FEATURES

Multiformat video decoder supports NTSC (J/M/4.43), PAL (B/D/G/H/I/M/N), SECAM
Integrates four 54 MHz, 10-bit ADCs
SCART fast blank support
Clocked from a single 28.63636 MHz crystal
Line-locked clock-compatible (LLC)
Adaptive Digital Line Length Tracking (ADLLTT ${ }^{T M}$), signal processing, and enhanced FIFO management give mini-TBC functionality
5-line adaptive comb filters
Proprietary architecture for locking to weak, noisy, and unstable video sources such as VCRs and tuners
Subcarrier frequency lock and status information output
Integrated automatic gain control (AGC) with adaptive peak white mode
Macrovision ${ }^{\text {® }}$ copy protection detection
Chroma transient improvement (CTI)
Digital noise reduction (DNR)
Multiple programmable analog input formats
CVBS (composite video)
Y/C (S-video)
YPrPb (component) (VESA, MII, SMPTE, and BETACAM)
12 analog video input channels
Integrated antialiasing filters
Programmable interrupt request output pin
Automatic NTSC/PAL/SECAM identification

GENERAL DESCRIPTION

The ADV7184 integrated video decoder automatically detects and converts standard analog baseband television signals compatible with worldwide NTSC, PAL, and SECAM standards into 4:2:2 component video data compatible with 16 - or 8 -bit CCIR 601/CCIR 656.

The advanced, highly flexible digital output interface enables performance video decoding and conversion in line-locked, clock-based systems. This makes the device ideally suited for a broad range of applications with diverse analog video characteristics, including tape-based sources, broadcast sources, security and surveillance cameras, and professional systems.

The accurate 10-bit ADC provides professional quality video performance and is unmatched. This allows true 8-bit resolution in the 8 -bit output mode.

The 12 analog input channels accept standard composite, S-video, and component video signals in an extensive number of combinations.

Digital output formats (8-bit or 16-bit)
ITU-R BT. 656 YCrCb 4:2:2 output + HS, VS, and FIELD
0.5 V to 1.6 V analog signal input range

Differential gain: 0.5\% typical
Differential phase: 0.5° typical
Programmable video controls
Peak white/hue/brightness/saturation/contrast
Integrated on-chip video timing generator
Free-run mode (generates stable video output with no input)
VBI decode support for close captioning (including Gemstar ${ }^{\circledR}$
$1 \times / 2 \times($ XDS $)$), WSS, CGMS, teletext, VITC, VPS
Power-down mode
2-wire serial MPU interface ($I^{2} \mathbf{C}^{\ominus}$ compatible)
3.3 V analog, 1.8 V digital core, 3.3 V input/output supply

Industrial temperature grade: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
80-lead, Pb-free LQFP

APPLICATIONS

High end DVD recorders
Video projectors
HDD-based PVRs/DVDRs
LCD TVs
Set-top boxes
Security systems
Digital televisions
AVR receivers

AGC and clamp-restore circuitry allow an input video signal peak-to-peak range of 0.5 V to 1.6 V . Alternatively, these can be bypassed for manual settings.

The fixed 54 MHz clocking of the ADCs and datapath for all modes allows very precise, accurate sampling and digital filtering. The line-locked clock output allows the output data rate, timing signals, and output clock signals to be synchronous, asynchronous, or line locked even with $\pm 5 \%$ variation in line length. The output control signals allow glueless interface connections in most applications. The ADV7184 modes are set up over a 2 -wire, serial, bidirectional port ($\mathrm{I}^{2} \mathrm{C}$ compatible).

SCART and overlay functionality are enabled by the ability of the ADV7184 to process CVBS and standard definition RGB signals simultaneously. Signal mixing is controlled by the fast blank pin. The ADV7184 is fabricated in a 3.3 V CMOS process. Its monolithic CMOS construction ensures greater functionality with lower power dissipation. It is packaged in a small, Pb -free, 80-lead LQFP.

[^0]Rev. A
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

ADV7184

TABLE OF CONTENTS

Features 1
Applications 1
General Description 1
Revision History 3
Introduction 4
Analog Front End 4
Standard Definition Processor (SDP) 4
Functional Block Diagram 4
Specifications 5
Electrical Characteristics 5
Video Specifications 6
Analog Specifications 6
Thermal Specifications 7
Timing Specifications 7
Timing Diagrams 8
Absolute Maximum Ratings 9
Package Thermal Performance 9
ESD Caution 9
Pin Configuration and Function Descriptions 10
Analog Front End 12
Analog Input Muxing 13
Manual Input Muxing 15
XTAL Clock Input Pin Functionality. 16
28.63636 MHz Crystal Operation 16
Antialiasing Filters 16
SCART and Fast Blanking 16
Fast Blank Control 17
Global Control Registers 21
Power-Saving Modes 21
Reset Control 21
Global Pin Control 21
Global Status Registers 23
Standard Definition Processor (SDP) 24
SD Luma Path 24
SD Chroma Path 24
Sync Processing 25
VBI Data Recovery 25
General Setup. 25
Color Controls 28
Clamp Operation. 30
Luma Filter 31
Chroma Filter 34
Gain Operation 35
Chroma Transient Improvement (CTI) 39
Digital Noise Reduction (DNR) and Luma Peaking Filter. 39
Comb Filters 40
AV Code Insertion and Controls 43
Synchronization Output Signals 45
Sync Processing 53
VBI Data Decode 53
$I^{2} \mathrm{C}$ Interface 60
Standard Detection and Identification 62
$I^{2} \mathrm{C}$ Readback Registers 64
Pixel Port Configuration 79
Pixel Port-Related Controls. 79
MPU Port Description 80
Register Accesses 81
Register Programming 81
$I^{2} \mathrm{C}$ Sequencer 81
$I^{2} \mathrm{C}$ Programming Examples 81
$I^{2} \mathrm{C}$ Register Maps 82
User Map 82
User Sub Map 99
PCB Layout Recommendations 109
Analog Interface Inputs. 109
Power Supply Decoupling 109
PLL 109
Digital Outputs (Both Data and Clocks) 109
REVISION HISTORY
2/07—Rev. 0 to Rev. A
Corrected Register and Bit Names Universal
Change to Features 1
Changes to Pin Configuration and
Function Descriptions Section 10
Change to Table 9 14
Change to Table 17 22
Changes to Table 24 25
Changes to SFL_INV, Address 0x41 [6] Section 26
Change to Table 35 31
Change to Table 40 36
Change to LAGT [1:0], Luma Automatic Gain Timing, Address 0x2F [7:6] Section 36
Change to NVBIOLCM [1:0], NTSC VBI Odd Field Luma Comb Mode, Address 0xEB [7:6] Section 43
Change to NVBIELCM [1:0], NTSC VBI Even Field Luma Comb Mode, Address 0xEB [5:4] Section 43
Change to NVBIOCCM [1:0], NTSC VBI Odd Field Chroma Comb Mode, Address 0xEC [7:6] Section 43
Change to NVBIECCM [1:0], NTSC VBI Even Field Chroma
Comb Mode, Address 0xEC [5:4] Section 43
Changes to NEWAVMODE, New AV Mode, Address 0x31 [4] Section 47
Change to Table 69 56
Added Standard Detection and Identification Section 62
Changes to MPU Port Description Section 80
Changes to $I^{2} \mathrm{C}$ Programming Examples Section 81
Change to Table 104 82
Changes to Table 105 84
Change to Table 107 101
Digital Inputs 110
XTAL and Load Capacitor Values Selection 110
Typical Circuit Connection 111 1
Outline Dimensions 112
Ordering Guide. 112

INTRODUCTION

The ADV7184 is a high quality, single chip, multiformat video decoder that automatically detects and converts PAL, NTSC, and SECAM standards in the form of composite, S -video, and component video into a digital ITU-R BT. 656 format.

The advanced, highly flexible digital output interface enables performance video decoding and conversion in line-locked, clockbased systems. This makes the device ideally suited for a broad range of applications with diverse analog video characteristics, including tape-based sources, broadcast sources, security and surveillance cameras, and professional systems.

ANALOG FRONT END

The ADV7184 analog front end includes four 10-bit ADCs that digitize the analog video signal before applying it to the standard definition processor (SDP). The analog front end uses differential channels for each ADC to ensure high performance in mixedsignal applications.

The front end also includes a 12 -channel input mux that enables multiple video signals to be applied to the ADV7184. Current and voltage clamps are positioned in front of each ADC to ensure that the video signal remains within the range of the converter. Fine clamping of the video signals is performed downstream by digital fine clamping within the ADV7184. The ADCs are configured to run in $4 \times$ oversampling mode.

The ADV7184 has optional antialiasing filters on each of the four input channels. The filters are designed for standard definition (SD) video with approximately 6 MHz bandwidth.

SCART and overlay functionality are enabled by the ability of the ADV7184 to process CVBS and standard definition RGB signals simultaneously. Signal mixing is controlled by the fast blank (FB) pin.

STANDARD DEFINITION PROCESSOR (SDP)

The ADV7184 is capable of decoding a large selection of baseband video signals in composite, S -video, and component formats. The video standards that are supported include PAL B/D/I/G/H, PAL 60, PAL M, PAL N, PAL Nc, NTSC M/J, NTSC 4.43, and SECAM B/D/G/K/L. The ADV7184 can automatically detect the video standard and process it accordingly.

The ADV7184 has a 5-line, superadaptive, 2D comb filter that provides superior chrominance and luminance separation when decoding a composite video signal. This highly adaptive filter automatically adjusts its processing mode according to the video standard and signal quality without requiring user intervention. Video user controls such as brightness, contrast, saturation, and hue are also available within the ADV7184.

The ADV7184 implements the patented ADLLT algorithm to track varying video line lengths from sources such as a VCR. ADLLT enables the ADV7184 to track and decode poor quality video sources such as VCRs and noisy sources from tuner outputs, VCD players, and camcorders. The ADV7184 contains a CTI processor that sharpens the edge rate of chroma transitions, resulting in sharper vertical transitions.

The ADV7184 can process a variety of VBI data services, such as closed captioning (CC), wide-screen signaling (WSS), copy generation management system (CGMS), Gemstar $1 \times / 2 \times$, extended data service (XDS), and teletext. The ADV7184 is fully Macrovision certified; detection circuitry enables Type I, Type II, and Type III protection levels to be identified and reported to the user. The decoder is also fully robust to all Macrovision signal inputs.

Figure 1.

SPECIFICATIONS

ELECTRICAL CHARACTERISTICS

$A_{\text {VDd }}=3.15 \mathrm{~V}$ to $3.45 \mathrm{~V}, \mathrm{D}_{\mathrm{VDD}}=1.65 \mathrm{~V}$ to 2.0 V , $\mathrm{D}_{\mathrm{VDDI}}=3.0 \mathrm{~V}$ to $3.6 \mathrm{~V}, \mathrm{P}_{\mathrm{VDD}}=1.71 \mathrm{~V}$ to 1.89 V , nominal input range 1.6 V . Operating temperature range, unless otherwise noted.

Table 1.

Parameter	Symbol	Test Conditions	Min	Typ	Max	Unit
STATIC PERFORMANCE ${ }^{1,2,3}$ Resolution (Each ADC) Integral Nonlinearity Differential Nonlinearity	N INL DNL	BSL at 54 MHz BSL at 54 MHz		$\begin{aligned} & -0.6 /+0.7 \\ & -0.5 /+0.5 \end{aligned}$	$\begin{aligned} & 10 \\ & \pm 3 \\ & -0.99 /+2.5 \end{aligned}$	$\begin{aligned} & \text { Bits } \\ & \text { LSB } \\ & \text { LSB } \end{aligned}$
DIGITAL INPUTS Input High Voltage ${ }^{4}$ Input Low Voltage ${ }^{5}$ Input Current ${ }^{6,7}$ Input Capacitance ${ }^{8}$	V_{H} VII IIN $\mathrm{Cl}_{\mathrm{IN}}$		$\begin{aligned} & 2 \\ & -50 \\ & -10 \end{aligned}$		$\begin{aligned} & 0.8 \\ & +50 \\ & +10 \\ & 10 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mu \mathrm{~A} \\ & \mu \mathrm{~A} \\ & \mathrm{pF} \\ & \hline \end{aligned}$
DIGITAL OUTPUTS Output High Voltage ${ }^{9}$ Output Low Voltage ${ }^{9}$ High Impedance Leakage Current Output Capacitance ${ }^{8}$	Voн Vol lleak Cout	$\begin{aligned} & I_{\text {SOURCE }}=0.4 \mathrm{~mA} \\ & I_{\text {SIINK }}=3.2 \mathrm{~mA} \end{aligned}$	2.4		$\begin{aligned} & 0.4 \\ & 10 \\ & 20 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mu \mathrm{~A} \\ & \mathrm{pF} \end{aligned}$
POWER REQUIREMENTS ${ }^{8}$ Digital Core Power Supply Digital Input/Output Power Supply PLL Power Supply Analog Power Supply Digital Core Supply Current Digital Input/Output Supply Current PLL Supply Current Analog Supply Current Power-Down Current Power-Up Time	Dvdo Dvido Pvid Avdd IDvod Idvodio Ipvid IAvdD Ipwrdn $t_{\text {pwrup }}$	CVBS input ${ }^{10}$ YPrPb input ${ }^{11}$	$\begin{aligned} & 1.65 \\ & 3.0 \\ & 1.71 \\ & 3.15 \end{aligned}$	1.8 3.3 1.8 3.3 105 4 11 99 269 0.65 20	$\begin{aligned} & 2 \\ & 3.6 \\ & 1.89 \\ & 3.45 \end{aligned}$	V V V V mA mA mA mA mA mA ms

${ }^{1}$ All ADC linearity tests performed with the input range at full scale -12.5% and at zero scale $+12.5 \%$.
${ }^{2}$ Maximum INL and DNL specifications obtained with the part configured for component video input.
${ }^{3}$ Temperature range $\mathrm{T}_{\text {min }}$ to $\mathrm{T}_{\text {max }},-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. The minimum/maximum specifications are guaranteed over this range.
${ }^{4}$ To obtain specified $\mathrm{V}_{\mathbb{H}}$ level on Pin 29, Register 0×13 (write only) must be programmed with Value 0×04. If Register 0×13 is programmed with Value 0×00, then $\mathrm{V}_{\mathbb{H}}$ on Pin 29 is 1.2 V .
${ }^{5}$ To obtain specified VIL level on Pin 29, Register 0×13 (write only) must be programmed with Value 0×04. If Register 0×13 is programmed with Value 0×00, then $V_{\text {IL }}$ on Pin 29 is 0.4 V .
${ }^{6}$ Pins 36 and 79.
${ }^{7}$ Excluding all TEST pins (TESTO to TEST12)
${ }^{8} \mathrm{~V}_{\text {он }}$ and $\mathrm{V}_{\text {OL }}$ levels obtained using default drive strength value (0xD5) in Register 0xF4.
${ }^{9}$ Guaranteed by characterization.
${ }^{10}$ Only ADC0 is powered on.
${ }^{11}$ All four ADCs powered on.

ADV7184

VIDEO SPECIFICATIONS

At $\mathrm{A}_{\text {vdd }}=3.15 \mathrm{~V}$ to $3.45 \mathrm{~V}, \mathrm{D}_{\mathrm{vdD}}=1.65 \mathrm{~V}$ to 2.0 V , Dvddio $=3.0 \mathrm{~V}$ to $3.6 \mathrm{~V}, \mathrm{P}_{\mathrm{VDD}}=1.71 \mathrm{~V}$ to 1.89 V (operating temperature range, unless otherwise noted).
Table 2.

Parameter ${ }^{1,2}$	Symbol	Test Conditions	Min	Typ	Max	Unit
NONLINEAR SPECIFICATIONS Differential Phase Differential Gain Luma Nonlinearity	DP DG LNL	CVBS input, modulate five steps CVBS input, modulate five steps CVBS input, five steps		$\begin{aligned} & 0.5 \\ & 0.5 \\ & 0.5 \end{aligned}$	$\begin{aligned} & 0.7 \\ & 0.7 \\ & 0.7 \end{aligned}$	$\begin{aligned} & \text { Degree } \\ & \% \\ & \% \end{aligned}$
NOISE SPECIFICATIONS SNR Unweighted Analog Front End Crosstalk		Luma ramp Luma flat field	$\begin{aligned} & 54 \\ & 56 \end{aligned}$	$\begin{aligned} & 56 \\ & 58 \\ & 60 \end{aligned}$		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \end{aligned}$
LOCK TIME SPECIFICATIONS Horizontal Lock Range Vertical Lock Range Fsc Subcarrier Lock Range Color Lock-In Time Sync Depth Range ${ }^{3}$ Color Burst Range Vertical Lock Time Autodetection Switch Speed			$\begin{aligned} & -5 \\ & 40 \\ & 20 \\ & 5 \end{aligned}$	$\begin{aligned} & \pm 1.3 \\ & 60 \end{aligned}$ 2 100	$\begin{aligned} & +5 \\ & 70 \\ & \\ & 200 \\ & 200 \end{aligned}$	\% Hz Hz Lines \% \% Fields Lines
CHROMA SPECIFICATIONS Hue Accuracy Color Saturation Accuracy Color AGC Range Chroma Amplitude Error Chroma Phase Error Chroma Luma Intermodulation	HUE CL_AC		5	$\begin{aligned} & 1 \\ & 1 \\ & \\ & 0.5 \\ & 0.4 \\ & 0.2 \end{aligned}$	400	Degree \% \% \% Degree \%
LUMA SPECIFICATIONS Luma Brightness Accuracy Luma Contrast Accuracy		CVBS, 1 V input CVBS, 1 V input				

${ }^{1}$ Temperature range $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$ is $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. The minimum/maximum specifications are guaranteed over this range.
${ }^{2}$ Guaranteed by characterization.
${ }^{3}$ Nominal sync depth is 300 mV at 100% sync depth range.

ANALOG SPECIFICATIONS

At Avdd $=3.15 \mathrm{~V}$ to $3.45 \mathrm{~V}, \mathrm{D}_{\mathrm{vdD}}=1.65 \mathrm{~V}$ to 2.0 V , Dvddio $=3.0 \mathrm{~V}$ to $3.6 \mathrm{~V}, \mathrm{P}_{\mathrm{vdD}}=1.71 \mathrm{~V}$ to 1.89 V (operating temperature range, unless otherwise noted). Recommended analog input video signal range is 0.5 V to 1.6 V , typically 1 V p-p.
Table 3.

Parameter ${ }^{1,2}$	Symbol	Test Condition	Min	Typ
CLAMP CIRCUITRY				Max
External Clamp Capacitor			0.1	
Input Impedance				

[^1]
THERMAL SPECIFICATIONS

Table 4.

| Parameter | Symbol | Test Conditions | Min | Typ | Max |
| :--- | :--- | :--- | :--- | :--- | :--- | Unit | | θ_{JC} | 4-layer PCB with solid ground plane | 7.6 |
| :--- | :--- | :--- | :--- |
| | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ | | |
| Junction-to-Case Thermal Resistance | θ_{JA} | 4-layer PCB with solid ground plane | |
| Junction-to-Ambient Thermal Resistance (Still Air) | 38.1 | | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |

TIMING SPECIFICATIONS

$A_{\mathrm{VDD}}=3.15 \mathrm{~V}$ to $3.45 \mathrm{~V}, \mathrm{D}_{\mathrm{VDD}}=1.65 \mathrm{~V}$ to $2.0 \mathrm{~V}, \mathrm{D}_{\mathrm{VDDIO}}=3.0 \mathrm{~V}$ to $3.6 \mathrm{~V}, \mathrm{P}_{\mathrm{VDD}}=1.71 \mathrm{~V}$ to 1.89 V (operating temperature range, unless otherwise noted).
Table 5.

Parameter ${ }^{1,2}$	Symbol	Test Conditions	Min	Typ	Max	Unit
SYSTEM CLOCK AND CRYSTAL Nominal Frequency Frequency Stability					± 50	MHz ppm
$1^{2} \mathrm{C}$ PORT ${ }^{3}$ SCLK Frequency SCLK Minimum Pulse Width High SCLK Minimum Pulse Width Low Hold Time (Start Condition) Setup Time (Start Condition) SDA Setup Time SCLK and SDA Rise Time SCLK and SDA Fall Time Setup Time for Stop Condition	$\begin{aligned} & \mathrm{t}_{1} \\ & \mathrm{t}_{2} \\ & \mathrm{t}_{3} \\ & \mathrm{t}_{4} \\ & \mathrm{t}_{5} \\ & \mathrm{t}_{6} \\ & \mathrm{t}_{7} \\ & \mathrm{t}_{8} \end{aligned}$		$\begin{aligned} & 0.6 \\ & 1.3 \\ & 0.6 \\ & 0.6 \\ & 100 \end{aligned}$	0.6	400 300 300	kHz $\mu \mathrm{s}$ $\mu \mathrm{s}$ μs $\mu \mathrm{s}$ ns ns ns $\mu \mathrm{s}$
RESET FEATURE Reset Pulse Width			5			ms
CLOCK OUTPUTS LLC1 Mark-Space Ratio LLC1 Rising to LLC2 Rising LLC1 Rising to LLC2 Falling	$\begin{aligned} & \mathrm{t}_{\mathrm{t}} \mathrm{t}_{10} \\ & \mathrm{t}_{11} \\ & \mathrm{t}_{12} \end{aligned}$		$45: 55$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	55:45	\% duty cycle ns ns
DATA AND CONTROL OUTPUTS Data Output Transitional Time ${ }^{4}$ Data Output Transitional Time ${ }^{4}$ Propagation Delay to High-Z Max Output Enable Access Time Min Output Enable Access Time	t_{13} t_{14} t_{15} t_{16} t_{17}	Negative clock edge to start of valid data ($\mathrm{t}_{\text {ACCESS }}=\mathrm{t}_{10}-\mathrm{t}_{13}$) End of valid data to negative clock edge $\left(\mathrm{t}_{\text {ног }}=\mathrm{t}_{9}+\mathrm{t}_{14}\right)$		$\begin{aligned} & 6 \\ & 7 \end{aligned}$	3.6 2.4	ns ns ns ns ns

[^2]
ADV7184

TIMING DIAGRAMS

Figure 2. $I^{2} \mathrm{C}$ Timing

Figure 3. Pixel Port and Control Output Timing

ABSOLUTE MAXIMUM RATINGS

Table 6.

Parameter	Rating
Avod to AGND	4V
Dvod to DGND	2.2 V
Pvod to AGND	2.2 V
Dvodio to DGND	4 V
Dvido to Avdo	-0.3 V to +0.3 V
Pvid to Dvid	-0.3 V to +0.3 V
Dvido to Pvod	-0.3 V to +2 V
Dvido to Dvid	-0.3 V to +2 V
Avdd to Pvdd	-0.3 V to +2 V
Avdo to Dvid	-0.3 V to +2 V
Digital Inputs Voltage to DGND	-0.3 V to D $\mathrm{vdDolo}+0.3 \mathrm{~V}$
Digital Output Voltage to DGND	-0.3 V to D $\mathrm{vdolo}+0.3 \mathrm{~V}$
Analog Inputs to AGND	AGND - 0.3 V to Avdd +0.3 V
Maximum Junction Temperature $\left(T_{\text {max }}\right)$	$125^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Infrared Reflow Soldering (20 sec)	$260^{\circ} \mathrm{C}$

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

PACKAGE THERMAL PERFORMANCE

To reduce power consumption the user is advised to turn off any unused ADCs when using the part.

The junction temperature must always stay below the maximum junction temperature ($\mathrm{T}_{\mathrm{J}} \max$) of $125^{\circ} \mathrm{C}$. Use the following equation to calculate the junction temperature:

$$
T_{I}=T_{A \text { max }}+\left(\theta_{I A} \times W_{\max }\right)
$$

where:
$T_{A \text { max }}=85^{\circ} \mathrm{C}$.
$\theta_{J A}=30^{\circ} \mathrm{C} / \mathrm{W}$.
$W_{\max }=\left(\left(A_{V D D} \times I_{A V D D}\right)+\left(D_{V D D} \times I_{D V D D}\right)+\left(D_{V D D I O} \times I_{D V D D I O}\right)+\right.$ $\left.\left(P_{V D D} \times I_{P V D D}\right)\right)$.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

ADV7184

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Table 7. Pin Function Descriptions

Pin No.	Mnemonic	Type	Description
3, 9, 14, 31, 71	DGND	G	Digital Ground.
39, 47, 53, 56	AGND	G	Analog Ground.
4, 15	DVDDIO	P	Digital I/O Supply Voltage (3.3 V).
10, 30, 72	DVDD	P	Digital Core Supply Voltage (1.8V).
50	AVDD	P	Analog Supply Voltage (3.3 V).
38	PVDD	P	PLL Supply Voltage (1.8 V).
$\begin{aligned} & 42,44,46,58, \\ & 60,62,41,43, \\ & 45,57,59,61 \end{aligned}$	AIN1 to AIN12	1	Analog Video Input Channels.
11	$\overline{\text { INT }}$	0	Interrupt Request Output. An interrupt occurs when certain signals are detected on the input video. See the User Sub Map register details in Table 107.
40	FB	I	Fast Blank. FB is a fast switch overlay input that switches between CVBS and RGB analog input signals.
$\begin{aligned} & 70,78,13,25,69 \\ & 35,34,18,17 \end{aligned}$	TESTO to TEST4, TEST9 to TEST12		Leave these pins unconnected.
77,65	$\begin{aligned} & \text { TEST6, } \\ & \text { TEST7 } \end{aligned}$		Tie to AGND.
16	TEST8		Tie to DVDDIO.
$33,32,24 \text { to } 19$ $8 \text { to } 5,76 \text { to } 73$	P0 to P15	0	Video Pixel Output Ports.
2	HS	0	Horizontal Synchronization Output Signal.
1	VS	0	Vertical Synchronization Output Signal.
80	FIELD	0	Field Synchronization Output Signal.

Pin No.	Mnemonic	Type	Description
67	SDA	I/O	$1^{2} \mathrm{C}$ Port Serial Data Input/Output.
68	SCLK	1	$1^{2} \mathrm{C}$ Port Serial Clock Input. Maximum clock rate of 400 kHz .
66	ALSB	1	This pin selects the $I^{2} \mathrm{C}$ address for the ADV7184. ALSB set to Logic 0 sets the address for a write to 0×40; set to Logic 1 sets the address to 0×42.
64	$\overline{\text { RESET }}$	I	System Reset Input (active low). A minimum low reset pulse width of 5 ms is required to reset the ADV7184 circuitry.
27	LLC1	0	Line-Locked Clock 1. This is a line-locked output clock for the pixel data output by the ADV7184. Nominally 27 MHz , but varies according to video line length.
26	LLC2	0	Line-Locked Clock 2. This is a divide-by-2 version of the LLC1 output clock for the pixel data output by the ADV7184. Nominally 13.5 MHz , but varies according to video line length.
29	XTAL	I	Crystal Input. This is the input pin for the 28.63636 MHz crystal, or it can be overdriven by an external $3.3 \mathrm{~V}, 28.63636 \mathrm{MHz}$ clock oscillator source. In crystal mode, the crystal must be a fundamental crystal.
28	XTAL1	0	This pin should be connected to the 28.63636 MHz crystal or left as a no connect if an external $3.3 \mathrm{~V}, 28.63636 \mathrm{MHz}$ clock oscillator source is used to clock the ADV7184. In crystal mode, the crystal must be a fundamental crystal.
36	$\overline{\text { PWRDN }}$	I	Logic 0 on this pin places the ADV7184 in a power-down mode. Refer to the $I^{2} \mathrm{C}$ Register Maps section for more options on power-down modes for the ADV7184.
79	$\overline{\mathrm{OE}}$	I	When set to Logic $0, \overline{\mathrm{OE}}$ enables the pixel output bus, P 15 to P0 of the ADV7184. Logic 1 on the $\overline{\mathrm{OE}}$ pin places P 15 to $\mathrm{P} 0, \mathrm{HS}, \mathrm{VS}$, and SFL into a high impedance state.
37	ELPF	1	The recommended external loop filter must be connected to this ELPF pin, as shown in Figure 52.
12	SFL	0	Subcarrier Frequency Lock. This pin contains a serial output stream that can be used to lock the subcarrier frequency when this decoder is connected to any Analog Devices, Inc., digital video encoder.
63	SOY	I	SYNC on Y.This input pin should only be used with the standard detection and identification function (see the Standard Detection and Identification section). This pin should be connected to the Y signal of a component input for standard identification function.
51	REFOUT	0	Internal Voltage Reference Output. Refer to Figure 52 for a recommended capacitor network for this pin.
52	CML	0	Common-Mode Level. The CML pin is a common-mode level for the internal ADCs. Refer to Figure 52 for a recommended capacitor network for this pin.
48,49	CAPY1, CAPY2	I	ADC Capacitor Network. Refer to Figure 52 for a recommended capacitor network for this pin.
54, 55	CAPC1, CAPC2	1	ADC Capacitor Network. Refer to Figure 52 for a recommended capacitor network for this pin.

ADV7184

ANALOG FRONT END

Figure 6. Internal Pin Connections

ANALOG INPUT MUXING

The ADV7184 has an integrated analog muxing section that allows connecting more than one source of video signal to the decoder. Figure 6 outlines the overall structure of the input muxing provided in the ADV7184.

As can be seen in Figure 6, the analog input muxes can be controlled in two ways:

- By the functional register (INSEL). Using INSEL [3:0] simplifies the setup of the muxes and minimizes crosstalk between channels by preassigning the input channels. This is referred to as the recommended input muxing.
- By an $I^{2} \mathrm{C}$ manual override (ADC_SW_MAN_EN, ADC0_SW, ADC1_SW, ADC2_SW, and ADC3_SW). This is provided for applications with special requirements, such as number/combinations of signals that are not served by the preassigned input connections. This is referred to as manual input muxing.

Figure 7 shows an overview of the two methods of controlling input muxing.

Figure 7. Input Muxing Overview

Recommended Input Muxing

A maximum of 12 CVBS inputs can be connected and decoded by the ADV7184, meaning that the sources must be connected to adjacent pins on the IC, as seen in Figure 5. This calls for a careful design of the PCB layout, for example, placing ground shielding between all signals routed through tracks that are physically close together.

SDM_SEL [1:0], Y/C and CVBS Autodetect Mode Select, Address 0x69 [1:0]

The SDM_SEL bits decide on input routing and whether INSEL [3:0] is used to govern input routing decisions.

The S-video/composite autodetection feature is enabled using SDM_SEL = 11 .

Table 8. SDM_SEL [1:0]

SDM_SEL [1:0]	Mode	Analog Video Inputs
00	As per INSEL [3:0]	As per INSEL [3:0]
01	CVBS	AIN11
10	Y/C	Y = AIN10
		C = AIN12
11	S-video/composite	CVBS = AIN11
	autodetection	Y = AIN11
		C = AIN12

INSEL [3:0], Input Selection, Address 0x00 [3:0]

The INSEL bits allow the user to select the input channel and format. Depending on the PCB connections, only a subset of the INSEL modes is valid. INSEL [3:0] not only switches the analog input muxing, but also configures ADV7184 to process composite (CVBS), S-video (Y/C), or component (YPbPr/RGB) format signals.

The recommended input muxing is designed to minimize crosstalk between signal channels and to obtain the highest level of signal integrity. Table 10 summarizes how the PCB layout should connect analog video signals to the ADV7184.

It is strongly recommended that users connect any unused analog input pins to AGND to act as a shield.

Connect the AIN7 to AIN11 inputs to AGND when only six input channels are used. This improves the quality of the sampling due to better isolation between the channels.

AIN12 is not controlled by INSEL [3:0]. It can be routed to ADC0/ADC1/ADC2 only by manual muxing. See Table 11 for details.

Table 9. Input Channel Switching Using INSEL [3:0]

$\begin{aligned} & \text { INSEL } \\ & \text { [3:0] } \end{aligned}$	Description	
	Analog Input Pins	Video Format
0000	CVBS1 = AIN1	SCART (CVBS and R, G, B)
(default)	$\mathrm{B}=$ AIN4 or AIN7 ${ }^{1}$	
	$\mathrm{R}=$ AIN5 or AIN8 ${ }^{1}$	
	$\mathrm{G}=$ AIN6 or AIN9 ${ }^{1}$	
0001	CVBS2 $=$ AIN2	SCART (CVBS and R, G, B)

N2
B $=$ AIN4 or AIN7 ${ }^{1}$
R $=$ AIN5 or AIN8 ${ }^{1}$
G = AIN6 or AIN9 ${ }^{1}$
CVBS3 $=$ AIN3
B $=$ AIN4 or AIN7 ${ }^{1}$
R $=$ AIN5 or AIN8 ${ }^{1}$
G = AIN6 or AIN9 ${ }^{1}$
CVBS4 = AIN4
$\mathrm{B}=$ AIN7
R = AIN8
$\mathrm{G}=$ AIN9
0100
CVBS1 $=$ AIN5
$\mathrm{B}=\mathrm{AIN} 7$
R $=$ AIN8
$\mathrm{G}=\mathrm{AIN} 9$
0101

0110
0111
1000
1001

1010

1011

100

1101

1110

1111
CVBS1 = AIN6
$B=$ AIN7
$\mathrm{R}=$ AIN8
$\mathrm{G}=$ AIN 9
$\mathrm{Y} 1=$ AIN1
C1 = AIN4
$\mathrm{Y} 2=$ AIN2
C2 $=$ AIN 5
$\mathrm{Y} 3=$ AIN3
C3 = AIN6
$\mathrm{Y} 1=$ AIN1
$\mathrm{PB} 1=\mathrm{AIN} 4$
$\mathrm{PR} 1=$ AIN5
PR1 $=$ AIN5
$\mathrm{Y} 2=$ AIN2
PB2 $=$ AIN3
PR2 $=$ AIN6

CVBS7 $=$ AIN7	SCART (CVBS and R, G, B)

$\mathrm{B}=$ AIN4
$\mathrm{R}=$ AIN5
G = AIN6

$\begin{array}{l}\text { CVBS8 }=\text { AIN8 } \\ B=\text { AIN4 }\end{array}$	SCART (CVBS and $R, G, B)$
$R=$ B	

$\mathrm{R}=$ AIN5
$\mathrm{G}=$ AIN6
CVBS9 $=$ AIN
$\mathrm{B}=\mathrm{AIN} 4$
R = AIN5
$\mathrm{G}=$ AIN6

$\begin{array}{l}G=\text { CVBS10 }=\text { AIN10 } \\ B=\text { AIN4 or AIN7 }\end{array}$	SCART (CVBS and R, G, B)

B $=$ AIN4 or AIN7 ${ }^{1}$
R $=$ AIN5 or AIN8 ${ }^{1}$
G = AIN6 or AIN9 ${ }^{1}$
CVBS11 = AIN11
B $=$ AIN4 or AIN7 ${ }^{1}$
R $=$ AIN5 or AIN8 ${ }^{1}$
$\mathrm{G}=$ AIN6 or AIN9 ${ }^{1}$
SCART (CVBS and R, G, B)

SCART (CVBS and R, G, B)

[^3]Table 10. Input Channel Assignments

Input Channel	Pin No.	Recommended Input Muxing Control-INSEL [3:0]			
AIN7	41	CVBS7			SCART1-B
AIN1	42	CVBS1	YC1-Y	YPrPb1-Y	SCART2-CVBS
AIN8	43	CVBS8			SCART1-R
AIN2	44	CVBS2	YC2-Y	YPrPb2-Y	
AIN9	45	CVBS9			SCART1-G
AIN3	46	CVBS3	YC3-Y	YPrPb2-Pb	
AIN10	57	CVBS10			
AIN4	58	CVBS4	YC1-C	YPrPb1-Pb	SCART2-B
AIN11	59	CVBS11			SCART1-CVBS
AIN5	60	CVBS5	YC2-C	YPrPb1-Pr	SCART2-R
AIN12	61	Not available			
AIN6	62	CVBS6	YC3-C	YPrPb2-Pr	SCART2-G

Table 11. Manual Mux Settings for All ADCs (Set ADC_SW_MAN_EN to 1)

	ADC0		ADC1		ADC2		ADC3
ADCO_SW [3:0]	Connected To	ADC1_SW [3:0]	Connected To	ADC2_SW [3:0]	Connected To	ADC3_SW [3:0]	Connected To
0000	No connection						
0001	AIN1	0001	No connection	0001	No connection	0001	No connection
0010	AIN2	0010	No connection	0010	AIN2	0010	No connection
0011	AIN3	0011	AIN3	0011	No connection	0011	No connection
0100	AIN4	0100	AIN4	0100	No connection	0100	AIN4
0101	AIN5	0101	AIN5	0101	AIN5	0101	No connection
0110	No connection	0111	AIN6	0110	AIN6	0110	No connection
0111	No connection	1000	No connection	0111	No connection	0111	No connection
1000	AIN7	1001	No connection	1000	No connection	1000	No connection
1001	AIN8	1010	No connection	1001	1010	No connection	1001
1010	AIN9	AIN10	1100	AIN9	1011	No connection	1010
1011	AIN7						
1100	AIN11	1101	AIN10	1100	No connection	1100	No connection
1110	AIN12	1110	AIN11	1101	AIN11	1101	No connection
1111	No connection	1111	No connection	1111	No connection		

RGB_IP_SEL, Address 0xF1 [0]

For SCART input, R, G, and B signals can be input either on AIN4, AIN5, and AIN6 or on AIN7, AIN8, and AIN9.

0 (default)-B is input on AIN4, R is input on AIN5, and G is input on AIN6.
$1-\mathrm{B}$ is input on AIN7, R is input on AIN8, and G is input on AIN9.

MANUAL INPUT MUXING

By accessing a set of manual override muxing registers, the analog input muxes of the ADV7184 can be controlled directly. This is referred to as manual input muxing. Manual input muxing overrides other input muxing control bits, including INSEL.

Manual muxing is activated by setting the ADC_SW_MAN_EN bit. It only affects the analog switches in front of the ADCs.

Therefore, if the settings of INSEL and the manual input muxing bits (ADC0_SW/ADC1_SW/ADC2_SW/ADC3_SW) contradict each other, the ADC0_SW/ADC1_SW/ADC2_SW/ ADC3_SW settings apply and INSEL is ignored.

Manual input muxing controls only the analog input muxes. For the follow-on blocks to process video data in the correct format, however, INSEL must still be used to indicate whether the input signal is of $\mathrm{YPbPr}, \mathrm{Y} / \mathrm{C}$, or CVBS format.

Restrictions in the channel routing are imposed by the analog signal routing inside the IC; each input pin cannot be routed to each ADC. Refer to Figure 6 for an overview on the routing capabilities inside the chip. The four mux sections can be controlled by the reserved control signal buses, $\mathrm{ADC0}$ _SW [3:0], $\mathrm{ADC1}_{2} \mathrm{SW}$ [3:0], ADC2_SW [3:0], and ADC3_SW [3:0]. Table 11 explains the control words used.

ADC_SW_MAN_EN, Manual Input Muxing Enable, Address 0xC4 [7]
 ADC0_SW [3:0], ADC0 Mux Configuration, Address 0xC3 [3:0]
 ADC1_SW [3:0], ADC1 Mux Configuration, Address 0xC3 [7:4]
 ADC2_SW [3:0], ADC2 Mux Configuration, Address 0xC4 [3:0]
 ADC3_SW [3:0], ADC3 Mux Configuration, Address 0xF3 [7:4]

See Table 11.

XTAL CLOCK INPUT PIN FUNCTIONALITY

XTAL_TTL_SEL, Address 0x13 [2]

The crystal pad is normally part of the crystal oscillator circuit, powered from a 1.8 V supply. For optimal clock generation, the slice level of the input buffer of this circuit is at approximately half the supply voltage, making it incompatible with TLL level signals.

0 (default)-A crystal is used to generate the ADV7184 clock.
1-An external TTL level clock is supplied. A different input buffer can be selected that slices at TTL-compatible levels. This inhibits operation of the crystal oscillator and therefore can only be used when a clock signal is applied.

28.63636 MHz CRYSTAL OPERATION EN28XTAL, Address 0x1D [6]

The ADV7184 can operate on two different base crystal frequencies. Selecting one over the other may be desirable in systems in which board crosstalk between different components leads to undesirable interference between video signals. It is recommended to use a crystal of frequency 28.63636 MHz to clock the ADV7184.

0 (default)—The crystal frequency is 27 MHz .
1-The crystal frequency is 28.63636 MHz .

ANTIALIASING FILTERS

The ADV7184 has optional antialiasing filters on each of the four input channels. The filters are designed for SD video with approximately 6 MHz bandwidth.

A plot of the filter response is shown in Figure 8. The filters can be individually enabled via $\mathrm{I}^{2} \mathrm{C}$ under the control of AA_FILT_EN [3:0].
AA_FILT_EN [0], Address 0xF3 [0]
0 (default)—The filter on Channel 0 is disabled.
1-The filter on Channel 0 is enabled.

AA_FILT_EN [1], Address 0xF3 [1]

0 (default)—The filter on Channel 1 is disabled.
1-The filter on Channel 1 is enabled.

AA_FILT_EN [2], Address OxF3 [2]

0 (default)—The filter on Channel 2 is disabled.
1-The filter on Channel 2 is enabled.

AA_FILT_EN [3], Address OxF3 [3]

0 (default)—The filter on Channel 3 is disabled.
1-The filter on Channel 3 is enabled.

Figure 8. Frequency Response of Internal ADV7184 Antialiasing Filters

SCART AND FAST BLANKING

The ADV7184 can support simultaneous processing of CVBS and RGB standard definition signals to enable SCART compatibility and overlay functionality.

This function is available when INSEL [3:0] is set appropriately (see Table 9). Timing extraction is always performed by the ADV7184 on the CVBS signal. However, a combination of the CVBS and RGB inputs can be mixed and output under the control of the $\mathrm{I}^{2} \mathrm{C}$ registers and the FB pin.

Four basic modes are supported:

- Static Switch Mode. The FB pin is not used. The timing is extracted from the CVBS signal, and either the CVBS content or RGB content can be output under the control of CVBS_RGB_SEL. This mode allows the selection of a fullscreen picture from either source. Overlay is not possible in static switch mode.
- Fixed Alpha Blending. The FB pin is not used. The timing is extracted from the CVBS signal, and an alpha blended combination of the video from the CVBS and RGB sources is output. This alpha blending is applied to the full screen.

The alpha blend factor is selected with the $\mathrm{I}^{2} \mathrm{C}$ signal MAN_ALPHA_VAL [6:0]. Overlay is not possible in fixed alpha blending mode.

- Dynamic Switching (Fast Mux). The FB pin can be used to select the source. This enables dynamic multiplexing between the CVBS and RGB sources. With default settings, when Logic 1 is applied to the FB pin, the RGB source is selected; when Logic 0 is applied to the FB pin, the CVBS source is selected. This mode is suitable for the overlay of subtitles, teletext, or other material. Typically, the CVBS source carries the main picture, and the RGB source has the overlay data.
- Dynamic Switching with Edge Enhancement. This provides the same functionality as the dynamic switching mode, but with the benefit of Analog Devices proprietary edgeenhancement algorithms, which improve the visual appearance of transitions for signals from a wide variety of sources.

System Diagram

A block diagram of the ADV7184 fast blanking configuration is shown in Figure 9.

The CVBS signal is processed by the ADV7184 and converted to YPrPb . The RGB signals are processed by a color space converter (CSC), and samples are converted to YPrPb . Both sets of YPrPb signals are input to the subpixel blender, which can be configured to operate in any of the four modes previously outlined in this section.

The fast blank position resolver determines the time position of the FB pin accurately ($<1 \mathrm{~ns}$). This position information is then used by the subpixel blender in dynamic switching modes, enabling the ADV7184 to implement high performance multiplexing between the CVBS and RGB sources even when the RGB data source is completely asynchronous to the sampling crystal reference.

An antialiasing filter is required on all four data channels (R, G, B, and CVBS). The order of this filter is reduced because all signals are sampled at 54 MHz .

The switched or blended data is output from the ADV7184 in the standard output formats (see Table 102).

FAST BLANK CONTROL

FB_MODE [1:0], Address 0xED [1:0]

FB_MODE controls which fast blank mode is selected.
Table 12. FB_MODE [1:0] Function

FB_MODE [1:0]	Description
00 (default)	Static switch mode
01	Fixed alpha blending
10	Dynamic switching (fast mux)
11	Dynamic switching with edge enhancement

Static Mux Selection Control

CVBS_RGB_SEL, Address 0xED [2]
CVBS_RGB_SEL controls whether the video from the CVBS or RGB source is selected for output from the ADV7184.

0 (default)—Data from the CVBS source is selected for output.
1-Data from the RGB source is selected for output.

Alpha Blend Coefficient

MAN_ALPHA_VAL [6:0], Address 0xEE [6:0]
When fixed alpha blending is selected (FB_MODE [1:0] = 01), MAN_ALPHA_VAL [6:0] determines the proportion in which the video from the CVBS and RGB sources are blended. Equation 1 shows how these bits affect the video output.

$$
\begin{align*}
& \text { Video }_{\text {out }}=\text { Video }_{\text {CVBS }} \times\left(1-\frac{M A N_{-} A L P H A_{-} V A L[6: 0]}{64}\right) \tag{1}\\
& + \text { Video }_{\text {RGB }} \times \frac{M A N_{-} A L P H A_{-} V A L[6: 0]}{64}
\end{align*}
$$

The maximum valid value for MAN_ALPHA_VAL [6:0] is 1000000 , such that the alpha blender coefficients remain between 0 and 1 . The default value for MAN_ALPHA_VAL [6:0] is 0000000 .

ADV7184

Figure 9. Fast Blanking Configuration

Fast Blank Edge Shaping

FB_EDGE_SHAPE [2:0], Address 0xEF [2:0]
To improve the picture transition for high speed fast blank switching, an edge-shaping mode is available on the ADV7184. Depending on the format of the RGB inputs, it may be advantageous to apply different levels of edge shaping. The levels are selected via the FB_EDGE_SHAPE [2:0] bits. Users are advised to try each of the settings and select the setting that is most visually pleasing on their system.

