :--- | :--- |
| 1 | A0 | Logic Control Input. <br> 2 |
| EN | Active High Digital Input. When low, the device is disabled and all switches are off. When high, Ax logic inputs <br> determine on switches. |  |
| 3 | VSs | Most Negative Power Supply Potential. In single-supply applications, it can be connected to ground. |
| 4 | S1 | Source Terminal 1. Can be an input or an output. |
| 5 | S2 | Source Terminal 2. Can be an input or an output. |
| 6 | S3 | Source Terminal 3. Can be an input or an output. |
| 7 | S4 | Source Terminal 4. Can be an input or an output. |
| 8 | D | Drain Terminal. Can be an input or an output. |
| 9 | S8 | Source Terminal 8. Can be an input or an output. |
| 10 | S7 | Source Terminal 7. Can be an input or an output. |
| 11 | S6 | Source Terminal 6. Can be an input or an output. |
| 12 | S5 | Source Terminal 5. Can be an input or an output. |
| 13 | VDD | Most Positive Power Supply Potential. |
| 14 | GND | Ground (0 V) Reference. |
| 15 | A2 | Logic Control Input. |
| 16 | A1 | Logic Control Input. |



1. THE EXPOSED PAD IS CONNECTED INTERNALLY. FOR INCREASED RELIABILITY OF THE SOLDER JOINTS AND MAXIMUM THERMAL CAPABILITY, IT IS RECOMMENDED THAT THE PAD BE SOLDERED TO THE SUBSTRATE, $\mathrm{V}_{\text {SS }}$.

Figure 5. 16-Lead LFCSP Pin Configuration (ADG1208)
Table 5. 16-Lead LFCSP Pin Function Descriptions (ADG1208)

| Pin No. | Mnemonic | Description |
| :--- | :--- | :--- |
| 1 | VSS | Most Negative Power Supply Potential. In single-supply applications, it can be connected to ground. |
| 2 | S1 | Source Terminal 1. Can be an input or an output. |
| 3 | S2 | Source Terminal 2. Can be an input or an output. |
| 4 | S3 | Source Terminal 3. Can be an input or an output. |
| 5 | S4 | Source Terminal 4. Can be an input or an output. |
| 6 | D | Drain Terminal. Can be an input or an output. |
| 7 | S8 | Source Terminal 8. Can be an input or an output. |
| 8 | S7 | Source Terminal 7. Can be an input or an output. |
| 9 | S6 | Source Terminal 6. Can be an input or an output. |
| 10 | S5 | Source Terminal 5. Can be an input or an output. |
| 11 | VDD | Most Positive Power Supply Potential. |
| 12 | GND | Ground (0 V) Reference. |
| 13 | A2 | Logic Control Input. |
| 14 | A1 | Logic Control Input. |
| 15 | A0 | Logic Control Input. |
| 16 | EN | Active High Digital Input. When low, the device is disabled and all switches are off. When high, Ax logic inputs |
|  | determine on switches. |  |

Table 6. ADG1208 Truth Table

| A2 | A1 | A0 | EN | On Switch |
| :--- | :--- | :--- | :--- | :--- |
| $X$ | $X$ | $X$ | 0 | None |
| 0 | 0 | 0 | 1 | 1 |
| 0 | 0 | 1 | 1 | 3 |
| 0 | 1 | 0 | 1 | 4 |
| 0 | 1 | 0 | 5 |  |
| 1 | 0 | 1 | 6 | 7 |
| 1 | 0 | 0 | 1 | 7 |
| 1 | 1 | 1 | 8 |  |
| 1 | 1 | 1 |  |  |

## ADG1208/ADG1209



Figure 6. 16-Lead TSSOP Pin Configuration (ADG1209)


Figure 7.16-Lead SOIC Pin Configuration (ADG1209)

Table 7. 16-Lead TSSOP and 16-Lead SOIC Pin Function Descriptions (ADG1209)

| Pin No. | Mnemonic | Description |
| :--- | :--- | :--- |
| 1 | A0 | Logic Control Input. <br> Active High Digital Input. When low, the device is disabled and all switches are off. When high, Ax logic inputs <br> determine on switches. |
| 3 | EN | VMost Negative Power Supply Potential. In single-supply applications, it can be connected to ground. <br> 4 |
| S1A | Source Terminal 1A. Can be an input or an output. |  |
| 5 | S2A | Source Terminal 2A. Can be an input or an output. |
| 6 | S3A | Source Terminal 3A. Can be an input or an output. |
| 7 | S4A | Source Terminal 4A. Can be an input or an output. |
| 8 | DA | Drain Terminal A. Can be an input or an output. |
| 9 | DB | Drain Terminal B. Can be an input or an output. |
| 10 | S4B | Source Terminal 4B. Can be an input or an output. |
| 11 | S3B | Source Terminal 3B. Can be an input or an output. |
| 12 | S2B | Source Terminal 2B. Can be an input or an output. |
| 13 | S1B | Source Terminal 1B. Can be an input or an output. |
| 14 | VDD | Most Positive Power Supply Potential. |
| 15 | GND | Ground (0 V) Reference. |
| 16 | A1 | Logic Control Input. |



1. THE EXPOSED PAD IS CONNECTED INTERNALLY. FOR INCREASED RELIABILITY OF THE SOLDER JOINTS AND MAXIMUM THERMAL CAPABILITY, IT IS RECOMMENDED THAT THE PAD BE SOLDERED TO THE SUBSTRATE, $\mathbf{V}_{\text {SS }}$.