Table 13. FB_EDGE_SHAPE [2:0] Function

FB_EDGE_SHAPE [2:0]	Description
000	No edge shaping
001	Level 1 edge shaping
010 (default)	Level 2 edge shaping
011	Level 3 edge shaping
100	Level 4 edge shaping
101 to 111	Not valid

Contrast Reduction

For overlay applications, text can be more readable if the contrast of the video directly behind the text is reduced. To enable the definition of a window of reduced contrast behind inserted text, the signal applied to the FB pin can be interpreted as a trilevel signal, as shown in Figure 10.

Figure 10. Fast Blank Signal Representation with Contrast Reduction Enabled

Contrast Reduction Enable

CNTR_ENABLE, Address 0xEF [3]
This bit enables the contrast reduction feature and changes the meaning of the signal applied to the FB pin.

0 (default)-The contrast reduction feature is disabled, and the fast blank signal is interpreted as a bilevel signal.

1-The contrast reduction feature is enabled, and the fast blank signal is interpreted as a trilevel signal.

Contrast Mode

CNTR_MODE [1:0], Address 0xF1 [3:2]
The contrast level in the selected contrast reduction box is selected using the CNTR_MODE [1:0] bits.

Table 14. CNTR_MODE [1:0] Function

CNTR_MODE [1:0]	Description
00 (default)	25%
01	50%
10	75%
11	100%

Fast Blank and Contrast Reduction
 Programmable Thresholds

The internal fast blank and contrast reduction signals are resolved from the trilevel FB signal using two comparators, as shown in Figure 11. To facilitate compliance with different input level standards, the reference level to these comparators is programmable via FB_LEVEL [1:0] and CNTR_LEVEL [1:0]. The resulting thresholds are given in Table 15.

FB_LEVEL [1:0], Address 0xF1 [5:4]

These bits control the reference level for the fast blank comparator.
CNTR_LEVEL [1:0], Address 0xF1 [7:6]
These bits control the reference level for the contrast reduction comparator.

Figure 11. Fast Blank and Contrast Reduction Programmable Threshold

Table 15. Fast Blank and Contrast Reduction Programmable Threshold I ${ }^{2}$ C Controls

CNTR_ENABLE	FB_LEVEL[1:0]	CNTR_LEVEL [1:0]	Fast Blanking Threshold (V)	Contrast Reduction Threshold (V)
0	00 (default)	XX	1.4	n / a
0	01	XX	1.6	n / a
0	10	XX	1.8	n / a
0	11	XX	2.0	n / a
1	00 (default)	00	1.6	0.4
1	01	01	1.8	0.6
1	10	10	2.0	0.8
1	11	11	2.2	2.0

FB_INV, Address 0xED [3], Write Only

The interpretation of the polarity of the signal applied to the FB pin can be changed using FB_INV.

0 (default)—The fast blank pin is active high.
1-The fast blank pin is active low.

Readback of FB Pin Status

FB_STATUS [3:0], Address 0xED [7:4]
FB_STATUS [3:0] is a readback value that provides the system information on the status of the FB pins, as shown in Table 16.

FB Timing

FB_SP_ADJUST [3:0], Address 0xEF [7:4]
The critical information extracted from the FB signal is the time at which it switches relative to the input video. Due to small timing inequalities either on the IC or on the PCB, it may be necessary to adjust the result by a fraction of one clock cycle. This is controlled by FB_SP_ADJUST [3:0].

Each LSB of FB_SP_ADJUST [3:0] corresponds to $1 / 8^{\text {th }}$ of an ADC clock cycle. Increasing the value is equivalent to adding delay to the FB signal. The reset value is chosen to produce equalized channels when the ADV7184 internal antialiasing filters are enabled and there are only intentional delays on the PCB.

The default value of FB_SP_ADJUST [3:0] is 0100.

Alignment of FB Signal

FB_DELAY [3:0], Address 0xF0 [3:0]

In the event of misalignment between the FB input signal and the other input signals (CVBS and RGB) or unequalized delays in their processing, it is possible to alter the delay of the FB signal in 28.63636 MHz clock cycles. (For a finer granularity delay of the FB signal, refer to the FB_SP_ADJUST [3:0], Address 0xEF [7:4] section.)

The default value of FB_DELAY [3:0] is 0100.

Color Space Converter Manual Adjust

FB_CSC_MAN, Address 0xEE [7]

As shown in Figure 9, the data from the CVBS and RGB sources are converted to YPbPr before being combined. For the RGB source, CSC must be used to perform this conversion. When SCART support is enabled, the parameters for CSC are automatically configured for this operation.

If the user wishes to use a different conversion matrix, this autoconfiguration can be disabled and the CSC can be manually programmed. For details on this manual configuration, contact an Analog Devices representative.

0 (default)—The CSC is configured automatically for the RGBto -YPrPb conversion.

1-The CSC can be configured manually (not recommended).

Table 16. FB_STATUS Functions

FB_STATUS [3:0]	Bit Name	Description
0	FB_STATUS. 0	FB_RISE. A high value indicates that there has been a rising edge on FB since the last $I^{2} C$ read. The value is cleared by an $I^{2} C$ read (this is a self-clearing bit).
1	FB_STATUS. 1	FB_FALL. A high value indicates that there has been a falling edge on FB since the last $I^{2} \mathrm{C}$ read. The value is cleared by an $I^{2} \mathrm{C}$ read (this is a self-clearing bit).
2	FB_STATUS. 2	FB_STAT. The value of the FB input pin at the time of the read.
3	FB_STATUS. 3	FB_HIGH. A high value indicates that there has been a rising edge on FB since the last $I^{2} \mathrm{C}$ read. The value is cleared by an $I^{2} \mathrm{C}$ read (this is a self-clearing bit).

GLOBAL CONTROL REGISTERS

Register control bits listed in this section affect the whole chip.

POWER-SAVING MODES

Power-Down

PDBP, Address 0x0F [2]
The digital core of the ADV7184 can be shut down by using the PWRDN pin or the PWRDN bit. The PDBP bit determines which of the two controls has the higher priority. The default is to give the pin ($\overline{\mathrm{PWRDN}})$ priority. This allows the user to have the ADV7184 powered down by default.

0 (default)-The digital core power is controlled by the $\overline{\text { PWRDN }}$ pin (the bit is disregarded).

1-The bit has priority (the pin is disregarded).
PWRDN, Address 0x0F [5]
Setting the PWRDN bit switches the ADV7184 into a chip-wide power-down mode. The power-down stops the clock from entering the digital section of the chip, thereby freezing its operation. No I ${ }^{2} \mathrm{C}$ bits are lost during power-down. The PWRDN bit also affects the analog blocks and switches them into low current modes. The $\mathrm{I}^{2} \mathrm{C}$ interface itself is unaffected and remains operational in power-down mode.

The ADV7184 leaves the power-down state if the PWRDN bit is set to 0 (via $\mathrm{I}^{2} \mathrm{C}$) or if the overall part is reset using the $\overline{\text { RESET }}$ pin. Note that PDBP must be set to 1 for the PWRDN bit to power down the ADV7184.

0 (default)—The chip is operational.
1-The ADV7184 is in chip-wide power-down mode.

ADC Power-Down Control

The ADV7184 contains four 10-bit ADCs (ADC0, ADC1, ADC 2 , and ADC 3). If required, it is possible to power down each ADC individually.

- In CVBS mode, ADC 1 and ADC 2 should be powered down to reduce power consumption.
- In S-video mode, ADC2 should be powered down to reduce power consumption.

PWRDN_ADC_0, Address 0x3A [3]
0 (default)-The ADC is in normal operation.
1 - ADC 0 is powered down.
PWRDN_ADC_1, Address 0x3A [2]
0 (default)-The ADC is in normal operation.
$1-\mathrm{ADC1}$ is powered down.

PWRDN_ADC_2, Address 0x3A [1]
0 (default)-The ADC is in normal operation.
$1-\mathrm{ADC} 2$ is powered down.
PWRDN_ADC_3, Address 0x3A [0]
0 (default)-The ADC is in normal operation.
$1-\mathrm{ADC} 3$ is powered down.

FB_PWRDN, Address 0x0F [1]

To achieve a very low power-down current, it is necessary to prevent activity on toggling input pins from reaching circuitry, where it could consume current. FB_PWRDN gates signals from the FB input pin.

0 (default)—The FB input is in normal operation.
1-The FB input is in the power-saving mode.

RESET CONTROL

RES, Chip Reset, Address 0x0F [7]

Setting this bit, which is equivalent to controlling the $\overline{\text { RESET }}$ pin on the ADV7184, issues a chip reset. All $\mathrm{I}^{2} \mathrm{C}$ registers are reset to their default values, making these bits self-clearing. Some register bits do not have a reset value specified and instead keep the last value written to them. These bits are marked as having a reset value of x in the register tables. After the reset sequence, the part immediately starts to acquire the incoming video signal.

Executing a software reset takes approximately 2 ms . However, it is recommended to wait 5 ms before performing subsequent $\mathrm{I}^{2} \mathrm{C}$ writes.

The $\mathrm{I}^{2} \mathrm{C}$ master controller receives a no acknowledge condition on the ninth clock cycle when a chip reset is implemented. See the MPU Port Description section for a full description.

0 (default)-Operation is normal.
1 -The reset sequence starts.

GLOBAL PIN CONTROL

Three-State Output Drivers

TOD, Address 0x03 [6]
This bit allows the user to three-state the output drivers of the ADV7184. Upon setting the TOD bit, the P15 to P0, HS, VS, FIELD, and SFL pins are three-stated. The ADV7184 also supports three-stating via a dedicated pin, $\overline{\mathrm{OE}}$. The output drivers are three-stated if the TOD bit or the $\overline{\mathrm{OE}}$ pin is set high.

The timing pins (HS, VS, and FIELD) can be forced active via the TIM_OE bit of Register 0x04. For more information on three-state control, refer to the Three-State LLC Drivers and the Timing Signals Output Enable sections. Individual drive

ADV7184

strength controls are provided by the DR_STR_S, DR_STR_C, and DR_STR bits of Register 0xF4.

0 (default)-The output drivers are enabled.
1-The output drivers are three-stated.

Three-State LLC Drivers

TRI_LLC, Address 0x1D [7]
This bit allows the output drivers for the LLC1 and LLC2 pins of the ADV7184 to be three-stated. For more information on three-state control, refer to the Three-State Output Drivers and the Timing Signals Output Enable sections. Individual drive strength controls are provided via the DR_STR_S, DR_STR_C, and DR_STR bits.

0 (default)—The LLC pin drivers work according to the DR_STR_C [1:0] setting (pin enabled).

1-The LLC pin drivers are three-stated.

Timing Signals Output Enable

TIM_OE, Address 0x04 [3]
The TIM_OE bit should be regarded as an addition to the TOD bit. Setting it high forces the output drivers for HS, VS, and FIELD into the active (that is, driving) state even if the TOD bit is set. If the TIM_OE bit is set to low, the HS, VS, and FIELD pins are three-stated depending on the TOD bit. This functionality is useful if the decoder is to be used only as a timing generator. This may be the case if only the timing signals are to be extracted from an incoming signal or if the part is in free-run mode, where, for example, a separate chip can output a company logo. For more information on three-state control, refer to the Three-State Output Drivers and the Three-State LLC Drivers sections. Individual drive strength controls are provided via the DR_STR_S, DR_STR_C, and DR_STR bits.

0 (default)—HS, VS, and FIELD are three-stated according to the TOD bit.
$1-\mathrm{HS}, \mathrm{VS}$, and FIELD are forced active.

Drive Strength Selection (Data)

DR_STR [1:0], Address 0xF4 [5:4]
Because of EMC and crosstalk factors, it may be desirable to strengthen or weaken the drive strength of the output drivers. The DR_STR [1:0] bits affect the P [15:0] output drivers.

For more information on three-state control, refer to the Drive Strength Selection (Clock) and the Drive Strength Selection (Sync) sections.

Table 17. DR_STR Function

DR_STR [1:0]	Description
01 (default)	Medium-low drive strength $(2 \times)$
10	Medium-high drive strength $(3 \times)$
11	High drive strength $(4 \times)$

Drive Strength Selection (Clock)

DR_STR_C [1:0], Address 0xF4 [3:2]
The DR_STR_C [1:0] bits can be used to select the strength of the clock signal output driver (LLC pin). For more information, refer to the Drive Strength Selection (Sync) and the Drive Strength Selection (Data) sections.
Table 18. DR_STR_C Function

DR_STR_C [1:0]	Description
01 (default)	Medium-low drive strength $(2 \times)$
10	Medium-high drive strength $(3 \times)$
11	High drive strength $(4 \times)$

Drive Strength Selection (Sync)

DR_STR_S [1:0], Address 0xF4 [1:0]
The DR_STR_S [1:0] bits allow the user to select the strength of the synchronization signals with which HS, VS, and FIELD are driven. For more information, refer to the Drive Strength Selection (Clock) and the Drive Strength Selection (Data) sections.

Table 19. DR_STR_S Function

DR_STR_S [1:0]	Description
01 (default)	Medium-low drive strength $(2 \times)$
10	Medium-high drive strength $(3 \times)$
11	High drive strength $(4 \times)$

Enable Subcarrier Frequency Lock Pin

EN_SFL_PIN, Address 0x04 [1]
The EN_SFL_PIN bit enables the output of subcarrier lock information (also known as genlock) from the ADV7184 core to an encoder in a decoder/encoder back-to-back arrangement.

0 (default)—The subcarrier frequency lock output is disabled.
1-The subcarrier frequency lock information is presented on the SFL pin.

Polarity LLC Pin

PCLK, Address 0x37 [0]
The polarity of the clock that leaves the ADV7184 via the LLC1 and LLC2 pins can be inverted using the PCLK bit. Changing the polarity of the LLC clock output may be necessary to meet the setup time and hold time expectations of follow-on chips. This bit also inverts the polarity of the LLC2 clock.

0 -The LLC output polarity is inverted.
1 (default)—The LLC output polarity is normal, as per the timing diagrams (see Figure 2 to Figure 4).

GLOBAL STATUS REGISTERS

Three registers provide summary information about the video decoder: Status Register 1, Status Register 2, and Status Register 3. These registers contain status bits that report operational information to the user.

Status Register 1 [7:0], Address 0x10 [7:0]

This read-only register provides information about the internal status of the ADV7184. See the CIL [2:0], Count-Into-Lock, Address 0×51 [2:0] and the COL [2:0], Count-Out-of-Lock, Address 0×51 [5:3] sections for information on the timing.

Depending on the setting of the FSCLE bit, the IN_LOCK [0] and LOST_LOCK [1] bits of Status Register 1 are based solely on the horizontal timing information or on the horizontal timing and lock status of the color subcarrier. See the FSCLE, Fsc Lock Enable, Address 0x51 [7] section.

AD_RESULT [2:0], Autodetection Result, Address 0x10 [6:4]

These bits report the findings from the autodetection block. For more information on enabling the autodetection block, see the

General Setup section. For information on configuring this block, see the Autodetection of SD Modes section.

Table 20. AD_RESULT Function

AD_RESULT [2:0]	Description
000	NTSC M/J
001	NTSC 443
010	PAL M
011	PAL 60
100	PAL B/G/H/I/D
101	SECAM
110	PAL Combination N
111	SECAM 525

Status Register 2 [7:0], Address 0x12 [7:0]
See Table 22.
Status Register 3 [7:0], Address 0x13 [7:0]
See Table 23.

Table 21. Status Register 1 Function

Status Register 1[7:0]	Bit Name	Description
0	IN_LOCK	In lock (now).
1	LOST_LOCK	Lost lock (since last read of this register).
2	FSC_LOCK	Fsc locked (now).
3	FOLLOW_PW	AGC follows peak white algorithm.
4	AD_RESULT.0	Result of autodetection.
5	AD_RESULT.1	Result of autodetection.
6	AD_RESULT.2	Result of autodetection.
7	COL_KILL	Color kill is active.

Table 22. Status Register 2 Function

Status Register 2 [7:0]	Bit Name	Description
0	MVCS DET	Detected Macrovision color striping.
1	MVCS T3	Macrovision color striping protection. Conforms to Type 3 if high, Type 2 if low.
2	MV_PS DET	Detected Macrovision pseudosync pulses.
3	MV_AGC DET	Detected Macrovision AGC pulses.
4	LL_NSTD	Line length is nonstandard.
5	FSC_NSTD	Fsc frequency is nonstandard.
6	Reserved	
7	Reserved	

Table 23. Status Register 3 Function

Status Register 3 [7:0]	Bit Name	Description
0	INST_HLOCK	Horizontal lock indicator (instantaneous).
1	GEMD	Gemstar detect.
2	SD_OP_50HZ	Flags whether 50 Hz or 60 Hz is present at output.
3	CVBS	Indicates if a CVBS signal is detected in composite/S-video autodetection configuration.
4	FREE_RUN_ACT	Indicates if the ADV7184 is in free-run mode. Outputs a blue screen by default. See the
		DEF_VAL_AUTO_EN, Default Value Automatic Enable, Address 0x0C [1] section for details
		about disabling this function.
5	STD_FLD_LEN	Field length is correct for currently selected video standard.
6	INTERLACED	Interlaced video detected (field sequence found).
7	PAL_SW_LOCK	Reliable sequence of swinging bursts detected.

ADV7184

STANDARD DEFINITION PROCESSOR (SDP)

Figure 12. Block Diagram of the Standard Definition Processor

A block diagram of the ADV7184 standard definition processor (SDP) is shown in Figure 12.

The SDP can handle standard definition video in CVBS, Y/C, and YPrPb formats. It can be divided into a luminance path and a chrominance path. If the input video is of a composite type (CVBS), both processing paths are fed with the CVBS input.

SD LUMA PATH

The input signal is processed by the following blocks:

- Luma Digital Fine Clamp. This block uses a high precision algorithm to clamp the video signal.
- Luma Filter. This block contains a luma decimation filter (YAA) with a fixed response and some luma-shaping filters (YSH) that have selectable responses.
- Luma Gain Control. The automatic gain control (AGC) can operate on a variety of modes, including a mode based on the depth of the horizontal sync pulse, a mode based on the peak white mode, and a mode that uses a fixed manual gain.
- Luma Resample. To correct for errors and dynamic changes in line lengths, the data is digitally resampled.
- Luma 2D Comb. The two-dimensional comb filter provides Y/C separation.
- AV Code Insertion. At this point, the decoded luma (Y) signal is merged with the retrieved chroma values. AV codes (as per ITU-R. BT-656) can be inserted.

SD CHROMA PATH

The input signal is processed by the following blocks:

- Chroma Digital Fine Clamp. This block uses a high precision algorithm to clamp the video signal.
- Chroma Demodulation. This block uses a color subcarrier (Fsc) recovery unit to regenerate the color subcarrier for any modulated chroma scheme and then performs an AM demodulation for PAL and NTSC and an FM demodulation for SECAM.
- Chroma Filter. This block contains a chroma decimation filter (CAA) with a fixed response and some chromashaping filters (CSH) that have selectable responses.
- Chroma Gain Control. Automatic gain control (AGC) can operate on several modes, including a mode based on the color subcarrier's amplitude, a mode based on the depth of the horizontal sync pulse on the luma channel, and a mode that uses a fixed manual gain.
- Chroma Resample. The chroma data is digitally resampled to keep it aligned with the luma data. The resampling is done to correct for static and dynamic errors in the line lengths of the incoming video signal.
- Chroma 2D Comb. The two-dimensional, 5-line, superadaptive comb filter provides high quality Y/C separation in case the input signal is CVBS.
- AV Code Insertion. At this point, the demodulated chroma (Cr and Cb) signal is merged with the retrieved luma values. AV codes (as per ITU-R. BT-656) can be inserted.

SYNC PROCESSING

The ADV7184 extracts syncs embedded in the video data stream. There is currently no support for external HS/VS inputs. The sync extraction is optimized to support imperfect video sources, such as videocassette recorders with head switches. The actual algorithm used employs a coarse detection based on a threshold crossing, followed by a more detailed detection using an adaptive interpolation algorithm. The raw sync information is sent to a line-length measurement and prediction block. The output of this block is then used to drive the digital resampling section to ensure that the ADV7184 outputs 720 active pixels per line.

The sync processing on the ADV7184 also includes the following specialized postprocessing blocks that filter and condition the raw sync information retrieved from the digitized analog video.

- Vsync Processor. This block provides extra filtering of the detected vsyncs to improve the vertical lock.
- Hsync Processor. The hsync processor is designed to filter incoming hsyncs that have been corrupted by noise, providing much improved performance for video signals with a stable time base but poor SNR.

VBI DATA RECOVERY

The ADV7184 can retrieve the following information from the input video:

- Wide-screen signaling (WSS)
- Copy generation management system (CGMS) 0100
- Closed captioning (CC) 0101
- Macrovision protection presence 0110
- Gemstar-compatible data slicing 0111
- Teletext
- VITC/VPS

The ADV7184 is also capable of automatically detecting the incoming video standard with respect to

- Color subcarrier frequency
- Field rate
- Line rate

The ADV7184 can configure itself to support PAL (B/G/H/I/D/M/N), PAL Combination N, NTSC M, NTSC J, SECAM $50 \mathrm{~Hz} / 60 \mathrm{~Hz}$, NTSC 4.43, and PAL 60.

1000

GENERAL SETUP

Video Standard Selection

The VID_SEL [3:0] bits allow the user to force the digital core into a specific video standard. Under normal circumstances, this should not be necessary. The VID_SEL [3:0] bits default to an autodetection mode that supports PAL, NTSC, SECAM, and variants thereof. The following section describes the autodetection system.

Autodetection of SD Modes

To guide the autodetection system, individual enable bits are provided for each of the supported video standards. Setting the relevant bit to 0 inhibits the standard from being automatically detected. Instead, the system selects the closest of the remaining enabled standards. The results of the autodetection can be read back via the status registers. See the Global Status Registers section for more information.

VID_SEL [3:0], Address 0x00 [7:4]
Table 24. VID_SEL Function

VID_SEL [3:0]	Description
000 (default)	Autodetect PAL (B/G/H/I/D), NTSC (without pedestal), SECAM
0001	Autodetect PAL (B/G/H/I/D), NTSC M (with pedestal), SECAM
0010	Autodetect PAL N (without pedestal), NTSC M (without pedestal), SECAM
0011	Autodetect PAL N (with pedestal),
0100	NTSC M (with pedestal), SECAM
0101	NTSC J (1)
0110	NTSC M (1)
0111	PAL 60
1000	NTSC 4.43 (1)
1001	PAL B/G/H/I/D
1010	PAL N (PAL B/G/H/I/D without pedestal)
1011	PAL M (without pedestal)
1100	PAL M
1101	PAL Combination N
1110	PAL Combination N (with pedestal)
1111	SECAM

AD_SEC525_EN, SECAM 525 Autodetect Enable,

 Address 0x07 [7]0 (default)—Disables the autodetection of a 525-line system with a SECAM style, FM-modulated color component.

1-Enables autodetection.

AD_SECAM_EN, SECAM Autodetect Enable, Address 0x07 [6]

0 -Disables the autodetection of SECAM.
1 (default)-Enables autodetection.

AD_N443_EN, NTSC 443 Autodetect Enable, Address 0x07 [5]

0 -Disables the autodetection of NTSC style systems with a 4.43 MHz color subcarrier.

1 (default)-Enables autodetection.

AD_P60_EN, PAL 60 Autodetect Enable, Address 0x07 [4]

0-Disables the autodetection of PAL systems with a 60 Hz field rate.

1 (default)—Enables autodetection.

AD_PALN_EN, PAL N Autodetect Enable, Address 0x07 [3]

0 -Disables the autodetection of the PAL N standard.
1 (default)-Enables autodetection.

```
AD_PALM_EN, PAL M Autodetect Enable,
Address 0x07 [2]
0-Disables the autodetection of PAL M.
1 (default)-Enables autodetection.
```


AD_NTSC_EN, NTSC Autodetect Enable, Address 0x07 [1]
 0 -Disables the autodetection of standard NTSC.
 1 (default)-Enables autodetection.

AD_PAL_EN, PAL (B/G/I/H) Autodetect Enable, Address 0x07 [0]
 0 -Disables the autodetection of standard PAL.
 1 (default)-Enables autodetection.

Subcarrier Frequency Lock Inversion

The SFL_INV bit of Register 0x41 controls the behavior of the PAL switch bit in the SFL (genlock telegram) data stream. It was implemented to solve some compatibility issues with video encoders. It solves two problems.

First, the PAL switch bit is only meaningful in PAL. Some encoders (including Analog Devices encoders) also look at the state of this bit in NTSC.

Second, there was a design change in Analog Devices encoders from ADV717x to ADV719x. The older versions used the SFL (genlock telegram) bit directly, whereas the more recent versions invert the bit prior to using it to compensate for the 1-line delay of an SFL (genlock telegram) transmission.

As a result, to be compatible with NTSC format, the PAL switch bit in the SFL (genlock telegram) must be 1 for ADV717x encoders and 0 for ADV7190/ADV7191/ADV7194 encoders. If the state of the PAL switch bit is set incorrectly, a 180° phase shift occurs.

In a decoder/encoder back-to-back system in which SFL is used, this bit must be set up properly for the specific encoder used.

SFL_INV, Address 0x41 [6]

0 (default)—Makes the part SFL compatible with ADV717x and ADV73xx encoders.

1—Makes the part SFL compatible with ADV7190/ADV7191/ ADV7194 encoders.

Lock-Related Controls

Lock information is presented to the user through Bits [1:0] of Status Register 1. See the Status Register 1 [7:0], Address 0x10 [7:0] section. Figure 13 outlines the signal flow and the controls that are available to influence how the lock status information is generated.

SRLS, Select Raw Lock Signal, Address 0x51 [6]

Using the SRLS bit, the user can choose between two sources for determining the lock status, which is indicated via Status Register 1, Bits [1:0].

The TIME_WIN signal is based on a line-to-line evaluation of the horizontal synchronization pulse of the incoming video. It reacts quickly.

The FREE_RUN signal evaluates the properties of the incoming video over several fields, taking vertical synchronization information into account.

0 (default)—Selects the FREE_RUN signal.
1-Selects the TIME_WIN signal.

Figure 13. Lock-Related Signal Path

ADV7184

FSCLE, $\mathrm{F}_{\text {sC }}$ Lock Enable, Address 0x51 [7]
The FSCLE bit allows the user to choose if the status of the color subcarrier loop is taken into account when the overall lock status is determined and presented via Bits [1:0] in Status Register 1. The FSCLE bit must be set to 0 when operating in YPrPb (component) mode to generate a reliable horizontal lock status bit (INST_HLOCK).

0 (default)—Makes the overall lock status dependent on the horizontal sync lock.
1-Makes the overall lock status dependent on the horizontal sync lock and the $\mathrm{F}_{\text {sC }}$ lock.

CIL [2:0], Count-Into-Lock, Address 0x51 [2:0]
CIL [2:0] determines the number of consecutive lines the system must remain in the into-lock condition before reporting a locked state in Status Register 1 [1:0]. It counts the value in lines of video.
Table 25. CIL [2:0] Function

CIL [2:0]	Description
000	1 line of video
001	2 lines of video
010	5 lines of video
011	10 lines of video
100 (default)	100 lines of video
101	500 lines of video
110	1000 lines of video
111	100,000 lines of video

COL [2:0], Count-Out-of-Lock, Address 0x51 [5:3]
COL [2:0] determines the number of consecutive lines the system must be in the out-of-lock condition before reporting an unlocked state in Status Register 0 [1:0]. It counts the value in lines of video.

Table 26. COL [2:0] Function

COL [2:0]	Description
000	1 line of video
001	2 lines of video
010	5 lines of video
011	10 lines of video
100 (default)	100 lines of video
101	500 lines of video
110	1000 lines of video
111	100,000 lines of video

VS_COAST_MODE [1:0], Address 0xF9 [3:2]

These bits are used to set the VS free-run (coast) frequency.
Table 27. VS_COAST_MODE [1:0] Function

VS_COAST_MODE [1:0]	Description
00 (default)	Autocoast mode-follows VS
01	frequency from last video input
10	Forces 50 Hz coast mode
11	Forces 60 Hz coast mode

ST_NOISE_VLD, Sync Tip Noise Measurement Valid, Address 0xDE [3], Read Only

This read-only bit measures whether ST_NOISE is valid or invalid.
$0-$ The ST_NOISE [10:0] measurement is invalid.
1 (default)—The ST_NOISE [10:0] measurement is valid.

ST_NOISE [10:0], Sync Tip Noise Measurement, Addresses 0xDE [2:0], 0xDF [7:0]

The ST_NOISE [10:0] measures the noise in the horizontal sync tip over four fields and shows a readback value of the average noise. ST_NOISE_VLD must be 1 for this measurement to be valid.

One bit of ST_NOISE [10:0] = one ADC code.
One bit of ST_NOISE [10:0] $=1.6 \mathrm{~V} / 4096=390.625 \mu \mathrm{~V}$.

COLOR CONTROLS

These registers allow the user to control the appearance of the picture, including control of the active data in the event of video being lost. These controls are independent of any other control. For instance, brightness control is independent of picture clamping, although both controls affect the dc level of the signal.

CON [7:0], Contrast Adjust, Address 0x08 [7:0]

These bits allow the user to adjust the contrast of the picture.
Table 28. CON [7:0] Function

CON [7:0]	Description
0×80 (default)	Gain on luma channel $=1$
0×00	Gain on luma channel $=0$
$0 \times F F$	Gain on luma channel $=2$

SD_SAT_CB [7:0], SD Saturation Cb Channel, Address 0xE3 [7:0]

These bits allow the user to control only the gain of the Cb channel. The user can adjust the saturation of the picture.

Table 29. SD_SAT_CB [7:0] Function

SD_SAT_CB [7:0]	Description
0×80 (default)	Gain on Cb channel $=1$
0×00	Gain on Cb channel $=0$
0xFF	Gain on Cb channel $=2$

SD_SAT_CR [7:0], SD Saturation Cr Channel, Address 0xE4 [7:0]

These bits allow the user to control only the gain of the Cr channel. The user can adjust the saturation of the picture.
Table 30. SD_SAT_CR [7:0] Function

SD_SAT_CR [7:0]	Description
0×80 (default)	Gain on Cr channel $=1$
0×00	Gain on Cr channel $=0$
0xFF	Gain on Cr channel $=2$

SD_OFF_CB [7:0], SD Offset Cb Channel, Address 0xE1 [7:0]

These bits allow the user to adjust the hue of the picture by selecting the offset for the Cb channel. There is a functional overlap with the HUE [7:0] bits.

Table 31. SD_OFF_CB [7:0] Function

SD_OFF_CB [7:0]	Description
0x80 (default)	0 mV offset applied to the Cb channel
0x00	-568 mV offset applied to the Cb channel
0xFF	+568 mV offset applied to the Cb channel

SD_OFF_CR [7:0], SD Offset Cr Channel, Address 0xE2 [7:0]

These bits allow the user to select an offset for data on only the Cr channel and to adjust the hue of the picture. There is a functional overlap with the HUE [7:0] bits.
Table 32. SD_OFF_CR [7:0] Function

SD_OFF_CR [7:0]	Description
0x80 (default)	0 mV offset applied to the Cr channel
0x00	-568 mV offset applied to the Cr channel
0xFF	+568 mV offset applied to the Cr channel

BRI [7:0], Brightness Adjust, Address 0x0A [7:0]

These bits control the brightness of the video signal and allow the user to adjust the brightness of the picture.

Table 33. BRI [7:0] Function

BRI [7:0]	Description
0×00 (default)	Offset of the luma channel $=0 \mathrm{mV}$
$0 \times 7 \mathrm{~F}$	Offset of the luma channel $=+204 \mathrm{mV}$
0×80	Offset of the luma channel $=-204 \mathrm{mV}$

HUE [7:0], Hue Adjust, Address 0x0B [7:0]

These bits contain the value for the color hue adjustment and allow the user to adjust the hue of the picture.

HUE [7:0] has a range of $\pm 90^{\circ}$, with a value of 0×00 equivalent to an adjustment of 0°. The resolution of HUE [7:0] for one bit is 0.7°.

The hue adjustment value is fed into the AM color demodulation block. Therefore, it only applies to video signals that contain chroma information in the form of an AM-modulated carrier (CVBS or Y/C in PAL or NTSC). It does not affect SECAM and does not work on component video inputs (YPrPb).
Table 34. HUE [7:0] Function

HUE [7:0]	Description
0×00 (default)	Phase of the chroma signal $=0^{\circ}$
$0 \times 7 \mathrm{~F}$	Phase of the chroma signal $=+90^{\circ}$
0×80	Phase of the chroma signal $=-90^{\circ}$

DEF_Y [5:0], Default Value Y, Address 0x0C [7:2]

If the ADV7184 loses lock to the incoming video signal or if there is no input signal, the DEF_Y [5:0] bits allow the user to specify a default luma value to be output. The register is used if

- The DEF_VAL_AUTO_EN bit is set high and the ADV7184 loses lock to the input video signal. This is the intended mode of operation (automatic mode).
- The DEF_VAL_EN bit is set regardless of the lock status of the video decoder. This is a forced mode that may be useful during configuration.

The DEF_Y [5:0] values define the six MSBs of the output video. The remaining LSBs are padded with 0 s. For example, in 8 -bit mode, the output is $\mathrm{Y}[7: 0]=\left\{D E F _Y[5: 0], 0,0\right\}$.

The value for Y is set by the $\mathrm{DEF}_{-} \mathrm{Y}$ [5:0] bits. A value of 0x0D in conjunction with the DEF_C [7:0] default setting produces a blue color.

Register 0x0C has a default value of 0×36.

DEF_C [7:0], Default Value C, Address 0x0D [7:0]

The DEF_C [7:0] bits complement the DEF_Y [5:0] bits. These bits define the four MSBs of the Cr and Cb values to be output if

- The DEF_VAL_AUTO_EN bit is set high and the ADV7184 cannot lock to the input video (automatic mode).
- The DEF_VAL_EN bit is set high (forced output).

The data that is finally output from the ADV7184 for the chroma side is the output pixel buses $\mathrm{Cr}[7: 0]=\left\{\mathrm{DEF} _\mathrm{C}[7: 4], 0,0,0,0\right\}$ and $\mathrm{Cb}[7: 0]=\left\{\mathrm{DEF} _\mathrm{C}[3: 0], 0,0,0,0\right\}$.

The values for Cr and Cb are set by the DEF_C [7:0] bits. A value of 0x7C in conjunction with the DEF_Y [5:0] default setting produces a blue color.

DEF_VAL_EN, Default Value Enable, Address 0x0C [0]

This bit forces the use of the default values for Y, Cr, and Cb . Refer to the descriptions in the DEF_Y [5:0], Default Value Y, Address 0x0C [7:2] and DEF_C [7:0], Default Value C, Address $0 x 0 \mathrm{D}[7: 0]$ sections for additional information. In this mode, the decoder also outputs a stable 27 MHz clock, HS, and VS.

0 (default)—Outputs a colored screen determined by userprogrammable Y, Cr, and Cb values when the decoder free runs. Free-run mode is turned on and off via DEF_VAL_AUTO_EN.

1-Forces a colored screen output determined by userprogrammable Y, Cr, and Cb values. This overrides picture data even if the decoder is locked.

ADV7184

DEF_VAL_AUTO_EN, Default Value Automatic Enable, Address 0x0C [1]

This bit enables the automatic use of the default values for Y, Cr, and Cb when the ADV7184 cannot lock to the video signal.

0 -Disables free-run mode. If the decoder is unlocked, it outputs noise.

1 (default)—Enables free-run mode. A colored screen set by the user-programmable Y, Cr, and Cb values is displayed when the decoder loses lock.

CLAMP OPERATION

The input video is ac-coupled into the ADV7184 through a $0.1 \mu \mathrm{~F}$ capacitor. It is recommended that the range of the input video signal is 0.5 V to 1.6 V (typically 1 V p-p). If the signal exceeds this range, it cannot be processed correctly in the decoder. Because the input signal is ac-coupled into the decoder, its dc value needs to be restored. This process is referred to as clamping the video. This section explains the general process of clamping for the ADV7184 and shows the different ways that a user can configure the device's behavior.

The ADV7184 uses a combination of current sources and a digital processing block for clamping, as shown in Figure 14. There are three analog processing channels (like the one shown in Figure 14) inside the IC. Although only one channel (and only one ADC) is needed for a CVBS signal, two independent channels are needed for S-video (Y/C) type signals, and three independent channels are needed to allow component (YPrPb) signals to be processed.

The clamping can be divided into two sections:

- Clamping before the ADC (analog domain): current sources
- Clamping after the ADC (digital domain): digital processing block

The ADCs can digitize an input signal only if it is within the 1.6 V input voltage range. An input signal with a dc level that is too large or too small is clipped at the top or bottom of the ADC range.

The primary task of the analog clamping circuits is to ensure that the video signal stays within the valid ADC input window so that the analog-to-digital conversion can occur. Therefore, precise clamping of the input signal within the analog domain is unnecessary if the video signal fits within the ADC range.

After digitization, the digital fine-clamp block corrects for any remaining variations in dc level. Because the dc level of an input video signal refers directly to the brightness of the picture transmitted, it is important to perform a fine clamp with high accuracy; otherwise, brightness variations may occur. Furthermore, dynamic changes in the dc level usually lead to significant artifacts and must therefore be prohibited.

The clamping scheme must be able to acquire a newly connected video signal with a completely unknown dc level, and it must maintain the dc level during normal operation.

To quickly acquire an unknown video signal, activate the largecurrent clamps. It is assumed that the amplitude of the video signal at this point is of a nominal value. Control of the coarseand fine-current clamp parameters is automatically performed by the decoder.

Standard definition video signals may contain excessive noise. In particular, CVBS signals transmitted by terrestrial broadcast and then demodulated using a tuner usually show very large levels of noise ($>100 \mathrm{mV}$). A voltage clamp would be unsuitable for this type of video signal. Instead, the ADV7184 uses a set of four current sources that can cause coarse ($>0.5 \mathrm{~mA}$) and fine $(<0.1 \mathrm{~mA})$ currents to flow into and away from the high impedance node that carries the video signal (see Figure 14).

CCLEN, DCT [1:0], and DCFE are the $\mathrm{I}^{2} \mathrm{C}$ signals that can be used to influence the behavior of the clamping block of the ADV7184.

CCLEN, Current Clamp Enable, Address 0x14 [4]

The current clamp enable bit allows the user to switch off the current sources entirely in the analog front end. This may be useful if the incoming analog video signal is clamped externally.

0 -The current sources are switched off.
1 (default)—The current sources are enabled.

Figure 14. Clamping Overview

DCT [1:0], Digital Clamp Timing, Address 0x15 [6:5]

The clamp timing register determines the time constant of the digital fine-current clamp circuitry. It is important to realize that the digital fine-current clamp reacts quickly, correcting any residual dc level error for the active line immediately. Therefore, the time constant of the digital fine clamp must be much quicker than the one for the analog blocks.

By default, the time constant of the digital fine-current clamp is adjusted dynamically to suit the currently connected input signal.

Table 35. DCT [1:0] Function

DCT [1:0]	Description
00 (default)	Slow $(T C=1 \mathrm{sec})$
01	Medium $(\mathrm{TC}=0.5 \mathrm{sec})$
10	Fast $(\mathrm{TC}=0.1 \mathrm{sec})$
11	TC determined by the input video parameters

DCFE, Digital Clamp Freeze Enable, Address 0x15 [4]

This register bit allows the user to freeze the digital clamp loop at any time. It is intended for users who do their own clamping. Users should disable the current sources for analog clamping via the appropriate register bits, wait until the digital clamp loop settles, and then freeze it via the DCFE bit.

0 (default)—The digital clamp is operational.
1-The digital clamp loop is frozen.

LUMA FILTER

Data from the digital fine-clamp block is processed by three sets of filters. The data format at this point is CVBS for CVBS input format or luma only for Y / C and YPrPb input formats.

- Luma Antialias (YAA) Filter. The ADV7184 receives video at a rate of 27 MHz . (For $4 \times$ oversampled video, the ADCs are sampled at 54 MHz , and the first decimation is performed inside the DPP filters. Therefore, the data rate into the ADV7184 is always 27 MHz .) The ITU-R BT. 601 standard recommends a sampling frequency of 13.5 MHz . The luma antialias filter decimates the oversampled video using a high quality linear phase, low-pass filter that preserves the luma signal and simultaneously attenuates out-of-band components. The luma antialias filter has a fixed response.
- Luma-Shaping (YSH) Filters. The shaping filter block is a programmable low-pass filter with a wide variety of responses. It can be used to selectively reduce the luma video signal bandwidth (needed prior to scaling, for example). For some video sources that contain high frequency noise, reducing the bandwidth of the luma signal improves visual picture quality. A follow-on video compression stage may work more efficiently if the video is low-pass filtered.
The ADV7184 has two responses for the shaping filter: one that is used for good quality composite, component, and

S-video type sources, and a second for nonstandard composite signals. The YSH filter responses also include a set of notches for PAL and NTSC. However, it is recommended to use the comb filters for Y / C separation.

- Digital Resampling Filter. This block allows dynamic resampling of the video signal to alter parameters such as the time base of a line of video. Fundamentally, the resampler is a set of low-pass filters. The actual response is chosen by the system without requiring user intervention.

Figure 16 through Figure 19 show the responses of all luma filters. Unless otherwise noted, the filters are set in a typical wideband mode.

Y-Shaping Filter

For input signals in CVBS format, the luma-shaping filters play an essential role in removing the chroma component from a composite signal. Y/C separation must aim for best possible crosstalk reduction while retaining as much bandwidth (especially on the luma component) as possible. High quality Y/C separation can be achieved by using the internal comb filters of the ADV7184. Comb filtering, however, relies on the frequency relationship of the luma component (multiples of the video line rate) and the color subcarrier ($\mathrm{Fsc}_{\mathrm{sc}}$). For good quality CVBS signals, this relationship is known and therefore the comb filter algorithms can be used to separate luma and chroma with high accuracy.

For nonstandard video signals, the frequency relationship may have an offset, and the comb filters may not be able to remove all crosstalk artifacts in an optimum fashion without the assistance of a shaping filter.

An automatic mode is provided. In this mode, the ADV7184 evaluates the quality of the incoming video signal and selects the filter responses in accordance with the signal quality and video standard. YFSM, WYSFMOVR, and WYSFM allow the user to override the automatic decisions manually in part or in full (see Figure 15).

The luma-shaping filter has three sets of control bits:

- YSFM [4:0] (Address 0x17) allow the user to manually select a shaping filter mode (applied to all video signals) or to enable an automatic selection (dependent on video quality and video standard).
- WYSFMOVR (Address 0x18) allows the user to override the automatic WYSFM filter selection and enable manual selection of the WYSFM filter via WYSFM [4:0].
- WYSFM [4:0] (Address 0x18) allow the user to select a different shaping filter mode for good quality composite (CVBS), component (YPrPb), and S-video (Y / C) input signals.

ADV7184

In automatic mode, the system preserves the maximum possible bandwidth for good CVBS sources (because they can successfully be combed) and for luma components of YPrPb and Y / C sources (because they need not be combed). For poor quality signals, the system selects from a set of proprietary shaping filter responses that complements comb filter operation to reduce visual artifacts. The control logic is shown in Figure 15.

YSFM [4:0], Y-Shaping Filter Mode, Address 0x17 [4:0]

The Y-shaping filter mode bits allow the user to select from a wide range of low-pass and notch filters. When these bits are set to either of the automatic selection modes, the filter is selected based on other bit selections, such as detected video standard, and properties extracted from the incoming video itself, such as quality and time-base stability. The automatic selection always picks the widest possible bandwidth for the video input encountered.

If the YSFM settings specify a filter (that is, YSFM is set to values other than 00000 or 00001), the chosen filter is applied to all video, regardless of its quality.

In either of the automatic selection modes, the notch filters are only used for poor quality video signals. For all other video signals, wideband filters are used (see Table 36).

Table 36. YSFM Function

YSFM [4:0]	Description
00000	Automatic selection, including a wide-notch response (PAL/NTSC/SECAM)
00001 (default)	Automatic selection, including a narrow-notch response (PAL/NTSC/SECAM)
00010	SVHS 1
00011	SVHS 2
00100	SVHS 3
00101	SVHS 4
00110	SVHS 5
00111	SVHS 6
01000	SVHS 7
01001	SVHS 8
01010	SVHS 9
01011	SVHS 10
01100	SVHS 11
01101	SVHS 12
01110	SVHS 13
01111	SVHS 14
10000	SVHS 15
10001	SVHS 16
10010	SVHS 17
10011	SVHS 18 (CCIR 601)
10100	PAL NN 1
10101	PAL NN 2
10110	PAL NN 3
10111	PAL WN 1
11000	PAL WN 2
11001	NTSC NN 1
11010	NTSC NN 2
11011	NTSC NN 3
11100	NTSC WN 1
11101	NTSC WN 2
11110	NTSC WN 3
11111	Reserved

Figure 15. YSFM and WYSFM Control Flowchart

WYSFMOVR, Wideband Y-Shaping Filter Override,

 Address 0x18 [7]Setting the WYSFMOVR bit enables the use of the WYSFM [4:0] settings for good quality video signals. For more information, refer to the general discussion of the luma-shaping filters in the Y-Shaping Filter section and the flowchart shown in Figure 15.

0 -The best wideband Y-shaping filter for good quality video signals is selected automatically.

1 (default)—Enables manual selection of a wideband filter via WYSFM [4:0].

WYSFM [4:0], Wideband Y-Shaping Filter Mode,

Address 0x18 [4:0]
The WYSFM [4:0] bits allow the user to select a wideband Y-shaping filter manually for good quality video signals, for example, CVBS with a stable time base, a luma component of YPrPb , or a luma component of Y / C. The WYSFM bits are active only if the WYSFMOVR bit is set to 1 . See the general discussion of the shaping filter settings in the Y-Shaping Filter section.
Table 37. WYSFM [4:0] Function

WYSFM [4:0]	Description
00000	Reserved; do not use
00001	Reserved; do not use
00010	SVHS 1
00011	SVHS 2
00100	SVHS 3
00101	SVHS 4
00110	SVHS 5
00111	SVHS 6
01000	SVHS 7
01001	SVHS 8
01010	SVHS 9
01011	SVHS 10
01100	SVHS 11
01101	SVHS 12
01110	SVHS 13
01111	SVHS 14
10000	SVHS 15
10001	SVHS 16
10010	SVHS 17
10011 (default)	SVHS 18 (CCIR 601)
10100 to 11111	Reserved; do not use

Figure 16 shows the filter responses of the SVHS 1 (narrowest) to SVHS 18 (widest) shaping filter settings, Figure 18 shows the PAL notch filter responses, and Figure 19 shows the NTSC notch filter responses.

Figure 16. Y SVHS 1 to SVHS 18 Filter Responses

Figure 17. Y SVHS 18 Extra Wideband Filter (CCIR 601 Compliant)
COMBINED Y ANTIALIAS, PAL NOTCH FILTERS,

Figure 18. Y PAL Notch Filter Responses

ADV7184

Figure 19. Y NTSC Notch Filter Responses

CHROMA FILTER

Data from the digital fine-clamp block is processed by three sets of filters. The data format at this point is CVBS for CVBS inputs, chroma only for Y / C, or $\mathrm{Cr} / \mathrm{Cb}$ interleaved for YPrPb input formats.

- Chroma Antialias (CAA) Filter. The ADV7184 oversamples the CVBS by a factor of 2 and the chroma or $\mathrm{Cr} / \mathrm{Cb}$ by a factor of 4. CAA, a decimating filter, is used to preserve the active video band and to remove any out-of-band components. The CAA filter has a fixed response.
- Chroma-Shaping (CSH) Filters. These filters can be programmed to perform a variety of low-pass responses. They can be used to selectively reduce the bandwidth of the chroma signal for scaling or compression.
- Digital Resampling Filter. This filter is used to allow dynamic resampling of the video signal to alter parameters, such as the time base of a line of video. Fundamentally, the resampler is a set of low-pass filters. The actual response is chosen by the system without user intervention.

Figure 20 shows the overall response of all filters, from SH1 (narrowest) to SH5 (widest), in addition to the wideband mode (in red).

Figure 20. Chroma-Shaping Filter Responses
CSFM [2:0], C-Shaping Filter Mode, Address 0x 17 [7:5]
The C-shaping filter mode bits allow the user to select from a range of low-pass filters for the chrominance signal.
Table 38. CSFM [2:0] Function

CSFM [2:0]	Description
000 (default)	1.5 MHz bandwidth filter
001	2.17 MHz bandwidth filter
010	SH1
011	SH2
100	SH3
101	SH4
110	SH5
111	Wideband mode

GAIN OPERATION

The gain control within the ADV7184 is done on a purely digital basis. The input ADCs support a 10 -bit range, mapped into a 1.6 V analog voltage range. Gain correction takes place after the digitization in the form of a digital multiplier.

This architecture is advantageous because, unlike the commonly used programmable gain amplifier (PGA) placed in front of the ADCs , the gain is completely independent of supply, temperature, and process variations.

As shown in Figure 21, the ADV7184 can decode a video signal as long as it fits into the ADC window.

The two components of decoding a video signal are the amplitude of the input signal and the dc level on which it resides. The dc level is set by the clamping circuitry (see the Clamp Operation section).

If the amplitude of the analog video signal is too high, clipping can occur, resulting in visual artifacts. The analog input range of the ADC, together with the clamp level, determines the maximum supported amplitude of the video signal.

The minimum supported amplitude of the input video is determined by the ability of the ADV7184 to retrieve horizontal and vertical timing and to lock to the color burst, if present.

There are separate gain control units for luma and chroma data. Both can operate independently of each other. The chroma unit, however, can also take its gain value from the luma path.

The possible AGC modes are summarized in Table 39.
It is possible to freeze the automatic gain control loops. This causes the loops to stop updating and maintains the AGCdetermined gain that is active at the time of the freeze until the loop is either unfrozen or the gain mode of operation is changed.

The currently active gain from any of the modes can be read back. Refer to the description of the dual-function manual gain bits, LMG [11:0] luma manual gain and CMG [11:0] chroma manual gain, in the Luma Gain and the Chroma Gain sections.

Figure 21. Gain Control Overview
Table 39. AGC Modes

Input Video Type	Luma Gain	Chroma Gain
Any	Manual luma gain	Manual chroma gain
CVBS	Dependent on horizontal sync depth	Dependent on color burst amplitude
	Peak white	Taken from luma path
	Dependent on color burst amplitude	
	Dependent on horizontal sync depth	Taken from luma path
Y/C	Dependent on color burst amplitude	
	Peak white	Taken from luma path
	Dependent on color burst amplitude	
	Taken from luma path	
YPrPb	Taken from luma path	

ADV7184

Luma Gain

LAGC [2:0], Luma Automatic Gain Control,

 Address 0x2C [6:4]The luma automatic gain control mode bits select the mode of operation for the gain control in the luma path.

Analog Devices internal parameters can be used to customize the peak white gain control. Contact an Analog Devices representative for more information.

Table 40. LAGC [2:0] Function

LAGC [2:0]	Description
000	Manual fixed gain (use LMG [11:0])
001	Reserved
010 (default)	AGC peak white algorithm enabled (blank level to sync tip)
011	Reserved
100	AGC peak white algorithm disabled (blank level to sync tip) 101
Reserved	
110	Reserved
111	Freeze gain

LAGT [1:0], Luma Automatic Gain Timing, Address 0x2F [7:6]

The luma automatic gain timing bits allow the user to influence the tracking speed of the luminance automatic gain control. Note that these bits only have an effect if the LAGC [2:0] bits are set to 010 or 100 (automatic gain control modes).

If peak white AGC is enabled and active (see the Status Register 1 [7:0], Address 0×10 [7:0] section), the actual gain update speed is dictated by the peak white AGC loop and, as a result, the LAGT settings have no effect. As soon as the part leaves peak white AGC, LAGT becomes relevant.

The update speed for the peak white algorithm can be customized by using internal parameters. Contact an Analog Devices representative for more information.
Table 41. LAGT [1:0] Function

LAGT [1:0]	Description
00	Slow $(\mathrm{TC}=2 \mathrm{sec})$
01	Medium $(\mathrm{TC}=1 \mathrm{sec})$
10	Fast $(\mathrm{TC}=0.2 \mathrm{sec})$
11 (default)	Adaptive

LG [11:0]/LMG [11:0], Luma Gain/Luma Manual Gain, Address 0x2F [3:0], Address 0x30 [7:0]

Luma manual gain [11:0] are dual-function bits. If these bits are written to, a desired manual luma gain can be programmed. This gain becomes active if the LAGC [2:0] mode is switched to manual fixed gain. Equation 2 and Equation 3 show how to calculate a desired gain for NTSC and PAL standards, respectively.

$$
\begin{align*}
& \text { NTSC Luma_Gain }= \\
& \qquad \frac{1024<L M G[11: 0] \leq 4095}{1128}=0.9078 \ldots 3.63 \tag{2}
\end{align*}
$$

PALLuma_Gain $=$

$$
\begin{equation*}
\frac{1024<L M G[11: 0] \leq 4095}{1222}=0.838 \ldots 3.351 \tag{3}
\end{equation*}
$$

If read back, this register returns the current gain value. Depending on the settings of the LAGC [2:0] bits, this value is one of the following:

- Luma manual gain value (LAGC [2:0] set to luma manual gain mode)
- Luma automatic gain value (LAGC [2:0] set to any of the automatic modes)

Table 42. LG [11:0]/LMG [11:0] Function

LG [11:0]/LMG [11:0]	Read/Write	Description
LMG [11:0] $=X$	Write	Manual gain for luma path
LG [11:0]	Read	Actual gain used

For example, to program the ADV7184 into manual fixed gain mode with a desired gain of 0.95 for the NTSC standard

1. Use Equation 2 to convert the gain:
$0.95 \times 1128=1071.6$
2. Truncate to integer value:
$1071.6=1071$
3. Convert to hexadecimal:
$1071 \mathrm{~d}=0 \times 42 \mathrm{~F}$
4. Split into two registers and program:

Luma Gain Control 1 [3:0] $=0 \times 4$
Luma Gain Control 2 [7:0] $=0 \times 2 \mathrm{~F}$
5. Enable manual fixed gain mode:

Set LAGC [2:0] to 000

BETACAM, Enable BETACAM Levels, Address 0x01 [5]

If YPrPb data is routed through the ADV7184, the automatic gain control modes can target different video input levels, as outlined in Table 44. Note that the BETACAM bit is valid only if the input mode is YPrPb (component). The BETACAM bit sets the target value for AGC operation.

A review of the following sections is useful:

- The INSEL [3:0], Input Selection, Address 0x00 [3:0] section describes how component video (YPrPb) can be routed through the ADV7184.
- The Video Standard Selection section describes the various standards, for example, with and without pedestal.

The automatic gain control (AGC) algorithms adjust the levels based on the setting of the BETACAM bit.
Table 43. BETACAM Function

BETACAM	Description
0 (default)	Standard video input (assuming YPrPb is selected as input format) Selecting PAL with pedestal selects MII 1Selecting PAL without pedestal selects SMPTE Selecting NTSC with pedestal selects MII Selecting NTSC without pedestal selects SMPTE
	BETACAM input enable (assuming YPrPb is selected as input format) Selecting PAL with pedestal selects BETACAM Selecting PAL without pedestal selects
BETACAM variant	
Selecting NTSC with pedestal selects BETACAM	
Selecting NTSC without pedestal selects	
BETACAM variant	

Table 44. BETACAM Levels

Name	BETACAM (mV)	BETACAM Variant (mV)	SMPTE (mV)	MII (mV)
Y Range	0 to 714 (including 7.5\% pedestal)	0 to 714	0 to 700	0 to 700 (including 7.5\% pedestal)
Pr and Pb Ranges	-467 to +467	-505 to +505	-350 to +350	-324 to +324
Sync Depth	286	286	300	300

ADV7184

Chroma Gain

CAGC [1:0], Chroma Automatic Gain Control, Address 0x2C [1:0]
These two bits select the basic mode of operation for automatic gain control in the chroma path.
Table 45. CAGC [1:0] Function

CAGC [1:0]	Description
00	Manual fixed gain (use CMG [11:0])
01	Use luma gain for chroma
10 (default)	Automatic gain (based on color burst)
11	Freeze chroma gain

CAGT [1:0], Chroma Automatic Gain Timing, Address 0x2D [7:6]

These bits allow the user to influence the tracking speed of the chroma automatic gain control, but have an effect only if the CAGC [1:0] bits are set to 10 (automatic gain).
Table 46. CAGT [1:0] Function

CAGT [1:0]	Description
00	Slow $(\mathrm{TC}=2 \mathrm{sec})$
01	Medium $(\mathrm{TC}=1 \mathrm{sec})$
10	Fast $(\mathrm{TC}=0.2 \mathrm{sec})$
11 (default)	Adaptive

CMG [11:0]/CG [11:0], Chroma Manual Gain/Chroma Gain, Address 0x2D [3:0], Address 0x2E [7:0]
CMG [11:0] are dual-function bits. If these bits are written to, a desired manual chroma gain can be programmed. This gain becomes active if the CAGC [1:0] mode is switched to manual fixed gain. Refer to Equation 4 to calculate a desired gain. If read back, these bits return the current gain value. Depending on the setting in the CAGC [1:0] bits, this is either

- Chroma manual gain value (CAGC [1:0] set to chroma manual gain mode)
- Chroma automatic gain value (CAGC [1:0] set to any of the automatic modes)
Table 47. CG [11:0]/CMG [11:0] Function

CG [11:0]/CMG [11:0]	Read/Write	Description
CMG [11:0]	Write	Manual gain for chroma path Currently active gain

Chroma_Gain $=\frac{(0<C G \leq 4095)}{1024}=0 \ldots 4$

For example, freezing the automatic gain loop results in a readback value of 0 x 47 A for the CMG [11:0] bits.

1. Convert the readback value to decimal:
$0 \times 47 \mathrm{~A}=1146 \mathrm{~d}$
2. Apply Equation 4 to convert the readback value:
$1146 / 1024=1.12$

CKE, Color-Kill Enable, Address 0x2B [6]

This bit allows the optional color-kill function to be switched on or off. For QAM-based video standards (PAL and NTSC) and FM-based systems (SECAM), the threshold for the colorkill decision is selectable via the CKILLTHR [2:0] bits (Address 0x3D).

If color kill is enabled and the color carrier of the incoming video signal is less than the threshold for 128 consecutive video lines, color processing is switched off (black and white output). To switch the color processing back on, another 128 consecutive lines with a color burst greater than the threshold are required.

The color-kill option only works for input signals with a modulated chroma part. For component (YPrPb) input, there is no color kill.

0—Disables color kill.
1 (default)—Enables color kill.

CKILLTHR [2:0], Color-Kill Threshold, Address 0x3D [6:4]

The CKILLTHR [2:0] bits allow the user to select a threshold for the color-kill function. The threshold applies only to QAMbased (NTSC and PAL) or FM-modulated (SECAM) video standards.

To enable the color-kill function, the CKE bit must be set. For CKILLTHR settings $000,001,010$, and 011 , chroma demodulation inside the ADV7184 may not work satisfactorily for poor input video signals.

Table 48. CKILLTHR [2:0] Function

CKILLTHR [2:0]	Description	
	SECAM	NTSC, PAL
000	No color kill	Kill at $<0.5 \%$
001	Kill at $<5 \%$	Kill at $<1.5 \%$
010	Kill at $<7 \%$	Kill at $<2.5 \%$
011	Kill at $<8 \%$	Kill at $<4.0 \%$
100 (default)	Kill at $<9.5 \%$	Kill at $<8.5 \%$
101	Kill at $<15 \%$	Kill at $<16.0 \%$
110	Kill at $<32 \%$	Kill at $<32.0 \%$.
111	Reserved for Analog Devices internal use only;	
	do not select	

CHROMA TRANSIENT IMPROVEMENT (CTI)

The signal bandwidth allocated for chroma is typically much smaller than that of luminance. With older devices, this was a valid way to fit a color video signal into a given overall bandwidth because the human eye is less sensitive to chrominance than to luminance.

The uneven bandwidth, however, may lead to visual artifacts during sharp color transitions. At the border of two bars of color, both components (luma and chroma) change at the same time (see Figure 22).

Due to the higher bandwidth, the signal transition of the luma component is usually much sharper than that of the chroma component. The color edge is not sharp and can be blurred, in the worst case, over several pixels.

Figure 22. CTI Luma/Chroma Transition
To correct for such uneven bandwidths, the CTI block examines the input video data. It detects transitions of chroma and can be programmed to create steeper chroma edges in an attempt to artificially restore lost color bandwidth. By operating only on edges that are greater than a certain threshold, the CTI block ensures that noise is not emphasized. Care has also been taken to avoid edge ringing and undesirable saturation and hue distortion.

Chroma transient improvements are needed primarily for signals that have severe chroma bandwidth limitations. For these types of signals, it is strongly recommended to enable the CTI block via CTI_EN.

CTI_EN, Chroma Transient Improvement Enable, Address 0x4D [0]

$0-$ Disables the CTI block.
1 (default)-Enables the CTI block.

CTI_AB_EN, Chroma Transient Improvement Alpha Blend Enable, Address 0x4D [1]

This bit enables an alpha-blend function, which mixes the transient improved chroma with the original signal. The sharpness of the alpha blending can be configured via the CTI_AB [1:0] bits. For the alpha blender to be active, the CTI
block must be enabled via the CTI_EN bit. The settings of the CTI_AB_EN bit are as follows:

0-Disables the CTI alpha blender.
1 (default)-Enables the CTI alpha blender.

CTI_AB [1:0], Chroma Transient Improvement Alpha Blend, Address 0x4D [3:2]

The CTI_AB [1:0] controls the behavior of alpha-blend circuitry, which mixes the sharpened chroma signal with the original one. It thereby controls the visual impact of CTI on the output data.

For CTI_AB [1:0] to become active, the CTI block must be enabled via the CTI_EN bit and the alpha blender must be switched on via CTI_AB_EN.

Sharp blending maximizes the effect of CTI on the picture, but may also increase the visual impact of small amplitude, high frequency chroma noise.

Table 49. CTI_AB [1:0] Function

CTI_AB [1:0]	Description
00	Sharpest mixing
01	Sharp mixing
10	Smooth mixing
11 (default)	Smoothest mixing

CTI_C_TH [7:0], CTI Chroma Threshold, Address 0x4E [7:0]

The CTI_C_TH [7:0] value is an unsigned, 8-bit number specifying how big the amplitude step in a chroma transition must be to be steepened by the CTI block. Programming a small value into this register causes even, small edges to be steepened by the CTI block. Making CTI_C_TH [7:0] a large value causes the block to only improve large transitions.

The default value for CTI_C_TH [7:0] is 0x08, indicating the threshold for the chroma edges prior to CTI.

DIGITAL NOISE REDUCTION (DNR) AND LUMA PEAKING FILTER

DNR is based on the assumption that high frequency signals with low amplitude are probably noise and that their removal, therefore, improves picture quality. There are two DNR blocks in the ADV7184: the DNR1 block before the luma peaking filter and the DNR2 block after the luma peaking filter, as shown in Figure 23.

Figure 23. DNR and Peaking Block Diagram

ADV7184

DNR_EN, Digital Noise Reduction Enable, Address 0x4D [5]

0 -Bypasses DNR (disables it).
1 (default)—Enables DNR on the luma data.

DNR_TH [7:0], DNR NoiseThreshold, Address 0x50 [7:0]

The DNR1 block is positioned before the luma peaking block. The DNR_TH [7:0] value is an unsigned, 8-bit number that determines the maximum edge that is interpreted as noise and therefore blanked from the luma data. Programming a large value into DNR_TH [7:0] causes the DNR block to interpret even, large transients as noise and remove them. As a result, the effect on the video data is more visible.

Programming a small value causes only small transients to be seen as noise and to be removed.

The recommended DNR_TH [7:0] setting for A/V inputs is 0×04, and the recommended DNR_TH [7:0] setting for tuner inputs is $0 \times 0 \mathrm{~A}$.

The default value for DNR_TH [7:0] is 0×08, indicating the threshold for maximum luma edges to be interpreted as noise.

PEAKING_GAIN [7:0], Luma Peaking Gain, Address 0xFB [7:0]

This filter can be manually enabled. The user can boost or attenuate the mid region of the Y spectrum around 3 MHz . The peaking filter can visually improve the picture by showing more definition on the picture details that contain frequency components around 3 MHz . The default value (0 x 40) in this register passes through the luma data unaltered (0 dB response). A lower value attenuates the signal, and a higher value amplifies it. A plot of the filter responses is shown in Figure 24.

Figure 24. Peaking Filter Responses

DNR_TH2 [7:0], DNR Noise Threshold 2, Address 0xFC [7:0]

The DNR2 block is positioned after the luma peaking block and therefore affects the amplified luma signal. It operates in the same way as the DNR1 block, but has an independent threshold control, DNR_TH2 [7:0]. This value is an unsigned, 8 -bit number that determines the maximum edge that is interpreted as noise and therefore blanked from the luma data.
Programming a large value into DNR_TH2 [7:0] causes the DNR block to interpret even, large transients as noise and remove them. As a result, the effect on the video data is more visible. Programming a small value causes only small transients to be seen as noise and to be removed.

COMB FILTERS

The comb filters of the ADV7184 have been greatly improved to automatically handle video of all types, standards, and levels of quality. The NTSC and PAL configuration registers allow the user to customize comb filter operation, depending on which video standard is detected (by autodetection) or selected (by manual programming). In addition to the bits listed in this section, there are other Analog Devices internal controls. Contact an Analog Devices representative for more information.

NTSC Comb Filter Settings

Used for NTSC M and NTSC J CVBS inputs.

NSFSEL [1:0], Split Filter Selection NTSC,

 Address 0x19 [3:2]NSFSEL [1:0] selects how much of the overall signal bandwidth is fed to the combs. A narrow bandwidth split filter results in better performance on diagonal lines, but more dot crawl in the final output image. The opposite is true for a wide bandwidth split filter.

Table 50. NSFSEL [1:0] Function

NSFSEL [1:0]	Description
00 (default)	Narrow
01	Medium
10	Medium
11	Wide

CTAPSN [1:0], Chroma Comb Taps NTSC,
Address 0x38 [7:6]
Table 51. CTAPSN [1:0] Function
CTAPSN [1:0]

CCMN [2:0], Chroma Comb Mode NTSC, Address 0x38 [5:3]
Table 52. CCMN [1:0] Function

CCMN [2:0]	Description	Configuration
000 (default)	Adaptive comb mode	Adaptive 3-line chroma comb for CTAPSN $=01$
		Adaptive 4-line chroma comb for CTAPSN $=10$
		Adaptive 5-line chroma comb for CTAPSN $=11$
100	Disable chroma comb	
101	Fixed chroma comb (top lines of line memory)	Fixed 2-line chroma comb for CTAPSN $=01$
		Fixed 3-line chroma comb for CTAPSN $=10$
		Fixed 4-line chroma comb for CTAPSN $=11$
110	Fixed chroma comb (all lines of line memory)	Fixed 3-line chroma comb for CTAPSN $=01$
		Fixed 4-line chroma comb for CTAPSN $=10$
		Fixed 5-line chroma comb for CTAPSN $=11$
111	Fixed chroma comb (bottom lines of line memory)	Fixed 2-line chroma comb for CTAPSN $=01$
		Fixed 3-line chroma comb for CTAPSN $=10$
		Fixed 4-line chroma comb for CTAPSN $=11$

YCMN [2:0], Luma Comb Mode NTSC, Address 0x38 [2:0]
Table 53. YCMN [2:0] Function

YCMN [2:0]	Description	Configuration
000 (default)	Adaptive comb mode	Adaptive 3-line (three taps) luma comb
100	Disable luma comb	Use low-pass/notch filter; see the Y-Shaping Filter section
101	Fixed luma comb (top lines of line memory)	Fixed 2-line (two taps) luma comb
110	Fixed luma comb (all lines of line memory)	Fixed 3-line (three taps) luma comb
111	Fixed luma comb (bottom lines of line memory)	Fixed 2-line (two taps) luma comb

ADV7184

PAL Comb Filter Settings

Used for PAL B/G/H/I/D, PAL M, PAL Combinational N, PAL 60, and NTSC 4.43 CVBS inputs.

PSFSEL [1:0], Split Filter Selection PAL, Address 0x19 [1:0]
PFSEL [1:0] selects how much of the overall signal bandwidth is fed to the combs. A wide bandwidth split filter eliminates dot crawl, but shows imperfections on diagonal lines. The opposite is true for a narrow bandwidth split filter.

Table 54. PSFSEL [1:0] Function

PSFSEL[1:0]	Description
00	Narrow
01 (default)	Medium
10	Wide
11	Widest

CTAPSP [1:0], Chroma Comb Taps PAL, Address 0x39 [7:6]
Table 55. CTAPSP [1:0] Function

CTAPSP [1:0]	Description
00	Do not use PAL chroma comb adapts five lines (three taps) to three lines (two taps); cancels cross luma only
10	PAL chroma comb adapts five lines (five taps) to three lines (three taps); cancels cross luma and hue error less well
11 (default)	PAL chroma comb adapts five lines (five taps) to four lines (four taps); cancels cross luma and hue error well

CCMP [2:0], Chroma Comb Mode PAL, Address 0x39 [5:3]
Table 56. CCMP [2:0] Function

$\begin{aligned} & \hline \text { CCMP } \\ & \text { [2:0] } \end{aligned}$	Description	Configuration
000 (default)	Adaptive comb mode	Adaptive 3-line chroma comb for CTAPSP = 01
		Adaptive 4-line chroma comb for CTAPSP = 10
		Adaptive 5-line chroma comb for CTAPSP = 11
100	Disable chroma comb	
101	Fixed chroma comb (top lines of line memory)	Fixed 2-line chroma comb for CTAPSP = 01
		Fixed 3-line chroma comb for CTAPSP = 10
		Fixed 4-line chroma comb for CTAPSP = 11
110	Fixed chroma comb (all lines of line memory)	Fixed 3-line chroma comb for CTAPSP = 01
		Fixed 4-line chroma comb for CTAPSP = 10
		Fixed 5-line chroma comb for CTAPSP = 11
111	Fixed chroma comb (bottom lines of line memory)	Fixed 2-line chroma comb for CTAPSP = 01
		Fixed 3-line chroma comb for CTAPSP = 10
		Fixed 4-line chroma comb for CTAPSP = 11

YCMP [2:0], Luma Comb Mode PAL, Address 0x39 [2:0]
Table 57. YCMP [2:0] Function

YCMP [2:0]	Description	Configuration
0xx (default)	Adaptive comb mode	Adaptive 5-line, 3-tap luma comb
100	Disable luma comb	Use low-pass/notch filter (see the Y-Shaping Filter section)
101	Fixed luma comb (top lines of line memory) Fixed 3-line, 2-tap luma comb Fixed 5-line, 3-tap	
110	Fixed luma comb (all lines of line memory)	luma comb lixed 3-line, 2-tap
111	Fixed luma comb (bottom lines of line memory)	luma comb luma

Vertical Blank Control

Each vertical blank control register (Addresses 0xEB and 0xEC) has the same meaning for the following bit settings:

00-Early by one line.
10 -Delayed by one line.
11 -Delayed by two lines.
01 (default)-Described in each register section.
NVBIOLCM [1:0], NTSC VBI Odd Field Luma Comb Mode, Address 0xEB [7:6]

These bits control the first combed line after VBI on NTSC odd field (luma comb).

01 (default)—SMPTE170-/ITU-R BT.470-compliant; blank Lines 1 to 20, 264 to 282; comb half lines.

NVBIELCM [1:0], NTSC VBI Even Field Luma Comb Mode, Address 0xEB [5:4]

These bits control the first combed line after VBI on NTSC even field (luma comb).

01 (default)—SMPTE170-/ITU-R BT.470-compliant; blank Lines 1 to 20, 264 to 282; comb half lines.

PVBIOLCM [1:0], PAL VBI Odd Field Luma Comb Mode,

 Address 0xEB [3:2]These bits control the first combed line after VBI on PAL odd field (luma comb).

01 (default)-ITU-R BT.470-compliant; blank Lines 624 to 22, 311 to 335 ; comb half lines.

PVBIELCM [1:0], PAL VBI Even Field Luma Comb Mode, Address 0xEB [1:0]

These bits control the first combed line after VBI on PAL even field (luma comb).

01 (default)-ITU-R BT.470-compliant; blank Lines 624 to 22, 311 to 335 ; comb half lines.

NVBIOCCM [1:0], NTSC VBI Odd Field Chroma Comb Mode, Address 0xEC [7:6]

These bits control the first combed line after VBI on NTSC odd field (chroma comb).

01 (default)—SMPTE170-/ITU-R BT.470-compliant; no color on Lines 1 to 20, 264 to 282; chroma present on half lines.

NVBIECCM [1:0], NTSC VBI Even Field Chroma Comb Mode, Address 0xEC [5:4]

These bits control the first combed line after VBI on NTSC even field (chroma comb).

01 (default)—SMPTE170-/ITU-R BT.470-compliant; no color on Lines 1 to 20, 264 to 282; chroma present on half lines.

PVBIOCCM [1:0], PAL VBI Odd Field Chroma Comb Mode, Address 0xEC [3:2]

These bits control the first combed line after VBI on PAL odd field (chroma comb).

01 (default)—ITU-R BT.470-compliant; no color on Lines 624 to 22,311 to 335 ; chroma present on half lines.

PVBIECCM [1:0], PAL VBI Even Field Chroma Comb Mode, Address 0xEC [1:0]

These bits control the position of the first combed line after VBI on PAL even field (chroma comb).

01 (default)—ITU-R BT.470-compliant; no color on Lines 624 to 22,311 to 335 ; chroma present on half lines.

AV CODE INSERTION AND CONTROLS

This section describes the $\mathrm{I}^{2} \mathrm{C}$-based controls that affect

- Insertion of AV codes into the data stream
- Data blanking during the vertical blanking interval (VBI)
- The range of data values permitted in the output data stream
- The relative delay of luma vs. chroma signals

Note that some of the decoded VBI data is inserted during the horizontal blanking interval. See the Gemstar Data Recovery section for more information.

BT656-4, ITU-R BT.656-4 Enable, Address 0x04 [7]

Revisions 3 and 4 of the ITU-R BT. 656 standard have different positions for toggling the V bit within the SAV EAV codes for NTSC. The BT656-4 bit allows the user to select an output mode that is compliant with either the previous or new standard. For more information, visit the International Telecommunication Union's website.

Note that the standard change affects only NTSC and has no bearing on PAL.

0 (default)—The ITU-R BT.656-3 specification is used. The V bit goes low at EAV of Lines 10 and 273.

1-The ITU-R BT.656-4 specification is used. The V bit goes low at EAV of Lines 20 and 283.

SD_DUP_AV, Duplicate AV Codes, Address 0x03 [0]

Depending on the output interface width, it may be necessary to duplicate the AV codes from the luma path into the chroma path.

In an 8-bit-wide output interface ($\mathrm{Cb} / \mathrm{Y} / \mathrm{Cr} / \mathrm{Y}$ interleaved data), the AV codes are defined as FF/00/00/AV, with AV being the transmitted word that contains information about H/V/F.

In this output interface mode, the following assignment takes place: $\mathrm{Cb}=\mathrm{FF}, \mathrm{Y}=00, \mathrm{Cr}=00$, and $\mathrm{Y}=\mathrm{AV}$.

ADV7184

In a 16-bit output interface where Y and $\mathrm{Cr} / \mathrm{Cb}$ are delivered via separate data buses, the AV code is over the whole 16 bits. The SD_DUP_AV bit allows the user to replicate the AV codes on both buses; therefore, the full AV sequence can be found on the Y data bus and on the $\mathrm{Cr} / \mathrm{Cb}$ data bus (see Figure 25).

0 (default)—The AV codes are in single fashion (to suit 8-bit interleaved data output).

1-The AV codes are duplicated (for 16-bit interfaces).

VBI_EN, Vertical Blanking Interval Data Enable, Address 0x03 [7]

The VBI enable bit allows data such as intercast and closed caption data to be passed through the luma channel of the decoder with a minimal amount of filtering. All data for Line 1 to Line 21 is passed through and available at the output port.

The ADV7184 does not blank the luma data, but automatically switches all filters along the luma data path into their widest bandwidth. For active video, the filter settings for YSH and YPK are restored.

Refer to the BL_C_VBI, Blank Chroma During VBI, Address 0x04 [2] section for information on the chroma path.

0 (default)—All video lines are filtered and scaled.
1-Only the active video region is filtered and scaled.
BL_C_VBI, Blank Chroma During VBI, Address 0x04 [2]
Setting BL_C_VBI high blanks the Cr and Cb values of all VBI lines. This is done to prevent data that arrives during VBI from being decoded as color and output through Cr and Cb . As a result, it is possible to send VBI lines into the decoder, and then output them undistorted through an encoder. Without this blanking, any incorrectly decoded color would be encoded by the video encoder and therefore the VBI lines would be distorted.
$0-$ Decodes and outputs color during VBI.
1 (default)—Blanks Cr and Cb values during VBI.

RANGE, Range Selection, Address 0x04 [0]

AV codes (as per ITU-R BT.656, formerly known as CCIR 656) consist of a fixed header made up of 0 xFF and 0 x 00 values. These two values are reserved and therefore are not to be used for active video. Additionally, the ITU specifies that the nominal range for video should be restricted to values between 16 and 235 for luma and between 16 and 240 for chroma.

The RANGE bit allows the user to limit the range of values output by the ADV7184 to the recommended value range. This ensures that the reserved values of $255 \mathrm{~d}(0 \mathrm{xFF})$ and 00 d (0 x 00) are not presented on the output pins unless they are part of an AV code header.

Table 58. RANGE Function

RANGE	Description	
0	$16 \leq \mathrm{Y} \leq 235$	$16 \leq \mathrm{C} \leq 240$
1 (default)	$1 \leq \mathrm{Y} \leq 254$	$1 \leq \mathrm{C} \leq 254$

AUTO_PDC_EN, Automatic Programmed Delay Control, Address 0x27 [6]

Enabling AUTO_PDC_EN activates a function within the ADV7184 that automatically programs LTA [1:0] and CTA [2:0] to have the chroma and luma data match delays for all modes of operation.

0 -The ADV7184 uses the LTA [1:0] and CTA [2:0] values for delaying luma and chroma samples. Refer to the LTA [1:0], Luma Timing Adjust, Address 0x27 [1:0] and the CTA [2:0], Chroma Timing Adjust, Address 0x27 [5:3] sections.

1 (default)—The ADV7184 automatically programs the LTA and CTA values to have luma and chroma aligned at the output. Manual registers LTA [1:0] and CTA [2:0] are not used.

LTA [1:0], Luma Timing Adjust, Address 0x27 [1:0]

These bits allow the user to specify a timing difference between chroma and luma samples.

Note that there is a certain functionality overlap with the CTA [2:0] bits. For manual programming, use the following defaults:

- CVBS input LTA [1:0] $=00$
- Y/C input LTA [1:0] = 01
- YPrPb input LTA [1:0] $=01$

Table 59. LTA [1:0] Function

LTA [1:0]	Description
00 (default)	No delay
01	Luma 1 clock (37 ns) delayed
10	Luma 2 clock (74 ns) early
11	Luma 1 clock (37 ns) early

CTA [2:0], Chroma Timing Adjust, Address 0x27 [5:3]

These bits allow the user to specify a timing difference between chroma and luma samples. This may be used to compensate for external filter group delay differences in the luma vs. chroma path and to allow a different number of pipeline delays while processing the video downstream. Review this functionality together with that of the LTA [1:0] bits.

The chroma can be delayed or advanced only in chroma pixel steps. One chroma pixel step is equal to two luma pixels. The programmable delay occurs after demodulation, when no delay by luma pixel steps are allowed.

For manual programming, use the following defaults:

- CVBS input CTA [2:0] $=011$
- Y/C input CTA [2:0] = 101
- YPrPb input CTA [2:0] $=110$

Table 60. CTA Function

CTA [2:0]	Description
000	Not used
001	Chroma plus two chroma pixels (early)
010	Chroma plus one chroma pixel (early)
011 (default)	No delay
100	Chroma minus one chroma pixel (delayed)
101	Chroma minus two chroma pixels (delayed)
110	Chroma minus three chroma pixels (delayed)
111	Not used

SYNCHRONIZATION OUTPUT SIGNALS
 HS Configuration

The following controls allow the user to configure the behavior of the HS output pin only:

- HSB [10:0]: sets beginning of HS signal
- HSE [10:0]: sets end of HS signal
- PHS: sets polarity of HS

The HS begin (HSB) and HS end (HSE) bits allow the user to position the HS output pin anywhere within the video line. The values in HSB [10:0] and HSE [10:0] are measured in pixel units from the falling edge of HS. Using both values, the user can program both the position and length of the HS output signal.

HSB [10:0], HS Begin, Address 0x34 [6:4], Address 0x35 [7:0]

The position of this edge is controlled by placing a binary number into HSB [10:0]. The number applied offsets the edge with respect to an internal counter that is reset to 0 immediately after EAV Code FF, 00, 00, XY (see Figure 26). HSB [10:0] is set to 00000000010 , which is two LLC1 clock cycles from Count [0].

The default value of HSB [10:0] is 0x002, indicating that the HS pulse starts two pixels after the falling edge of HS.

ADV7184

Table 61. HS Timing Parameters (see Figure 26)

	Characteristics				
	HS Begin Adjust (HSB [10:0]) (Default)	HS End Adjust (HSE [10:0]) (Default)	HS to Active Video (LLC1 Clock Cycles) (C in Figure 26) (Default)	Active Video Samples/Line (D in Figure 26)	Total LLC1 Clock Cycles (E in Figure 26)
NTSC	00000000010	00000000000	272	$720 Y+720 \mathrm{C}=1440$	1716
NTSC Square Pixel	00000000010	00000000000	276	$640 \mathrm{Y}+640 \mathrm{C}=1280$	1560
PAL	00000000010	00000000000	284	$720 \mathrm{Y}+720 \mathrm{C}=1440$	1728

HSE [10:0] HS End, Address 0x34 [2:0], Address 0x36 [7:0]

The position of this edge is controlled by placing a binary number into HSE [10:0]. The number applied offsets the edge with respect to an internal counter that is reset to 0 immediately after EAV Code FF, 00, 00, XY (see Figure 26). HSE is set to 00000000000 , which is 0 LLC1 clock cycles from Count [0].

The default value of HSE [10:0] is 000, indicating that the HS pulse ends 0 pixels after the falling edge of HS.

For example,

- To shift the HS toward active video by 20 LLC1s, add 20 LLC1s to both HSB and HSE, that is, HSB [10:0] = [00000010110] and HSE [10:0] $=$ [00000010100].
- To shift the HS away from active video by 20 LLC1s, add 1696 LLC1s to both HSB and HSE (for NTSC), that is, HSB $[10: 0]=[11010100010]$ and HSE [10:0] $=$ [11010100000]. The number 1696 is derived from the NTSC total number of pixels $=1716$.

To move 20 LLC1s away from active video is equal to subtracting 20 from 1716 and adding the result in binary to both HSB [10:0] and HSE [10:0].

PHS Polarity HS, Address 0x37 [7]

The polarity of the HS pin can be inverted using the PHS bit.
0 (default)-HS is active high.
$1-\mathrm{HS}$ is active low.

VS and FIELD Configuration

The following controls allow the user to configure the behavior of the VS and FIELD output pins and to generate the following embedded AV codes:

- ADV encoder-compatible signals via NEWAVMODE
- PVS, PF
- HVSTIM
- VSBHO, VSBHE
- VSEHO, VSEHE
- For NTSC control
- NVBEGDELO, NVBEGDELE, NVBEGSIGN, NVBEG [4:0]
- NVENDDELO, NVENDDELE, NVENDSIGN, NVEND [4:0]
- NFTOGDELO, NFTOGDELE, NFTOGSIGN, NFTOG [4:0]
- For PAL control
- PVBEGDELO, PVBEGDELE, PVBEGSIGN, PVBEG [4:0]
- PVENDDELO, PVENDDELE, PVENDSIGN, PVEND [4:0]
- PFTOGDELO, PFTOGDELE, PFTOGSIGN, PFTOG [4:0]

NEWAVMODE, New AV Mode, Address 0x31 [4]

0 -EAV/SAV codes are generated to suit Analog Devices encoders. No adjustments are possible.

1 (default)—Enables the manual position of VS/FIELD and AV codes using Register 0x32, Register 0x33, and Register 0xE5 to Register 0xEA. Default register settings are CCIR 656 compliant; see Figure 27 for NTSC and Figure 32 for PAL. For recommended manual user settings, see Table 62 and Figure 28 for NTSC and Table 63 and Figure 33 for PAL.

HVSTIM, Horizontal VS Timing, Address 0x31 [3]

The HVSTIM bit allows the user to select where the VS signal is asserted within a line of video. Some interface circuitry may require VS to go low while HS is low.

0 (default) - The start of the line is relative to HSE.
1-The start of the line is relative to HSB.

VSBHO, VS Begin Horizontal Position Odd, Address 0x32 [7]

This bit selects the position within a line at which the VS pin (not the bit in the AV code) becomes active. Some follow-on chips require the VS pin to change state only when HS is high or low.

0 (default)-The VS pin goes high at the middle of a line of video (odd field).

1-The VS pin changes state at the start of a line (odd field).

VSBHE, VS Begin Horizontal Position Even, Address 0x32 [6]
 This bit selects the position within a line at which the VS pin (not the bit in the AV code) becomes active. Some follow-on chips require the VS pin to change state only when HS is high or low.

0 -The VS pin goes high at the middle of a line of video (even field).

1 (default)—The VS pin changes state at the start of a line (even field).

VSEHO VS, End Horizontal Position Odd, Address 0x33 [7]

This bit selects the position within a line at which the VS pin (not the bit in the AV code) becomes inactive. Some follow-on chips require the VS pin to change state only when HS is high or low.

0 -The VS pin goes low (inactive) at the middle of a line of video (odd field).

1 (default)—The VS pin changes state at the start of a line (odd field).

VSEHE, VS End Horizontal Position Even, Address 0x33 [6]

This bit selects the position within a line at which the VS pin (not the bit in the AV code) becomes inactive. Some follow-on chips require the VS pin to change state only when HS is high or low.

0 (default)—The VS pin goes low (inactive) at the middle of a line of video (even field).

1-The VS pin changes state at the start of a line (even field).

PVS, Polarity VS, Address 0x37 [5]

The polarity of the VS pin can be inverted using the PVS bit.
0 (default)-VS is active high.
1-VS is active low.

PF, Polarity FIELD, Address 0x37 [3]

The polarity of the FIELD pin can be inverted using the PF bit.
0 (default)—FIELD is active high.
1-FIELD is active low.

Table 62. Recommended User Settings for NTSC (See Figure 28)

Register	Register Name	Write
0×31	Vsync Field Control 1	$0 \times 1 \mathrm{~A}$
0×32	Vsync Field Control 2	0×81
0×33	Vsync Field Control 3	0×84
0×34	Hsync Position 1	0×00
0×35	Hsync Position 2	0×00
0×36	Hsync Position 3	$0 \times 7 \mathrm{D}$
0×37	Polarity	0×41
$0 \times E 5$	NTSV V bit begin	0×41
$0 \times E 6$	NTSC V bit end	0×84
$0 \times E 7$	NTSC F bit toggle	0×06

ADV7184

Figure 27. NTSC Default (ITU-R BT.656), the Polarities of HS, VS, and FIELD are Embedded in the Data
FIELD 1

Figure 28. NTSC Typical VS/FIELD Positions Using Register Writes in Table 62

Figure 29. NTSC Vsync Begin
NVBEGDELO, NTSC Vsync Begin Delay on Odd Field, Address 0xE5 [7]

0 (default)—No delay.
1-Delays vsync going high on an odd field by a line relative to NVBEG.

NVBEGDELE, NTSC Vsync Begin Delay on Even Field, Address 0xE5 [6]
0 (default)—No delay.
1-Delays vsync going high on an even field by a line relative to NVBEG.

NVBEGSIGN, NTSC Vsync Begin Sign, Address 0xE5 [5]
0 -Delays the start of vsync. Set for user manual programming.
1 (default)—Advances the start of vsync. Not recommended for user programming.

NVBEG [4:0], NTSC Vsync Begin, Address 0xE5 [4:0]
The default value of NVBEG is 00101, indicating the NTSC vsync begin position. For all NTSC/PAL vsync timing controls, both the V bit in the AV code and the vsync on the VS pin are modified.

Figure 30. NTSC Vsync End
NVENDDELO, NTSC Vsync End Delay on Odd Field, Address 0xE6 [7]
0 (default)—No delay.
1-Delays vsync from going low on an odd field by a line relative to NVEND.

NVENDDELE, NTSC Vsync End Delay on Even Field, Address 0xE6 [6]
0 (default) -No delay.
1-Delays vsync from going low on an even field by a line relative to NVEND.

NVENDSIGN, NTSC Vsync End Sign, Address 0xE6 [5] 0 (default)—Delays the end of vsync. Set for user manual programming.

1-Advances the end of vsync. Not recommended for user programming.

NVEND [4:0], NTSC Vsync End, Address 0xE6 [4:0]
The default value of NVEND is 00100 , indicating the NTSC vsync end position.

ADV7184

For all NTSC/PAL vsync timing controls, both the V bit in the AV code and the vsync on the VS pin are modified.

NFTOGDELO, NTSC Field Toggle Delay on Odd Field, Address 0xE7 [7]
0 (default) - No delay.
1-Delays the field toggle/transition on an odd field by a line relative to NFTOG.

NFTOGDELE, NTSC Field Toggle Delay on Even Field, Address 0xE7 [6]
$0-$ No delay.
1 (default)—Delays the field toggle/transition on an even field by a line relative to NFTOG.

Figure 31. NTSC Field Toggle

NFTOGSIGN, NTSC Field Toggle Sign, Address 0xE7 [5]
0 -Delays the field transition. Set for manual programming.
1 (default)—Advances the field transition. Not recommended for user programming.

NFTOG [4:0], NTSC Field Toggle, Address 0xE7 [4:0]

The default value of NFTOG is 00011, indicating the NTSC field toggle position.

For all NTSC/PAL field timing controls, both the F bit in the AV code and the field signal on the FIELD/DE pin are modified.

PVBEGDELO, PAL Vsync Begin Delay on Odd Field, Address 0xE8 [7]
0 (default) -No delay.
1-Delays vsync going high on an odd field by a line relative to PVBEG.

PVBEGDELE, PAL Vsync Begin Delay on Even Field, Address 0xE8 [6]
0 (default)—No delay.
1 (default)—Delays vsync going high on an even field by a line relative to PVBEG.

PVBEGSIGN, PAL Vsync Begin Sign, Address 0xE8 [5]
0 -Delays the beginning of vsync. Set for user manual programming.

1 (default)—Advances the beginning of vsync. Not recommended for user programming.

PVBEG [4:0], PAL Vsync Begin, Address 0xE8 [4:0]
The default value of PVBEG is 00101 , indicating the PAL vsync begin position.

For all NTSC/PAL vsync timing controls, both the V bit in the AV code and the vsync on the VS pin are modified.

Table 63. Recommended User Settings for PAL (see Figure 33)

Register	Register Name	Write
0×31	Vsync Field Control 1	$0 \times 1 \mathrm{~A}$
0×32	Vsync Field Control 2	0×81
0×33	Vsync Field Control 3	0×84
0×34	Hsync Position 1	0×00
0×35	Hsync Position 2	0×00
0×36	Hsync Position 3	$0 \times 7 \mathrm{D}$
0×37	Polarity	$0 \times A 1$
$0 \times E 8$	PAL V bit begin	0×41
$0 \times E 9$	PAL V bit end	0×84
$0 \times E A$	PAL F bit toggle	0×06

FIELD 1

Figure 33. PAL Typical VS/FIELD Positions Using Register Writes in Table 63

PVENDDELO, PAL Vsync End Delay on Odd Field, Address 0xE9 [7]
0 (default)-No delay.
1-Delays vsync going low on an odd field by a line relative to PVEND.