Figure 8. 16-Lead LFCSP Pin Configuration (ADG1209)
Table 8. 16-Lead LFCSP Pin Function Descriptions (ADG1209)

| Pin No. | Mnemonic | Description |
| :--- | :--- | :--- |
| 1 | V SS | Most Negative Power Supply Potential. In single-supply applications, it can be connected to ground. |
| 2 | S1A | Source Terminal 1A. Can be an input or an output. |
| 3 | S2A | Source Terminal 2A. Can be an input or an output. |
| 4 | S3A | Source Terminal 3A. Can be an input or an output. |
| 5 | S4A | Source Terminal 4A. Can be an input or an output. |
| 6 | DA | Drain Terminal A. Can be an input or an output. |
| 7 | DB | Drain Terminal B. Can be an input or an output. |
| 8 | S4B | Source Terminal 4B. Can be an input or an output. |
| 9 | S3B | Source Terminal 3B. Can be an input or an output. |
| 10 | S2B | Source Terminal 2B. Can be an input or an output. |
| 11 | S1B | Source Terminal 1B. Can be an input or an output. |
| 12 | VDD | Most Positive Power Supply Potential. |
| 13 | GND | Ground (0 V) Reference. |
| 14 | A1 | Logic Control Input. |
| 15 | A0 | Logic Control Input. |
| 16 | EN | Active High Digital Input. When low, the device is disabled and all switches are off. When high, Ax logic inputs |
|  | determine on switches. |  |

Table 9. ADG1209 Truth Table

| A1 | A0 | EN | On Switch Pair |
| :--- | :--- | :--- | :--- |
| $X$ | $X$ | 0 | None |
| 0 | 0 | 1 | 1 |
| 0 | 1 | 1 | 2 |
| 1 | 0 | 1 | 3 |
| 1 | 1 | 1 | 4 |



Figure 9. On Resistance as a Function of $V_{D}\left(V_{S}\right)$ for Dual Supply


Figure 10. On Resistance as a Function of $V_{D}\left(V_{s}\right)$ for Dual Supply


Figure 11. On Resistance as a Function of $V_{D}\left(V_{S}\right)$ for Single Supply


Figure 12. On Resistance as a Function of $V_{D}\left(V_{S}\right)$ for Different Temperatures, Dual Supply


Figure 13. On Resistance as a Function of $V_{D}\left(V_{S}\right)$ for Different Temperatures, Single Supply