PVENDDELE, PAL Vsync End Delay on Even Field, Address 0xE9 [6]
0 (default)-No delay.
1-Delays vsync going low on an even field by a line relative to PVEND.

PVENDSIGN, PAL Vsync End Sign, Address 0xE9 [5]
0 (default)-Delays the end of vsync. Set for user manual programming.

1-Advances the end of vsync. Not recommended for user programming.

PVEND [4:0], PAL Vsync End, Address 0xE9 [4:0]
The default value of PVEND is 10100 , indicating the PAL vsync end position.

For all NTSC/PAL vsync timing controls, both the V bit in the AV code and the vsync on the VS pin are modified.

PFTOGDELO, PAL Field Toggle Delay on Odd Field, Address 0xEA [7]
0 (default)-No delay.
1-Delays the F toggle/transition on an odd field by a line relative to PFTOG.

PFTOGDELE, PAL Field Toggle Delay on Even Field, Address 0xEA [6]
0 (default)—No delay.
1 (default)—Delays the F toggle/transition on an even field by a line relative to PFTOG.

PFTOGSIGN, PAL Field Toggle Sign, Address 0xEA [5]
0 -Delays the field transition. Set for manual programming.
1 (default)—Advances the field transition. Not recommended for user programming.

PFTOG, PAL Field Toggle, Address 0xEA [4:0]

The default value of PFTOG is 00011, indicating the PAL field toggle position.

For all NTSC/PAL field timing controls, the F bit in the AV code and the field signal on the FIELD/DE pin are modified.

Figure 36. PAL F Toggle

SYNC PROCESSING

The ADV7184 has two additional sync processing blocks that postprocess the raw synchronization information extracted from the digitized input video. If desired, the blocks can be disabled via the following two $\mathrm{I}^{2} \mathrm{C}$ bits.

ENHSPLL, Enable Hsync Processor, Address 0x01 [6]

The hsync processor is designed to filter incoming hsyncs that have been corrupted by noise; therefore, it improves the performance of the ADV7184 for video signals with stable time bases but poor SNR.

0 -Disables the hsync processor.
1 (default)—Enables the hsync processor.

ENVSPROC, Enable Vsync Processor, Address 0x01 [3]
This block provides extra filtering of the detected vsyncs to improve vertical lock.

0 -Disables the vsync processor.
1 (default)—Enables the vsync processor.

VBI DATA DECODE

There are two VBI data slicers on the ADV7184. The first is called the VBI data processor (VDP), and the second is called the VBI System 2.

The VDP can slice both low bandwidth standards and high bandwidth standards, such as teletext. VBI System 2 can slice low data rate VBI standards only.

The VDP is capable of slicing multiple VBI data standards on SD video. It decodes the VBI data on the incoming CVBS and Y/C or YUV data. The decoded results are available as ancillary data in the output 656 data stream. For low data rate VBI standards such as CC/WSS/CGMS, the user can read the decoded data bytes from $\mathrm{I}^{2} \mathrm{C}$ registers. The VBI data standards that can be decoded by the VDP are shown in Table 64 and Table 65.
Table 64. PAL

Feature	Standard
Teletext System A or C or D	ITU-R BT.653
Teletext System B/WST	ITU-R BT.653
VPS (Video Programming System)	ETSI EN 300 231 V1.3.1
VITC (Vertical Interval Time Codes)	-
WSS (Wide-Screen Signaling)	BT.1119-1/ETSI EN 300 294
CC (Closed Captioning)	-

Table 65. NTSC

Feature	Standard
Teletext System B and D	ITU-R BT.653
Teletext System C/NABTS	ITU-R BT.653/EIA-516
VITC (Vertical Interval Time Codes)	-
CGMS (Copy Generation	EIA-J CPR-1204/IEC 61880
\quad Management System)	-
Gemstar	-
CC (Closed Captioning)	EIA-608

The VBI data standard that the VDP decodes on a particular line of incoming video has been set by default, as described in Table 66. This can be overridden manually, and any VBI data can be decoded on any line. The details of manual programming are described in Table 67 and Table 68.

VDP Default Configuration

The VDP can decode different VBI data standards on a line-toline basis. The various standards supported by default on different lines of VBI are explained in Table 66.

ADV7184

VDP Manual Configuration

MAN_LINE_PGM, Enable Manual Line Programming of

 VBI Standards, Address 0x64 [7], User Sub MapThe user can configure the VDP to decode different standards on a line-to-line basis through manual line programming. For this, the user must set the MAN_LINE_PGM bit and write to the VBI_DATA_Px_Ny line programming bits (see Register 0x64 to Register 0x77 of the user sub map).

0 (default)-The VDP decodes default standards on lines as shown in Table 66.

1-The VBI standards to be decoded are manually programmed.

VBI_DATA_Px_Ny [3:0], VBI Standard to be Decoded on Line \mathbf{x} for PAL, Line \mathbf{y} for NTSC, Addresses 0x64 to 0x77, User Sub Map

These bits are related 4-bit clusters in Register 0x64 to Register 0x77 of the user sub map. The 4-bit line-programming registers, named VBI_DATA_Px_Ny, identify the VBI data standard that would be decoded on Line x in PAL mode or on Line y in NTSC mode. The
different types of VBI standards decoded by VBI_DATA_Px_Ny are shown in Table 67. Note that the interpretation of its value depends on whether the ADV7184 is in PAL or NTSC mode.

Notes

- Full field detection (lines other than VBI lines) of any standard can also be enabled by writing into the VBI_DATA_P24_N22 [3:0] and VBI_DATA_P337_N285 [3:0] bits. Therefore, if VBI_DATA_P24_N22 [3:0] is programmed with any teletext standard, then teletext is decoded from the entire odd field. The corresponding bits for the even field are VBI_DATA_P337_N285 [3:0].
- In teletext system identification, VDP assumes that if teletext is present in a video channel, all the teletext lines comply with a single standard system. Therefore, the line programming using VBI_DATA_Px_Ny registers identifies whether the data in line is teletext; the actual standard is identified by the VDP_TTXT_TYPE_MAN bit. To program the VDP_TTXT_TYPE_MAN bit, the VDP_TTXT_TYPE_ MAN_ENABLE bit must be set to 1 .

Table 66. Default Line Standards for PAL and NTSC

PAL-625/50				NTSC-525/60			
Line No.	Default VBI Data Decoded						
6	WST	318	VPS	23	Gemstar 1×	-	-
7	WST	319	WST	24	Gemstar 1×	286	Gemstar 1×
8	WST	320	WST	25	Gemstar 1×	287	Gemstar 1×
9	WST	321	WST	-	-	288	Gemstar 1×
10	WST	322	WST	-	-	-	-
11	WST	323	WST	-	-	-	-
12	WST	324	WST	10	NABTS	272	NABTS
13	WST	325	WST	11	NABTS	273	NABTS
14	WST	326	WST	12	NABTS	274	NABTS
15	WST	327	WST	13	NABTS	275	NABTS
16	VPS	328	WST	14	VITC	276	NABTS
17	-	329	VPS	15	NABTS	277	VITC
18	-	330	-	16	VITC	278	NABTS
19	VITC	331	-	17	NABTS	279	VITC
20	WST	332	VITC	18	NABTS	280	NABTS
21	WST	333	WST	19	NABTS	281	NABTS
22	CC	334	WST	20	CGMS	282	NABTS
23	WSS	335	CC	21	CC	283	CGMS
$\begin{aligned} & 24+\text { full } \\ & \text { odd field } \end{aligned}$	WST		WST	22 + full odd field	NABTS	284	CC
		$337 \text { + full }$ even field	WST			$\begin{aligned} & 285+\text { full } \\ & \text { even field } \end{aligned}$	NABTS

Table 67. VBI Data Standards for Manual Configuration

VBI_DATA_Px_Ny	PAL- $\mathbf{6 2 5 / 5 0}$	NTSC—525/60
0000	Disable VDP	Disable VDP
0001	Teletext system identified by VDP_TTXT_TYPE	Teletext system identified by VDP_TTXT_TYPE
0010	VPS—ETSI EN 300 231 V 1.3.1	Reserved
0011	VITC	VITC
0100	WSS ITU-R BT.1119-1/ETSI.EN.300294	CGMS EIA-J CPR-1204/IEC 61880
0101	Reserved	Gemstar 1×
0110	Reserved	Gemstar 2×
0111	CC	CC EIA-608
1000 to 1111	Reserved	Reserved

Table 68. VBI Data Standards to be Decoded on Line Px (PAL) or Line Ny (NTSC)

Signal Name	Register Location	Address	
		Dec	Hex
VBI_DATA_P6_N23	VDP_LINE_00F [7:4]	101	0x65
VBI_DATA_P7_N24	VDP_LINE_010 [7:4]	102	0x66
VBI_DATA_P8_N25	VDP_LINE_011 [7:4]	103	0x67
VBI_DATA_P9	VDP_LINE_012 [7:4]	104	0x68
VBI_DATA_P10	VDP_LINE_013 [7:4]	105	0x69
VBI_DATA_P11	VDP_LINE_014 [7:4]	106	0x6A
VBI_DATA_P12_N10	VDP_LINE_015 [7:4]	107	0x6B
VBI_DATA_P13_N11	VDP_LINE_016 [7:4]	108	0x6C
VBI_DATA_P14_N12	VDP_LINE_017 [7:4]	109	$0 \times 6 \mathrm{D}$
VBI_DATA_P15_N13	VDP_LINE_018 [7:4]	110	0x6E
VBI_DATA_P16_N14	VDP_LINE_019 [7:4]	111	0x6F
VBI_DATA_P17_N15	VDP_LINE_01A [7:4]	112	0x70
VBI_DATA_P18_N16	VDP_LINE_01B [7:4]	113	0x71
VBI_DATA_P19_N17	VDP_LINE_01C [7:4]	114	0x72
VBI_DATA_P20_N18	VDP_LINE_01D [7:4]	115	0x73
VBI_DATA_P21_N19	VDP_LINE_01E [7:4]	116	0x74
VBI_DATA_P22_N20	VDP_LINE_01F [7:4]	117	0x75
VBI_DATA_P23_N21	VDP_LINE_020 [7:4]	118	0x76
VBI_DATA_P24_N22	VDP_LINE_021 [7:4]	119	0x77
VBI_DATA_P318	VDP_LINE_00E [3:0]	100	0x64
VBI_DATA_P319_N286	VDP_LINE_00F [3:0]	101	0x65
VBI_DATA_P320_N287	VDP_LINE_010 [3:0]	102	0x66
VBI_DATA_P321_N288	VDP_LINE_011 [3:0]	103	0x67
VBI_DATA_P322	VDP_LINE_012 [3:0]	104	0x68
VBI_DATA_P323	VDP_LINE_013 [3:0]	105	0x69
VBI_DATA_P324_N272	VDP_LINE_014 [3:0]	106	0x6A
VBI_DATA_P325_N273	VDP_LINE_015 [3:0]	107	0x6B
VBI_DATA_P326_N274	VDP_LINE_016 [3:0]	108	0x6C
VBI_DATA_P327_N275	VDP_LINE_017 [3:0]	109	0x6D
VBI_DATA_P328_N276	VDP_LINE_018 [3:0]	110	0x6E
VBI_DATA_P329_N277	VDP_LINE_019 [3:0]	111	0x6F
VBI_DATA_P330_N278	VDP_LINE_01A [3:0]	112	0x70
VBI_DATA_P331_N279	VDP_LINE_01B [3:0]	113	0x71
VBI_DATA_P332_N280	VDP_LINE_01C [3:0]	114	0x72
VBI_DATA_P333_N281	VDP_LINE_01D [3:0]	115	0x73
VBI_DATA_P334_N282	VDP_LINE_01E [3:0]	116	0x74
VBI_DATA_P335_N283	VDP_LINE_01F [3:0]	117	0x75
VBI_DATA_P336_N284	VDP_LINE_020 [3:0]	118	0x76
VBI_DATA_P337_N285	VDP_LINE_021 [3:0]	119	0x77

ADV7184

VDP_TTXT_TYPE_MAN_ENABLE, Enable Manual Selection of Teletext Type, Address 0x60 [2], User Sub Map

0 (default)—Manual programming of the teletext type is disabled.

1-Manual programming of the teletext type is enabled.
VDP_TTXT_TYPE_MAN [1:0], Specify the Teletext Type, Address 0x60 [1:0], User Sub Map

These bits specify the teletext type to be decoded. These bits are functional only if VDP_TTXT_TYPE_MAN_ENABLE is set to 1 .
Table 69. VDP_TTXT_TYPE_MAN Function

VDP_TTXT_-	Description	
TYPE_MAN [1:0]	$\mathbf{6 2 5 / 5 0}$ (PAL)	$\mathbf{5 2 5 / 6 0}$ (NTSC)
00 (default)	Teletext-ITU-R	Reserved
01	BT.653-625/50-A	
	Teletext-ITU-R	Teletext-ITU-R BT.653-
	BT.653-625/50-B	$525 / 60-\mathrm{B}$
10	(WST)	
	Teletext-ITU-R	Teletext-ITU-R BT.653-
	BT.653-625/50-C	$525 / 60-C ~ o r ~ E I A 516 ~$
		(NABTS)
11	Teletext-ITU-R	Teletext-ITU-R BT.653-
	BT.653-625/50-D	$525 / 60-$ D

VDP Ancillary Data Output

Reading the data back via $\mathrm{I}^{2} \mathrm{C}$ may not be feasible for VBI data standards with high data rates (for example, teletext). An alternative is to place the sliced data in a packet within the line blanking of the digital output CCIR 656 stream. This is available for all standards sliced by the VDP module.

When data is sliced on a given line, the corresponding ancillary data packet is placed immediately after the next EAV code that occurs at the output (that is, data sliced from multiple lines is not buffered up and then emitted in a burst). Note that the line on which the packet is placed differs from the line on which the data was sliced due to the vertical delay through the comb filters.

The user can enable or disable the insertion of VDP-decoded results into the 656 ancillary streams by using the ADF_ENABLE bit.

ADF_ENABLE, Enable Ancillary Data Output Through 656 Stream, Address 0x62 [7], User Sub Map
 0 (default)—Disables insertion of VBI decoded data into an ancillary 656 stream.

1-Enables insertion of VBI decoded data into an ancillary 656 stream.

The user can select the data identification word (DID) and the secondary data identification word (SDID) by programming the ADF_DID [4:0] and ADF_SDID [5:0] bits, respectively, as explained in the following sections.

ADF_DID [4:0], User-Specified Data ID Word in Ancillary Data, Address 0x62 [4:0], User Sub Map
These bits select the DID to be inserted into the ancillary data stream with the data decoded by the VDP.

The default value of ADF_DID [4:0] is 10101.
ADF_SDID [5:0], User-Specified Secondary Data ID Word in Ancillary Data, Address 0x63 [5:0], User Sub Map
These bits select the SDID to be inserted in the ancillary data stream with the data decoded by the VDP.

The default value of ADF_SDID [5:0] is 101010.
DUPLICATE_ADF, Enable Duplication/Spreading of Ancillary Data over Y and C Buses, Address 0x63 [7], User Sub Map
This bit determines whether the ancillary data is duplicated over both the Y and C buses or if the data packets are spread between the two channels.

0 (default)—The ancillary data packet is spread across the Y and C data streams.

1-The ancillary data packet is duplicated on the Y and C data streams.

ADF_MODE [1:0], Determine the Ancillary Data Output Mode, Address 0x62 [6:5], User Sub Map
These bits determine if the ancillary data output mode is in byte mode or nibble mode.

Table 70. ADF_MODE [1:0]

ADF_MODE [1:0]	Description
00 (default)	Nibble mode
01	Byte mode, no code restrictions Byte mode, but 0x00 and 0xFF are prevented 10
(0x00 replaced by 0x01, 0xFF replaced by 0xFE) Reserved	
11	

The ancillary data packet sequence is explained in Table 71 and Table 72. The nibble output mode is the default mode of output from the ancillary stream when ancillary stream output is enabled. This format complies with ITU-R BT.1364.

Some definitions of the abbreviations used in Table 71 and Table 72 are as follows:

- EP. Even parity for Bits B8 to B2. This means that Parity Bit EP is set so that an even number of 1 s are in Bits B 8 to B 2 , including the D 8 parity bit.
- CS. Checksum word. The CS word is used to increase the integrity of the ancillary data packet from the DID, SDID, and dc through user data-words (UDWs). It consists of 10 bits: a 9-bit calculated value and B9 as the inverse of B8.

The checksum value of B 8 to B 0 is equal to the nine LSBs of the sum of the nine LSBs of the DID, SDID, and dc, as well as all UDWs in the packet. Prior to the start of the checksum count cycle, all checksum and carry bits are preset to 0 . Any carry resulting from the checksum count cycle is ignored.

- $\overline{\mathrm{EP}}$. The MSB, B9, is the inverse of EP. This ensures that restricted Codes 0x00 and 0xFF do not occur.
- Line_number [9:0]. The number of the line that immediately precedes the ancillary data packet. This number is as per the
numbering system of ITU-R BT.470, ranging from 1 to 625 in a 625 -line system and from 1 to 263 in a 525 -line system. Note that the line on which the packet is output differs from the line on which the VBI data was sliced due to the vertical delay through the comb filters.
- Data Count. The data count specifies the number of UDWs in the ancillary stream for the standard. The total number of user data-words is four times the data count. Padding words can be introduced so that the total number of UDWs is divisible by 4 .

Table 71. Ancillary Data in Nibble Output Format

Byte	B9	B8	B7	B6	B5	B4	B3	B2	B1	B0	Description
0	0	0	0	0	0	0	0	0	0	0	Ancillary data preamble.
1	1	1	1	1	1	1	1	1	1	1	
2	1	1	1	1	1	1	1	1	1	1	
3	$\overline{\mathrm{EP}}$	EP	0	I2C_DID6_2 [4:0]					0	0	DID (data identification word).
4	$\overline{\mathrm{EP}}$	EP	I2C_SDID7_2 [5:0]						0	0	SDID (secondary data identification word).
5	$\overline{\mathrm{EP}}$	EP	0	DC [4:0]					0	0	Data count.
6	$\overline{E P}$	EP	padding [1:0]		VBI_DATA_STD [3:0]				0	0	ID0 (User Data-Word 1).
7	$\overline{\mathrm{EP}}$	EP	0	Line_number [9:5]					0	0	ID1 (User Data-Word 2).
8	$\overline{E P}$	EP	Even_Field	Line_number [4:0]					0	0	ID2 (User Data-Word 3).
9	$\overline{\mathrm{EP}}$	EP	0	0	0	0	$\begin{aligned} & \text { VDP_TTXT_TYPE } \\ & \text { [1:0] } \end{aligned}$		0	0	ID3 (User Data-Word 4).
10	$\overline{E P}$	EP	0	0	VBI_WORD_1 [7:4]				0	0	User Data-Word 5.
11	$\overline{\mathrm{EP}}$	EP	0	0	VBI_WORD_1 [3:0]				0	0	User Data-Word 6.
12	$\overline{E P}$	EP	0	0	VBI_WORD_2 [7:4]				0	0	User Data-Word 7.
13	$\overline{\mathrm{EP}}$	EP	0	0	VBI_WORD_2 [3:0]				0	0	User Data-Word 8.
14	$\overline{\mathrm{EP}}$	EP	0	0	VBI_WORD_3 [7:4]				0	0	User Data-Word 9.
.	Pad 0x200. These padding words may not be present depending on ancillary data type. User Data-Word XX.
.	
.	\cdot	
$\mathrm{n}-3$	1	0	0	0	0	0	0	0	0	0	
$\mathrm{n}-2$	1	0	0	0	0	0	0	0	0	0	
$\mathrm{n}-1$	$\overline{\overline{B 8}}$	Checksum							0	0	CS (checksum word).

ADV7184

Table 72. Ancillary Data in Byte Output Format ${ }^{1}$

Byte	B9	B8	B7	B6	B5	B4	B3	B2	B1	B0	Description
0	0	0	0	0	0	0	0	0	0	0	Ancillary data preamble.
1	1	1	1	1	1	1	1	1	1	1	
2	1	1	1	1	1	1	1	1	1	1	
3	$\overline{\mathrm{EP}}$	EP	0	12C_DID6_2 [4:0]					0	0	DID.
4	$\overline{\mathrm{EP}}$	EP	I2C_SDID7_2 [5:0]						0	0	SDID.
5	$\overline{\mathrm{EP}}$	EP	0	DC [4:0]					0	0	Data count.
6	$\overline{\mathrm{EP}}$	EP	padding [1:0]		VBI_DATA_STD [3:0]				0	0	ID0 (User Data-Word 1).
7	$\overline{\mathrm{EP}}$	EP	0	Line_number [9:5]					0	0	ID1 (User Data-Word 2).
8	$\overline{\mathrm{EP}}$	EP	Even_Field	Line_number [4:0]					0	0	ID2 (User Data-Word 3).
9	$\overline{\mathrm{EP}}$	EP	0	0	0	0	VDP	PE [1:0]	0	0	ID3 (User Data-Word 4).
10	VBI_WORD_1 [7:0]								0	0	User Data-Word 5.
11	VBI_WORD_2 [7:0]								0	0	User Data-Word 6.
12	VBI_WORD_3 [7:0]								0	0	User Data-Word 7.
13	VBI_WORD_4 [7:0]								0	0	User Data-Word 8.
14	VBI_WORD_5 [7:0]								0	0	User Data-Word 9.
.	Pad 0x200. These padding words may not be present depending on ancillary data type. User Data-Word XX.
.	
.	
n-3	1	0	0	0	0	0	0	0	0	0	
$\mathrm{n}-2$	1	0	0	0	0	0	0	0	0	0	
n-1	$\overline{\overline{B 8}}$	Checksum							0	0	CS (checksum word).

${ }^{1}$ This mode does not fully comply with ITU-R BT.1364.

Structure of VBI Words in Ancillary Data Stream

Each VBI data standard has been split into a clock run-in (CRI), a framing code (FC), and a number of data bytes (n). The data packet in the ancillary stream includes only the FC and data bytes. The VBI_WORD_X in the ancillary data stream has the format described in Table 73.

Table 73. Structure of VBI Data-Words in Ancillary Stream

	Byte Type	Byte Description
Ancillary Data Byte Number	FC0	Framing Code [23:16]
VBI_WORD_1	FC1	Framing Code [15:8]
VBI_WORD_2	FC2	Framing Code [7:0]
VBI_WORD_3	DB1	First data byte
VBI_WORD_4	\ldots	\ldots
\ldots	DBn	Last $\left(\mathrm{n}^{\text {th }}\right)$ data byte
VBI_WORD_N+3		

VDP Framing Code

The length of the actual framing code depends on the VBI data standard. For uniformity, the length of the framing code reported in the ancillary data stream is always 24 bits. For standards with a shorter framing code length, the extra LSB bits are set to 0 . The valid length of the framing code can be decoded from the VBI_DATA_STD bit available in ID0 (UDW1).

The framing code is always reported in the reverse order of transmission. Table 74 shows the framing code and its valid length for VBI data standards supported by VDP.

Example

For teletext (B-WST), the framing code byte is 11100100 (0xE4), with bits shown in the order of transmission. Thus, VBI_WORD_1 $=0 \times 27$, VBI_WORD_2 $=0 \times 00$, and VBI_WORD_3 $=0 \times 00$. Translating these into UDWs in the ancillary data stream, for the nibble mode,

$$
\begin{aligned}
& \text { UDW5 [5:2] }=0010 \\
& \text { UDW6 [5:2] }=0111 \\
& \text { UDW7 [5:2] }=0000 \text { (undefined bits, automatically set to } 0 \text {) } \\
& \text { UDW8 [5:2] }=0000 \text { (undefined bits, automatically set to } 0 \text {) } \\
& \text { UDW9 [5:2] }=0000 \text { (undefined bits, automatically set to } 0 \text {) } \\
& \text { UDW10 [5:2] }=0000 \text { (undefined bits, automatically set to } 0 \text {) }
\end{aligned}
$$

and for the byte mode,
UDW5 [9:2] = 0010_0111
UDW6 [9:2] = 0000_0000 (undefined bits, automatically set to 0)
UDW7 [9:2] = 0000_0000 (undefined bits, automatically set to 0)

Data Bytes

VBI_WORD_4 to VBI_WORD_N+3 contain the data-words that were decoded by the VDP in the order of transmission. The position of bits in bytes is in the reverse order of transmission. For example, closed captioning has two user data bytes, as shown in Table 80. The data bytes in the ancillary data stream in this case are as follows:

$$
\begin{aligned}
& \text { VBI_WORD_4 }=\text { BYTE1 [7:0] } \\
& \text { VBI_WORD_5 }=\text { BYTE2 [7:0] }
\end{aligned}
$$

The number of VBI_WORDS for each VBI data standard and the total number of UDWs in the ancillary data stream are shown in Table 75.

Table 74. Framing Code Sequence for Different VBI Standards

VBI Standard	Length in Bits	Error-Free Framing Code Bits (In Order of Transmission)	Error-Free Framing Code Reported by VDP (In Reverse Order of Transmission)
TTXT_SYSTEM_A (PAL)	8	11100111	11100111
TTXT_SYSTEM_B (PAL)	8	11100100	00100111
TTXT_SYSTEM_B (NTSC)	8	11100100	00100111
TTXT_SYSTEM_C (PAL and NTSC)	8	11100111	11100111
TTXT_SYSTEM_D (PAL and NTSC)	8	11100101	10100111
VPS (PAL)	16	10001010100011001	1001100101010001
VITC (NTSC and PAL)	1	0	0
WSS (PAL)	04	111110000011110001111000	
Gemstar 1× (NTSC)	3	100	
Gemstar 2X (NTSC)	11	100111100011110000011111	10111011001
CC (NTSC and PAL)	3	001	100
CGMS (NTSC)	1	0	0

Table 75. Total User Data-Words for Different VBI Standards ${ }^{1}$

VBI Standard	ADF Mode	Framing Code UDWs	VBI DataWords	Number of Padding Words	Total UDWs
TTXT_SYSTEM_A (PAL)	00 (nibble mode)	6	74	0	84
	01, 10 (byte mode)	3	37	0	44
TTXT_SYSTEM_B (PAL)	00 (nibble mode)	6	84	2	96
	01, 10 (byte mode)	3	42	3	52
TTXT_SYSTEM_B (NTSC)	00 (nibble mode)	6	68	2	80
	01, 10 (byte mode)	3	34	3	44
TTXT_SYSTEM_C (PAL and NTSC)	00 (nibble mode)	6	66	0	76
	01, 10 (byte mode)	3	33	2	42
TTXT_SYSTEM_D (PAL and NTSC)	00 (nibble mode)	6	68	2	80
	01, 10 (byte mode)	3	34	3	44
VPS (PAL)	00 (nibble mode)	6	26	0	36
	01, 10 (byte mode)	3	13	0	20
VITC (NTSC and PAL)	00 (nibble mode)	6	18	0	28
	01, 10 (byte mode)	3	9	0	16
WSS (PAL)	00 (nibble mode)	6	4	2	16
	01, 10 (byte mode)	3	2	3	12
Gemstar $1 \times$ (NTSC)	00 (nibble mode)	6	4	2	16
	01, 10 (byte mode)	3	2	3	12
Gemstar $2 \times$ (NTSC)	00 (nibble mode)	6	8	2	20
	01, 10 (byte mode)	3	4	1	12
CC (NTSC and PAL)	00 (nibble mode)	6	4	2	16
	01, 10 (byte mode)	3	2	3	12
CGMS (NTSC)	00 (nibble mode)	6	6	0	16
	01, 10 (byte mode)	3	$3+3$	2	12

[^4]
ADV7184

$I^{2} \mathbf{C}$ INTERFACE

Dedicated $\mathrm{I}^{2} \mathrm{C}$ readback registers are available for CC, CGMS, WSS, Gemstar, VPS, PDC/UTC, and VITC. Because teletext is a high data rate standard, data extraction is supported only through the ancillary data packet. The details of these registers and their access procedures are described in this section.

User Interface for I^{2} C Readback Registers

The VDP decodes all enabled VBI data standards in real time. Because the $I^{2} \mathrm{C}$ access speed is much slower than the decoded rate, the registers may be updated with data from the next line when they are being accessed. To avoid this, VDP has a selfclearing CLEAR bit and an AVAILABLE status bit accompanying all the $\mathrm{I}^{2} \mathrm{C}$ readback registers.

The user has to clear the $\mathrm{I}^{2} \mathrm{C}$ readback register by writing a high to the CLEAR bit. This resets the state of the AVAILABLE bit to low and indicates that the data in the associated readback registers is not valid. After the VDP decodes the next line of the corresponding VBI data, the decoded data is placed in the $\mathrm{I}^{2} \mathrm{C}$ readback register and the AVAILABLE bit is set high to indicate that valid data is now available.

Although the VDP, if present, decodes this VBI data in subsequent lines, the decoded data is not updated to the readback registers until the CLEAR bit is set high again. However, this data is available through the 656 ancillary data packets.

The CLEAR and AVAILABLE bits are in the VDP_STATUS_CLEAR (Address 0x78, user sub map, write only) and VDP_STATUS (Address 0x78, user sub map, read only) registers.

Example I 2 C Readback Procedure

To read one packet (line) of PDC data from the decoder

1. Write 10 to I2C_GS_VPS_PDC_UTC [1:0] (Address 0x9C, user sub map) to specify that PDC data has to be updated to $\mathrm{I}^{2} \mathrm{C}$ registers.
2. Write high to the GS_PDC_VPS_UTC_CLEAR bit (Address 0x78, user sub map) to enable $\mathrm{I}^{2} \mathrm{C}$ register updating.
3. Poll the GS_PDC_VPS_UTC_AVL bit (Address 0x78, user sub map) going high to check the availability of the PDC packets.
4. Read the data bytes from the PDC I ${ }^{2} \mathrm{C}$ registers. To read another line or packet of data, repeat the previous steps.

To read a packet of CC, CGMS, or WSS data, only Steps 1 through
3 are required because these types of data have dedicated registers.

VDP—Content-Based Data Update

For certain standards, such as WSS, CGMS, Gemstar, PDC, UTC, and VPS, the information content in the signal transmitted remains the same over numerous lines, and the user may want to be notified only when there is a change in the information content or loss of the information content. The user needs to enable content-based updating for the required standard through the GS_VPS_PDC_UTC_CB_CHANGE and WSS_CGMS_CB_CHANGE bits. Therefore, the AVAILABLE bit shows the availability of that standard only when its content has changed.

Content-based updating also applies to loss of data at the lines where some data was previously present. Thus, for standards like VPS, Gemstar, CGMS, and WSS, if no data arrives in the next four lines programmed, the corresponding AVAILABLE bit in the VDP_STATUS register is set high and the content in the $I^{2} \mathrm{C}$ registers for that standard is set to 0 . The user must write high to the corresponding CLEAR bit so that when a subsequent valid line is decoded, the decoded results are available in the $I^{2} \mathrm{C}$ registers, with the AVAILABLE status bit set high.

If content-based updating is enabled, the AVAILABLE bit is set high (assuming the CLEAR bit was written to) in the following cases:

- The data contents changed.
- Data was being decoded and four lines with no data have been detected.
- No data was being decoded and new data is now being decoded.

GS_VPS_PDC_UTC_CB_CHANGE, Enable ContentBased Updating for Gemstar/VPS/PDC/UTC, Address 0x9C [5], User Sub Map
$0-$ Disables content-based updating.
1 (default)—Enables content-based updating.

[^5]
VDP—Interrupt-Based Reading of VDP $I^{2} C$ Registers

Some VDP status bits are also linked to the interrupt request controller so that the user does not have to poll the AVAILABLE status bit. The user can configure the video decoder to trigger an interrupt request on the $\overline{\mathrm{INT}}$ pin in response to the valid data available in $\mathrm{I}^{2} \mathrm{C}$ registers. This function is available for the following data types:

- CGMS or WSS. The user can select triggering an interrupt request each time sliced data is available or triggering an interrupt request only when the sliced data has changed. Selection is made via the WSS_CGMS_CB_CHANGE bit.
- Gemstar, PDC, VPS, or UTC. The user can select triggering an interrupt request each time sliced data is available or triggering an interrupt request only when the sliced data has changed. Selection is made via the GS_VPS_PDC_UTC_CB_CHANGE bit.

The sequence for the interrupt-based reading of the VDP $I^{2} \mathrm{C}$ data registers is as follows for the CC standard:

1. The user unmasks the CC interrupt mask bit (Bit 0 of Address 0x50, user sub map, set to 1). CC data occurs upon the incoming video. VDP slices CC data and places it in the VDP readback registers.
2. The VDP CC available bit goes high, and the VDP module signals to the interrupt controller to stimulate an interrupt request (for CC in this case).
3. The user reads the interrupt status bits (user sub map) and sees that new CC data is available (Bit 0 of Address 0 x 4 E , user sub map, set to 1).
4. The user writes 1 to the CC interrupt clear bit (Bit 0 of Address 0x4F, user sub map, set to 1) in the interrupt $\mathrm{I}^{2} \mathrm{C}$ space (this is a self-clearing bit). This clears the interrupt on the $\overline{\mathrm{INT}}$ pin but does not have an effect in the VDP $\mathrm{I}^{2} \mathrm{C}$ area.
5. The user reads the CC data from the VDP $\mathrm{I}^{2} \mathrm{C}$ area.
6. The user writes to a bit, CC_CLEAR (Bit 0 of Address 0x78, user sub map, set to 1) in the VDP_STATUS_CLEAR [0] register, to signify that the CC data has been read and the VDP CC can be updated at the next occurrence of CC).
7. Back to Step 2.

Interrupt Mask Register Details
The following bits set the interrupt mask on the signal from the VDP VBI data slicer.

VDP_CCAPD_MSKB, Address 0x50 [0], User Sub Map
0 (default)—Disables interrupt on VDP_CCAPD_Q signal.
1-Enables interrupt on VDP_CCAPD_Q signal.

VDP_CGMS_WSS_CHNGD_MSKB, Address 0x50 [2], User Sub Map
0 (default)—Disables interrupt on VDP_CGMS_WSS_ CHNGD_Q signal.

1—Enables interrupt on VDP_CGMS_WSS_CHNGD_Q signal.
VDP_GS_VPS_PDC_UTC_CHNG_MSKB, Address 0x50 [4], User Sub Map
0 (default)—Disables interrupt on VDP_GS_VPS_PDC_UTC_ CHNG_Q signal.

1—Enables interrupt on VDP_GS_VPS_PDC_UTC_CHNG_Q signal.

VDP_VITC_MSKB, Address 0x50 [6], User Sub Map
0 (default)—Disables interrupt on VDP_VITC_Q signal.
1-Enables interrupt on VDP_VITC_Q signal.

Interrupt Status Register Details

The following read-only bits contain data detection information from the VDP module since the status bit was last cleared or unmasked.

VDP_CCAPD_Q, Address 0x4E [0], User Sub Map

0 (default)—Closed caption data was not detected.
1-Closed caption data was detected.
VDP_CGMS_WSS_CHNGD_Q, Address 0x4E [2], User Sub Map
0 (default)—CGMS or WSS data was not detected.
1-CGM or WSS data was detected.
VDP_GS_VPS_PDC_UTC_CHNG_Q, Address 0x4E [4], User Sub Map
0 (default)—Gemstar, PDC, UTC, or VPS data was not detected.
1-Gemstar, PDC, UTC, or VPS data was detected.
VDP_VITC_Q, Address 0x4E [6], User Sub Map, Read Only
0 (default)-VITC data was not detected.
1-VITC data was detected.

Interrupt Status Clear Register Details

It is not necessary to write 0 to these write-only bits because they automatically reset when they are set (self-clearing).

VDP_CCAPD_CLR, Address 0x4F [0], User Sub Map 1—Clears the VDP_CCAP_Q bit.

VDP_CGMS_WSS_CHNGD_CLR, Address 0x4F [2], User Sub Map

1—Clears the VDP_CGMS_WSS_CHNGD_Q bit.
VDP_GS_VPS_PDC_UTC_CHNG_CLR, Address 0x4F [4], User Sub Map
1—Clears the VDP_GS_VPS_PDC_UTC_CHNG_Q bit.
VDP_VITC_CLR, Address 0x4F [6], User Sub Map
1—Clears the VDP_VITC_Q bit.

STANDARD DETECTION AND IDENTIFICATION

The standard detection and identification (STDI) block of the ADV7184 monitors the synchronization signals received on the SOY pin. STDI_LINE_COUNT_MODE must be set to 1 to enable the STDI block and achieve valid synchronization signal analysis. Four key measurements are performed:

- Block Length BL [13:0]. This is the number of clock cycles in a block of eight lines. From this, the time duration of one line can be concluded. Note that the crystal frequency determines the clock cycle and that a crystal frequency of 28.63636 MHz should be used for the ADV7184.
- Line Count in Field LCF [10:0]. The LCF [10:0] readback value is the number of lines between two vsyncs, that is, over one field.
- Line Count in Vsync LCVS [4:0]. The LCVS [4:0] readback value is the number of lines within one vsync period.
- Field Length FCL [12:0]. This is the number of clock cycles in $1 / 256^{\text {th }}$ of a field. Multiplying this value by 256 calculates the field length in clock cycles.

By interpreting these four parameters, it is possible to distinguish among the types of input signals.

A data valid flag, STDI_VALID, is provided that is held low during the measurements. The four parameters should only be read after the STDI_VALID flag has gone high. Refer to Table 76 for information on the readback values.

Notes

- Types of synchronization pulses include horizontal synchronization pulses, equalization and serration pulses, and Macrovision pulses.
- Macrovision pseudosynchronization and AGC pulses are counted by the STDI block in normal readback mode. This does not prohibit the identification of the video signal.
- The ADV7184 only measures the parameters; it does not take any action based on these measurements. Therefore, the part helps to identify the input to avoid problems in the scheduling of a system controller, but it does not reconfigure itself.

STDI_DVALID, Standard Identification Data Valid Read Back, Address 0xB1 [7]
X-This bit is set by the ADV7184 as soon as the measurements of the STDI block are finished. A high level signals the validity of the BL, LCVS, LCF, and STDI_INTLCD parameters. To prevent false readouts, especially during the signal acquisition, the DVALID bit only goes high after recording four fields with the same length. As a result, the measurements can require up to five fields to finish.

STDI_LINE_COUNT_MODE, Address 0x86 [3]

0 (default)—Disables the STDI functionality.
1-Enables STDI functionality. This enables valid readback of the STDI block registers.

BL [13:0], Block Length Readback, Address 0xB1 [5:0], Address 0xB2 [7:0]

XX XXXX XXXX XXXX—Number of clock cycles in a block of eight lines of incoming video. Data is only valid if STDI_DVALID is high.

LCVS [4:0], Line Count in Vsync Readback, Address 0xB3 [7:3]

X XXXX—Number of lines within a vertical synchronization period. Data is only valid if STDI_DVALID is high.

LCF [10:0], Line Count in Field Readback, Address 0xB3 [2:0], Address 0xB4 [7:0]

XX XXXX XXXX—Number of lines between two vsyncs per one field/frame. Data is only valid if STDI_DVALID is high.

FCL [12:0], 1/256 ${ }^{\text {th }}$ of Field Length in Number of Crystal Clocks Read back, Address 0xCA [4:0], Address 0xCB [7:0]
XXX—Number of crystal clocks (with the recommended 28.63636 MHz frequency) in $1 / 256^{\text {th }}$ of a field. Data is only valid if STDI_DVALID is high.

STDI Readback Values for SD, PR, and HD

The readback values provided are only valid when using a crystal with the recommended 28.63636 MHz frequency.
Table 76. STDI Results for Video Standards (SD, PR, and HD)

Video Standard	BL [13:0]	LCF [10:0]	LCVS [4:0]
525i 60	14552 ± 80	261 ± 50	3 ± 3
240p 60	14552 ± 80	261 ± 50	2 ± 2
625i 50	14653 ± 80	311 ± 50	2 ± 2
288p 50	14654 ± 80	313 ± 50	2 ± 2
480p 60	7271 ± 40	524 ± 50	5 ± 2
720p 50	6101 ± 40	749 ± 50	4 ± 2
720p 60	5083 ± 40	749 ± 50	4 ± 2
1035i 30	6780 ± 40	562 ± 50	5 ± 2
1080i 25	7322 ± 40	1249 ± 50	0 ± 2
1080i 30	6780 ± 40	561 ± 50	4 ± 2
1080p 25	8137 ± 40	1124 ± 50	4 ± 2
1080p 50	4064 ± 40	1124 ± 50	4 ± 2
1080p 60	3385 ± 40	1124 ± 50	4 ± 2
1152i 50 Wide	7321 ± 40	623 ± 50	0 ± 2
1152i 50 Full	7321 ± 40	623 ± 50	4 ± 2

Figure 37. Example Connection of SOY pin

Figure 38. Example Use of STDI Block

ADV7184

I^{2} C READBACK REGISTERS

Teletext

Because teletext is a high data rate standard, the decoded bytes are available only as ancillary data. However, a TTXT_AVL bit is provided in $\mathrm{I}^{2} \mathrm{C}$ so that the user can check whether the VDP has detected teletext. Note that the TTXT_AVL bit is a plain status bit and does not use the protocol identified in the $\mathrm{I}^{2} \mathrm{C}$ Interface section.

TTXT_AVL, Teletext Detected Status Bit, Address 0x78 [7], User Sub Map, Read Only

0 -Teletext was not detected.
1-Teletext was detected.

WST Packet Decoding

For WST only, the VDP decodes the magazine and row address of WST teletext packets and further decodes the packet's 8×4 hamming coded words. This feature can be disabled by using the WST_PKT_DECOD_DISABLE bit (Bit 3, Register 0x60, user sub map). This feature is only valid for WST.

WST_PKT_DECOD_DISABLE, Disable Hamming

 Decoding of Bytes in WST, Address 0x60 [3], User Sub Map0 -Enables hamming decoding of WST packets.
1 (default)—Disables hamming decoding of WST packets.
For hamming coded bytes, the dehammed nibbles, along with error information from the hamming decoder, are output as follows:

- Input hamming coded byte: $\{\mathrm{D} 3, \mathrm{P} 3, \mathrm{D} 2, \mathrm{P} 2, \mathrm{D} 1, \mathrm{P} 1, \mathrm{D} 0, \mathrm{P} 0\}$ (bits in decoded order)
- Output dehammed byte: $\left\{\mathrm{E} 1, \mathrm{E} 0,0,0, \mathrm{D} 3^{\prime}, \mathrm{D} 2^{\prime}, \mathrm{D} 1^{\prime}, \mathrm{D} 0^{\prime}\right\}$ (where Di' is the corrected bit, and Ei represents the error information).

Table 77. Explanation of Error Bits
in the Dehammed Output Byte

$\mathbf{E}[1: 0]$	Error Information	Output Data Bits in Nibble
00	No errors detected	Okay
01	Error in P4	Okay
10	Double error	Not okay
11	Single error found and corrected	Okay

The types of WST packets that are decoded are described in Table 78.

Table 78. WST Packet Description

Packet	Byte	Description
Header Packet (X/00)	$\begin{aligned} & 1^{\text {st }} \text { byte } \\ & 2^{\text {nd }} \text { byte } \\ & 3^{\text {rd }} \text { byte } \\ & 4^{\text {th }} \text { byte } \\ & 5^{\text {th }} \text { to } 10^{\text {th }} \text { byte } \\ & 11^{\text {th }} \text { to } 42^{\text {nd }} \text { byte } \end{aligned}$	Magazine number-dehammed Byte 4 Row number-dehammed Byte 5 Page number-dehammed Byte 6 Page number-dehammed Byte 7 Control Bytes—dehammed Byte 8 to Byte 13 Raw data bytes
$\begin{aligned} & \text { Text Packets } \\ & (\mathrm{X} / 01 \text { to } \mathrm{X} / 25) \end{aligned}$	$1^{\text {st }}$ byte $2^{\text {nd }}$ byte $3^{\text {rd }}$ to $42^{\text {nd }}$ byte	Magazine number-dehammed Byte 4 Row number-dehammed Byte 5 Raw data bytes
8/30 (Format 1) packet Design Code $=0000$ or 0001 UTC	$1^{\text {st }}$ byte $2^{\text {nd }}$ byte $3^{\text {rd }}$ byte $4^{\text {th }}$ to $10^{\text {th }}$ byte $11^{\text {th }}$ to $23^{\text {rd }}$ byte $24^{\text {th }}$ to $42^{\text {nd }}$ byte	Magazine number-dehammed Byte 4 Row number-dehammed Byte 5 Design code—dehammed Byte 6 Dehammed Initial teletext page, Byte 7 to Byte 12 UTC bytes—dehammed Byte 13 to Byte 25 Raw status bytes
8/30 (Format 2) packet Design Code $=0010$ or 0011 PDC	$1^{\text {st }}$ byte $2^{\text {nd }}$ byte $3^{\text {rd }}$ byte $4^{\text {th }}$ to $10^{\text {th }}$ byte $11^{\text {th }}$ to $23^{\text {rd }}$ byte $24^{\text {th }}$ to $42^{\text {nd }}$ byte	Magazine number-dehammed Byte 4 Row number-dehammed Byte 5 Design code—dehammed Byte 6 Dehammed Initial teletext page, Byte 7 to Byte 12 PDC bytes—dehammed Byte 13 to Byte 25 Raw status bytes
X/26, X/27, X/28, X/29, X/30, X/31 ${ }^{1}$	$\begin{aligned} & 1^{\text {tst }} \text { byte } \\ & 2^{\text {nd }} \text { byte } \\ & 3^{\text {rd }} \text { byte } \\ & 4^{\text {th }} \text { to } 42^{\text {nd }} \text { byte } \\ & \hline \end{aligned}$	Magazine number-dehammed Byte 4 Row number-dehammed Byte 5 Design code—dehammed Byte 6 Raw data bytes

[^6]
CGMS and WSS

The CGMS and WSS data packets convey the same type of information for different video standards. WSS is for PAL and CGMS is for NTSC; therefore, the CGMS and WSS readback registers are shared. WSS is biphase coded, and the VDP performs a biphase decoding to produce the 14 raw WSS bits in the CGMS/ WSS readback $\mathrm{I}^{2} \mathrm{C}$ registers and to set the CGMS_WSS_AVL bit.

CGMS_WSS_CLEAR, CGMS/WSS Clear, Address 0x78 [2], User Sub Map, Write Only, Self-Clearing
1-Reinitializes the CGMS/WSS readback registers.
CGMS_WSS_AVL CGMS/WSS, Available Bit, Address 0x78 [2], User Sub Map, Read Only
$0-$ CGMS/WSS was not detected.
1—CGMS/WSS was detected.
VDP_CGMS_WSS_DATA_0 [3:0], Address 0x7D [3:0]
VDP_CGMS_WSS_DATA_1 [7:0], Address 0x7E [7:0]
VDP_CGMS_WSS_DATA_2 [7:0], Address 0x7F [7:0]
These read-only bits, located in the user sub map, hold the decoded CGMS or WSS data.

Refer to Figure 39 and Figure 40 for the $I^{2} \mathrm{C}$ to WSS and CGMS bit mapping.

CC

Two bytes of decoded closed caption data are available in the $I^{2} \mathrm{C}$ registers. The field information of the decoded CC data can be obtained from the CC_EVEN_FIELD bit (Register 0x78).

CC_CLEAR, Closed Captioning Clear, Address 0x78 [0], User Sub Map, Write Only, Self-Clearing
1-Reinitializes the CC readback registers.
CC_AVL, Closed Captioning Available, Address 0x78 [0], User Sub Map, Read Only
0 -Closed captioning was not detected.
1-Closed captioning was detected.

CC_EVEN_FIELD, Address 0x78 [1], User Sub Map, Read Only

Identifies the field from which the CC data was decoded.
0 -Closed captioning was detected on an odd field.
1 -Closed captioning was detected on an even field.
VDP_CCAP_DATA_0, Address 0x79 [7:0], User Sub Map, Read Only
Decoded Byte 1 of CC data.

VDP_CCAP_DATA_1, Address 0x7A [7:0], User Sub Map, Read Only
Decoded Byte 2 of CC data.

ADV7184

Table 79. CGMS Readback Registers ${ }^{1}$

		Address (User Sub Map)	
Signal Name	Register Location	Dec	Hex
CGMS_WSS_DATA_0 [3:0]	VDP_CGMS_WSS_DATA_0 [3:0]	125 d	$0 \times 7 \mathrm{D}$
CGMS_WSS_DATA_1 [7:0]	VDP_CGMS_WSS_DATA_1 [7:0]	126 d	$0 \times 7 \mathrm{E}$
CGMS_WSS_DATA_2 [7:0]	VDP_CGMS_WSS_DATA_2 [7:0]	127d	$0 \times 7 \mathrm{~d}$

${ }^{1}$ The register is a readback register; the default value does not apply.
Table 80. Closed Captioning Readback Registers ${ }^{1}$

		Address (User Sub Map)	
Signal Name	Register Location	Dec	Hex
CCAP_BYTE_1 [7:0]	VDP_CCAP_DATA_0 [7:0]	121 d	0×79
CCAP_BYTE_2 [7:0]	VDP_CCAP_DATA_1 [7:0]	$122 d$	$0 x 7 A$

[^7]
VITC

VITC has a sequence of 10 syncs in between each data byte. The VDP strips these syncs from the data stream to output only the data bytes. The VITC results are available in the VDP_VITC_DATA_0 to VDP_VITC_DATA_8 registers (Register 0x92 to Register 0x9A, user sub map).

The VITC has a CRC byte at the end; the syncs in between each data byte are also used in this CRC calculation. Because these syncs are not output, the CRC is calculated internally. The calculated CRC is also available for the user in the VDP_VITC_CALC_CRC register (Register 0x9B, User Sub Map). After the VDP completes decoding the VITC line, the VDP_VITC_DATA_x and VDP_VITC_CALC_CRC registers are updated and the VITC_AVL bit is set.

VITC_CLEAR, VITC Clear, Address 0x78 [6], User Sub Map, Write Only, Self-Clearing
1-Reinitializes the VITC readback registers.
VITC_AVL, VITC Available, Address 0x78 [6], User Sub Map, Read Only
0 -VITC data was not detected.
1-VITC data was detected.
VITC Readback Registers
See Figure 42 for the $\mathrm{I}^{2} \mathrm{C}$ to VITC bit mapping.

Figure 42. VITC Waveform and Decoded Data Correlation

Table 81. VITC Readback Registers ${ }^{1}$

Signal Name	Register Location	Address (User Sub Map)	
		Dec	Hex
VITC_DATA_0 [7:0]	VDP_VITC_DATA_0 [7:0] (VITC Bits [9:2])	146d	0x92
VITC_DATA_1 [7:0]	VDP_VITC_DATA_1 [7:0] (VITC Bits [19:12])	147d	0x93
VITC_DATA_2 [7:0]	VDP_VITC_DATA_2 [7:0] (VITC Bits [29:22])	148d	0x94
VITC_DATA_3 [7:0]	VDP_VITC_DATA_3 [7:0] (VITC Bits [39:32])	149d	0x95
VITC_DATA_4 [7:0]	VDP_VITC_DATA_4 [7:0] (VITC Bits [49:42])	150d	0x96
VITC_DATA_5 [7:0]	VDP_VITC_DATA_5 [7:0] (VITC Bits [59:52])	151d	0x97
VITC_DATA_6 [7:0]	VDP_VITC_DATA_6 [7:0] (VITC Bits [69:62])	152d	0x98
VITC_DATA_7 [7:0]	VDP_VITC_DATA_7 [7:0] (VITC Bits [79:72])	153d	0x99
VITC_DATA_8 [7:0]	VDP_VITC_DATA_8 [7:0] (VITC Bits [89:82])	154d	$0 \times 9 \mathrm{~A}$
VITC_CALC_CRC [7:0]	VDP_VITC_CALC_CRC [7:0]	155d	0x9B

[^8]
ADV7184

VPS/PDC/UTC/Gemstar

The readback registers for VPS, PDC, and UTC are shared. Gemstar is a high data rate standard and therefore is available only through the ancillary stream. For evaluation purposes, any one line of Gemstar is available through the $\mathrm{I}^{2} \mathrm{C}$ registers sharing the same register space as PDC, UTC, and VPS. Therefore, only one of the following standards can be read through the $\mathrm{I}^{2} \mathrm{C}$ at a time: VPS, PDC, UTC, or Gemstar.

To identify the data that should be made available in the $\mathrm{I}^{2} \mathrm{C}$ registers, the user must program I2C_GS_VPS_PDC_UTC [1:0] (Address 0x9C, user sub map).

I2C_GS_VPS_PDC_UTC (VDP) [1:0], Address 0x9C [6:5], User Sub Map
These bits specify which standard result is available for $\mathrm{I}^{2} \mathrm{C}$ readback.

Table 82. I2C_GS_VPS_PDC_UTC [1:0] Function

I2C_GS_VPS_PDC_UTC [1:0]	Description
00 (default)	Gemstar $1 \times / 2 \times$
01	VPS
10	PDC
11	UTC

GS_PDC_VPS_UTC_CLEAR, GS/PDC/VPS/UTC Clear,

 Address 0x78 [4], User Sub Map, Write Only, Self-Clearing1-Reinitializes the GS/PDC/VPS/UTC data readback registers.

GS_PDC_VPS_UTC_AVL, GS/PDC/VPS/UTC Available, Address 0x78 [4], User Sub Map, Read Only

$0-\mathrm{GS}, \mathrm{PDC}, \mathrm{VPS}$, or UTC data was not detected.
1-GS, PDC, VPS, or UTC data was detected.
VDP_GS_VPS_PDC_UTC Readback Registers, Addresses 0x84 to 0x90, User Sub Map

See Table 83.

VPS

The VPS data bits are biphase decoded by the VDP. The decoded data is available in both the ancillary stream and in the $I^{2} \mathrm{C}$ readback registers. VPS decoded data is available in the VDP_GS_VPS_PDC_UTC_0 to VDP_VPS_PDC_UTC_12 registers (Addresses 0x84 to 0x90, user sub map). VPS readback is set if the user programs the I2C_GS_VPS_PDC_UTC bit to 01, as explained in Table 82.

Gemstar

The Gemstar decoded data is available in the ancillary stream, and any one line of Gemstar is available in $\mathrm{I}^{2} \mathrm{C}$ registers for evaluation purposes. To obtain the Gemstar results in the $\mathrm{I}^{2} \mathrm{C}$ registers, the user must program I2C_GS_VPS_PDC_UTC to 00, as explained in Table 82.

VDP supports autodetection of Gemstar, distinguishing between Gemstar $1 \times$ and Gemstar $2 \times$, and decodes data accordingly. For this autodetection mode to operate correctly, the user must set the AUTO_DETECT_GS_TYPE I²C bit (Register 0x61, user sub map) and program the decoder to decode Gemstar $2 \times$ on the required lines through line programming. The type of Gemstar decoding can be determined by observing the GS_DATA_TYPE bit (Register 0x78, user sub map).

AUTO_DETECT_GS_TYPE, Address 0x61 [4], User Sub Map

0 (default)—Disables autodetection of Gemstar type.
1-Enables autodetection of Gemstar type.
GS_DATA_TYPE, Address 0x78 [5], User Sub Map, Read Only

This bit identifies the decoded Gemstar data type.
$0-$ Gemstar $1 \times$ mode is detected. Read two data bytes from $0 x 84$.
1 -Gemstar $2 \times$ mode is detected. Read four data bytes from 0×84.
The Gemstar data that is available in the $\mathrm{I}^{2} \mathrm{C}$ register may be from any line of the input video on which Gemstar was decoded. To read the Gemstar data on a particular video line, the user should use the manual configuration as described in Table 67 and Table 68 and enable Gemstar decoding only on the required line.

Table 83. GS/VPS/PDC/UTC Readback Registers ${ }^{1}$

Signal Name	Register Location	Address (User Sub Map)	
		Dec	Hex
GS_VPS_PDC_UTC_BYTE_0 [7:0]	VDP_GS_VPS_PDC_UTC_0 [7:0]	132d	0x84
GS_VPS_PDC_UTC_BYTE_1 [7:0]	VDP_GS_VPS_PDC_UTC_1 [7:0]	133d	0x85
GS_VPS_PDC_UTC_BYTE_2 [7:0]	VDP_GS_VPS_PDC_UTC_2 [7:0]	134d	0x86
GS_VPS_PDC_UTC_BYTE_3 [7:0]	VDP_GS_VPS_PDC_UTC_3 [7:0]	135d	0x87
VPS_PDC_UTC_BYTE_4[7:0]	VDP_VPS_PDC_UTC_4 [7:0]	136d	0x88
VPS_PDC_UTC_BYTE_5 [7:0]	VDP_VPS_PDC_UTC_5 [7:0]	137d	0x89
VPS_PDC_UTC_BYTE_6 [7:0]	VDP_VPS_PDC_UTC_6 [7:0]	138d	$0 \times 8 \mathrm{~A}$
VPS_PDC_UTC_BYTE_7 [7:0]	VDP_VPS_PDC_UTC_7 [7:0]	139d	0x8B
VPS_PDC_UTC_BYTE_8[7:0]	VDP_VPS_PDC_UTC_8 [7:0]	140d	0x8C
VPS_PDC_UTC_BYTE_9 [7:0]	VDP_VPS_PDC_UTC_9 [7:0]	141d	0x8D
VPS_PDC_UTC_BYTE_10 [7:0]	VDP_VPS_PDC_UTC_10 [7:0]	142d	0x8E
VPS_PDC_UTC_BYTE_11 [7:0]	VDP_VPS_PDC_UTC_11 [7:0]	143d	0x8F
VPS_PDC_UTC_BYTE_12 [7:0]	VDP_VPS_PDC_UTC_12 [7:0]	144d	0x90

${ }^{1}$ The register is a readback register; the default value does not apply.

PDC/UTC

PDC and UTC are data transmitted through Teletext Packet 8/30 Format 2 (Magazine 8, Row 30, Design Code 2 or 3), and Packet 8/30 Format 1 (Magazine 8, Row 30, Design Code 0 or 1). Therefore, if PDC or UTC data is to be read through $I^{2} \mathrm{C}$, the corresponding teletext standard (WST or PAL System B) should be decoded by VDP. The whole teletext decoded packet is output on the ancillary data stream. The user can look for the magazine number, row number, and design code and qualify the data as PDC, UTC, or neither of these.

If PDC/UTC packets are identified, Byte 0 to Byte 12 are updated to the GS_VPS_PDC_UTC_0 to VPS_PDC_UTC_12 registers and the GS_PDC_VPS_UTC_AVL bit is set. The full packet data is also available in the ancillary data format.

Note that the data available in the $\mathrm{I}^{2} \mathrm{C}$ register depends on the status of the WST_PKT_DECODE_DISABLE bit (Bit 3, Subaddress 0x60, user sub map).

VBI System 2

The user can choose to use an alternative VBI data slicer, called VBI System 2. This data slicer is used to decode Gemstar and closed caption VBI signals only.

Using this system, the Gemstar data is only available in the ancillary data stream. A special mode enables one line of data to be read back via $I^{2} \mathrm{C}$. For more information, contact an Analog Devices representative for an engineering note on ADV7184 VBI processing.

Gemstar Data Recovery

The Gemstar-compatible data recovery block (GSCD) supports Gemstar $1 \times$ and Gemstar $2 \times$ data transmissions. In addition, it can serve as a decoder for closed captioning. Gemstar-compatible data transmissions can occur only in NTSC mode. Closed caption data can be decoded in both PAL and NTSC modes.

The block is configured via the $\mathrm{I}^{2} \mathrm{C}$ in the following ways:

- GDECEL [15:0] allows data recovery for selected video lines on even fields to be enabled and disabled.
- GDECOL [15:0] enables data recovery for selected lines for odd fields.
- GDECAD configures the way in which data is embedded in the video data stream.

The recovered data is not available through $\mathrm{I}^{2} \mathrm{C}$, but is inserted into the horizontal blanking period of an ITU-R BT.656-compatible data stream. The data format is intended to comply with the ITU-R BT. 1364 recommendation by the International Telecommunications Union. For more information, visit the International Telecommunications Union's website. See Figure 43.

GDE_SEL_OLD_ADF, Address 0x4C [3], User Map

The ADV7184 has an ancillary data output block that can be used by the VDP data slicer and the VBI System 2 data slicer. The new ancillary data formatter is used by setting GDE_SEL_OLD_ADF to 0 (this is the default setting). If this bit is set low, refer to Table 71 and Table 72 for information about how the data is packaged in the ancillary data stream.

To use the old ancillary data formatter (to be backward compatible with the ADV7189B), set GDE_SEL_OLD_ADF to 1. The ancillary data format in this section refers to the ADV7189Bcompatible ancillary data formatter.

0 (default)—Enables the new ancillary data system (for use with VDP and VBI System 2).

1-Enables the old ancillary data system (for use with VBI System 2 only; ADV7189B compatible).

ADV7184

The format of the data packet depends on the following criteria:

- Transmission is Gemstar $1 \times$ or Gemstar $2 \times$.
- Data is output in 8-bit or 4-bit format (see the GDECAD, Gemstar Decode Ancillary Data Format, Address 0x4C [0] section).
- Data is closed captioning (CC) or Gemstar compatible.

Data packets are output if the corresponding enable bit is set (see the GDECEL [15:0], Gemstar Decoding Even Lines, Address 0×48 [7:0], Address 0×49 [7:0] and the GDECOL [15:0], Gemstar Decoding Odd Lines, Address 0x4A [7:0], Address $0 \times 4 \mathrm{~B}$ [7:0] sections) and the decoder detects the presence of data. This means that for video lines where no data has been decoded, no data packet is output, even if the corresponding line enable bit is set.

Each data packet starts immediately after the EAV code of the preceding line. Figure 43 and Table 84 show the overall structure of the data packet.

Entries within the packet are as follows:

- A fixed preamble sequence of $0 x 00,0 x F F$, and $0 x F F$.
- The data identification word (DID) (10-bit value), the value of which is 0×140 for a Gemstar or CC data packet.
- The secondary data identification word (SDID), which contains information about the video line from which data was retrieved, whether the Gemstar transmission was of $1 \times$ or $2 \times$ format, and whether it was retrieved from an even or odd field.
- The data count byte, which provides the number of user data-words that follow.
- User data section. This contains the user data, which can be four or eight words of data.
- Optional padding to ensure that the length of the user data-word section of a packet is a multiple of four bytes (requirement, as set in ITU-R BT.1364).
- Checksum byte. This contains the checksum of the packet.

Table 84 lists the values within a generic data packet that are output by the ADV7184 in 8-bit format.

Figure 43. Gemstar and CC Embedded Data Packet (Generic)
Table 84. Generic Data Output Packet

Byte	D [9]	D [8]	D [7]	D [6]	D [5]	D [4]	D [3]	D [2]	D [1]	D [0]	Description
0	0	0	0	0	0	0	0	0	0	0	Fixed preamble
1	1	1	1	1	1	1	1	1	1	1	Fixed preamble
2	1	1	1	1	1	1	1	1	1	1	Fixed preamble
3	0	1	0	1	0	0	0	0	0	0	DID
4	$\overline{\mathrm{EP}}$	EP	EF	2X	line [3:0]				0	0	SDID
5	$\overline{\mathrm{EP}}$	EP	0	0	0	0	DC [1]	DC [0]	0	0	Data count (DC)
6	$\overline{\mathrm{EP}}$	EP	0	0	word1 [7:4]				0	0	User data-words
7	$\overline{\mathrm{EP}}$	EP	0	0	word1 [3:0]				0	0	User data-words
8	$\overline{\mathrm{EP}}$	EP	0	0	word2 [7:4]				0	0	User data-words
9	$\overline{\mathrm{EP}}$	EP	0	0	word2 [3:0]				0	0	User data-words
10	$\overline{E P}$	EP	0	0	word3 [7:4]				0	0	User data-words
11	$\overline{\mathrm{EP}}$	EP	0	0	word3 [3:0]				0	0	User data-words
12	$\overline{\mathrm{EP}}$	EP	0	0	word4 [7:4]				0	0	User data-words
13	$\overline{\mathrm{EP}}$	EP	0	0	word4 [3:0]				0	0	User data-words
14	$\overline{\mathrm{CS}[8]}$	CS [8]	CS [7]	CS [6]	CS [5]	CS [4]	CS [3]	CS [2]	0	0	Checksum

Table 85. Data Byte Allocation

Gemstar 2×	Raw Information Bytes Retrieved from the Video Line	GDECAD	User Data-Words (Including Padding)	Padding Bytes	DC [1:0]
1	4	0	8	0	10
1	4	1	4	0	01
0	2	0	4	0	01
0	2	1	4	2	01

Gemstar Bit Names

- DID. The data identification value is 0×140 (10-bit value). Care has been taken that in 8-bit systems, the two LSBs do not carry vital information.
- EP and $\overline{\mathrm{EP}}$. The EP bit is set to ensure even parity on the data-word D [8:0]. Even parity means there is always an even number of 1 s within the D [8:0] bit arrangement. This includes the EP bit. $\overline{\mathrm{EP}}$ describes the logic inverse of EP and is output on D [9]. The $\overline{\mathrm{EP}}$ is output to ensure that the reserved codes of 00 and FF cannot occur.
- EF . Even field identifier. $\mathrm{EF}=1$ indicates that the data was recovered from a video line on an even field.
- $2 \times$. This bit indicates whether the data sliced was in Gemstar $1 \times$ or $2 \times$ format. A high indicates Gemstar $2 \times$ format. The $2 \times$ bit determines whether the raw information retrieved from the video line was two or four bytes. The state of the GDECAD bit affects whether the bytes are transmitted straight (that is, two bytes transmitted as two bytes) or whether they are split into nibbles (that is, two bytes transmitted as four half bytes). Padding bytes are then added where necessary.
- line [3:0]. This entry provides a code that is unique for each of the 16 possible source lines of video from which Gemstar data may have been retrieved. Refer to Table 94 and Table 95.
- DC [1:0]. Data count value. The number of UDWs in the packet divided by 4 . The number of UDWs in any packet must be an integral number of 4 . Padding is required at the end, if necessary, as set in ITU-R BT.1364. See Table 85.
- CS [8:2]. The checksum is provided to determine the integrity of the ancillary data packet. It is calculated by summing up D [8:2] of DID, SDID, data count byte, and all UDWs, and ignoring any overflow during the summation. Because all data bytes that are used to calculate the checksum have their two LSBs set to 0 , the CS [1:0] bits are also always 0 .
$\overline{\operatorname{CS}[8]}$ describes the logic inversion of CS [8]. The value $\overline{\mathrm{CS}[8]}$ is included in the checksum entry of the data packet to ensure that the reserved values of $0 x 00$ and $0 x F F$ do not occur. Table 86 to Table 91 outline the possible data packages.

Gemstar $2 \times$ Format, Half-Byte Output Mode

Half-byte output mode is selected by setting GDECAD to 0 ; full-byte output mode is selected by setting GDECAD to 1 . See the GDECAD, Gemstar Decode Ancillary Data Format, Address 0x4C [0] section.

Gemstar $1 \times$ Format, Half-Byte Output Mode

Half-byte output mode is selected by setting GDECAD to 0 ; full-byte output mode is selected by setting GDECAD to 1 . See the GDECAD, Gemstar Decode Ancillary Data Format, Address 0x4C [0] section.

ADV7184

Table 86. Gemstar $2 \times$ Data, Half-Byte Mode ${ }^{1}$

Byte	D [9]	D [8]	D [7]	D [6]	D [5]	D [4]	D [3]	D [2]	D [1]	D [0]	Description
0	0	0	0	0	0	0	0	0	0	0	Fixed preamble
1	1	1	1	1	1	1	1	1	1	1	Fixed preamble
2	1	1	1	1	1	1	1	1	1	1	Fixed preamble
3	0	1	0	1	0	0	0	0	0	0	DID
4	$\overline{\mathrm{EP}}$	EP	EF	1	line [3:0]				0	0	SDID
5	$\overline{\mathrm{EP}}$	EP	0	0	0	0	1	0	0	0	Data count
6	$\overline{\mathrm{EP}}$	EP	0	0	Gemstar Word1 [7:4]				0	0	User data-words
7	$\overline{\mathrm{EP}}$	EP	0	0	Gemstar Word1 [3:0]				0	0	User data-words
8	$\overline{\mathrm{EP}}$	EP	0	0	Gemstar Word2 [7:4]				0	0	User data-words
9	$\overline{E P}$	EP	0	0	Gemstar Word2 [3:0]				0	0	User data-words
10	$\overline{\mathrm{EP}}$	EP	0	0	Gemstar Word3 [7:4]				0	0	User data-words
11	$\overline{\mathrm{EP}}$	EP	0	0	Gemstar Word3 [3:0]				0	0	User data-words
12	$\overline{\mathrm{EP}}$	EP	0	0	Gemstar Word4 [7:4]				0	0	User data-words
13	$\overline{\mathrm{EP}}$	EP	0	0	Gemstar Word4 [3:0]				0	0	User data-words
14	$\overline{\mathrm{CS}}[8]$	CS [8]	CS [7]	CS [6]	CS [5]	CS [4]	CS [3]	CS [2]	CS [1]	CS [0]	Checksum

${ }^{1}$ The bold values represent Gemstar- or CC-specific values.

Table 87. Gemstar $2 \times$ Data, Full-Byte Mode ${ }^{1}$

Byte	D [9]	D [8]	D [7]	D [6]	D [5]	D [4]	D [3]	D [2]	D [1]	D [0]	Description
0	0	0	0	0	0	0	0	0	0	0	Fixed preamble
1	1	1	1	1	1	1	1	1	1	1	Fixed preamble
2	1	1	1	1	1	1	1	1	1	1	Fixed preamble
3	0	1	0	1	0	0	0	0	0	0	DID
4	$\overline{\mathrm{EP}}$	EP	EF	1			3:0]		0	0	SDID
5	$\overline{\mathrm{EP}}$	EP	0	0	0	0	0	1	0	0	Data count
6	Gemstar Word1 [7:0]								0	0	User data-words
7	Gemstar Word2 [7:0]								0	0	User data-words
8	Gemstar Word3 [7:0]								0	0	User data-words
9	Gemstar Word4 [7:0]								0	0	User data-words
10	$\overline{\mathrm{CS} ~[8]}$	CS [8]	CS [7]	CS [6]	CS [5]	CS [4]	CS [3]	CS [2]	CS [1]	CS [0]	Checksum

${ }^{1}$ The bold values represent Gemstar- or CC-specific values.
Table 88. Gemstar $1 \times$ Data, Half-Byte Mode ${ }^{1}$

Byte	D [9]	D [8]	D [7]	D [6]	D [5]	D [4]	D [3]	D [2]	D [1]	D [0]	Description
0	0	0	0	0	0	0	0	0	0	0	Fixed preamble
1	1	1	1	1	1	1	1	1	1	1	Fixed preamble
2	1	1	1	1	1	1	1	1	1	1	Fixed preamble
3	0	1	0	1	0	0	0	0	0	0	DID
4	$\overline{\mathrm{EP}}$	EP	EF	0			3:0]		0	0	SDID
5	$\overline{E P}$	EP	0	0	0	0	0	1	0	0	Data count
6	$\overline{\mathrm{EP}}$	EP	0	0	Gemstar Word1 [7:4]				0	0	User data-words
7	$\overline{\mathrm{EP}}$	EP	0	0	Gemstar Word1 [3:0]				0	0	User data-words
8	$\overline{\mathrm{EP}}$	EP	0	0	Gemstar Word2 [7:4]				0	0	User data-words
9	$\overline{\mathrm{EP}}$	EP	0	0	Gemstar Word2 [3:0]				0	0	User data-words
10	$\overline{\mathrm{CS}}$ [8]	CS [8]	CS [7]	CS [6]	CS [5]	CS [4]	CS [3]	CS [2]	CS [1]	CS [0]	Checksum

[^9]Table 89. Gemstar $1 \times$ Data, Full-Byte Mode ${ }^{1}$

Byte	D [9]	D [8]	D [7]	D [6]	D [5]	D [4]	D [3]	D [2]	D [1]	D [0]	Description
0	0	0	0	0	0	0	0	0	0	0	Fixed preamble
1	1	1	1	1	1	1	1	1	1	1	Fixed preamble
2	1	1	1	1	1	1	1	1	1	1	Fixed preamble
3	0	1	0	1	0	0	0	0	0	0	DID
4	$\overline{\mathrm{EP}}$	EP	EF	0	line [3:0]				0	0	SDID
5	$\overline{\mathrm{EP}}$	EP	0	0	0	0	0	1	0	0	Data count
6	Gemstar Word1 [7:0]								0	0	User data-words
7	Gemstar Word2 [7:0]								0	0	User data-words
8	1	0	0	0	0	0	0	0	0	0	UDW padding 0x200
9	1	0	0	0	0	0	0	0	0	0	UDW padding 0x200
10	$\overline{\text { CS [8] }}$	CS [8]	CS [7]	CS [6]	CS [5]	CS [4]	CS [3]	CS [2]	CS [1]	CS [0]	Checksum

${ }^{1}$ The bold values represent Gemstar- or CC-specific values.
Table 90. NTSC CC Data, Half-Byte Mode ${ }^{1}$

Byte	D [9]	D [8]	D [7]	D [6]	D [5]	D [4]	D [3]	D [2]	D [1]	D [0]	Description
0	0	0	0	0	0	0	0	0	0	0	Fixed preamble
1	1	1	1	1	1	1	1	1	1	1	Fixed preamble
2	1	1	1	1	1	1	1	1	1	1	Fixed preamble
3	0	1	0	1	0	0	0	0	0	0	DID
4	$\overline{\mathrm{EP}}$	EP	EF	0	1	0	1	1	0	0	SDID
5	$\overline{E P}$	EP	0	0	0	0	0	1	0	0	Data count
6	$\overline{\mathrm{EP}}$	EP	0	0	CCAP Word1 [7:4]				0	0	User data-words
7	$\overline{\mathrm{EP}}$	EP	0	0	CCAP Word1 [3:0]				0	0	User data-words
8	$\overline{\mathrm{EP}}$	EP	0	0	CCAP Word2 [7:4]				0	0	User data-words
9	$\overline{\mathrm{EP}}$	EP	0	0	CCAP Word2 [3:0]				0	0	User data-words
10	$\overline{\mathrm{CS}}[8]$	CS [8]	CS [7]	CS [6]	CS [5]	CS [4]	CS [3]	CS [2]	CS [1]	CS [0]	Checksum

${ }^{1}$ The bold values represent Gemstar- or CC-specific values.
Table 91. NTSC CC Data, Full-Byte Mode ${ }^{1}$

Byte	D [9]	D [8]	D [7]	D [6]	D [5]	D [4]	D [3]	D [2]	D [1]	D [0]	Description
0	0	0	0	0	0	0	0	0	0	0	Fixed preamble
1	1	1	1	1	1	1	1	1	1	1	Fixed preamble
2	1	1	1	1	1	1	1	1	1	1	Fixed preamble
3	0	1	0	1	0	0	0	0	0	0	DID
4	$\overline{\mathrm{EP}}$	EP	EF	0	1	0	1	1	0	0	SDID
5	$\overline{\mathrm{EP}}$	EP	0	0	0	0	0	1	0	0	Data count
6	CCAP Word1 [7:0]								0	0	User data-words
7	CCAP Word2 [7:0]								0	0	User data-words
8	1	0	0	0	0	0	0	0	0	0	UDW padding 0x200
9	1	0	0	0	0	0	0	0	0	0	UDW padding 0x200
10	$\overline{\text { CS [8] }}$	CS [8]	CS [7]	CS [6]	CS [5]	CS [4]	CS [3]	CS [2]	CS [1]	CS [0]	Checksum

[^10]
ADV7184

Table 92. PAL CC Data, Half-Byte Mode ${ }^{1}$

Byte	D [9]	D [8]	D [7]	D [6]	D [5]	D [4]	D [3]	D [2]	D [1]	D [0]	Description
0	0	0	0	0	0	0	0	0	0	0	Fixed preamble
1	1	1	1	1	1	1	1	1	1	1	Fixed preamble
2	1	1	1	1	1	1	1	1	1	1	Fixed preamble
3	0	1	0	1	0	0	0	0	0	0	DID
4	$\overline{\overline{E P}}$	EP	EF	0	1	0	1	0	0	0	SDID
5	$\overline{\mathrm{EP}}$	EP	0	0	0	0	0	1	0	0	Data count
6	$\overline{\mathrm{EP}}$	EP	0	0	CCAP Word1 [7:4]				0	0	User data-words
7	$\overline{\mathrm{EP}}$	EP	0	0	CCAP Word1 [3:0]				0	0	User data-words
8	$\overline{\mathrm{EP}}$	EP	0	0	CCAP Word2 [7:4]				0	0	User data-words
9	$\overline{\mathrm{EP}}$	EP	0	0	CCAP Word2 [3:0]				0	0	User data-words
10	$\overline{\mathrm{CS}}$ [8]	CS [8]	CS [7]	CS [6]	CS [5]	CS [4]	CS [3]	CS [2]	CS [1]	CS [0]	Checksum

${ }^{1}$ The bold values represent Gemstar- or CC-specific values.
Table 93. PAL CC Data, Full-Byte Mode ${ }^{1}$

Byte	D [9]	D [8]	D [7]	D [6]	D [5]	D [4]	D [3]	D [2]	D [1]	D [0]	Description
0	0	0	0	0	0	0	0	0	0	0	Fixed preamble
1	1	1	1	1	1	1	1	1	1	1	Fixed preamble
2	1	1	1	1	1	1	1	1	1	1	Fixed preamble
3	0	1	0	1	0	0	0	0	0	0	DID
4	$\overline{\mathrm{EP}}$	EP	EF	0	1	0	1	0	0	0	SDID
5	$\overline{\mathrm{EP}}$	EP	0	0	0	0	0	1	0	0	Data count
6	CCAP Word1 [7:0]								0	0	User data-words
7	CCAP Word2 [7:0]								0	0	User data-words
8	1	0	0	0	0	0	0	0	0	0	UDW padding 0x200
9	1	0	0	0	0	0	0	0	0	0	UDW padding 0x200
10	$\overline{\mathrm{CS}}$ [8]	CS [8]	CS [7]	CS [6]	CS [5]	CS [4]	CS [3]	CS [2]	CS [1]	CS [0]	Checksum

${ }^{1}$ The bold values represent Gemstar- or CC-specific values.

NTSC CC Data

Half-byte output mode is selected by setting GDECAD to 0 ; fullbyte mode is enabled by setting GDECAD to 1 . See the GDECAD, Gemstar Decode Ancillary Data Format, Address 0x4C [0] section. The data packet formats are shown in Table 90 and Table 91. Only closed caption data can be embedded in the output data stream.

NTSC closed caption data is sliced on Line 21 on even and odd fields. The corresponding enable bit must be set high. See the GDECEL [15:0], Gemstar Decoding Even Lines, Address 0x48 [7:0], Address 0x49 [7:0] and the GDECOL [15:0], Gemstar Decoding Odd Lines, Address 0x4A [7:0], Address 0x4B [7:0] sections.

PAL CC Data

Half-byte output mode is selected by setting GDECAD to 0 ; full-byte output mode is selected by setting GDECAD to 1 . See the GDECAD, Gemstar Decode Ancillary Data Format, Address 0x4C [0] section. Table 92 and Table 93 list the bytes of the data packet.

PAL closed caption data is sliced from Line 22 and Line 335.
The corresponding enable bits must be set.
Only closed caption data can be embedded in the output data stream. See the GDECEL [15:0], Gemstar Decoding Even Lines, Address 0x48 [7:0], Address 0x49 [7:0] and the GDECOL [15:0], Gemstar Decoding Odd Lines, Address 0x4A [7:0], Address 0x4B [7:0] sections.

GDECEL [15:0], Gemstar Decoding Even Lines, Address 0x48 [7:0], Address 0x49 [7:0]
The 16 bits of GDECEL [15:0] are interpreted as a collection of 16 individual lines of decode-enable signals. Each bit refers to a line of video in an even field. Setting the bit enables the decoder block trying to find Gemstar or closed caption-compatible data on that particular line. Setting the bit to 0 prevents the decoder from trying to retrieve data. See Table 94 and Table 95.

To retrieve closed caption data services on NTSC (Line 284), GDECEL [11] must be set.

To retrieve closed caption data services on PAL (Line 335), GDECEL [14] must be set.

The default value of GDECEL [15:0] is 0x0000. This setting instructs the decoder not to attempt to decode Gemstar or CC data from any line in the even field. The user should only enable Gemstar slicing on lines where VBI data is expected.
Table 94. NTSC Line Enable Bits and Corresponding Line Numbering

line [3:0]	Line Number (ITU-R BT.470)	Enable Bit	Comment
0	10	GDECOL [0]	Gemstar
1	11	GDECOL [1]	Gemstar
2	12	GDECOL [2]	Gemstar
3	13	GDECOL [3]	Gemstar
4	14	GDECOL [4]	Gemstar
5	15	GDECOL [5]	Gemstar
6	16	GDECOL [6]	Gemstar
7	17	GDECOL [7]	Gemstar
8	18	GDECOL [8]	Gemstar
9	19	GDECOL [9]	Gemstar
10	20	GDECOL [10]	Gemstar
11	21	GDECOL [11]	Gemstar or CC
12	22	GDECOL [12]	Gemstar
13	23	GDECOL [13]	Gemstar
14	24	GDECOL [15]	Gemstar
15	25	Gemstar	
0	$273(10)$	GDECEL [0]	Gemstar
1	$274(11)$	GDECEL [1]	Gemstar
2	$275(12)$	GDECEL [2]	Gemstar
3	$276(13)$	GDECEL [3]	Gemstar
4	$277(14)$	GDECEL [4]	Gemstar
5	$278(15)$	GDECEL [5]	Gemstar
6	$279(16)$	GDECEL [6]	Gemstar
7	$280(17)$	GDECEL [7]	Gemstar
8	$281(18)$	GDECEL [8]	Gemstar
9	$282(19)$	GDECEL [9]	Gemstar
10	$283(20)$	GDECEL [10]	Gemstar
11	$284(21)$	GDECEL [11]	Gemstar or CC
12	$285(22)$	GDECEL [12]	Gemstar
13	$286(23)$	GDECEL [13]	Gemstar
14	$287(24)$	GDECEL [14]	Gemstar
15	$288(25)$	GDECEL [15]	Gemstar
15			

Table 95. PAL Line Enable Bits and Corresponding Line Numbering ${ }^{1}$

Line [3:0]	Line Number (ITU-R BT.470)	Enable Bit	Comment
12	8	GDECOL [0]	Not valid
13	9	GDECOL [1]	Not valid
14	10	GDECOL [2]	Not valid
15	11	GDECOL [3]	Not valid
0	12	GDECOL [4]	Not valid
1	13	GDECOL [5]	Not valid
2	14	GDECOL [6]	Not valid
3	15	GDECOL [7]	Not valid
4	16	GDECOL [8]	Not valid
5	17	GDECOL [9]	Not valid
6	18	GDECOL [10]	Not valid
7	19	GDECOL [11]	Not valid
8	20	GDECOL [12]	Not valid
9	21	GDECOL [13]	Not valid
10	22	GDECOL [14]	CC
11	23	GDECOL [15]	Not valid
12	321 (8)	GDECEL [0]	Not valid
13	322 (9)	GDECEL [1]	Not valid
14	323 (10)	GDECEL [2]	Not valid
15	324 (11)	GDECEL [3]	Not valid
0	325 (12)	GDECEL [4]	Not valid
1	326 (13)	GDECEL [5]	Not valid
2	327 (14)	GDECEL [6]	Not valid
3	328 (15)	GDECEL [7]	Not valid
4	329 (16)	GDECEL [8]	Not valid
5	330 (17)	GDECEL [9]	Not valid
6	331 (18)	GDECEL [10]	Not valid
7	332 (19)	GDECEL [11]	Not valid
8	333 (20)	GDECEL [12]	Not valid
9	334 (21)	GDECEL [13]	Not valid
10	335 (22)	GDECEL [14]	CC
11	336 (23)	GDECEL [15]	Not valid

[^11]
ADV7184

GDECOL [15:0], Gemstar Decoding Odd Lines, Address 0x4A [7:0], Address 0x4B [7:0]

The 16 bits of the GDECOL [15:0] form a collection of 16 individual line decode enable signals. See Table 94 and Table 95.

To retrieve closed caption data services on NTSC (Line 21), GDECOL [11] must be set.

To retrieve closed caption data services on PAL (Line 22), GDECOL [14] must be set.

The default value of GDECOL [15:0] is 0×0000. This setting instructs the decoder not to attempt to decode Gemstar or CC data from any line in the odd field. The user should only enable Gemstar slicing on lines where VBI data is expected.

GDECAD, Gemstar Decode Ancillary Data Format, Address 0x4C [0]

The decoded data from Gemstar-compatible transmissions or closed caption transmission is inserted into the horizontal blanking period of the respective line of video. A potential problem can arise if the retrieved data bytes have the value 0×00 or 0xFF. In an ITU-R BT.656-compatible data stream, these values are reserved and used only to form a fixed preamble.

The GDECAD bit allows the data to be inserted into the horizontal blanking period in two ways:

- Insert all data straight into the data stream, even the reserved values of 0×00 and $0 \times \mathrm{xF}$, if they occur. This may violate the output data format specification ITU-R BT. 1364 .
- Split all data into nibbles and insert the half-bytes over twice the number of cycles in a 4-bit format.

0 (default)—The data is split into half-bytes and inserted.
1-The data is output straight in 8-bit format.

Letterbox Detection

Incoming video signals may conform to different aspect ratios (16:9 wide-screen or 4:3 standard). For certain transmissions in the wide-screen format, a digital sequence (WSS) is transmitted with the video signal. If a WSS sequence is provided, the aspect ratio of the video can be derived from the digitally decoded bits that WSS contains.

In the absence of a WSS sequence, letterbox detection can be used to find wide-screen signals. The detection algorithm examines the active video content of lines at the start and end of a field. If black lines are detected, this may indicate that the currently shown picture is in wide-screen format.

The active video content (luminance magnitude) over a line of video is summed together. At the end of a line, this accumulated value is compared with a threshold and a decision is made as to whether a particular line is black. The threshold value needed may depend on the type of input signal; some control is provided via LB_TH [4:0].

Detection at the Start of a Field

The ADV7184 expects a section of at least six consecutive black lines of video at the top of a field. Once those lines are detected, Register LB_LCT [7:0] is updated. Register LB_LCT [7:0] reports the number of black lines that were actually found. By default, the ADV7184 starts looking for those black lines in sync with the beginning of active video, for example, immediately after the last VBI video line. LB_SL [3:0] allows the user to set the start of letterbox detection from the beginning of a frame on a line-by-line basis. The letterbox detection ends in the middle of the field.

Detection at the End of a Field

The ADV7184 expects at least six continuous lines of black video at the bottom of a field before reporting the number of lines actually found via the LB_LCB [7:0] value. The activity window for letterbox detection (end of field) starts in the middle of an active field. Its end is programmable via LB_EL [3:0].

Detection at the Midrange

Some transmissions of wide-screen video include subtitles within the lower black box. If the ADV7184 finds at least two black lines followed by more nonblack video, for example, the subtitle followed by the remainder of the bottom black block, it reports a midcount via LB_LCM [7:0]. If no subtitles are found, LB_LCM [7:0] reports the same number as LB_LCB [7:0].

There is a two-field delay in the reporting of line count parameters.
There is no letterbox detected bit. Read the LB_LCT [7:0] and LB_LCB [7:0] bit values to conclude whether or not the letterbox type of video is present in the software.

LB_LCT [7:0], Letterbox Line Count Top, Address 0x9B [7:0]; LB_LCM [7:0], Letterbox Line Count Mid, Address 0x9C [7:0]; LB_LCB [7:0], Letterbox Line Count Bottom, Address 0x9D [7:0]

Table 96. LB_LCx [7:0] Access Information ${ }^{1}$

Signal Name	Address
LB_LCT [7:0]	$0 \times 9 \mathrm{~B}$
LB_LCM [7:0]	$0 \times 9 \mathrm{C}$
LB_LCB [7:0]	$0 \times 9 \mathrm{D}$

[^12]LB_TH [4:0], Letterbox Threshold Control,
Address 0xDC [4:0]
Table 97. LB_TH [4:0] Function

LB_TH [4:0]	Description
01100	Default threshold for detection of black lines
(default)	
01101 to	Increase threshold (need larger active video
10000	content before identifying nonblack lines)
00000 to	Decrease threshold (even small noise levels can
01011	cause the detection of nonblack lines)

LB_SL [3:0], Letterbox Start Line, Address 0xDD [7:4]

The LB_SL [3:0] bits are set at 0100 by default. For an NTSC signal, the letterbox detection is from Line 23 to Line 286.

By changing the bits to 0101, the detection starts on Line 24 and ends on Line 287.

LB_EL [3:0], Letterbox End Line, Address 0xDD [3:0]

The LB_EL [3:0] bits are set at 1101 by default. This means that letterbox detection ends with the last active video line. For an NTSC signal, the detection is from Line 262 to Line 525.

By changing the settings of the bits to 1100 , the detection starts on Line 261 and ends on Line 254.

IF Compensation Filter

IFFILTSEL [2:0], IF Filter Select, Address 0xF8 [2:0]
The IFFILTSEL [2:0] register allows the user to compensate for SAW filter characteristics on a composite input, such as those associated with tuner outputs. Figure 44 and Figure 45 show IF filter compensation for NTSC and PAL.

The options for this feature are as follows:

- Bypass mode (default)
- NTSC—consists of three filter characteristics
- PAL-consists of three filter characteristics

See Table 105 for programming details.

Figure 44. NTSC IF Compensation Filter Responses

Figure 45. PAL IF Compensation Filter Responses

I^{2} C Interrupt System

The ADV7184 has a comprehensive interrupt register set. This map is located in the user sub map. See Table 107 for details of the interrupt register map. Figure 48 describes how to access this map.

ADV7184

Interrupt Request Output Operation

When an interrupt event occurs, the interrupt pin INTRQ goes low, with a programmable duration given by INTRQ_DUR_SEL [1:0]

INTRQ_DUR_SEL [1:0], Interrupt Duration Select, Address 0x40 [7:6], User Sub Map

Table 98. INTRQ_DUR_SEL [1:0] Function

INTRQ_DUR_SEL[1:0]	Description
00 (default)	3 XTAL periods
01	15 XTAL periods
10	63 XTAL periods
11	Active until cleared

When the active-until-cleared interrupt duration is selected and the event that caused the interrupt is no longer in force, the interrupt persists until it is masked or cleared.

For example, if the ADV7184 loses lock, an interrupt is generated and the $\overline{\text { INTRQ }}$ pin goes low. If the ADV7184 returns to the locked state, $\overline{\text { INTRQ }}$ continues to be driven low until the SD_LOCK bit is either masked or cleared.

Interrupt Drive Level

The ADV7184 resets with open drain enabled and interrupt masking disabled. Therefore, $\overline{\text { INTRQ }}$ is in a high impedance state after a reset. Either 01 or 10 must be written to INTRQ_OP_SEL [1:0] for a logic level to be driven out from the INTRQ pin.

It is also possible to write to a bit in the ADV7184 that manually asserts the $\overline{\text { INTRQ }}$ pin. This bit is MPU_STIM_INTRQ.

INTRQ_OP_SEL [1:0], Interrupt Duration Select, Address 0x40 [1:0], User Sub Map

Table 99. INTRQ_OP_SEL [1:0] Function

INTRQ_OP_SEL[1:0]	Description
00 (default)	Open drain
01	Driven low when active
10	Driven high when active
11	Reserved

Multiple Interrupt Events

If an interrupt event occurs and then another interrupt event occurs before the system controller has cleared or masked the first interrupt event, the ADV7184 does not generate a second interrupt signal. Therefore, the system controller should check all unmasked interrupt status bits because more than one may be active.

Macrovision Interrupt Selection Bits

The user can select between pseudosync pulse and color stripe detection as outlined in Table 100.