Figure 14. ADG1208 Leakage Currents as a Function of Temperature, Dual Supply


Figure 15. ADG1208 Leakage Currents as a Function of Temperature, Single Supply


Figure 16. IDD vs. Logic Level


Figure 17. Source-to-Drain Charge Injection vs. Source Voltage


Figure 18. Drain-to-Source Charge Injection vs. Source Voltage


Figure 19. ton $^{\prime} / t_{\text {off }}$ Times vs. Temperature


Figure 20. Off Isolation vs. Frequency


Figure 21. ADG1208 Crosstalk vs. Frequency


Figure 22. ADG1209 Crosstalk vs. Frequency


Figure 23. On Response vs. Frequency


Figure 24. $T H D+N$ vs. Frequency


Figure 25. ADG1208 Capacitance vs. Source Voltage, $\pm 15$ V Dual Supply


Figure 26. ADG1208 Capacitance vs. Source Voltage, 12 V Single Supply


Figure 27. ADG1208 Capacitance vs. Source Voltage, $\pm 5$ V Dual Supply


Figure 28. ADG1209 Capacitance vs. Source Voltage, $\pm 15$ V Dual Supply


Figure 29. ADG1209 Capacitance vs. Source Voltage, 12 V Single Supply


Figure 30. ADG1209 Capacitance vs. Source Voltage, $\pm 5$ V Dual Supply

## TERMINOLOGY

Ron
Ohmic resistance between D and S .
$\Delta R_{\text {on }}$
Difference between the R $\mathrm{R}_{\mathrm{ON}}$ of any two channels.
$I_{S}$ (Off)
Source leakage current when the switch is off.
$\mathrm{I}_{\mathrm{D}}$ (Off)
Drain leakage current when the switch is off.
$\mathrm{I}_{\mathrm{D}}, \mathrm{I}_{\mathrm{S}}$ (On)
Channel leakage current when the switch is on.
$V_{D}\left(V_{s}\right)$
Analog voltage on Terminal D, Terminal S.
$\mathrm{C}_{\mathrm{s}}$ (Off)
Channel input capacitance for off condition.
$C_{D}$ (Off)
Channel output capacitance for off condition.
$\mathrm{C}_{\mathrm{D}}, \mathrm{Cs}$ (On)
On switch capacitance.
$\mathrm{C}_{\text {IN }}$
Digital input capacitance.
$t_{\text {ON }}(\mathrm{EN})$
Delay time between the $50 \%$ and $90 \%$ points of the digital input and switch on condition.
$t_{\text {OFF }}$ (EN)
Delay time between the $50 \%$ and $90 \%$ points of the digital input and switch off condition.
t transition
Delay time between the $50 \%$ and $90 \%$ points of the digital inputs and the switch on condition when switching from one address state to another.
$\mathrm{T}_{\text {BBM }}$
Off time measured between the $80 \%$ point of both switches when switching from one address state to another.
$V_{\text {INL }}$
Maximum input voltage for Logic 0.
$V_{\text {InH }}$
Minimum input voltage for Logic 1.
$\mathrm{I}_{\text {INL }}\left(\mathrm{I}_{\text {INH }}\right)$
Input current of the digital input.
$I_{D D}$
Positive supply current.
Iss
Negative supply current.

## Off Isolation

A measure of unwanted signal coupling through an off channel.

## Charge Injection

A measure of the glitch impulse transferred from the digital input to the analog output during switching.

## Bandwidth

The frequency at which the output is attenuated by 3 dB .

## On Response

The frequency response of the on switch.
Total Harmonic Distortion Plus Noise (THD + N)
The ratio of the harmonic amplitude plus noise of the signal to the fundamental.

## Data Sheet

## TEST CIRCUITS



Figure 31. On Resistance
Figure 33. On Leakage


Figure 32. Off Leakage


Figure 34. Address to Output Switching Times, $t_{\text {transition }}$


Figure 35. Break-Before-Make Delay, $t_{B B M}$

## ADG1208/ADG1209



Figure 36. Enable Delay, toN (EN), toff (EN)


Figure 37. Charge Injection

## Data Sheet



Figure 38. Off Isolation


Figure 39. Bandwidth


CHANNEL-TO-CHANNEL CROSSTALK $=20 \log \frac{\mathrm{~V}_{\text {OUT }}}{\mathrm{V}_{\mathrm{S}}}$
Figure 40. Channel to Channel Crosstalk


Figure 41. $T H D+N$

## OUTLINE DIMENSIONS



Figure 42. 16-Lead Thin Shrink Small Outline Package [TSSOP] (RU-16)
Dimensions shown in millimeters


Figure 43. 16-Lead Lead Frame Chip Scale Package [LFCSP]
$4 \mathrm{~mm} \times 4 \mathrm{~mm}$ Body and 0.75 mm Package Height (CP-16-23)
Dimensions shown in millimeters


Figure 44. 16-Lead Standard Small Outline Package [SOIC_N] Narrow Body (R-16)
Dimensions shown in millimeters and (inches)
ORDERING GUIDE

| Model ${ }^{1}$ | Temperature Range | Package Description | Package Option |
| :---: | :---: | :---: | :---: |
| ADG1208YRUZ | $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ | 16-Lead Thin Shrink Small Outline Package [TSSOP] | RU-16 |
| ADG1208YRUZ-REEL7 | $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ | 16-Lead Thin Shrink Small Outline Package [TSSOP] | RU-16 |
| ADG1208YCPZ-REEL | $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ | 16-Lead Lead Frame Chip Scale Package [LFCSP] | CP-16-23 |
| ADG1208YCPZ-REEL7 | $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ | 16-Lead Lead Frame Chip Scale Package [LFCSP] | CP-16-23 |
| ADG1208YRZ | $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ | 16-Lead Narrow Body Small Outline Package [SOIC_N] | R-16 |
| ADG1208YRZ-REEL7 | $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ | 16-Lead Narrow Body Small Outline Package [SOIC_N] | R-16 |
| ADG1209YRUZ | $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ | 16-Lead Thin Shrink Small Outline Package [TSSOP] | RU-16 |
| ADG1209YRUZ-REEL7 | $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ | 16-Lead Thin Shrink Small Outline Package [TSSOP] | RU-16 |
| ADG1209YCPZ-REEL7 | $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ | 16-Lead Lead Frame Chip Scale Package [LFCSP] | CP-16-23 |
| ADG1209YRZ | $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ | 16-Lead Narrow Body Small Outline Package [SOIC_N] | R-16 |
| ADG1209YRZ-REEL7 | $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ | 16-Lead Narrow Body Small Outline Package [SOIC_N] | R-16 |

${ }^{1} Z=$ RoHS Compliant Part.


[^0]:    ${ }^{1}$ Guaranteed by design, not subject to production test.

[^1]:    ${ }^{1}$ Guaranteed by design, not subject to production test.

[^2]:    ${ }^{1}$ Overvoltages at $\mathrm{A}, \mathrm{EN}, \mathrm{S}$, or D are clamped by internal diodes. Current should be limited to the maximum ratings given.