MV_INTRQ_SEL [1:0], Macrovision Interrupt Selection
Bits, Address 0x40 [5:4], User Sub Map
Table 100. MV_INTRQ_SEL [1:0] Function
MV_INTRQ_SEL [1:0]
00
Description
01 (default)
10
:---
11

Additional information about the interrupt system is detailed in Table 107.

PIXEL PORT CONFIGURATION

The ADV7184 has a very flexible pixel port that can be configured in a variety of formats to accommodate downstream ICs. Table 101 and Table 102 summarize the various functions that the ADV7184 pins can have in different modes of operation.

The order of components, for example, the order of Cr and Cb , on the output pixel bus can be changed. Refer to the SWPC, Swap Pixel Cr/Cb, Address 0x27 [7] section. Table 101 indicates the default positions for the $\mathrm{Cr} / \mathrm{Cb}$ components.

PIXEL PORT-RELATED CONTROLS

 OF_SEL [3:0], Output Format Selection, Address 0x03 [5:2] The modes in which the ADV7184 pixel port can be configured are controlled by OF_SEL [3:0]. See Table 102 for details.The default LLC frequency output on the LLC1 pin is approximately 27 MHz . For modes that operate with a nominal data rate of $13.5 \mathrm{MHz}(0001,0010)$, the clock frequency on the LLC1 pin stays at the higher rate of 27 MHz . For information on outputting the nominal 13.5 MHz clock on the LLC1 pin, see the LLC_PAD_SEL [2:0], LLC1 Output Selection, Address $0 \times 8 \mathrm{~F}$ [6:4] section.

SWPC, Swap Pixel Cr/Cb, Address 0x27 [7]

0 (default)—No swapping is allowed.
1 -The Cr and Cb values can be swapped.

LLC_PAD_SEL [2:0], LLC1 Output Selection, Address 0x8F [6:4]

The following $\mathrm{I}^{2} \mathrm{C}$ write allows the user to select between LLC1 (nominally at 27 MHz) and LLC2 (nominally at 13.5 MHz).

The LLC2 signal is useful for LLC2-compatible wide bus (16-bit) output modes. See the OF_SEL [3:0], Output Format Selection, Address 0x03 [5:2] section for additional information. The LLC2 signal and data on the data bus are synchronized. By default, the rising edge of LLC1/LLC2 is aligned with the Y data; the falling edge occurs when the data bus holds C data. The polarity of the clock, and therefore the Y/C assignments for the clock edges, can be altered by using the polarity LLC pin.

000 (default)-The output is nominally 27 MHz LLC on the LLC1 pin.

101-The output is nominally 13.5 MHz LLC on the LLC1 pin.

Table 101. P15 to P0 Output/Input Pin Mapping

	Output of Data Port Pins P [15:0]															
Processor, Format, and Mode	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Video Output, 8-Bit, 4:2:2	$\mathrm{YCrCb} \mathrm{[7:0]}$															
Video Output, 16-Bit, 4:2:2	Y [7:0]								CrCb [7:0]							

Table 102. Standard Definition Pixel Port Modes

		Pixel Port Pins P [15:0]	
OF_SEL [3:0]	Format	P [15:8]	P [7:0]
0010	16-Bit at LLC2 4:2:2	Y [7:0]	CrCb [7:0]
0011 (default)	8-Bit at LLC1 4:2:2	YCrCb [7:0] (default)	Three-state
0110 to 1111	Reserved		Reserved-do not use

ADV7184

MPU PORT DESCRIPTION

The ADV7184 supports a 2 -wire ($\mathrm{I}^{2} \mathrm{C}$-compatible) serial interface. Two inputs, serial data (SDA) and serial clock (SCLK), carry information between the ADV7184 and the system I ${ }^{2} \mathrm{C}$ master controller. Each slave device is recognized by a unique address. The ADV7184 $\mathrm{I}^{2} \mathrm{C}$ port allows the user to set up and configure the decoder and then to read back captured VBI data. The ADV7184 has two possible slave addresses for both read and write operations, depending on the logic level on the ALSB pin. These four unique addresses are shown in Table 103. The ADV7184 ALSB pin controls Bit 1 of the slave address. By altering the ALSB, it is possible to control two ADV7184s in an application without having a conflict with the same slave address. The LSB (Bit 0) sets either a read or write operation. Logic 1 corresponds to a read operation; Logic 0 corresponds to a write operation.
Table 103. $\mathrm{I}^{2} \mathrm{C}$ Address

ALSB	$\mathbf{R} / \overline{\mathbf{W}}$	Slave Address
0	0	0×40
0	1	0×41
1	0	0×42
1	1	0×43

To control the device on the bus, a specific protocol must be followed. First, the master initiates a data transfer by establishing a start condition, which is defined by a high-to-low transition on SDA while SCLK remains high. This indicates that an address/data stream follows. All peripherals respond to the start condition and shift the next eight bits (7-bit address $+\mathrm{R} / \overline{\mathrm{W}}$ bit). The bits are transferred from MSB down to LSB. The peripheral that recognizes the transmitted address responds by pulling the data line low during the ninth clock pulse; this is known as an acknowledge bit. All other devices withdraw from the bus at this point and maintain an idle condition. The idle condition is where the device monitors the SDA and SCLK lines, waiting for the start condition and the correct transmitted address.

The $\mathrm{R} / \overline{\mathrm{W}}$ bit determines the direction of the data. If the first byte of the LSB is Logic 0 , the master writes information to the peripheral. If the first byte of the LSB is Logic 1 , the master reads information from the peripheral.

The ADV7184 acts as a standard slave device on the bus. The data on the SDA pin is eight bits long, supporting the 7-bit addresses plus the $\mathrm{R} / \overline{\mathrm{W}}$ bit. The ADV7184 has 249 subaddresses to enable access to the internal registers. It therefore interprets the first byte as the device address and the second byte as the starting subaddress. The subaddresses autoincrement, allowing data to be written to or read from the starting subaddress. A data transfer is always terminated by a stop condition. The user can also access any subaddress register on a one-by-one basis without updating all the registers.

Stop and start conditions can be detected at any stage during the data transfer. If these conditions are asserted out of sequence with normal read and write operations, they cause an immediate jump to the idle condition. During a given SCLK high period, the user should issue only one start condition, one stop condition, or a single stop condition followed by a single start condition. If an invalid subaddress is issued by the user, the ADV7184 does not issue an acknowledge and returns to the idle condition.

If the highest subaddress is exceeded in autoincrement mode, the following action is taken:

1. During a read, the highest subaddress register contents continue to be output until the master device issues a no acknowledge. This indicates the end of a read. In a no acknowledge condition, the SDA line is not pulled low on the ninth pulse.
2. During a write, the data for the invalid byte is not loaded into a subaddress register. Instead, a no acknowledge is issued by the ADV7184, and the part returns to the idle condition.

Figure 46. Bus Data Transfer

Figure 47. Read and Write Sequence

REGISTER ACCESSES

The MPU can write to and read from all of the ADV7184 registers except those that are read only or write only. The subaddress register determines which register the next read or write operation accesses. All communications with the part through the bus start with an access to the subaddress register. A read/write operation is then performed from/to the target address, which then increments to the next address until a stop command on the bus is performed.

REGISTER PROGRAMMING

The $I^{2} \mathrm{C}$ Register Maps section describes each register in terms of its configuration. After the part has been accessed via the bus and a read/write operation is selected, the subaddress is set up. The subaddress register determines to/from which register the operation takes place. Table 106 and Table 107 list the various operations controlled by the subaddress register.

As can be seen in Figure 48, the registers in the ADV7184 are arranged into two maps: the user map (enabled by default) and the user sub map. The user sub map has controls for the interrupt and VDP functionality of the ADV7184, and the user map controls everything else.

The user map and the user sub map consist of a common space from Address 0×00 to Address 0×3 F. Depending on how Bit 5 in Register 0x0E (SUB_USR_EN) is set, the register map is then split into two sections.

SUB_USR_EN, Address Ox0E [5]

This bit splits the register map at Register 0x40.
0 (default)—The register map does not split and the user map is enabled.

1-The register map splits and the user sub map is enabled.

Figure 48. Register Access —User Map and User Sub Map

I^{2} C SEQUENCER

An $\mathrm{I}^{2} \mathrm{C}$ sequencer is used when a parameter exceeds eight bits and is therefore distributed over two or more $\mathrm{I}^{2} \mathrm{C}$ registers, for example, HSB [11:0].

When such a parameter is changed using two or more $\mathrm{I}^{2} \mathrm{C}$ write operations, the parameter may hold an invalid value for the time between the first and last $\mathrm{I}^{2} \mathrm{Cs}$. In other words, the top bits of the parameter may hold the new value while the remaining bits of the parameter still hold the previous value.

To avoid this problem, the $\mathrm{I}^{2} \mathrm{C}$ sequencer holds the already updated bits of the parameter in local memory. All bits of the parameter are updated together after the last register write operation has completed.

The correct operation of the $\mathrm{I}^{2} \mathrm{C}$ sequencer relies on the following:

- All $\mathrm{I}^{2} \mathrm{C}$ registers for the parameter in question must be written to in order of ascending addresses. For example, for HSB [10:0], write to Address 0×34 first, followed by Address 0x35.
- No other $\mathrm{I}^{2} \mathrm{C}$ read or write can take place between the two (or more) $\mathrm{I}^{2} \mathrm{C}$ writes for the sequence. For example, for HSB [10:0], write to Address 0x34 first, immediately followed by Address 0x35.

I²C PROGRAMMING EXAMPLES

A register programming script consisting of $\mathrm{I}^{2} \mathrm{C}$ programming examples for all standard modes supported by the ADV7184 is available from the ADV7184 product page on the Analog Devices website. The examples provided are applicable to a system with the analog inputs arranged as shown in Figure 52. The input selection registers change in accordance with the layout of the PCB.

ADV7184

IC REGISTER MAPS

USER MAP

The collective name for the registers in Table 104 is the user map.
Table 104. User Map Register Details

Address		Register Name	RW	7	6	5	4	3	2	1	0	Reset Value	(Hex)
Dec	Hex												
0	00	Input Control	RW	VID_SEL. 3	VID_SEL. 2	VID_SEL. 1	VID_SEL. 0	INSEL. 3	INSEL. 2	INSEL. 1	INSEL. 0	00000000	00
1	01	Video Selection	RW		ENHSPLL	BETACAM		ENVSPROC				11001000	C8
3	03	Output Control	RW	VBI_EN	TOD	OF_SEL. 3	OF_SEL. 2	OF_SEL. 1	OF_SEL. 0		SD_DUP_AV	00001100	OC
4	04	Extended Output Control	RW	BT656-4				TIM_OE	BL_C_VBI	EN_SFL_PIN	RANGE	01xx0101	45
7	07	Autodetect Enable	RW	AD_SEC525_EN	AD_SECAM_EN	AD_N443_EN	AD_P60_EN	AD_PALN_EN	AD_PALM_EN	AD_NTSC_EN	AD_PAL_EN	01111111	7F
8	08	Contrast	RW	CON. 7	CON. 6	CON. 5	CON. 4	CON. 3	CON. 2	CON. 1	CON. 0	10000000	80
10	OA	Brightness	RW	BRI. 7	BRI. 6	BRI. 5	BRI. 4	BRI. 3	BRI. 2	BRI. 1	BRI. 0	00000000	00
11	OB	Hue	RW	HUE. 7	HUE. 6	HUE. 5	HUE. 4	HUE. 3	HUE. 2	HUE. 1	HUE. 0	00000000	00
12	OC	Default Value Y	RW	DEF_Y. 5	DEF_Y. 4	DEF_Y. 3	DEF_Y. 2	DEF_Y. 1	DEF_Y. 0	$\begin{aligned} & \hline \text { DEF_VAL_ } \\ & \text { AUTO_EN } \end{aligned}$	DEF_VAL_EN	00110110	36
13	OD	Default Value C	RW	DEF_C. 7	DEF_C. 6	DEF_C. 5	DEF_C. 4	DEF_C. 3	DEF_C. 2	DEF_C. 1	DEF_C. 0	01111100	7C
14	OE	Analog Devices Control				SUB_USR_EN						00000000	00
15	OF	Power Management	RW	RES		PWRDN			PDBP	FB_PWRDN		00000000	00
16	10	Status 1	R	COL_KILL	AD_RESULT. 2	AD_RESULT. 1	AD_RESULT. 0	FOLLOW_PW	FSC_LOCK	LOST_LOCK	IN_LOCK	-	-
18	12	Status 2	R			FSC NSTD	LL NSTD	MV AGC DET	MV PS DET	MVCS T3	MVCS DET	-	-
19	13	Status 3	R	PAL_SW_LOCK	INTERLACE	STD FLD LEN	FREE_RUN_ACT	CVBS	SD_OP_50Hz	GEMD	INST_HLOCK	-	-
19	13	Analog Control Internal	W						XTAL_TTL_SEL			00000000	00
20	14	Analog Clamp Control	RW				CCLEN					00010010	12
21	15	Digital Clamp Control 1	RW		DCT. 1	DCT. 0	DCFS					0000xxxx	00
23	17	Shaping Filter Control	RW	CSFM. 2	CSFM. 1	CSFM. 0	YSFM. 4	YSFM. 3	YSFM. 2	YSFM. 1	YSFM. 0	00000001	01
24	18	Shaping Filter Control 2	RW	WYSFMOVR			WYSFM. 4	WYSFM. 3	WYSFM. 2	WYSFM. 1	WYSFM. 0	10010011	93
25	19	Comb Filter Control	RW					NSFSEL. 1	NSFSEL. 0	PSFSEL. 1	PSFSEL. 0	11110001	F1
29	1D	Analog Devices Control 2	RW	TRI_LLC	EN28XTAL							00000xxx	00
39	27	Pixel Delay Control	RW	SWPC	AUTO_PDC_EN	CTA. 2	CTA. 1	CTA. 0		LTA. 1	LTA. 0	01011000	58
43	2B	Misc Gain Control	RW		CKE						PW_UPD	11100001	E1
44	2 C	AGC Mode Control	RW		LAGC. 2	LAGC. 1	LAGC. 0			CAGC. 1	CAGC. 0	10101110	AE
45	2D	Chroma Gain Control 1	W	CAGT. 1	CAGT. 0			CMG. 11	CMG. 10	CMG. 9	CMG. 8	11110100	F4
46	2E	Chroma Gain Control 2	W	CMG. 7	CMG. 6	CMG. 5	CMG. 4	CMG. 3	CMG. 2	CMG. 1	CMG. 0	00000000	00
47	2F	Luma Gain Control 1	W	LAGT. 1	LAGT. 0			LMG. 11	LMG. 10	LMG. 9	LMG. 8	1111xxxx	F0
48	30	Luma Gain Control 2	W	LMG. 7	LMG. 6	LMG. 5	LMG. 4	LMG. 3	LMG. 2	LMG. 1	LMG. 0	xxxxxxxx	00
49	31	Vsync Field Control 1	RW				NEWAVMODE	HVSTIM				00010010	12
50	32	Vsync Field Control 2	RW	VSBHO	VSBHE							01000001	41
51	33	Vsync Field Control 3	RW	VSEHO	VSEHE							10000100	84
52	34	Hsync Position Control 1	RW		HSB. 10	HSB. 9	HSB. 8		HSE. 10	HSE. 9	HSE. 8	00000000	00
53	35	Hsync Position Control 2	RW	HSB. 7	HSB. 6	HSB. 5	HSB. 4	HSB. 3	HSB. 2	HSB. 1	HSB. 0	00000010	02
54	36	Hsync Position Control 3	RW	HSE. 7	HSE. 6	HSE. 5	HSE. 4	HSE. 3	HSE. 2	HSE. 1	HSE. 0	00000000	00
55	37	Polarity	RW	PHS		PVS		PF			PCLK	00000001	01
56	38	NTSC Comb Control	RW	CTAPSN. 1	CTAPSN. 0	CCMN. 2	CCMN. 1	CCMN. 0	YCMN. 2	YCMN. 1	YCMN. 0	10000000	80
57	39	PAL Comb Control	RW	CTAPSP. 1	CTAPSP. 0	CCMP. 2	CCMP. 1	CCMP. 0	YCMP. 2	YCMP. 1	YCMP. 0	11000000	C0
58	3A	ADC Control	RW					PDN_ADC0	PDN_ADC1	PDN_ADC2	PDN_ADC3	00010001	11
61	3D	Manual Window Control	RW		CKILLTHR. 2	CKILLTHR. 1	CKILLTHR. 0					01000011	43
65	41	Resample Control	RW		SFL_INV							00000001	01

Address		Register Name	RW	7	6	5	4	3	2	1	0	Reset Value	(Hex)
Dec	Hex												
72	48	Gemstar Control 1	RW	GDECEL. 15	GDECEL. 14	GDECEL. 13	GDECEL. 12	GDECEL. 11	GDECEL. 10	GDECEL. 9	GDECEL. 8	00000000	00
73	49	Gemstar Control 2	RW	GDECEL. 7	GDECEL. 6	GDECEL. 5	GDECEL. 4	GDECEL. 3	GDECEL. 2	GDECEL. 1	GDECEL. 0	00000000	00
74	4A	Gemstar Control 3	RW	GDECOL. 15	GDECOL. 14	GDECOL. 13	GDECOL. 12	GDECOL. 11	GDECOL. 10	GDECOL. 9	GDECOL. 8	00000000	00
75	4B	Gemstar Control 4	RW	GDECOL. 7	GDECOL. 6	GDECOL. 5	GDECOL. 4	GDECOL. 3	GDECOL. 2	GDECOL. 1	GDECOL. 0	00000000	00
76	4C	Gemstar Control 5	RW								GDECAD	xxxx0000	00
77	4D	CTI DNR Control 1	RW			DNR_EN		CTI_AB. 1	CTI_AB. 0	CTI_AB_EN	CTI_EN	11101111	EF
78	4 E	CTI DNR Control 2	RW	CTI_C_TH. 7	CTI_C_TH. 6	CTI_C_TH. 5	CTI_C_TH. 4	CTI_C_TH. 3	CTI_C_TH. 2	CTI_C_TH. 1	CTI_C_TH. 0	00001000	08
80	50	CTI DNR Control 4	RW	DNR_TH. 7	DNR_TH. 6	DNR_TH. 5	DNR_TH. 4	DNR_TH. 3	DNR_TH. 2	DNR_TH. 1	DNR_TH. 0	00001000	08
81	51	Lock Count	RW	FSCLE	SRLS	COL. 2	COL. 1	COL. 0	CIL. 2	CIL. 1	CIL. 0	00100100	24
105	69	Config 1	RW	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	SDM_SEL. 1	SDM_SEL. 0	00000x00	00
134	86	STDI Control	RW	Reserved	Reserved	Reserved	Reserved	STDI_LINE_- COUNT_MODE	Reserved	Reserved	Reserved	00x00011	03
143	8F	Free-Run Line Length 1	W		$\begin{aligned} & \text { LLC_PAD_ } \\ & \text { SEL_MAN } \end{aligned}$	$\begin{aligned} & \text { LLC_PAD_ } \\ & \text { SEL. } 1 \end{aligned}$	$\begin{aligned} & \text { LLC_PAD_ } \\ & \text { SEL. } 0 \end{aligned}$					00000000	00
153	99	CCAP 1	R	CCAP1.7	CCAP1.6	CCAP1.5	CCAP1.4	CCAP1.3	CCAP1.2	CCAP1.1	CCAP1.0	-	-
154	9A	CCAP 2	R	CCAP2.7	CCAP2.6	CCAP2.5	CCAP2.4	CCAP2.3	CCAP2. 2	CCAP2. 1	CCAP2.0	-	-
155	9B	Letterbox 1	R	LB_LCT. 7	LB_LCT. 6	LB_LCT. 5	LB_LCT. 4	LB_LCT. 3	LB_LCT. 2	LB_LCT. 1	LB_LCT. 0	-	-
156	9C	Letterbox 2	R	LB_LCM. 7	LB_LCM. 6	LB_LCM. 5	LB_LCM. 4	LB_LCM. 3	LB_LCM. 2	LB_LCM. 1	LB_LCM. 0	-	-
157	9D	Letterbox 3	R	LB_LCB. 7	LB_LCB. 6	LB_LCB. 5	LB_LCB. 4	LB_LCB. 3	LB_LCB. 2	LB_LCB. 1	LB_LCB. 0	-	-
177	B1	Standard Ident 1	R	STDI_DVALID	Reserved	BL. 13	BL. 12	BL. 11	BL. 10	BL. 9	BL. 8	-	-
178	B2	Standard Ident 2	R	BL. 7	BL. 6	BL. 5	BL. 4	BL. 3	BL. 2	BL. 1	BL. 0	-	-
179	B3	Standard Ident 3	R	LCVS. 4	LCVS. 3	LCVS. 2	LCVS. 1	LCVS. 0	LCF. 10	LCF. 9	LCF. 8	-	-
180	B4	Standard Ident 4	R	LCF. 7	LCF. 6	LCF. 5	LCF. 4	LCF. 3	LCF. 2	LCF. 1	LCF. 0	-	-
195	C3	ADC Switch 1	RW	ADC1_SW. 3	ADC1_SW. 2	ADC1_SW. 1	ADC1_SW. 0	ADC0_SW. 3	ADC0_SW. 2	ADC0_SW. 1	ADCO_SW. 0	xxxxxxxx	00
196	C4	ADC Switch 2	RW	ADC_SW_MAN				ADC2_SW. 3	ADC2_SW. 2	ADC2_SW. 1	ADC2_SW. 0	0xxxxxxx	00
202	CA	Field Length Count 1	R	Reserved	Reserved	Reserved	FCL. 12	FCL. 11	FCL. 10	FCL. 9	FCL. 8		-
203	CB	Field Length Count 2	R	FCL. 7	FCL. 6	FCL. 5	FCL. 4	FCL. 3	FCL. 2	FCL. 1	FCL. 0		-
220	DC	Letterbox Control 1	RW				LB_TH. 4	LB_TH. 3	LB_TH. 2	LB_TH. 1	LB_TH. 0	10101100	AC
221	DD	Letterbox Control 2	RW	LB_SL. 3	LB_SL. 2	LB_SL. 1	LB_SL. 0	LB_EL. 3	LB_EL. 2	LB_EL. 1	LB_EL.0	01001100	4C
222	DE	ST Noise Readback 1	R					ST_NOISE_VLD	ST_NOISE. 10	ST_NOISE. 9	ST_NOISE. 8	-	-
223	DF	ST Noise Readback 2	R	ST_NOISE. 7	ST_NOISE. 6	ST_NOISE. 5	ST_NOISE. 4	ST_NOISE. 3	ST_NOISE. 2	ST_NOISE. 1	ST_NOISE. 0		-
225	E1	SD Offset Cb	RW	SD_OFF_CB. 7	SD_OFF_CB. 6	SD_OFF_CB. 5	SD_OFF_CB. 4	SD_OFF_CB. 3	SD_OFF_CB. 2	SD_OFF_CB. 1	SD_OFF_CB. 0	10000000	80
226	E2	SD Offset Cr	RW	SD_OFF_CR. 7	SD_OFF_CR. 6	SD_OFF_CR. 5	SD_OFF_CR. 4	SD_OFF_CR. 3	SD_OFF_CR. 2	SD_OFF_CR. 1	SD_OFF_CR.0	10000000	80
227	E3	SD Saturation Cb	RW	SD_SAT_CB. 7	SD_SAT_CB. 6	SD_SAT_CB. 5	SD_SAT_CB. 4	SD_SAT_CB. 3	SD_SAT_CB. 2	SD_SAT_CB. 1	SD_SAT_CB. 0	10000000	80
228	E4	SD Saturation Cr	RW	SD_SAT_CR. 7	SD_SAT_CR. 6	SD_SAT_CR. 5	SD_SAT_CR. 4	SD_SAT_CR. 3	SD_SAT_CR. 2	SD_SAT_CR. 1	SD_SAT_CR. 0	10000000	80
229	E5	NTSC V Bit Begin	RW	NVBEGDELO	NVBEGDELE	NVBEGSIGN	NVBEG. 4	NVBEG. 3	NVBEG. 2	NVBEG. 1	NVBEG. 0	00100101	25
230	E6	NTSC V Bit End	RW	NVENDDELO	NVENDDELE	NVENDSIGN	NVEND. 4	NVEND. 3	NVEND. 2	NVEND. 1	NVEND. 0	00000100	04
231	E7	NTSC F Bit Toggle	RW	NFTOGDELO	NFTOGDELE	NFTOGSIGN	NFTOG. 4	NFTOG. 3	NFTOG. 2	NFTOG. 1	NFTOG. 0	01100011	63
232	E8	PAL V Bit Begin	RW	PVBEGDELO	PVBEGDELE	PVBEGSIGN	PVBEG. 4	PVBEG. 3	PVBEG. 2	PVBEG. 1	PVBEG. 0	01100101	65
233	E9	PALV Bit End	RW	PVENDDELO	PVENDDELE	PVENDSIGN	PVEND. 4	PVEND. 3	PVEND. 2	PVEND. 1	PVEND. 0	00010100	14
234	EA	PAL F Bit Toggle	RW	PFTOGDELO	PFTOGDELE	PFTOGSIGN	PFTOG. 4	PFTOG. 3	PFTOG. 2	PFTOG. 1	PFTOG. 0	01100011	63
235	EB	Vblank Control 1	RW	NVBIOLCM. 1	NVBIOLCM. 0	NVBIELCM. 1	NVBIELCM. 0	PVBIOLCM. 1	PVBIOLCM. 0	PVBIELCM. 1	PVBIELCM. 0	01010101	55
236	EC	Vblank Control 2	RW	NVBIOCCM. 1	NVBIOCCM. 0	NVBIECCM. 1	NVBIECCM. 0	PVBIOCCM. 1	PVBIOCCM. 0	PVBIECCM. 1	PVBIECCM. 0	01010101	55
237	ED	FB_STATUS	R	FB_STATUS. 3	FB_STATUS. 2	FB_STATUS. 1	FB_STATUS. 0					-	-
237	ED	FB_CONTROL1	W					FB_INV	CVBS_RGB_SEL	FB_MODE. 1	FB_MODE. 0	00010000	10
238	EE	FB_CONTROL 2	RW	FB_CSC_MAN	MAN_ALPHA_ VAL. 6	MAN_ALPHA VAL. 5	MAN_ALPHA_ VAL. 4	MAN_ALPHA_ VAL. 3	MAN_ALPHA_ VAL. 2	MAN_ALPHA_ VAL. 1	MAN_ALPHA VAL. 0	00000000	00
239	EF	FB_CONTROL 3	RW	$\begin{aligned} & \text { FB_SP_} \\ & \text { ADJUST. } 3 \end{aligned}$	$\begin{aligned} & \hline \text { FB_SP_} \\ & \text { ADJUST. } 2 \end{aligned}$	$\begin{aligned} & \hline \text { FB_SP_ } \\ & \text { ADJUST. } 1 \end{aligned}$	$\begin{aligned} & \text { FB_SP_} \\ & \text { ADJUST. } 0 \end{aligned}$	CNTR ENABLE	$\begin{aligned} & \hline \text { FB_EDGE_- } \\ & \text { SHAPE. } 2 \end{aligned}$	$\begin{aligned} & \hline \text { FB_EDGE_ } \\ & \text { SHAPE. } 1 \end{aligned}$	$\begin{aligned} & \hline \text { FB_EDGE_- } \\ & \text { SHAPE. } 0 \end{aligned}$	01001010	4A
240	F0	FB_CONTROL 4	RW					FB_DELAY. 3	FB_DELAY. 2	FB_DELAY. 1	FB_DELAY. 0	01000100	44
241	F1	FB_CONTROL 5	RW	CNTR_LEVEL. 1	CNTR_LEVEL. 0	FB_LEVEL. 1	FB_LEVEL. 0	CNTR_MODE. 1	CNTR_MODE. 0		RGB_IP_SEL	00001100	OC
243	F3	AFE_CONTROL 1	RW	ADC3_SW. 3	ADC3_SW. 2	ADC3_SW. 1	ADC3_SW. 0	AA_FILT_EN. 3	AA_FILT_EN. 2	AA_FILT_EN. 1	AA_FILT_EN. 0	00000000	00
244	F4	Drive Strength	RW			DR_STR	DR_STR. 0	DR_STR_C	DR_STR_C. 0	DR_STR_S	DR_STR_S. 0	xx010101	15
248	F8	IF Comp Control	RW						IFFILTSEL. 2	IFFILTSEL. 1	IFFILTSEL. 0	00000000	00
249	F9	VS Mode Control	RW					VS_COAST_ MODE. 1	VS_COAST_ MODE. 0	EXTEND_VS MIN_FREQ	$\begin{aligned} & \text { EXTEND_VS_ } \\ & \text { MAX_FREQ } \\ & \hline \end{aligned}$	00000000	00
251	FB	Peaking Control	RW	PEAKING_ GAIN. 7	PEAKING GAIN. 6	PEAKING_ GAIN. 5	PEAKING_ GAIN. 4	PEAKING_ GAIN. 3	PEAKING_ GAIN. 2	PEAKING_ GAIN. 1	PEAKING_ GAIN. 0	01000000	40
252	FC	Coring Threshold 2	RW	DNR_TH2.7	DNR_TH2.6	DNR_TH2.5	DNR_TH2.4	DNR_TH2.3	DNR_TH2.2	DNR_TH2.1	DNR_TH2.0	00000100	04

ADV7184

Table 105 provides a detailed description of the registers located in the user map.
Table 105. User Map Detailed Description

Address	Register	Bit Description	Bit ${ }^{1}$								Comments	Notes
			7	6	5	4	3	2	1	0		
0x00	Input Control	INSEL [3:0]. These bits allow the user to select an input channel and format.					0	0	0	0	CVBS in on AIN1; SCART: G on AIN6/AIN9, B on AIN4/AIN7, R on AIN5/AIN8	Composite and SCART RGB (RGB analog input options selectable via RGB_IP_SEL).
							0	0	0	1	CVBS in on AIN2; SCART: G on AIN6/AIN9, B on AIN4/AIN7, R on AIN5/AIN8	
							0	0	1	0	CVBS in on AIN3; SCART: G on AIN6/AIN9, B on AIN4/AIN7, R on AIN5/AIN8	
							0	0	1	1	CVBS in on AIN4; SCART: G on AIN9, B on AIN7, R on AIN8	
							0	1	0	0	CVBS in on AIN5; SCART: G on AIN9, B on AIN7, R on AIN8	
							0	1	0	1	CVBS in on AIN6; SCART: G on AIN9, B on AIN7, R on AIN8	
							0	1	1	0	Y on AIN1, C on AIN4	S-video.
							0	1	1	1	Y on AIN2, C on AIN5	
							1	0	0	0	Y on AIN3, C on AIN6	
							1	0	0	1	Y on AIN1, Pb on AIN4, Pr on AIN5	YPbPr.
							1	0	1	0	Y on AIN2, Pb on AIN3, Pr on AIN6	
							1	0	1	1	CVBS in on AIN7; SCART: G on AIN6, B on AIN4, R on AIN5	Composite and SCART RGB (RGB analog input options selectable via RGB_IP_SEL).
							1	1	0	0	CVBS in on AIN8; SCART: G on AIN6, B on AIN4, R on AIN5	
							1	1	0	1	CVBS in on AIN9; SCART: G on AIN6, B on AIN4, R on AIN5	
							1	1	1	0	CVBS in on AIN10; SCART: G on AIN6/AIN9, B on AIN4/AIN7, R on AIN5/AIN8	
							1	1	1	1	CVBS in on AIN11; SCART: G on AIN6/AIN9, B on AIN4/AIN7, R on AIN5/AIN8	
		VID_SEL [3:0]. These bits allow the user to select the input video standard.	0	0	0	0					Autodetect PAL (B/G/H///D), NTSC (without pedestal), SECAM	
			0	0	0	1					Autodetect PAL (B/G/H///D), NTSCM (with pedestal), SECAM	
			0	0	1	0					Autodetect PAL N, NTSC M (without pedestal), SECAM	
			0	0	1	1					Autodetect PAL N, NTSC M (with pedestal), SECAM	
			0	1	0	0					NTSC J	
			0	1	0	1					NTSC M	
			0	1	1	0					PAL 60	
			0	1	1	1					NTSC 4.43	
			1	0	0	0					PAL B/G/H/I/D	
			1	0	0	1					PAL N (B/G/H///D without pedestal)	
			1	0	1	0					PAL M (without pedestal)	
			1	0	1	1					PALM	
			1 1 1	1	0	0					PAL Combination N	
			1 1 1	1	0	1					PAL Combination N	
			1 1 1	1	1	0					SECAM (with pedestal)	
			1	1	1	1					SECAM (with pedestal)	
0x01	Video Selection	Reserved.						0	0	0	Set to default	
		ENVSPROC.					0				Disable vsync processor	
							1				Enable vsync processor	
		Reserved.				0					Set to default	
		BETACAM. Enable BETACAM levels. This bit sets the target value for AGC operation.			0						Standard video input	
					1						BETACAM input enable	
		ENHSPLL.		0							Disable hsync processor	
				1							Enable hsync processor	
		Reserved.	1								Set to default	

Address	Register	Bit Description	Bit ${ }^{1}$								Comments	Notes
			7	6	5	4	3	2	1	0		
0x0A	Brightness Register	BRI [7:0]. These bits control the brightness of the video signal.	0	0	0	0	0	0	0	0		$\begin{aligned} & 0 \times 00=0 \mathrm{mV} . \\ & 0 \times 7 \mathrm{~F}=+204 \mathrm{mV} . \\ & 0 \times 80=-204 \mathrm{mV} . \end{aligned}$
0x0B	Hue Register	HUE [7:0]. These bits contain the value for the color hue adjustment.	0	0	0	0	0	0	0	0		Hue range $=-90^{\circ}$ to $+90^{\circ}$.
OxOC	Default Value Y	DEF_VAL_EN. Default value enable.								0	Free-run mode dependent on DEF_VAL_AUTO_EN	
										1	Force free-run mode on and output blue screen	
		DEF_VAL_AUTO_EN. Default value.							0		Disable free-run mode	When lock is lost, free-run mode can be enabled to output stable timing, clock, and a set color.
									1		Enable automatic free-run mode (blue screen)	
		DEF_Y [5:0]. Default value Y. These bits hold the Y default value.	0	0	1	1	0	1			$\mathrm{Y}[7: 0]=\{\mathrm{DEF}$ _ Y [5:0], 0, 0\}	Default Y value output in free-run mode.
0x0D	Default Value C	DEF_C [7:0]. Default value C. The Cr and Cb default values are defined in these bits.	0	1	1	1	1	1	0	0	$\begin{aligned} & \mathrm{Cr}[7: 0]=\{\text { DEF_C [7:4], } 0,0,0,0\} \\ & \mathrm{Cb}[7: 0]=\left\{\text { DEF_C }_{2}[3: 0], 0,0,0,0\right\} \end{aligned}$	Default $\mathrm{Cb} / \mathrm{Cr}$ value output in free-run mode. Default values give blue screen output.
OxOE	Analog Devices Control	Reserved.				0	0	0	0	0	Set as default	
		SUB_USR_EN. This bit enables the user to access the user sub map.			0						Access user map	See Figure 48.
					1						Access user sub map	
		Reserved.	0	0							Set as default	
0x0F	Power Management	Reserved.								0	Set to default	
		FB_PWRDN.							0		FB input operational	
									1		FB input in power-saving mode	
		PDBP. Power-down bit priority. This bit selects between the PWRDN bit and the PWRDN pin.						0			Chip power-down controlled by pin	This bit must be set to 1 for the PWRDN bit to power down the part.
								1			Bit has priority (pin disregarded)	
		Reserved.				0	0				Set to default	
		PWRDN. Power-down. This bit places the decoder in full power-down mode.			0						System functional	The PDBP bit must be set to 1 for the PWRDN bit to power down the part (see PDBP, 0x0F Bit 2).
					1						Powered down	
		Reserved.		0							Set to default	
		RES. Chip Reset. This bit loads all $I^{2} C$ bits with default values.	0								Normal operation	Executing reset takes approximately 2 ms . This bit is self-clearing.
			1								Start reset sequence	
0x10	Status Register 1 (Read Only)	IN_LOCK.								x	1 = in lock (now)	Provides information about the internal status of the decoder.
		LOST_LOCK.							x		1 = lost lock (since last read)	
		FSC_LOCK.						x			1 = $\mathrm{Fsc}^{\text {c lock (}}$ (now)	
		FOLLOW_PW.					x				1 = peak white AGC mode active	
		AD_RESULT [2:0]. Autodetection result. These bits report the standard of the input video.		0	0	0					NTSM M/J	Detected standard.
				0	0	1					NTSC 443	
				0	1	0					PALM	
				0	1	1					PAL 60	
				1	0	0					PAL B/G/H/I/D	
				1	0	1					SECAM	
				1	1	0					PAL Combination N	
				1	1	1					SECAM 525	
		COL_KILL.	x								1 = color kill is active	Color kill.
0x11	IDENT (Read Only)	IDENT [7:0]. These bits provide identification on the revision of the part.	x	x	x	x	x	x	x	x		
0x12	Status Register 2 (Read Only)	MVCS DET.								x	MV color striping detected	1 = detected.
		MVCS T3.							x		MV color striping type	0 = Type 2; 1 = Type 3.
		MV_PS DET.						x			MV pseudosync detected	1 = detected.
		MV_AGC DET.					x				MV AGC pulses detected	1 = detected.
		LL_NSTD.				x					Nonstandard line length	1 = detected.
		FSC_NSTD.			x						Fsc frequency nonstandard	1 = detected.
		Reserved.	x	x								
0x13	Status Register 3 (Read only)	INST_HLOCK.								x	1 = horizontal lock achieved	Unfiltered.
		GEMD.							x		1 = Gemstar data detected	When the GEMD bit goes high, it remains high until the end of the active video lines in that field.
		SD_OP_50Hz.						x			SD field rate detect	$\begin{aligned} & 0=\text { SD } 60 \mathrm{~Hz} \text { detected; } \\ & 1=\text { SD } 50 \mathrm{~Hz} \text { detected. } \end{aligned}$
		CVBS.					x				Result of composite/S-video autodetection	$0=Y / C ; 1=C V B S$.

Address	Register	Bit Description	Bit ${ }^{1}$							Comments	Notes
			7	6	5 5 4	3	2	1	0		
		FREE_RUN_ACT.			x					1 = free-run mode active	Blue screen output.
		STD_FLD_LEN.			x					1 = field length standard	Correct field length found.
		INTERLACED.		x						1 = interlaced video detected	Field sequence found.
		PAL_SW_LOCK.	x							1 = swinging burst detected	Reliable swinging burst sequence.
	Analog Control	Reserved.						0	0		
	Internal (Write Only)	XTAL_TTL_SEL.					0			Crystal used to derive 28.63636 MHz clock	
							1			External TTL level clock supplied	
		Reserved.	0	0	00	0					
0x14	Analog Clamp	Reserved.				0	0	1	0	Set to default	
		CCLEN. Current clamp enable. This bit allows			0					Current sources switched off	
		the user to switch off the current sources in the analog front end.			1					Current sources enabled	
		Reserved.	0	0	0					Set to default	
0x15	Digital Clamp	Reserved.				x	x	x	x	Set to default	
	Control 1	DCFE. Digital clamp freeze enable.			0					Disable digital clamp freeze	
					1					Enable digital clamp freeze	
		DCT [1:0]. Digital clamp timing. These bits		0	0					Slow (TC = 1 sec)	
		determine the time constant of the digital		0	1					Medium (TC $=0.5 \mathrm{sec}$)	
					0					Fast ($\mathrm{TC}=0.1 \mathrm{sec}$)	
				1	1					TC dependent on video	
		Reserved.	0							Set to default	
0x17	Shaping Filter Control	YSFM [4:0]. Selects Y-shaping filter mode when in CVBS only mode. These bits allow the user to select a wide range of low-pass and notch filters.			0	0	0	0	0	Automatically uses wide notch filter for poor quality sources and wideband filter with comb for good quality input	Decoder selects optimum Y-shaping filter depending on CVBS quality.
					0	0	0	0	1	Automatically uses narrow notch filter for poor quality sources and wideband filter with comb for good quality input	
					0	0	0	1	0	SVHS 1	If one of these modes is selected, the
					0	0	0	1	1	SVHS 2	decoder does not change filter modes.
					0	0	1	0	0	SVHS 3	A fixed filter response (the one selected) is used regardless of video
					0	0	1	0	1	SVHS 4	quality.
					0	0	1	1	0	SVHS 5	
					0	0	1	1	1	SVHS 6	
					0	1	0	0	0	SVHS 7	
					0	1	0	0	1	SVHS 8	
					0	1	0	1	0	SVHS 9	
					0	1	0	1	1	SVHS 10	
					0	1	1	0	0	SVHS 11	
					0	1	1	0	1	SVHS 12	
					0	1	1	1	0	SVHS 13	
					0	1	1	1	1	SVHS 14	
					1	0	0	0	0	SVHS 15	
					1	0	0	0	1	SVHS 16	
					1	0	0	1	0	SVHS 17	
					1	0	0	1	1	SVHS 18 (CCIR 601)	
					1	0	1	0	0	PAL NN 1	
					1	0	1	0	1	PAL NN 2	
					1	0	1	1	0	PAL NN 3	
					1	0	1	1	1	PAL WN 1	
					1	1	0	0	0	PAL WN 2	
					1	1	0	0	1	NTSC NN1	
					1	1	0	1	0	NTSC NN2	
					1	1	0	1	1	NTSC NN3	
					1	1	1	0	0	NTSC WN 1	
					1	1	1	0	1	NTSC WN 2	
					1	1	1	1	0	NTSC WN 3	
					1	1	1	1	1	Reserved	

Address	Register	Bit Description	Bit ${ }^{1}$								Comments	Notes
			7	6	5	4	3	2	1	0		
		CSFM [2:0]. C-shaping filter mode. These bits allow selection from a range of lowpass chrominance filters, SH 1 to SH 5 , and wideband mode.	0	0	0						Automatic selection of 15 MHz	Automatically selects optimum C-shaping filter for the specified bandwidth, based on video quality.
			0	0	1						Automatic selection of 2.17 MHz	
			0	1	0						SH1	
			0	1	1						SH2	
			1	0	0						SH3	
			1	0	1						SH4	
			1	1	0						SH5	
			1	1	1						Wideband mode	
0x18	Shaping Filter Control 2	WYSFM [4:0]. Wideband Y -shaping filter mode. These bits allow the user to select which Y-shaping filter is used for the Y component of $\mathrm{Y} / \mathrm{C}, \mathrm{YPbPr}, \mathrm{B} / \mathrm{W}$ input signals; it is also used when a good quality input CVBS signal is detected. For all other inputs, the Y -shaping filter chosen is controlled by YSFM [4:0].				0	0	0	0	0	Reserved; do not use	
						0	0	0	0	1	Reserved; do not use	
						0	0	0	1	0	SVHS 1	
						0	0	0	1	1	SVHS 2	
						0	0	1	0	0	SVHS 3	
						0	0	1	0	1	SVHS 4	
						0	0	1	1	0	SVHS 5	
						0	0	1	1	1	SVHS 6	
						0	1	0	0	0	SVHS 7	
						0	1	0	0	1	SVHS 8	
						0	1	0	1	0	SVHS 9	
						0	1	0	1	1	SVHS 10	
						0	1	1	0	0	SVHS 11	
						0	1	1	0	1	SVHS 12	
						0	1	1	1	0	SVHS 13	
						0	1	1	1	1	SVHS 14	
						1	0	0	0	0	SVHS 15	
						1	0	0	0	1	SVHS 16	
						1	0	0	1	0	SVHS 17	
						1	0	0	1	1	SVHS 18 (CCIR 601)	
						1	0	1	0	0	Reserved; do not use	
						\sim	\sim	~	~	\sim	Reserved; do not use	
						1	1	1	1	1	Reserved; do not use	
		Reserved.		0	0						Set to default	
		WYSFMOVR. Enables the use of the manual WYSFM filter selection.	0								Automatic selection of best wideband Y -shaping filter	
			1								Manual selection of filter using WYSFM [4:0]	
0x19	Comb Filter Control	PSFSEL [1:0]. These bits control the signal bandwidth that is fed to the comb filters (PAL).							0	0	Narrow	
									0	1	Medium	
									1	0	Wide	
									1	1	Widest	
		NSFSEL [1:0]. These bits control the signal bandwidth that is fed to the comb filters (NTSC).					0	0			Narrow	
							0	1			Medium	
							1	0			Medium	
							1	1			Wide	
		Reserved.	1	1	1	1					Set as default	
0x1D	Analog Devices Control 2	Reserved.			0	0	0	x	x	x	Set to default	
				0							Use 27 MHz crystal	
				1							Use 28.63636 MHz crystal	
		TRI_LLC.	0								LLC pin active	Applies to both LLC1 and LLC2.
			1								LLC pin three-stated	
0x27	Pixel Delay Control	LTA [1:0]. Luma timing adjust. These bits allow the user to specify a timing difference between chroma and luma samples.							0	0	No delay	CVBS mode LTA [1:0] = 00b. S -video mode LTA [1:0] $=01 \mathrm{~b}$. YPrPb mode LTA [1:0] = 01b.
									0	1	Luma one clock (37 ns) delayed	
									1	0	Luma two clock (74 ns) early	
									1	1	Luma one clock (37 ns) early	
		Reserved.						0			Set to 0	

Address	Register	Bit Description	Bit^{1}								Comments	Notes
			7	6	5	4	3	2	1	0		
		CCMN [2:0]. Chroma comb mode NTSC.			0	0	0				Adaptive 3-line for CTAPSN = 01 Adaptive 4-line for CTAPSN = 10 Adaptive 5-line for CTAPSN = 11	
					1	0	0				Disable chroma comb	
					1	0	1				Fixed 2-line for CTAPSN $=01$ Fixed 3-line for CTAPSN = 10 Fixed 4-line for CTAPSN = 11	Top lines of memory.
					1	1	0				$\begin{aligned} & \text { Fixed } 3 \text {-line for CTAPSN }=01 \\ & \text { Fixed } 4 \text {-line for CTAPSN }=10 \\ & \text { Fixed } 5 \text {-line for CTAPSN }=11 \end{aligned}$	All lines of memory.
					1	1	1				$\begin{aligned} & \hline \text { Fixed } 2 \text {-line for CTAPSN }=01 \\ & \text { Fixed } 3 \text {-line for CTAPSN }=10 \\ & \text { Fixed } 4 \text {-line for CTAPSN }=11 \end{aligned}$	Bottom lines of memory.
		CTAPSN [1:0]. Chroma comb taps NTSC.	0	0							Not used	
			0	1							Adapts three lines to two lines	
			1	0							Adapts five lines to three lines	
			1	1							Adapts five lines to four lines	
0x39	PAL Comb Control	YCMP [2:0]. Luma comb mode PAL.						0	0	0	Adaptive 5-line, 3-tap luma comb	
								1	0	0	Use low-pass notch	
								1	0	1	Fixed luma comb (three lines)	Top lines of memory.
								1	1	0	Fixed luma comb (five lines)	All lines of memory.
								1	1	1	Fixed luma comb (three lines)	Bottom lines of memory.
		CCMP [2:0]. Chroma comb mode PAL.			0	0	0				$\begin{aligned} & \text { Adaptive 3-line for CTAPSP }=01 \\ & \text { Adaptive 4-line for CTAPSP }=10 \\ & \text { Adaptive 5-line for CTAPSP }=11 \end{aligned}$	
					1	0	0				Disable chroma comb	
					1	0	1				$\begin{array}{\|l\|} \hline \text { Fixed 2-line for CTAPSP }=01 \\ \text { Fixed 3-line for CTAPSP }=10 \\ \text { Fixed } 4 \text {-line for CTAPSP }=11 \end{array}$	Top lines of memory.
					1	1	0				$\begin{aligned} & \hline \text { Fixed } 3 \text {-line for CTAPSP }=01 \\ & \text { Fixed } 4 \text {-line for CTAPSP }=10 \\ & \text { Fixed } 5 \text {-line for CTAPSP }=11 \end{aligned}$	All lines of memory.
					1	1	1				$\begin{aligned} & \text { Fixed 2-line for CTAPSP }=01 \\ & \text { Fixed 3-line for CTAPSP }=10 \\ & \text { Fixed } 4 \text {-line for CTAPSP }=11 \end{aligned}$	Bottom lines of memory.
		CTAPSP [1:0]. Chroma comb taps PAL.	0	0							Not used	
			0	1							Adapts five lines to two lines (two taps)	
			1	0							Adapts five lines to three lines (three taps)	
			1	1							Adapts five lines to four lines (four taps)	
0x3A	ADC Control	PWRDN_ADC_3. This bit enables powerdown of ADC3.								0	ADC3 normal operation	
										1	Power down ADC3	
		PWRDN_ADC_2. This bit enables powerdown of ADC2.							0		ADC2 normal operation	
									1		Power down ADC2	
		PWRDN_ADC_1. This bit enables powerdown of ADC1.						0			ADC1 normal operation	
								1			Power down ADC1	
		PWRDN_ADC_0. This bit enables powerdown of ADCO.					0				ADC0 normal operation	
							1				Power down ADC0	
		Reserved.	0	0	0	1					Set as default	
0x3D	Manual Window Control	Reserved.					0	0	1	1	Set to default	
		CKILLTHR [2:0]. Color-kill threshold.		0	0	0					Kill at 0.5\%	CKE $=1$ enables the color-kill function and must be enabled for CKILLTHR [2:0] to take effect. (See Table 48 for kill thresholds for SECAM.)
				0	0	1					Kill at 1.5\%	
				0	1	0					Kill at 2.5\%	
				0	1	1					Kill at 4.0\%	
				1	0	0					Kill at 8.5\%	
				1	0	1					Kill at 16.0\%	
				1	1	0					Kill at 32.0\%	
				1	1	1					Reserved	
		Reserved.	0								Set to default	

Address	Register	Bit Description	Bit ${ }^{1}$							Comments	Notes
			7	6	5	4	32	1	0		
0x41	Resample Control	Reserved.			0	0	0	0	1	Set to default	
		SFL_INV. This bit controls the behavior of the PAL switch bit.		0						SFL compatible with ADV717x and ADV73xx encoders	
				1						SFL compatible with ADV7190/ ADV7191/ADV7194 encoders	
		Reserved.	0							Set to default	
0x48	Gemstar Control 1	GDECEL [15:8]. See the Comments column.	0	0	0	0	0 0	0	0	GDECEL [15:0], the 16 individual enable bits that select the lines of video (even field Lines 10 to 25) that the decoder checks for Gemstar-compatible data	LSB = Line 10; MSB = Line 25. Default $=$ do not check for Gemstarcompatible data on any lines (Lines 10 to 25) in even fields.
0x49	Gemstar Control 2	GDECEL [7:0]. See the Comments column.	0	0	0	0	0	0	0		
0x4A	Gemstar Control 3	GDECOL [15:8]. See the Comments column.	0	0	0	0	00	0	0	GDECOL [15:0], the 16 individual enable bits that select the lines of video (odd field Lines 10 to 25) that the decoder checks for Gemstar-compatible data	LSB = Line 10; MSB = Line 25 . Default = do not check for Gemstarcompatible data on any lines (Lines 10 to 25) in odd fields.
0x4B	Gemstar Control 4	GDECOL [7:0]. See the Comments column.	0	0	0	0	00	0	0		
0x4C	Gemstar Control 5	GDECAD. This bit controls the manner in which decoded Gemstar data is inserted into the horizontal blanking period.							0	Split data into half byte	To avoid 0x00 and 0xFF codes.
									1	Output in straight 8-bit format	
		Reserved.	x	x	x	$\times 0$	00	0		Undefined	
0x4D	CTI DNR Control 1	CTI_EN. CTI enable.							0	Disable CTI	
									1	Enable CTI	
		CTI_AB_EN. CTI alpha blend enable. This bit enables the mixing of the transient improved chroma with the original signal.						0		Disable CTI alpha blender	
								1		Enable CTI alpha blender	
		CTI_AB [1:0]. CTI alpha blend control. These bits control the behavior of the alpha-blend circuitry.					0			Sharpest mixing	
							0			Sharp mixing	
							0			Smooth mixing	
							1			Smoothest mixing	
		Reserved.				0				Set to default	
		DNR_EN. This bit enables or bypasses the DNR block.			0					Bypass the DNR block	
					1					Enable the DNR block	
		Reserved.	1	1						Set to default	
0x4E	CTI DNR Control 2	CTI_C_TH [7:0]. CTI chroma threshold. These bits specify how big the amplitude step must be to be steepened by the CTI block.	0	0	0	0	10	0	0		
0x50	CTI DNR Control 4	DNR_TH [7:0]. DNR threshold. These bits specify the maximum edge that is interpreted as noise and is therefore blanked.	0	0	0	0	10	0	0	Set to 0×04 for A / V input; set to 0x0A for tuner input	
0x51	Lock Count	CIL [2:0]. Count-into-lock. These bits determine the number of lines the system must remain in lock before reporting a locked status.					0	0	0	1 line of video	
							0	0	1	2 lines of video	
							0	1	0	5 lines of video	
							0	1	1	10 lines of video	
							1	0	0	100 lines of video	
							1	0	1	500 lines of video	
							1	1	0	1000 lines of video	
							1	1	1	100,000 lines of video	
		COL [2:0]. Count-out-of-lock. These bits determine the number of lines the system must remain out-of-lock before reporting an unlocked status			0	0	0			1 line of video	
					0	0	1			2 lines of video	
					0	10	0			5 lines of video	
					0	1	1			10 lines of video	
					1	0	0			100 lines of video	
					1	0	1			500 lines of video	
					1	1	0			1000 lines of video	
					1	1	1			100,000 lines of video	
		SRLS. Select raw lock signal. Selects the source for determining the lock status.		0						Over field with vertical information	
				1						Line-to-line evaluation	
		FSCLE. Fsc lock enable.	0							Lock status set only by horizontal lock	
			1							Lock status set by horizontal lock and subcarrier lock.	

Address	Register	Bit Description	Bit ${ }^{1}$								Comments	Notes
			7	6	5	4	3	2	1	0		
0x69	Configuration 1	SDM_SEL [1:0]. Y/C and CVBS autodetect mode select.							0	0	INSEL selects analog input muxing	
									0	1	Composite-AIN11	
									1	0	S-video-Y on AIN10 and C on AIN12	
									1	1	Composite/S-video autodetect Composite on AIN11 Y on AIN11 C on AIN12	
		Reserved.	0	0	0	0	$0 \times$	x				
0x86	STDI Control	STDI_LINE_COUNT_MODE.						0	1	1	Reserved	
							0				Disables STDI functionality	
							1				Enables STDI functionality	
		Reserved.	0	0	x	0						
0x8F	Free-Run Line Length 1	Reserved. LLC_PAD_SEL [2:0]. These bits enable manual selection of a clock for the LLC1 pin.					0	0	0	0	Set to default	
				0	0	0					LLC1 (nominally 27 MHz) selected output on LLC1 pin	
				1	0	1					LLC2 (nominally 13.5 MHz) selected output on LLC1 pin	For 16-bit 4:2:2 out, OF_SEL [3:0] = 0010.
		Reserved.	0								Set to default	
0x99	CCAP1 (Read Only)	CCAP1 [7:0]. Closed caption data bits.	x	x	x	x x	x	x	x	x	CCAP1 [7] contains parity bit for Byte 0	Only for use with VBI System 2.
0x9A	CCAP2 (Read Only)	CCAP2 [7:0]. Closed caption data bits.	x	x	x	x x	x	x	x	x	CCAP2 [7] contains parity bit for Byte 0	Only for use with VBI System 2.
0x9B	Letterbox 1 (Read Only)	LB_LCT [7:0]. Letterbox data register.	x	x	x	x x	x	x	x	x	Reports the number of black lines detected at the top of active video	This feature examines the active video at the start and end of each field, enabling format detection even if the video is not accompanied by a CGMS or WSS sequence.
0x9C	Letterbox 2 (Read Only)	LB_LCM [7:0]. Letterbox data register.	x	x	x	x x	X	x	x	x	Reports the number of black lines detected in the bottom half of active video if subtitles are detected	
0x9D	Letterbox 3 (Read Only)	LB_LCB [7:0]. Letterbox data register.	x	x	x	x \times	x	x	x	x	Reports the number of black lines detected at the bottom of active video	
0xB1	Standard Ident 1 (Read Only)	BL [13:8]. Block length data register.			x	x x	x	x	x	x	BL [13:0] reports the number of clock cycles in a block of eight lines of incoming video	Data is valid only if STDI_DVALID is 1 and STDI_LINE_COUNT_MODE is set to 1 .
		Reserved		x							Reserved	
		STDI_DVALID. Standard identification data valid readback.	0								Indicates that BL [13:0], LCF [10:0], and LCVS [4:0] are not valid parameters	
			1								Indicates that BL [13:0], LCF [10:0], and LCVS [4:0] are valid parameters	
0xB2	Standard Ident 2 (Read Only)	BL [7:0]. Block length data register.	x	x	x	x x	x	x	x	x	BL [13:0] reports the number of clock cycles in a block of eight lines of incoming video	
0xB3	Standard Ident 3 (Read Only)	LCF [10:8]. Line count in field.						x	x	x	Reports the number of lines between two vsyncs or one field	Data is valid only if STDI_DVALID is 1 and STDI_LINE_COUNT_MODE is set to 1 .
		LCVS [4:0].	x	x	x	x \times	x				Reports the number of lines within a vertical synchronization period	Data is valid only if STDI_DVALID is 1 and STDI_LINE_COUNT_MODE is set to 1 .
0xB4	Standard Ident 4 (Read Only)	LCF [7:0].	x	x	x	x x	x	x	x	x		Data is valid only if STDI_DVALID is 1 and STDI_LINE_COUNT_MODE is set to 1 .
0xC3	ADC Switch 1	ADCO_SW [3:0]. Manual muxing control for ADCO.					0	0	0	0	No connection	Set ADC_SW_MAN_EN to 1.
							0	0	0	1	AIN1	
							0	0	1	0	AIN2	
							0	0	1	1	AIN3	
							0	1	0	0	AIN4	
							0	1	0	1	AIN5	
							0	1	1	0	AIN6	
							0	1	1	1	No connection	
							10	0	0	0	No connection	
							1	0	0	1	AIN7	
							1	0	1	0	AIN8	
							1	0	1	1	AIN9	
							1	1	0	0	AIN10	
							1	1	0	1	AIN11	
							1	1	1	0	AIN12	
							1	1	1	1	No connection	

Address	Register	Bit Description	Bit ${ }^{1}$								Comments	Notes
			7	6	5	4	3	2	1	0		
		ADC1_SW [3:0]. Manual muxing control for ADC1.	0	0	0	0					No connection	Set ADC_SW_MAN_EN to 1.
			0	0	0	1					No connection	
			0	0	1	0					No connection	
			0	0	1	1					AIN3	
			0	1	0	0					AIN4	
			0	1	0	1					AIN5	
			0	1	1	0					AIN6	
			0	1	1	1					No connection	
			1	0	0	0					No connection	
			1	0	0	1					No connection	
			1	0	1	0					No connection	
			1	0	1	1					AIN9	
			1	1	0	0					AIN10	
			1	1	0	1					AIN11	
			1	1	1	0					AIN12	
			1	1	1	1					No connection	
0xC4	ADC Switch 2	ADC2_SW [3:0]. Manual muxing control for ADC2.					0	0	0	0	No connection	Set ADC_SW_MAN_EN to 1.
							0	0	0	1	No connection	
							0	0	1	0	AIN2	
							0	0	1	1	No connection	
							0	1	0	0	No connection	
							0	1	0	1	AIN5	
							0	1	1	0	AIN6	
							0	1	1	1	No connection	
							1	0	0	0	No connection	
							1	0	0	1	No connection	
							1	0	1	0	AIN8	
							1	0	1	1	No connection	
							1	1	0	0	No connection	
							1	1	0	1	AIN11	
							1	1	1	0	AIN12	
							1	1	1	1	No connection	
		Reserved.		x	x	x						
		ADC_SW_MAN_EN. This bit enables manual setting of the input signal muxing.	0								Disable	
			1								Enable	
0xCA	Field Length Count 1 (Read Only)	FCL [12:8]. The number of 27 MHz clock cycles between successive vsyncs. Reserved.				x	x	x	x	x		
			x	x	x							
0xCB	Field Length Count 2 (Read Only)	FCL[7:0]. See FCL [12:8].	x	x	x	x	x	x	x	x		
0xDC	Letterbox Control 1	LB_TH [4:0]. These bits set the threshold value that determines if a line is black.				0	1	1	0	0	Default threshold for the detection of black lines.	
		Reserved.	1	0	1						Set as default	
0xDD	Letterbox Control 2	LB_EL [3:0]. These bits program the end line of letterbox detection (end of field).					1	1	0	0	Letterbox detection ends with the last line of active video on a field, 1100b: 262/525	
		LB_SL [3:0]. These bits program the start line of letterbox detection (start of field).	0	1	0	0					Letterbox detection aligned with the start of active video, 0100b: 23/286 NTSC	
0xDE	ST Noise Readback 1 (Read Only)	ST_NOISE [10:8]. Sync tip noise measurement.						x	x	x		
		ST_NOISE_VLD.					x				$1=$ ST_NOISE [10:0] measurement is valid; $0=$ ST_NOISE [10:0] measurement is invalid	
		Reserved.	x	x	x	x						
0xDF	ST Noise Readback 2 (Read Only)	ST_NOISE [7:0]. See ST_NOISE [10:0].	x	x	x	x	x	x	x	x		
0xE1	SD Offset Cb	SD_OFF_CB [7:0]. These bits adjust the hue by selecting the offset for the Cb channel.	1	0	0	0	0	0	0	0		
0xE2	SD Offset Cr	SD_OFF_CR [7:0]. These bits adjust the hue by selecting the offset for the Cr channel.	1	0	0	0	0	0	0	0		
0xE3	SD Saturation Cb	SD_SAT_CB [7:0]. These bits adjust the saturation of the picture by affecting gain on the Cb channel.	1	0	0	0	0	0	0	0	Chroma gain $=0 \mathrm{~dB}$	

Address	Register	Bit Description	Bit^{1}								Comments	Notes
			7	6	5	4	3	2	1	0		
0xE4	SD Saturation Cr	SD_SAT_CR [7:0]. These bits adjust the saturation of the picture by affecting gain on the Cr channel.	1	0	0	0	0	0	0	0	Chroma gain $=0 \mathrm{~dB}$	
0xE5	NTSC V Bit Begin	NVBEG [4:0]. Number of lines after I Count rollover to set V high.				0	0	1	0	1	NTSC default (ITU-R BT.656)	
		NVBEGSIGN.			0						Set to low when manual programming	
					1						Not suitable for user programming	
		NVBEGDELE. This bit delays the V bit going high by one line relative to NVBEG (even field).		0							No delay	
				1							Additional delay by one line	
		NVBEGDELO. This bit delays the V bit going high by one line relative to NVBEG (odd field).	0								No delay	
			1								Additional delay by one line	
0xE6	NTSC V Bit End	NVEND [4:0]. These bits control the number of lines after Icount rollover to set V low.				0	0	1	0	0	NTSC default (ITU-R BT.656)	
		NVENDSIGN.			0						Set to low when manual programming	
					1						Not suitable for user programming	
		NVENDDELE. This bit delays the V bit going low by one line relative to NVEND (even field).		0							No delay	
				1							Additional delay by one line	
		NVENDDELO. This bit delays the V bit going low by one line relative to NVEND (odd field).	0								No delay	
			1								Additional delay by one line	
0xE7	NTSC F Bit Toggle	NFTOG [4:0]. These bits control the number of lines after $I_{\text {count }}$ rollover to toggle F signal.				0	0	0	1	1	NTSC default	
		NFTOGSIGN.			0						Set to low when manual programming	
					1						Not suitable for user programming	
		NFTOGDELE. This bit delays the F transition by one line relative to NFTOG (even field).		0							No delay	
				1							Additional delay by one line	
		NFTOGDELO. This bit delays the F transition by one line relative to NFTOG (odd field).	0								No delay	
			1								Additional delay by one line	
0xE8	PAL V Bit Begin	PVBEG [4:0]. These bits control the number of lines after Icount rollover to set V high.				0	0	1	0	1	PAL default (ITU-R BT.656)	
		PVBEGSIGN.			0						Set to low when manual programming	
					1						Not suitable for user programming	
		PVBEGDELE. This bit delays the V bit going high by one line relative to PVBEG (even field).		0							No delay	
				1							Additional delay by one line	
		PVBEGDELO. This bit delays the V bit going high by one line relative to PVBEG (odd field).	0								No delay	
			1								Additional delay by one line	
0xE9	PAL V Bit End	PVEND [4:0]. These bits control the number of lines after Icount rollover to set the V bit low.				1	0	1	0	0	PAL default (ITU-R BT.656)	
		PVENDSIGN.			0						Set to low when manual programming	
					1						Not suitable for user programming	
		PVENDDELE. This bit delays the V bit going low by one line relative to PVEND (even field).		0							No delay	
				1							Additional delay by one line	
		PVENDDELO. This bit delays the V bit going low by one line relative to PVEND (odd field).	0								No delay	
			1								Additional delay by one line	
0xEA	PAL F Bit Toggle	PFTOG [4:0]. These bits control the number of lines after Icount rollover to toggle the F signal.				0	0	0	1	1	PAL default (ITU-R BT.656)	
		PFTOGSIGN.			0						Set to low when manual programming	
					1						Not suitable for user programming	
		PFTOGDELE. This bit delays the F transition by one line relative to PFTOG (even field).		0							No delay	
				1							Additional delay by one line	
		PFTOGDELO. This bit delays the F transition by one line relative to PFTOG (odd field).	0								No delay	
			1								Additional delay by one line	

[^13]
USER SUB MAP

The collective name for the subaddress registers in Table 106 is user sub map. To access the user sub map, SUB_USR_EN in Register Address 0x0E (user map) must be programmed to 1.
Table 106. User Sub Map Register Details

Address		Register Name		7			4	3	2	1	0	Reset Value	(Hex)
Dec	Hex				6	5							
64	40	Interrupt Configuration 0	RW	$\begin{array}{\|l\|l} \hline \text { INTRQ_DUR_ } \\ \text { SEL. } 1 \end{array}$	$\begin{aligned} & \text { INTRQ_DUR_ } \\ & \text { SEL. } 0 \end{aligned}$	$\begin{aligned} & \text { MV_INTRQ_ } \\ & \text { SEL. } 1 \end{aligned}$	$\begin{aligned} & \text { MV_INTRQ_ } \\ & \text { SEL. } 0 \end{aligned}$		MPU_STIM_INTRQ	INTRQ_OP_SEL. 1	INTRQ_OP_SEL. 0	0001×000	10
66	42	Interrupt Status 1	R		MV_PS_CS_Q	$\begin{aligned} & \text { SD_FR_- } \\ & \text { CHNG_Q } \end{aligned}$				SD_UNLOCK_Q	SD_LOCK_Q	-	-
67	43	Interrupt Clear 1	w		MV_PS_CS_CLR	$\begin{aligned} & \hline \text { SD_FR_ } \\ & \text { CHNG_CLR } \end{aligned}$				SD_UNLOCK_CLR	SD_LOCK_CLR	$\times 0000000$	00
68	44	Interrupt Mask 1	RW		MV_PS_CS_MSKB	$\begin{aligned} & \text { SD_FR_CHNG_ } \\ & \text { MSKB } \end{aligned}$				$\begin{aligned} & \text { SD_UNLOCK_ } \\ & \text { MSKB } \end{aligned}$	SD_LOCK_MSKB	$\times 0000000$	00
69	45	Raw Status 2	R	MPU_STIM_INTRQ			EVEN_FIELD				CCAPD	-	-
70	46	Interrupt Status 2	R	MPU_STIM_INTRQ_Q			$\begin{aligned} & \text { SD_FIELD_ } \\ & \text { CHNGD_Q } \end{aligned}$			GEMD_Q	CCAPD_Q	-	-
71	47	Interrupt Clear 2	w	MPU_STIM_ INTRQ_CLR			$\begin{aligned} & \begin{array}{l} \text { SD_FIELD_- } \\ \text { CHNGD_CLR } \end{array} \end{aligned}$			GEMD_CLR	CCAPD_CLR	0xx00000	00
72	48	Interrupt Mask 2	RW	MPU STIM INTRQ_MSKB			$\begin{aligned} & \text { SD_FIELD_M } \\ & \text { CHNGD_MSKB } \end{aligned}$			GEMD_MSKB	CCAPD_MSKB	0xx00000	00
73	49	Raw Status 3	R				SCM_LOCK		SD_H_LOCK	SD_V_LOCK	SD_OP_50Hz	-	-
74	4A	Interrupt Status 3	R			$\begin{aligned} & \text { PAL_SW_LK_ } \\ & \text { CHNG_Q } \end{aligned}$	$\begin{aligned} & \text { SCM_LOCK_ } \\ & \text { CHNG_Q } \end{aligned}$	SD_AD_CHNG_Q	$\begin{aligned} & \text { SD_H_LOCK_ } \\ & \text { CHNG_Q } \end{aligned}$	$\begin{aligned} & \text { SD_V_LOCK_ } \\ & \text { CHNG_Q } \end{aligned}$	SD_OP_CHNG_Q	-	-
75	4B	Interrupt Clear 3	w			$\begin{aligned} & \text { PAL_SW_LK } \\ & \text { CHNG_CLR } \end{aligned}$	$\begin{aligned} & \text { SCM_LOCK } \\ & \text { CHNG_CLR } \\ & \hline \end{aligned}$	$\begin{aligned} & \begin{array}{l} \text { SD_AD_CHNG_ } \\ \text { CLR } \end{array} \\ & \hline \end{aligned}$	$\begin{aligned} & \begin{array}{l} \text { SD_H_LOCK } \\ \text { CHNG_CLR } \end{array} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { SD_V_LOCK_ } \\ & \text { CHNG_CLR } \end{aligned}$	$\begin{array}{\|l} \begin{array}{l} \text { SD_OP_-_- } \\ \text { CHNG_CLR } \end{array} \end{array}$	xx000000	00
76	4C	Interrupt Mask 3	RW			$\begin{aligned} & \hline \text { PAL_SW_LK } \\ & \text { CHNG_MSKB } \end{aligned}$	$\begin{aligned} & \text { SCM_LOCK_ } \\ & \text { CHNG_MSKB } \end{aligned}$	$\begin{aligned} & \text { SD_AD_CHNG_ } \\ & \text { MSKB } \end{aligned}$	$\begin{aligned} & \begin{array}{l} \text { SD_H_LOCK } \\ \text { CHNG_MSKB } \end{array} \end{aligned}$	$\begin{aligned} & \text { SD_V_LOCK } \\ & \text { CHNG_MSKB } \end{aligned}$	$\begin{aligned} & \text { SD_OP_- } \\ & \text { CHNG_MSKB } \end{aligned}$	xx000000	00
78	4E	Interrupt Status 4	R		VDP_VITC_Q		VDP_GS_VPS_ PDC_UTC_ CHNG_Q		VDP_ CGMS_WSS CHNGD_Q		VDP_CCAPD_Q	-	-
79	4F	Interrupt Clear 4	w		VDP_VITC_CLR		VDP_GS_VPS PDC_UTC CHNG_CLR		VDP_CGMS_WSS CHNGD_CLR		VDP_CCAPD_CLR	00x0x0x0	00
80	50	Interrupt Mask 4	RW		VDP_VITC_MSKB		VDP_GS_VPS_ PDC UTC CHNG_MSKB		VDP_CGMS_WSS CHNGD_MSKB		$\begin{aligned} & \text { VDP_CCAPD_- } \\ & \text { MSKB } \end{aligned}$	00x0x0x0	00
96	60	VDP_Config_1	RW					WST_PKT_ DECOD DISABLE	VDP_TTXT_TYPE MAN_ENABLE	VDP_TTXT_TYPE_ MAN. 1	$\begin{aligned} & \hline \text { VDP_TXT_- } \\ & \text { TYPE_MAN. } \end{aligned}$	10001000	88
97	61	VDP_Config_2	RW				$\begin{aligned} & \text { AUTO_DETECT_- } \\ & \text { GS_TYPE } \end{aligned}$					0001xx00	10
98	62	VDP_ADF_ Config_1	RW	ADF_ENABLE	ADF_MODE. 1	ADF_MODE. 0	ADF_DID. 4	ADF_DID. 3	ADF_DID. 2	ADF_DID. 1	ADF_DID. 0	00010101	15
99	63	VDP_ADF_ Config_2	RW	DUPLICATE ADF		ADF_SDID. 5	ADF_SDID. 4	ADF_SDID. 3	ADF_SDID. 2	ADF_SDID. 1	ADF_SDID. 0	0x101010	2A
100	64	VDP_LINE_00E	RW	MAN_LINE_PGM				$\begin{array}{\|l} \hline \text { VBI_DATA_ } \\ \text { P318.3 } \\ \hline \end{array}$	$\begin{array}{\|l} \hline \text { VBI_DATA_ } \\ \text { P318.2 } \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \text { VBI_DATA_ } \\ \text { P318.1 } \\ \hline \end{array}$	$\begin{array}{\|l} \hline \text { VBI_DATA_ } \\ \text { P318.0 } \\ \hline \end{array}$	0xxx0000	00
101	65	VDP_LINE_00F	RW	$\begin{aligned} & \hline \text { VBI_DATA_ } \\ & \text { P6_N23.3- } \end{aligned}$	$\begin{array}{\|l} \left\lvert\, \begin{array}{l} \text { VBI_DATA_P6_ } \\ \text { N23.2 } \end{array}\right. \\ \hline \end{array}$	$\begin{aligned} & \hline \text { VBI_DATA_P6_ } \\ & \text { N23.1 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { VBBI_DATA_P6_ } \\ & \text { N23.0 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { VBI_DATA_P319_ } \\ & \text { N286.3 } \end{aligned}$	$\begin{aligned} & \text { VBI_DATA_P319_ } \\ & \text { N286.2 } \end{aligned}$	$\begin{aligned} & \text { VBI_DATA_P319_ } \\ & \text { N286.1 } \end{aligned}$	$\begin{aligned} & \text { VBI_DATA_P319_ } \\ & \text { N286.0 } \end{aligned}$	00000000	00
102	66	VDP_LINE_010	RW	$\begin{aligned} & \hline \text { VBI_DATA_ } \\ & \text { P7_N24.3 } \end{aligned}$	$\begin{array}{\|l} \left\lvert\, \begin{array}{l} \text { VBI_DATA_P7_ } \\ \text { N24.2 } \end{array}\right. \\ \hline \end{array}$	$\begin{aligned} & \text { VBI_DATA_P7_ } \\ & \text { N24.1 } \end{aligned}$	$\begin{aligned} & \text { VBI_DATA_P7_ } \\ & \text { N24.0 } \end{aligned}$	$\begin{aligned} & \text { VBI_DATA_P320_ } \\ & \text { N287.3 } \end{aligned}$	$\begin{aligned} & \text { VBI_DATA_P320_ } \\ & \text { N287.2 } \end{aligned}$	$\begin{aligned} & \text { VBI_DATA_P320_ } \\ & \text { N287.1 } \end{aligned}$	$\begin{aligned} & \text { VBI_DATA_P320_ } \\ & \text { N287.0 } \end{aligned}$	00000000	00
103	67	VDP_LINE_011	RW	$\begin{aligned} & \hline \text { VBI_DATA_ } \\ & \text { P8_N25.3 } \end{aligned}$	$\begin{aligned} & \left\lvert\, \begin{array}{l} \text { VBI_DATA_P8_ } \\ \text { N25.2 } \end{array}\right. \\ & \hline \end{aligned}$	$\begin{aligned} & \begin{array}{l} \text { VBI_DATA_P8_ } \\ \text { N25.1 } \end{array} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { VBB_DATA_P8_ } \\ & \text { N25.0 } \end{aligned}$	$\begin{array}{\|l\|} \hline \text { VBI_DATA_P321_ } \\ \text { N288.3 } \\ \hline \end{array}$	$\begin{aligned} & \text { VBI_DATA_P321_ } \\ & \text { N288.2 } \end{aligned}$	$\begin{aligned} & \hline \text { VBI_DATA_P321_ } \\ & \text { N288.1 } \end{aligned}$	$\begin{aligned} & \hline \text { VBI_DATA_P321_ } \\ & \text { N288.0 } \end{aligned}$	00000000	00
104	68	VDP_LINE_012	RW	$\begin{array}{\|l\|} \hline \text { VBI_DATA_ } \\ \text { P9.3 } \\ \hline \end{array}$	VBI_DATA_P9.2	VBI_DATA_P9. 1	VBI_DATA_P9.0	$\begin{array}{\|l\|} \hline \text { VBI_DATA_ } \\ \text { P322.3 } \\ \hline \end{array}$	VBI_DATA_P322.2	$\begin{array}{\|l\|} \hline \text { VBI_DATA_ } \\ \hline \text { P322.1 } \\ \hline \end{array}$	VBI_DATA_P322.0	00000000	00
105	69	VDP_LINE_013	RW	$\begin{aligned} & \hline \text { VBI_DATA_ } \\ & \text { P10.3 } \end{aligned}$	VBI_DATA_P10.2	VBI_DATA_P10.1	VBI_DATA_P10.0	VBI_DATA_P323.3	VBI_DATA_P323.2	$\begin{aligned} & \hline \text { VBI_DATA_ } \\ & \text { P323.1 } \end{aligned}$	VBI_DATA_P323.0	00000000	00
106	6A	VDP_LINE_014	RW	$\begin{aligned} & \text { VBI_DATA_ } \\ & \text { P11.3 } \end{aligned}$	VBI_DATA_P11.2	VBI_DATA_P11.1	VBI_DATA_P11.0	$\begin{aligned} & \text { VBI_DATA_P324_ } \\ & \text { N272.3 } \end{aligned}$	$\begin{aligned} & \text { VBI_DATA_P324_ } \\ & \text { N272.2 } \end{aligned}$	$\begin{aligned} & \text { VBI_DATA_P324_ } \\ & \text { N272.1 } \end{aligned}$	$\begin{aligned} & \text { VBI_DATA_P324_ } \\ & \text { N272.0 } \end{aligned}$	00000000	00
107	6B	VDP_LINE_015	RW	$\begin{aligned} & \hline \text { VBI_DATA_ } \\ & \text { P12_N10.3 } \end{aligned}$	$\begin{aligned} & \text { VBI_DATA_P12_ } \\ & \text { N10.2 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { VBI_DATA_P12_ } \\ & \text { N10.1 } \end{aligned}$	$\begin{aligned} & \text { VBI_DATA_P12_ } \\ & \text { N10.0 } \end{aligned}$	$\begin{aligned} & \text { VBI_DATA_P325_ } \\ & \text { N273.3 } \end{aligned}$	$\begin{aligned} & \text { VBI_DATA_P325_ } \\ & \text { N273.2 } \end{aligned}$	$\begin{array}{\|l} \hline \text { VBI_DATA_P325_ } \\ \text { N273.1 } \end{array}$	$\begin{aligned} & \text { VBI_DATA_P325_ } \\ & \text { N273.0 } \end{aligned}$	00000000	00
108	6C	VDP_LINE_016	RW	$\begin{array}{\|l} \hline \text { VBI_DATA } \\ \text { P13_N11.3 } \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \text { VBI_DATA_P13_ } \\ \text { N11.2 } \\ \hline \end{array}$	$\begin{aligned} & \hline \text { VBI_DATA_P13_ } \\ & \text { N11.1 } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { VBI_DATA_P13_ } \\ & \text { N11.0 } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { VBI_DATA_P326_ } \\ & \text { N274.3 } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { VBI_DATA_P326_ } \\ & \text { N274.2 } \\ & \hline \end{aligned}$	$\begin{array}{\|l\|l} \hline \text { VBI_DATA_P326_ } \\ \text { N274.1 } \\ \hline \end{array}$	$\begin{array}{\|l} \hline \begin{array}{l} \text { VBI_DATA_P326_ } \\ \text { N274.0 } \\ \hline \end{array} \\ \hline \end{array}$	00000000	00
109	6D	VDP_LINE_017	RW	$\begin{array}{\|l} \hline \text { VBI_DATA } \\ \text { P14_N12.3 } \\ \hline \end{array}$	$\begin{array}{\|l} \hline \text { VBI_DATA_P14_ } \\ \text { N12.2 } \\ \hline \end{array}$	$\begin{aligned} & \hline \text { VBI_DATA_P14_ } \\ & \text { N12.1 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { VBI_DATA_P14_ } \\ & \text { N12.0 } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { VBI_DATA_P327_ } \\ & \text { N275.3 } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { VBI_DATA_P327_ } \\ & \text { N275.2 } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { VBI_DATA_P327_ } \\ & \text { N275.1 } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { VBI_DATA_P327_ } \\ & \text { N275.0 } \\ & \hline \end{aligned}$	00000000	00
110	6E	VDP_LINE_018	RW	$\begin{aligned} & \hline \text { VBI_DATA } \\ & \text { P15_N13.3 } \end{aligned}$	$\begin{array}{\|l\|} \hline \text { VBI_DATA_P15_ } \\ \text { N13.2 } \\ \hline \end{array}$	$\begin{aligned} & \text { VBI_DATA_P15_ } \\ & \text { N13.1 } \end{aligned}$	$\begin{aligned} & \hline \text { VBI_DATA_P15_ } \\ & \text { N13.0 } \end{aligned}$	$\begin{aligned} & \hline \text { VBI_DATA_P328_ } \\ & \text { N276.3 } \end{aligned}$	$\begin{aligned} & \hline \text { VBI_DATA_P328_ } \\ & \text { N276.2 } \end{aligned}$	$\begin{aligned} & \text { VBI_DATA_P328_ } \\ & \text { N276.1 } \end{aligned}$	$\begin{aligned} & \text { VBI_DATA_P328_ } \\ & \text { N276.0 } \end{aligned}$	00000000	00
111	6F	VDP_LINE_019	RW	$\begin{aligned} & \hline \text { VBI_DATA- } \\ & \text { P16_N14.3 } \end{aligned}$	$\begin{array}{\|l\|} \hline \text { VBI_DATA_P16_ } \\ \text { N14.2 } \\ \hline \end{array}$	$\begin{aligned} & \text { VBI_DATA_P16_ } \\ & \text { N14.1 } \end{aligned}$	$\begin{aligned} & \hline \text { VBI_DATA_P16_ } \\ & \text { N14.0 } \end{aligned}$	$\begin{array}{\|l\|} \hline \text { VBI_DATA_P329_ } \\ \text { N277.3 } \\ \hline \end{array}$	$\begin{aligned} & \hline \text { VBI_DATA_P329_ } \\ & \text { N277.2 } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { VBI_DATA_P329_ } \\ & \text { N277.1 } \\ & \hline \end{aligned}$		00000000	00
112	70	VDP_LINE_01A	RW	$\begin{array}{\|l} \hline \text { VBI_DATA } \\ \text { P17_N15.3 } \end{array}$	$\begin{array}{\|l} \hline \text { VBI_DATA_P17_ } \\ \text { N15.2 } \end{array}$	$\begin{aligned} & \text { VBI_DATA_P17_ } \\ & \text { N15.1 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { VBI_DATA_P17_ } \\ & \text { N15.0 } \end{aligned}$	$\begin{aligned} & \text { VBI_DATA_P330_ } \\ & \text { N278.3 } \end{aligned}$	$\begin{aligned} & \text { VBI_DATA_P330_ } \\ & \text { N278.2 } \end{aligned}$	$\begin{aligned} & \text { VBI_DATA_P330_ } \\ & \text { N278.1 } \end{aligned}$	$\begin{aligned} & \text { VBI_DATA_P330_ } \\ & \text { N278.0 } \end{aligned}$	00000000	00
113	71	VDP_LINE_01B	RW	$\begin{aligned} & \hline \text { VBI_DATA } \\ & \text { P18_N16.3 } \end{aligned}$		$\begin{aligned} & \hline \text { VBI_DATA_P18_ } \\ & \text { N16.1 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { VBI_DATA_P18_ } \\ & \text { N16.0 } \\ & \hline \end{aligned}$	$\begin{aligned} & \begin{array}{l} \text { VBI_DATA_P331_ } \\ \text { N279.3 } \end{array} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { VBI_DATA_P331_ } \\ & \text { N279.2 } \\ & \hline \end{aligned}$	$\begin{array}{\|l} \hline \text { VBI_DATA_P331_ } \\ \text { N279.1 } \\ \hline \end{array}$	$\begin{aligned} & \left\lvert\, \begin{array}{l} \text { VBI_DATA_P331_ } \\ \text { N279.0 } \\ \hline \end{array}{ }^{2}\right. \\ & \hline \end{aligned}$	00000000	00
114	72	VDP_LINE_01C	RW	$\begin{array}{\|l} \hline \text { VBI_DATA } \\ \text { P19_N17.3 } \end{array}$	$\begin{array}{\|l} \hline \text { VBI_DATA_P19_ } \\ \text { N17.2 } \\ \hline \end{array}$	$\begin{aligned} & \hline \text { VBI_DATA_P19_ } \\ & \text { N17.1 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { VBI_DATA_P19_ } \\ & \text { N17.0 } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { VBI_DATA_P332_ } \\ & \text { N280.3 } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { VBI_DATA_P332_ } \\ & \text { N280.2 } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { VBI_DATA_P332_ } \\ & \text { N280.1 } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { VBI_DATA_ } \\ & \text { P332_N280.0 } \end{aligned}$	00000000	00
115	73	VDP_LINE_01D	RW	$\begin{aligned} & \hline \text { VBI_DATA- } \\ & \text { P20_N18.3 } \end{aligned}$	$\begin{array}{\|l\|} \hline \text { VBI_DATA_P20_ } \\ \text { N18.2 } \\ \hline \end{array}$	$\begin{aligned} & \hline \text { VBI_DATA_P20_ } \\ & \text { N18.1 } \end{aligned}$	$\begin{aligned} & \text { VBI_DATA_P20_ } \\ & \text { N18.0 } \end{aligned}$	$\begin{aligned} & \text { VBI_DATA_P333_ } \\ & \text { N281.3 } \end{aligned}$	$\begin{aligned} & \hline \text { VBI_DATA_P333_ } \\ & \text { N281.2 } \end{aligned}$	VBI_DATA_P333_ N281.1	VBI_DATA P333_N281.0	00000000	00

Address		Register Name	RW	7	6	5	4	3	2	1	0	Reset Value	(Hex)
Dec	Hex												
116	74	VDP_LINE_01E	RW	$\begin{aligned} & \hline \text { VBI_DATA_- } \\ & \text { P21_N19.3 } \end{aligned}$	$\begin{aligned} & \text { VBI_DATA_P21_ } \\ & \text { N19.2 } \end{aligned}$	$\begin{aligned} & \hline \text { VBI_DATA_P21_ } \\ & \text { N19.1 } \end{aligned}$	$\begin{aligned} & \text { VBI_DATA_P21_ } \\ & \text { N19.0 } \end{aligned}$	$\begin{aligned} & \hline \text { VBI_DATA_P334_ } \\ & \text { N282.3 } \end{aligned}$	$\begin{aligned} & \text { VBI_DATA_P334_ } \\ & \text { N282.2 } \end{aligned}$	$\begin{aligned} & \text { VBI_DATA_P334_ } \\ & \text { N282.1 } \end{aligned}$	$\begin{aligned} & \hline \text { VBI_DATA_- } \\ & \text { P334_N282.0 } \end{aligned}$	00000000	00
117	75	VDP_LINE_01F	RW	$\begin{aligned} & \hline \text { VBI_DATA_- } \\ & \text { P22_N20.3 } \end{aligned}$	$\begin{aligned} & \text { VBI_DATA_P22_ } \\ & \text { N20.2 } \end{aligned}$	$\begin{array}{\|l\|} \hline \text { VBI_DATA_P22_ } \\ \text { N20.1 } \\ \hline \end{array}$	$\begin{aligned} & \hline \text { VBI_DATA_P22_ } \\ & \text { N20.0 } \end{aligned}$	$\begin{aligned} & \hline \text { VBI_DATA_P335_ } \\ & \text { N283.3 } \end{aligned}$	$\begin{aligned} & \text { VBI_DATA_P335_ } \\ & \text { N283.2 } \end{aligned}$	$\begin{aligned} & \hline \text { VBI_DATA_P335_ } \\ & \text { N283.1 } \end{aligned}$	$\begin{aligned} & \hline \text { VBI_DATA_-_ } \\ & \text { P335_N283.0 } \end{aligned}$	00000000	00
118	76	VDP_LINE_020	RW	$\begin{aligned} & \text { VBI_DATA_ } \\ & \text { P23_N21.3 } \end{aligned}$	$\begin{aligned} & \text { VBI_DATA_P23_ } \\ & \text { N21.2 } \end{aligned}$	$\begin{aligned} & \text { VBI_DATA_P23_ } \\ & \text { N21.1 } \end{aligned}$	$\begin{aligned} & \text { VBI_DATA_P23_ } \\ & \text { N21.0 } \end{aligned}$	$\begin{aligned} & \text { VBI_DATA_P336_ } \\ & \text { N284.3 } \end{aligned}$	$\begin{aligned} & \text { VBI_DATA_P336_ } \\ & \text { N284.2 } \end{aligned}$	$\begin{aligned} & \text { VBI_DATA_P336_ } \\ & \text { N284.1 } \end{aligned}$	$\begin{aligned} & \text { VBI_DATA_- } \\ & \text { P336_N284.0 } \end{aligned}$	00000000	00
119	77	VDP_LINE_021	RW	$\begin{aligned} & \text { VBI_DATA } \\ & \text { P24_N22.3 } \end{aligned}$	$\begin{aligned} & \text { VBI_DATA_P24_ } \\ & \text { N22.2 } \end{aligned}$	$\begin{aligned} & \text { VBI_DATA_P24_ } \\ & \text { N22.1 } \end{aligned}$	$\begin{aligned} & \text { VBI_DATA_P24_ } \\ & \text { N22.0 } \end{aligned}$	$\begin{aligned} & \hline \text { VBI_DATA_P337_ } \\ & \text { N285.3 } \end{aligned}$	$\begin{aligned} & \text { VBI_DATA_P337_ } \\ & \text { N285.2 } \end{aligned}$	$\begin{aligned} & \text { VBI_DATA_P337_ } \\ & \text { N285.1 } \end{aligned}$	$\begin{aligned} & \text { VBI_DATA_- } \\ & \text { P337_N285.0 } \end{aligned}$	00000000	00
120	78	VDP_STATUS	R	TTXT_AVL	VITC_AVL	GS_DATA_TYPE	$\begin{aligned} & \text { GS_PDC_VPS_ } \\ & \text { UTC_AVL } \\ & \hline \end{aligned}$		CGMS_WSS_AVL	CC_EVEN_FIELD	CC_AVL	-	-
120	78	VDP_STATUS_ CLEAR	W		VITC_CLEAR		GS_PDC_VPS_ UTC_CLEAR		CGMS_WSS CLEAR		CC_CLEAR	00000000	00
121	79	$\begin{aligned} & \text { VDP_CCAP_ } \\ & \text { DATA_0 } \end{aligned}$	R	CCAP_BYTE_1.7	CCAP_BYTE_1.6	CCAP_BYTE_1.5	CCAP_BYTE_1.4	CCAP_BYTE_1.3	CCAP_BYTE_1.2	CCAP_BYTE_1.1	$\begin{aligned} & \hline \text { CCAP_- }_{\text {BYTE_1.0 }} \end{aligned}$	-	-
122	7A	$\begin{aligned} & \hline \text { VDP_CCAP_ } \\ & \text { DATA_1 } \end{aligned}$	R	CCAP_BYTE_2.7	CCAP_BYTE_2.6	CCAP_BYTE_2.5	CCAP_BYTE_2.4	CCAP_BYTE_2.3	CCAP_BYTE_2.2	CCAP_BYTE_2.1	$\begin{aligned} & \hline \text { CCAP_____ }_{\text {BYTE_2.0 }} \end{aligned}$	-	-
125	7D	$\begin{aligned} & \hline \text { CGMS_WSS_ } \\ & \text { DATA_0 } \\ & \hline \end{aligned}$	R	zero	zero	zero	zero	CGMS_CRC. 5	CGMS_CRC. 4	CGMS_CRC. 3	$\begin{aligned} & \text { CGMS_ } \\ & \text { CRC. } 2 \end{aligned}$	-	-
126	7E	CGMS_WSS DATA_1	R	CGMS_CRC. 1	CGMS_CRC. 0	CGMS_WSS. 13	CGMS_WSS. 12	CGMS_WSS. 11	CGMS_WSS. 10	CGMS_WSS. 9	CGMS WSS. 8	-	-
127	7F	CGMS_WSS DATA_2	R	CGMS_WSS. 7	CGMS_WSS. 6	CGMS_WSS. 5	CGMS_WSS. 4	CGMS_WSS. 3	CGMS_WSS. 2	CGMS_WSS. 1	$\begin{aligned} & \text { CGMS_ } \\ & \text { WSS. } \\ & \hline \end{aligned}$	-	-
132	84	$\begin{aligned} & \text { VDP_GS_VPS_ } \\ & \text { PDC_UTC_0 } \\ & \hline \end{aligned}$	R	GS_VPS_PDC UTC_BYTE_0.7	GS_VPS_PDC UTC_BYTE_0.6	$\begin{aligned} & \text { GS_VPS_PDC_ } \\ & \text { UTC_BYTE_0.5 } \end{aligned}$	GS_VPS_PDC UTC_BYTE_0.4	$\begin{aligned} & \text { GS_VPS_PDC } \\ & \text { UTC_BYTE_0. } \end{aligned}$	$\begin{aligned} & \text { GS_VPS_PDC_ } \\ & \text { UTC_BYTE_0.2 } \end{aligned}$	$\begin{aligned} & \text { GS_VPS_PDC_ } \\ & \text { UTC_BYTE_0.1 } \end{aligned}$	$\begin{aligned} & \text { GS_VPS_PDC_ } \\ & \text { UTC_BYTE_0.0 } \end{aligned}$	-	-
133	85	$\begin{aligned} & \text { VDP_GS_VPS_ } \\ & \text { PDC_UTC_1 } \end{aligned}$	R	GS_VPS_PDC UTC_BYTE_1.7	GS_VPS_PDC UTC_BYTE_1.6	GS_VPS_PDC UTC_BYTE_1.5	GS_VPS_PDC UTC_BYTE_1.4	GS_VPS_PDC UTC_BYTE_1.3	GS_VPS_PDC UTC_BYTE_1.2	GS_VPS_PDC UTC_BYTE_1.1	GS_VPS_PDC UTC_BYTE_1.0	-	-
134	86	VDP_GS_VPS PDC_UTC_2	R	GS_VPS_PDC UTC_BYTE_2.7	GS_VPS_PDC UTC_BYTE_2.6	GS_VPS_PDC UTC_BYTE_2.5	GS_VPS_PDC UTC_BYTE_2.4	GS_VPS_PDC UTC_BYTE_2.3	GS_VPS_PDC UTC_BYTE_2.2	$\begin{aligned} & \text { GS_VPS_PDC_ } \\ & \text { UTC_BYTE_2.1 } \end{aligned}$	$\begin{aligned} & \text { GS_VPS_PDC_ } \\ & \text { UTC_BYTE_2.0 } \end{aligned}$	-	-
135	87	$\begin{aligned} & \text { VDP_GS_VPS_ } \\ & \text { PDC_UTC_3 } \end{aligned}$	R	GS_VPS_PDC UTC_BYTE_3.7	GS_VPS_PDC UTC_BYTE_3.6	GS_VPS_PDC UTC_BYTE_3.5	GS_VPS_PDC UTC_BYTE_3.4	GS_VPS_PDC UTC_BYTE_3.3	GS_VPS_PDC UTC_BYTE_3.2	GS_VPS_PDC UTC_BYTE_3.1	$\begin{aligned} & \text { GS_VPS_PDC_ } \\ & \text { UTC_BYTE_3.0 } \end{aligned}$	-	-
136	88	$\begin{aligned} & \text { VDP_VPS_PDC_ } \\ & \text { UTC_4 } \end{aligned}$	R	VPS_PDC_UTC_ BYTE_4.7	VPS_PDC_UTC_ BYTE_4.6	VPS_PDC_UTC_ BYTE_4.5	VPS_PDC_UTC_ BYTE_4.4	$\begin{array}{\|l\|} \hline \text { VPS_PDC_UTC_ } \\ \text { BYTE_4.3 } \\ \hline \end{array}$	VPS_PDC_UTC_ BYTE_4.2	VPS_PDC_UTC BYTE_4.1	VPS_PDC UTC_BYTE_4.0	-	-
137	89	$\begin{aligned} & \text { VDP_VPS_PDC_ } \\ & \text { UTC_5 } \end{aligned}$	R	VPS_PDC_UTC_ BYTE_5.7	VPS_PDC_UTC_ BYTE_5.6	$\begin{aligned} & \text { VPS_PDC_UTC_ } \\ & \text { BYTE_5.5 } \end{aligned}$	VPS_PDC_UTC_ BYTE_5.4	$\begin{aligned} & \hline \text { VPS_PDC_UTC_ } \\ & \text { BYTE_5.3 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { VPS_PDC_UTC_ } \\ & \text { BYTE_5.2 } \end{aligned}$	$\begin{aligned} & \text { VPS_PDC_UTC_ } \\ & \text { BYTE_5.1 } \end{aligned}$	VPS_PDC UTC_BYTE_5.0	-	-
138	8A	$\begin{aligned} & \text { VDP_VPS_PDC_ } \\ & \text { UTC_6 } \end{aligned}$	R	VPS_PDC_UTC_ BYTE_6.7	VPS_PDC_UTC BYTE_6.6	VPS_PDC_UTC BYTE_6.5	VPS_PDC_UTC_ BYTE_6.4	$\begin{array}{\|l\|} \hline \text { VPS_PDC_UTC_ } \\ \text { BYTE_6.3 } \\ \hline \end{array}$	$\begin{aligned} & \text { VPS_PDC_UTC_ } \\ & \text { BYTE_6.2 } \end{aligned}$	VPS_PDC_UTC_ BYTE_6.1	VPS_PDC UTC_BYTE_6.0	-	-
139	8B	VDP_VPS_PDC_ UTC_7	R	VPS_PDC_UTC_ BYTE_7.7	VPS_PDC_UTC_ BYTE_7.6	VPS_PDC_UTC_ BYTE_7.5	VPS_PDC_UTC_ BYTE_7.4	VPS_PDC_UTC_ BYTE_7.3	VPS_PDC_UTC_ BYTE_7.2	VPS_PDC_UTC_ BYTE_7.1	VPS_PDC UTC_BYTE_7.0	-	-
140	8C	$\begin{aligned} & \text { VDP_VPS_PDC_ } \\ & \text { UTC_8 } \end{aligned}$	R	VPS_PDC_UTC_ BYTE_8.7	VPS_PDC_UTC_ BYTE_8.6	VPS_PDC_UTC_ BYTE_8.5	VPS_PDC_UTC_ BYTE_8.4	$\begin{aligned} & \text { VPS_PDC_UTC_ } \\ & \text { BYTE_8.3 } \end{aligned}$	VPS_PDC_UTC_ BYTE_8.2	VPS_PDC_UTC_ BYTE_8.1	VPS_PDC UTC_BYTE_8.0	-	-
141	8D	$\begin{aligned} & \hline \text { VDP_VPS_PDC_ } \\ & \text { UTC_9 } \end{aligned}$	R	VPS_PDC_UTC_ BYTE_9.7	VPS_PDC_UTC_ BYTE_9.6	VPS_PDC_UTC BYTE_9.5	VPS_PDC_UTC_ BYTE_9.4	$\begin{array}{\|l\|} \hline \text { VPS_PDC_UTC_ } \\ \text { BYTE_9.3 } \\ \hline \end{array}$	VPS_PDC_UTC_ BYTE_9.2	VPS_PDC_UTC BYTE_9.1	VPS_PDC UTC_BYTE_9.0	-	-
142	8E	$\begin{aligned} & \text { VDP_VPS_PDC_ } \\ & \text { UTC_10 } \end{aligned}$	R	VPS_PDC_UTC_ BYTE_10.7	$\begin{aligned} & \text { VPS_PDC_UTC_ } \\ & \text { BYTE_10.6 } \end{aligned}$	$\begin{array}{\|l} \hline \text { VPS_PDC_UTC_ } \\ \text { BYTE_10.5 } \\ \hline \end{array}$	VPS_PDC_UTC_ BYTE_10.4	$\begin{array}{\|l\|} \hline \text { VPS_PDC_UTC_ } \\ \text { BYTE_10.3 } \\ \hline \end{array}$	$\begin{aligned} & \text { VPS_PDC_UTC_ } \\ & \text { BYTE_10.2 } \end{aligned}$	$\begin{aligned} & \text { VPS_PDC_UTC_ } \\ & \text { BYTE_10.1 } \end{aligned}$	VPS_PDC UTC_BYTE_10.0	-	-
143	8F	VDP_VPS_PDC_ UTC_11	R	VPS_PDC_UTC_ BYTE_11.7	VPS_PDC_UTC_ BYTE_11.6	VPS_PDC_UTC BYTE_11.5	VPS_PDC_UTC_ BYTE_11.4	VPS_PDC_UTC_ BYTE_11.3	VPS_PDC_UTC_ BYTE_11.2	VPS_PDC_UTC_ BYTE_11.1	VPS_PDC UTC_BYTE_11.0	-	-
144	90	$\begin{aligned} & \text { VDP_VPS_PDC_ } \\ & \text { UTC_12 } \end{aligned}$	R	VPS_PDC_UTC_ BYTE_12.7	VPS_PDC_UTC_ BYTE_12.6	VPS_PDC_UTC_ BYTE_12.5	VPS_PDC_UTC_ BYTE_12.4	VPS_PDC_UTC_ BYTE_12.3	VPS_PDC_UTC_ BYTE_12.2	VPS_PDC_UTC_ BYTE_12.1	VPS_PDC UTC_BYTE_12.0	-	-
146	92	$\begin{aligned} & \text { VDP_VITC_ } \\ & \text { DATA_0 } \\ & \hline \end{aligned}$	R	VITC_DATA_1.7	VITC_DATA_1.6	VITC_DATA_1.5	VITC_DATA_1.4	VITC_DATA_1.3	VITC_DATA_1.2	VITC_DATA_1.1	VITC_DATA_1.0	-	-
147	93	VDP_VITC_ DATA_1	R	VITC_DATA_2.7	VITC_DATA_2.6	VITC_DATA_2.5	VITC_DATA_2.4	VITC_DATA_2.3	VITC_DATA_2.2	VITC_DATA_2.1	VITC_DATA_2.0	-	-
148	94	$\begin{array}{\|l} \hline \text { VDP_VITC_ } \\ \text { DATA_2 } \\ \hline \end{array}$	R	VITC_DATA_3.7	VITC_DATA_3.6	VITC_DATA_3.5	VITC_DATA_3.4	VITC_DATA_3.3	VITC_DATA_3.2	VITC_DATA_3.1	VITC_DATA_3.0	-	-
149	95	$\begin{aligned} & \left\lvert\, \begin{array}{l} \text { VDP_VITC_ } \\ \text { DATA_3 } \end{array}\right. \\ & \hline \end{aligned}$	R	VITC_DATA_4.7	VITC_DATA_4.6	VITC_DATA_4.5	VITC_DATA_4.4	VITC_DATA_4.3	VITC_DATA_4.2	VITC_DATA_4.1	VITC_DATA_4.0	-	-
150	96	$\begin{aligned} & \text { VDP_VITC_ } \\ & \text { DATA_4 } \end{aligned}$	R	VITC_DATA_5.7	VITC_DATA_5.6	VITC_DATA_5.5	VITC_DATA_5.4	VITC_DATA_5.3	VITC_DATA_5.2	VITC_DATA_5.1	VITC_DATA_5.0	-	-
151	97	$\begin{aligned} & \text { VDP_VITC_ } \\ & \text { DATA_5 } \end{aligned}$	R	VITC_DATA_6.7	VITC_DATA_6.6	VITC_DATA_6.5	VITC_DATA_6.4	VITC_DATA_6.3	VITC_DATA_6.2	VITC_DATA_6.1	VITC_DATA_6.0	-	-
152	98	$\begin{aligned} & \hline \text { VDP_VITC_ } \\ & \text { DATA_6 } \\ & \hline \end{aligned}$	R	VITC_DATA_7.7	VITC_DATA_7.6	VITC_DATA_7.5	VITC_DATA_7.4	VITC_DATA_7.3	VITC_DATA_7.2	VITC_DATA_7.1	VITC_DATA_7.0	-	-
153	99	VDP_VITC_ DATA_7	R	VITC_DATA_8.7	VITC_DATA_8.6	VITC_DATA_8.5	VITC_DATA_8.4	VITC_DATA_8.3	VITC_DATA_8.2	VITC_DATA_8.1	VITC_DATA_8.0	-	-
154	9A	$\begin{aligned} & \text { VDP_VITC_ } \\ & \text { DATA_8 } \end{aligned}$	R	VITC_DATA_9.7	VITC_DATA_9.6	VITC_DATA_9.5	VITC_DATA_9.4	VITC_DATA_9.3	VITC_DATA_9.2	VITC_DATA_9.1	VITC_DATA_9.0	-	-
155	9B	VDP_VITC CALC_CRC	R	VITC_CRC. 7	VITC_CRC. 6	VITC_CRC. 5	VITC_CRC. 4	VITC_CRC. 3	VITC_CRC. 2	VITC_CRC. 1	VITC_CRC. 0	-	-
156	9C	VDP OUTPUT_SEL	RW	$\begin{aligned} & \text { I2C_GS_VPS_ } \\ & \text { PDC_UTC. } 1 \end{aligned}$	$\begin{aligned} & \text { I2C_GS_VPS_ } \\ & \text { PDC_UTC. } 0 \end{aligned}$	GS_VPS_PDC UTC_CB CHANGE	WSS_CGMS CB_CHANGE					00110000	30

Table 107 provides a detailed description of the registers located in the user sub map.
Table 107. User Sub Map Detailed Description

Address	Register	Bit Description	Bit ${ }^{1}$								Comments	Notes
			7	6	5	4	3	2	1	0		
0x40	Interrupt Configuration 0	INTRQ_OP_SEL [1:0]. Interrupt drive level select.							0	0	Open drain.	
									0	1	Drive low when active.	
									1	0	Drive high when active.	
									1	1	Reserved.	
		MPU_STIM_INTRQ. Manual interrupt set mode.						0			Manual interrupt mode disabled.	
								1			Manual interrupt mode enabled.	
		Reserved.					x				Not used.	
		MV_INTRQ_SEL [1:0]. Macrovision interrupt select.			0	0					Reserved.	
					0	1					Pseudosync only.	
					1	0					Color stripe only.	
					1	1					Pseudosync or color stripe.	
		INTRQ_DUR_SEL [1:0]. Interrupt duration select.	0	0							3 XTAL periods.	
			0	1							15 XTAL periods.	
			1	0							63 XTAL periods.	
			1	1							Active until cleared.	
0x42	Interrupt Status 1 (Read Only)	SD_LOCK_Q.								0	No change.	These bits can be cleared or masked in Registers 0x43 and 0×44, respectively.
										1	SD input has caused the decoder to go from an unlocked state to a locked state.	
		SD_UNLOCK_Q.							0		No change	
									1		SD input has caused the decoder to go from a locked state to an unlocked state.	
		Reserved.						x				
		Reserved.					x					
		Reserved.				x						
		SD_FR_CHNG_Q.			0						No change.	
					1						Denotes a change in the free-run status.	
		MV_PS_CS_Q.		0							No change.	
				1							Pseudosync/color striping detected. See Register 0x40 MV_INTRQ_SEL [1:0] for selection.	
		Reserved.	x									
0×43	Interrupt Clear 1 (Write Only)	SD_LOCK_CLR.								0	Does not clear.	
										1	Clears SD_LOCK_Q bit.	
		SD_UNLOCK_CLR.							0		Does not clear.	
									1		Clears SD_UNLOCK_Q bit.	
		Reserved.						0			Not used.	
		Reserved.					0				Not used.	
		Reserved.				0					Not used.	
		SD_FR_CHNG_CLR.			0						Do not clear.	
					1						Clears SD_FR_CHNG_Q bit.	
		MV_PS_CS_CLR.		0							Does not clear.	
				1							Clears MV_PS_CS_Q bit.	
		Reserved.	x								Not used.	
0x44	Interrupt Mask 1 (Read/Write)	SD_LOCK_MSKB.								0	Masks SD_LOCK_Q bit.	
										1	Unmasks SD_LOCK_Q bit.	
		SD_UNLOCK_MSKB.							0		Masks SD_UNLOCK_Q bit.	
									1		Unmasks SD_UNLOCK_Q bit.	
		Reserved.						0			Not used.	
		Reserved.					0				Not used.	
		Reserved.				0					Not used.	
		SD_FR_CHNG_MSKB.			0						Masks SD_FR_CHNG_Q bit.	
					1						Unmasks SD_FR_CHNG_Q bit.	
		MV_PS_CS_MSKB.		0							Masks MV_PS_CS_Q bit.	
				1							Unmasks MV_PS_CS_Q bit.	
		Reserved.	x								Not used.	

Address	Register	Bit Description	Bit ${ }^{1}$								Comments	
			7	6	5	4	3	2	1	0		
0x45	Raw Status 2 (Read Only)	CCAPD.								0	No CCAPD data detected.	These bits are status bits only. They cannot be cleared or masked. Register 0x46 is used for this purpose.
										1	CCAPD data detected.	
		EVEN_FIELD.					x	x	x			
						0					Current SD field is odd numbered.	
						1					Current SD field is even numbered.	
		Reserved.		x	x							
		MPU_STIM_INTRQ.	0								MPU_STIM_INT $=0$.	
			1								MPU_STIM_INT $=1$.	
0x46	Interrupt Status 2 (Read Only)	CCAPD_Q.								0	Closed captioning not detected in the input video signal.	These bits can be cleared or masked by Registers 0x47 and 0×48, respectively. Note that interrupt in Register 0×46 for the CC, Gemstar, CGMS, and WSS data is using the Mode 1 data slicer.
										1	Closed caption data detected in the video input signal.	
		GEMD_Q.							0		Gemstar data not detected in the input video signal.	
									1		Gemstar data detected in the input video signal.	
		Reserved.					x	x				
		SD_FIELD_CHNGD_Q.				0					SD signal has not changed the field from odd to even or vice versa.	
						1					SD signal has changed the field from odd to even or vice versa.	
		Reserved.			x						Not used.	
		Reserved.		x							Not used.	
		MPU_STIM_INTRQ_Q.	0								Manual interrupt not set.	
			1								Manual interrupt set.	
0×47	Interrupt Clear 2 (Write Only)	CCAPD_CLR.								0	Does not clear.	Note that interrupt in Register 0x46 for the CC, Gemstar, CGMS, and WSS data is using the Mode 1 data slicer.
										1	Clears CCAPD_Q bit.	
		GEMD_CLR.							0		Does not clear.	
									1		Clears GEMD_Q bit.	
		Reserved.					0	0				
		SD_FIELD_CHNGD_CLR.				0					Does not Clear.	
						1					Clears SD_FIELD_CHNGD_Q bit.	
		Reserved.			x						Not used.	
		Reserved.		x							Not used.	
		MPU_STIM_INTRQ_CLR.	0								Does not clear.	
			1								Clears MPU_STIM_INTRQ_Q bit.	
0x48	Interrupt Mask 2 (Read/Write)	CCAPD_MSKB.								0	Masks CCAPD_Q bit.	Note that interrupt in Register 0x46 for the CC, Gemstar, CGMS, and WSS data is using the Mode 1 data slicer.
										1	Unmasks CCAPD_Q bit.	
		GEMD_MSKB.							0		Masks GEMD_Q bit.	
									1		Unmasks GEMD_Q bit.	
		CGMS_MSKB.					0	0			Masks CGMS_CHNGD_Q bit.	
		SD_FIELD_CHNGD_MSKB.				0					Masks SD_FIELD_CHNGD_Q bit.	
						1					Unmasks SD_FIELD_CHNGD_Q bit.	
		Reserved.		0	0						Not used.	
		MPU_STIM_INTRQ_MSKB.	0								Masks MPU_STIM_INTRQ_Q bit.	
			1								Unmasks MPU_STIM_INTRQ_Q bit.	
0x49	Raw Status 3 (Read Only)	SD_OP_50Hz. This bit indicates if the SD 60 Hz or SD 50 Hz frame rate is at output.								0	SD 60 Hz signal output.	These bits are status bits only. They cannot be cleared or masked. Register 0x4A is used for this purpose.
										1	SD 50 Hz signal output.	
		SD_V_LOCK.							0		SD vertical sync lock not established.	
									1		SD vertical sync lock established.	
		SD_H_LOCK.						0			SD horizontal sync lock not established.	
								1			SD horizontal sync lock established.	
		Reserved.					x				Not used.	
		SCM_LOCK.				0					SECAM lock not established.	
						1					SECAM lock established.	
		Reserved.			x						Not used.	
		Reserved.		x							Not used.	
		Reserved.	x								Not used.	

Address	Register	Bit Description	Bit ${ }^{1}$								Comments	Notes
			7	6	5	$4{ }^{4} 3$	3	2	1	0		
0x4A	Interrupt Status 3 (Read Only)	SD_OP_CHNG_Q. This bit indicates if the SD 60 Hz or SD 50 Hz frame rate is at output.								0	No change in SD signal standard detected at the output.	These bits can be cleared and masked by Register 0x4B if no change is detected and by Register $0 \times 4 \mathrm{C}$ if a change is detected.
										1	A change in SD signal standard is detected at the output.	
		SD_V_LOCK_CHNG_Q.							0		No change in SD vertical sync lock status.	
									1		SD vertical sync lock status has changed.	
		SD_H_LOCK_CHNG_Q.						0			No change in SD horizontal sync lock status.	
								1			SD horizontal sync lock status has changed.	
		SD_AD_CHNG_Q. SD autodetect changed.					0				No change in AD_RESULT [2:0] bits in Status Register 1.	
							1				AD_RESULT [2:0] bits in Status Register 1 have changed.	
		SCM_LOCK_CHNG_Q. SECAM lock.				0					No change in SECAM lock status.	
						1					SECAM lock status has changed.	
		PAL_SW_LK_CHNG_Q.			0						No change in PAL swinging burst lock status.	
					1						PAL swinging burst lock status has changed.	
		Reserved.		x							Not used.	
		Reserved.	x								Not used.	
$0 \times 4 B$	Interrupt Clear 3 (Write Only)	SD_OP_CHNG_CLR.								0	Do not clear.	
										1	Clears SD_OP_CHNG_Q bit.	
		SD_V_LOCK_CHNG_CLR.							0		Do not clear.	
									1		Clears SD_V_LOCK_CHNG_Q bit.	
		SD_H_LOCK_CHNG_CLR.						0			Do not clear.	
								1			Clears SD_H_LOCK_CHNG_Q bit.	
		SD_AD_CHNG_CLR.					0				Do not clear.	
							1				Clears SD_AD_CHNG_Q bit.	
		SCM_LOCK_CHNG_CLR.				0					Do not clear.	
						1					Clears SCM_LOCK_CHNG_Q bit.	
		PAL_SW_LK_CHNG_CLR.			0						Do not clear.	
					1						Clears PAL_SW_LK_CHNG_Q bit.	
		Reserved.		x							Not used.	
		Reserved.	x								Not used.	
0x4C	Interrupt Mask 3 (Read/Write)	SD_OP_CHNG_MSKB.								0	Masks SD_OP_CHNG_Q bit.	
										1	Unmasks SD_OP_CHNG_Q bit.	
		SD_V_LOCK_CHNG_MSKB.							0		Masks SD_V_LOCK_CHNG_Q bit.	
									1		Unmasks SD_V_LOCK_CHNG_Q bit.	
		SD_H_LOCK_CHNG_MSKB.						0			Masks SD_H_LOCK_CHNG_Q bit.	
								1			Unmasks SD_H_LOCK_CHNG_Q bit.	
		SD_AD_CHNG_MSKB.					0				Masks SD_AD_CHNG_Q bit.	
							1				Unmasks SD_AD_CHNG_Q bit.	
		SCM_LOCK_CHNG_MSKB.				0					Masks SCM_LOCK_CHNG_Q bit.	
						1					Unmasks SCM_LOCK_CHNG_Q bit.	
		PAL_SW_LK_CHNG_MSKB.			0						Masks PAL_SW_LK_CHNG_Q bit.	
					1						Unmasks PAL_SW_LK_CHNG_Q bit.	
		Reserved.		x							Not used.	
		Reserved.	x								Not used.	
0x4E	Interrupt Status 4 (Read Only)	VDP_CCAPD_Q.								0	Closed captioning not detected.	These bits can be cleared by Register 0x4F and masked by Register 0x50. Note that an interrupt in Register 0x4E for the CC, Gemstar, CGMS, WSS, VPS, PDC, UTC, and VITC data can be initiated by using the VDP data slicer.
										1	Closed captioning detected.	
		Reserved.							x			
		VDP_CGMS_WSS_CHNGD_Q. See Register 0×9 C, Bit 4 , of the user sub map to determine whether an interrupt is issued for a change in detected data or when data is detected regardless of content.						0			CGMS/WSS data is not changed/not available.	
								1			CGMS/WSS data is changed/available.	
		Reserved					x					

Address	Register	Bit Description	Bit ${ }^{1}$								Comments	Notes
			7	6	5	4	3	2	1	0		
		VDP_GS_VPS_PDC_UTC_CHNG_Q. See Register 0x9C, Bit 5, of the user sub map to determine whether an interrupt is issued for a change in detected data or when data is detected regardless of content.				0					Gemstar/PDC/VPS/UTC data is not changed/available.	
						1					Gemstar/PDC/VPS/UTC data is changed/available.	
		Reserved.			x							
		VDP_VITC_Q.		0							VITC data is not available in the VDP.	
				1							VITC data is available in the VDP.	
		Reserved.	x									
0x4F	Interrupt Clear 4 (Write Only)	VDP_CCAPD_CLR.								0	Does not clear.	Note that an interrupt in Register 0x4E for the CC, Gemstar, CGMS, WSS, VPS, PDC, UTC, and VITC data can be initiated by using the VDP data slicer.
										1	Clears VDP_CCAPD_Q.	
		Reserved.							x			
		VDP_CGMS_WSS_CHNGD_CLR.						0			Does not clear.	
								1			Clears VDP_CGMS_WSS_CHNGD_Q.	
		Reserved.					x					
		VDP_GS_VPS_PDC_UTC_CHNG_CLR.				0					Does not clear.	
						1					Clears VDP_GS_VPS_PDC_UTC_ CHNG_Q.	
		Reserved.			x							
		VDP_VITC_CLR.		0							Does not clear.	
				1							Clears VDP_VITC_Q.	
		Reserved.	x									
0x50	Interrupt Mask 4	VDP_CCAPD_MSKB.								0	Masks VDP_CCAPD_Q.	Note that an interrupt in Register 0x4E for the CC, Gemstar, CGMS, WSS, VPS, PDC, UTC, and VITC data can be initiated by using the VDP data slicer.
										1	Unmasks VDP_CCAP_D_Q.	
		Reserved.							x			
		VDP_CGMS_WSS_CHNGD_MSKB.						0			Masks VDP_CGMS_WSS_CHNGD_Q.	
								1			Unmasks VDP_CGMS_WSS_CHNGD_Q.	
		Reserved.					x					
		VDP_GS_VPS_PDC_UTC_CHNG_MSKB.				0					Masks VDP_GS_VPS_PDC_UTC_ CHNG_Q.	
						1					Unmasks VDP_GS_VPS_PDC_UTC_ CHNG_Q.	
		Reserved.			x							
		VDP_VITC_MSKB.		0							Masks VDP_VITC_Q.	
				1							Unmasks VDP_VITC_Q.	
		Reserved.	x									
0x60	VDP_Config_1	VDP_TXT_TYPE_MAN [1:0].							0	0	PAL: teletext-ITU-R BT.653-625/50-A. NTSC: reserved.	
									0	1	PAL: teletext-ITU-R BT.653-625/50-B (WST). NTSC: teletext-ITU-R BT.653-525/60-B.	
									1	0	PAL: teletext-ITU-R BT.653-625/50-C. NTSC: teletext-ITU-R BT.653-525/60-C or EIA516 (NABTS).	
									1	1	PAL: teletext-ITU-R BT.653-625/50-D. NTSC: teletext-ITU-R BT.653-525/60-D.	
		VDP_TTXT_TYPE_MAN_ENABLE.						0			User programming of teletext type disabled.	
								1			User programming of teletext type enabled.	
		WST_PKT_DECOD_DISABLE.					0				Enables hamming decoding of WST packets.	
							1				Disables hamming decoding of WST packets.	
		Reserved.	1	0	0	0						
0x61	VDP_Config_2	Reserved.					x	x	0	0		
		AUTO_DETECT_GS_TYPE.				0					Disables autodetection of Gemstar type.	
						1					Enables autodetection of Gemstar type.	
		Reserved.	0	0	0							

Address	Register	Bit Description	Bit ${ }^{1}$								Comments	Notes
			7	6	5	4	3	2	1	0		
0x62	VDP_ADF_Config_1	ADF_DID [4:0].				1	0	1	0	1	User-specified DID sent in the ancillary data stream with VDP decoded data.	
		ADF_MODE [1:0].		0	0						Nibble mode.	
				0	1						Byte mode, no code restrictions.	
				1	0						Byte mode with values 0×00 and 0xFF prevented.	
				1	1						Reserved.	
		ADF_ENABLE.	0								Disable insertion of VBI decoded data into ancillary 656 stream.	
			1								Enable insertion of VBI decoded data into ancillary 656 stream.	
0x63	VDP_ADF_Config_2	ADF_SDID [5:0].			1	0	1	0	1	0	User-specified SDID sent in the ancillary data stream with VDP decoded data.	
		Reserved.		x								
		DUPLICATE_ADF.	0								Ancillary data packet is spread across the Y and C data streams.	
			1								Ancillary data packet is duplicated on the Y and C data streams.	
0x64	VDP_LINE_00E	VBI_DATA_P318 [3:0].					0	0	0	0	Sets VBI standard to be decoded from Line 318 (PAL). NTSC-N/A.	
		Reserved.		0	0	0						
		MAN_LINE_PGM.	0								Decode default standards on the lines indicated in Table 66.	If this bit is set to 1 , all VBI_DATA_Px_Ny bits must be manually set.
			1								Manually program the VBI standard to be decoded on each line. See Table 67.	
0x65	VDP_LINE_00F	VBI_DATA_P319_N286 [3:0].					0	0	0	0	Sets VBI standard to be decoded from Line 319 (PAL), 286 (NTSC).	MAN_LINE_PGM must be set to 1 for these bits to be effective.
		VBI_DATA_P6_N23 [3:0].	0	0	0	0					Sets VBI standard to be decoded from Line 6 (PAL), 23 (NTSC).	
0x66	VDP_LINE_010	VBI_DATA_P320_N287 [3:0].					0	0	0	0	Sets VBI standard to be decoded from Line 320 (PAL), 287 (NTSC).	MAN_LINE_PGM must be set to 1 for these bits to be effective.
		VBI_DATA_P7_N24 [3:0].	0	0	0	0					Sets VBI standard to be decoded from Line 7 (PAL), 24 (NTSC).	
0x67	VDP_LINE_011	VBI_DATA_P321_N288 [3:0].					0	0	0	0	Sets VBI standard to be decoded from Line 321 (PAL), 288 (NTSC).	MAN_LINE_PGM must be set to 1 for these bits to be effective.
		VBI_DATA_P8_N25 [3:0].	0	0	0	0					Sets VBI standard to be decoded from Line 8 (PAL), 25 (NTSC).	
0x68	VDP_LINE_012	VBI_DATA_P322 [3:0].					0	0	0	0	Sets VBI standard to be decoded from Line 322 (PAL), NTSC-N/A.	MAN_LINE_PGM must be set to 1 for these bits to be effective.
		VBI_DATA_P9 [3:0].	0	0	0	0					Sets VBI standard to be decoded from Line 9 (PAL), NTSC-N/A.	
0x69	VDP_LINE_013	VBI_DATA_P323 [3:0].					0	0	0	0	Sets VBI standard to be decoded from Line 323 (PAL), NTSC-N/A.	MAN_LINE_PGM must be set to 1 for these bits to be effective.
		VBI_DATA_P10 [3:0].	0	0	0	0					Sets VBI standard to be decoded from Line 10 (PAL), NTSC-N/A.	
0x6A	VDP_LINE_014	VBI_DATA_P324_N272 [3:0].					0	0	0	0	Sets VBI standard to be decoded from Line 324 (PAL), 272 (NTSC).	MAN_LINE_PGM must be set to 1 for these bits to be effective.
		VBI_DATA_P11 [3:0].	0	0	0	0					Sets VBI standard to be decoded from Line 11 (PAL), NTSC-N/A.	
0x6B	VDP_LINE_015	VBI_DATA_P325_N273 [3:0].					0	0	0	0	Sets VBI standard to be decoded from Line 325 (PAL), 273 (NTSC).	MAN_LINE_PGM must be set to 1 for these bits to be effective.
		VBI_DATA_P12_N10 [3:0].	0	0	0	0					Sets VBI standard to be decoded from Line 12 (PAL), 10 (NTSC).	
0x6C	VDP_LINE_016	VBI_DATA_P326_N274 [3:0].					0	0	0	0	Sets VBI standard to be decoded from Line 326 (PAL), 274 (NTSC).	MAN_LINE_PGM must be set to 1 for these bits to be effective.
		VBI_DATA_P13_N11 [3:0].	0	0	0	0					Sets VBI standard to be decoded from Line 13 (PAL), 11 (NTSC).	
0x6D	VDP_LINE_017	VBI_DATA_P327_N275 [3:0].					0	0	0	0	Sets VBI standard to be decoded from Line 327 (PAL), 275 (NTSC).	MAN_LINE_PGM must be set to 1 for these bits to be effective.
		VBI_DATA_P14_N12 [3:0].	0	0	0	0					Sets VBI standard to be decoded from Line 14 (PAL), 12 (NTSC).	
0x6E	VDP_LINE_018	VBI_DATA_P328_N276 [3:0].					0	0	0	0	Sets VBI standard to be decoded from Line 328 (PAL), 276 (NTSC).	MAN_LINE_PGM must be set to 1 for these bits to be effective.
		VBI_DATA_P15_N13 [3:0].	0	0	0	0					Sets VBI standard to be decoded from Line 15 (PAL), 13 (NTSC).	

ADV7184

Address	Register	Bit Description	Bit ${ }^{1}$								Comments	Notes
			7	6	5	4	3	2	1	0		
0x6F	VDP_LINE_019	VBI_DATA_P329_N277 [3:0].					0	0	0	0	Sets VBI standard to be decoded from Line 329 (PAL), 277 (NTSC).	MAN_LINE_PGM must be set to 1 for these bits to be effective.
		VBI_DATA_P16_N14 [3:0].	0	0	0	0					Sets VBI standard to be decoded from Line 16 (PAL), 14 (NTSC).	
0x70	VDP_LINE_01A	VBI_DATA_P330_N278 [3:0].					0	0	0	0	Sets VBI standard to be decoded from Line 330 (PAL), 278 (NTSC).	MAN_LINE_PGM must be set to 1 for these bits to be effective.
		VBI_DATA_P17_N15 [3:0].	0	0	0	0					Sets VBI standard to be decoded from Line 17 (PAL), 15 (NTSC).	
0x71	VDP_LINE_01B	VBI_DATA_P331_N279 [3:0].					0	0	0	0	Sets VBI standard to be decoded from Line 331 (PAL), 279 (NTSC).	MAN_LINE_PGM must be set to 1 for these bits to be effective.
		VBI_DATA_P18_N16 [3:0].	0	0	0	0					Sets VBI standard to be decoded from Line 18 (PAL), 16 (NTSC).	
0x72	VDP_LINE_01C	VBI_DATA_P332_N280 [3:0].					0	0	0	0	Sets VBI standard to be decoded from Line 332 (PAL), 280 (NTSC).	MAN_LINE_PGM must be set to 1 for these bits to be effective.
		VBI_DATA_P19_N17 [3:0].	0	0	0	0					Sets VBI standard to be decoded from Line 19 (PAL), 17 (NTSC).	
0x73	VDP_LINE_01D	VBI_DATA_P333_N281 [3:0].					0	0	0	0	Sets VBI standard to be decoded from Line 333 (PAL), 281 (NTSC).	MAN_LINE_PGM must be set to 1 for these bits to be effective.
		VBI_DATA_P20_N18 [3:0].	0	0	0	0					Sets VBI standard to be decoded from Line 20 (PAL), 18 (NTSC).	
0x74	VDP_LINE_01E	VBI_DATA_P334_N282 [3:0].					0	0	0	0	Sets VBI standard to be decoded from Line 334 (PAL), 282 (NTSC).	MAN_LINE_PGM must be set to 1 for these bits to be effective.
		VBI_DATA_P21_N19 [3:0].	0	0	0	0					Sets VBI standard to be decoded from Line 21 (PAL), 19 (NTSC).	
0x75	VDP_LINE_01F	VBI_DATA_P335_N283 [3:0].					0	0	0	0	Sets VBI standard to be decoded from Line 335 (PAL), 283 (NTSC).	MAN_LINE_PGM must be set to 1 for these bits to be effective.
		VBI_DATA_P22_N20 [3:0].	0	0	0	0					Sets VBI standard to be decoded from Line 22 (PAL), 20 (NTSC).	
0x76	VDP_LINE_020	VBI_DATA_P336_N284 [3:0].					0	0	0	0	Sets VBI standard to be decoded from Line 336 (PAL), 284 (NTSC).	MAN_LINE_PGM must be set to 1 for these bits to be effective.
		VBI_DATA_P23_N21 [3:0].	0	0	0	0					Sets VBI standard to be decoded from Line 23 (PAL), 21 (NTSC).	
0x77	VDP_LINE_021	VBI_DATA_P337_N285 [3:0].					0	0	0	0	Sets VBI standard to be decoded from Line 337 (PAL), 285 (NTSC).	MAN_LINE_PGM must be set to 1 for these bits to be effective.
		VBI_DATA_P24_N22 [3:0].	0	0	0	0					Sets VBI standard to be decoded from Line 24 (PAL), 22 (NTSC).	
0x78	VDP_STATUS (Read Only)	CC_AVL.								0	Closed captioning not detected.	CC_CLEAR resets the CC_AVL bit.
										1	Closed captioning detected.	
		CC_EVEN_FIELD.							0		Closed captioning decoded from odd field.	
									1		Closed captioning decoded from even field.	
		CGMS_WSS_AVL.						0			CGMS/WSS not detected.	CGMS_WSS_CLEAR resets the CGMS_WSS_AVL bit.
								1			CGMS/WSS detected.	
		Reserved.					0					
		GS_PDC_VPS_UTC_AVL.				0					VPS not detected.	GS_PDC_VPS_UTC_CLEAR resets the GS_PDC_VPS_UTC_AVL bit.
						1					VPS detected.	
		GS_DATA_TYPE.			0						Gemstar $1 \times$ detected.	
					1						Gemstar $2 \times$ detected.	
		VITC_AVL.		0							VITC not detected.	VITC_CLEAR resets the VITC_AVL bit.
				1							VITC detected.	
		TTXT_AVL.	0								Teletext not detected.	
			1								Teletext detected.	
	VDP_STATUS_CLEAR (Write Only)	CC_CLEAR.								0	Does not reinitialize the CC registers.	This is a self-clearing bit.
										1	Reinitializes the CC readback registers.	
		Reserved.							0			
		CGMS_WSS_CLEAR.						0			Does not reinitialize the CGMS/WSS registers.	This is a self-clearing bit.
								1			Reinitializes the CGMS/WSS readback registers.	
		Reserved.					0					

| Address | Register |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

ADV7184

Address	Register	Bit Description	Bit ${ }^{1}$								Comments	Notes
			7	6	5	4	3	2	1	0		
0x9C	VDP_OUTPUT_SEL	Reserved.					0	0	0	0		
		WSS_CGMS_CB_CHANGE.				0					Disable content-based updating of CGMS and WSS data.	The AVAILABLE bit shows the availability of data only when its content changes.
						1					Enable content-based updating of CGMS and WSS data.	
		GS_VPS_PDC_UTC_CB_CHANGE.			0						Disable content-based updating of Gemstar, VPS, PDC, and UTC data.	
					1						Enable content-based updating of Gemstar, VPS, PDC, and UTC data.	
		I2C_GS_VPS_PDC_UTC [1:0].	0	0							Gemstar 1×/2×.	Standard expected to be decoded.
			0	1							VPS.	
			1	0							PDC.	
			1	1							UTC.	

[^14]
PCB LAYOUT RECOMMENDATIONS

The ADV7184 is a high precision, high speed mixed-signal device. To achieve the maximum performance from the part, it is important to have a well laid out PCB board. The following is a guide for designing a board using the ADV7184.

ANALOG INTERFACE INPUTS

Care should be taken when routing the inputs on the PCB. Track lengths should be kept to a minimum, and 75Ω trace impedances should be used when possible. Trace impedances other than 75Ω increase the chance of reflections.

POWER SUPPLY DECOUPLING

It is recommended to decouple each power supply pin with $0.1 \mu \mathrm{~F}$ and 10 nF capacitors. The fundamental idea is to have a decoupling capacitor within about 0.5 cm of each power pin. Also, avoid placing the capacitor on the side of the PC board opposite from the ADV7184, because doing so interposes resistive vias in the path. The decoupling capacitors should be located between the power plane and the power pin. Current should flow from the power plane to the capacitor to the power pin. Do not make the power connection between the capacitor and the power pin. Placing a via underneath the 100 nF capacitor pads, down to the power plane, is generally the best approach (see Figure 49).

Figure 49. Recommended Power Supply Decoupling
It is particularly important to maintain low noise and good stability of PVDD. Careful attention must be paid to regulation, filtering, and decoupling. It is highly desirable to provide separate regulated supplies for each of the analog circuitry groups (AVDD, DVDD, DVDDIO, and PVDD).

Some graphic controllers use substantially different levels of power when active (during active picture time) and when idle (during horizontal and vertical sync periods). This can result in a measurable change in the voltage supplied to the analog supply regulator, which can, in turn, produce changes in the regulated analog supply voltage. This can be mitigated by regulating the analog supply, or at least PVDD, from a different, cleaner power source, for example, from a 12 V supply.

It is also recommended to use a single ground plane for the entire board. This ground plane should have a space between the analog and digital sections of the PCB (see Figure 50).

Figure 50. PCB Ground Layout
Experience has repeatedly shown that the noise performance is the same or better with a single ground plane. Using multiple ground planes can be detrimental because each separate ground plane is smaller, and long ground loops can result.

In some cases, using separate ground planes is unavoidable. For those cases, it is recommended to place a single ground plane under the ADV7184. The location of the split should be under the ADV7184. For this case, it is even more important to place components wisely because the current loops are much longer (current takes the path of least resistance). An example of a current loop is from the power plane to ADV7184 to digital output trace to digital data receiver to digital ground plane to analog ground plane.

PLL

Place the PLL loop filter components as close as possible to the ELPF pin. Do not place any digital or other high frequency traces near these components. Use the values suggested in Figure 52 with tolerances of 10% or less.

DIGITAL OUTPUTS (BOTH DATA AND CLOCKS)

Try to minimize the trace length that the digital outputs drive. Longer traces have higher capacitance, which requires more current, causing more internal digital noise. Shorter traces reduce the possibility of reflections.

Adding a 30Ω to 50Ω series resistor can suppress reflections, reduce EMI, and reduce the current spikes inside the ADV7184. If series resistors are used, place them as close as possible to the ADV7184 pins. However, try not to add vias or extra length to the output trace to make the resistors closer.

If possible, limit the capacitance that each digital output drives to less than 15 pF . This can easily be accomplished by keeping traces short and by connecting the outputs to only one device. Loading the outputs with excessive capacitance increases the current transients inside the ADV7184, creating more digital noise on its power supplies.

ADV7184

DIGITAL INPUTS

The digital inputs on the ADV7184 are designed to work with 3.3 V signals and are not tolerant of 5 V signals. Extra components are needed if 5 V logic signals are required to be applied to the decoder.

XTAL AND LOAD CAPACITOR VALUES SELECTION

Figure 51 shows an example reference clock circuit for the ADV7184. Special care must be taken when using a crystal circuit to generate the reference clock for the ADV7184. Small variations in reference clock frequency may cause autodetection issues and impair the ADV7184 performance.

Figure 51. Crystal Circuit

Use the following guidelines to ensure correct operation:

- Use a crystal of the correct frequency, 28.63636 MHz. Tolerance should be 50 ppm or better.
- User a parallel-resonant crystal.
- Know the $\mathrm{C}_{\text {load }}$ for the crystal part selected. The values of the C 1 and C 2 capacitors must be calculated using this $\mathrm{C}_{\text {load }}$ value.

To find C 1 and C 2 , use the following formula:

$$
C=2\left(C_{\text {load }}-C_{\text {stray }}\right)-C_{p g}
$$

where $C_{\text {stray }}$ is usually 2 pF to 3 pF , depending on board traces, and $C_{p g}$ (pin-to-ground capacitance) is 4 pF for the ADV7184.

For example, if $\mathrm{C}_{\text {load }}$ is 30 pF , the values of C 1 and C 2 are calculated to be 50 pF each, and the nearest standard capacitor value is 47 pF .

TYPICAL CIRCUIT CONNECTION

An example of how to connect the ADV7184 video decoder is shown in Figure 52. For a detailed schematic diagram for the ADV7184, refer to the ADV7184 evaluation note, which can be obtained from an Analog Devices representative.

Figure 52. Typical Connection Diagram

ADV7184

OUTLINE DIMENSIONS

COMPLIANT TO JEDEC STANDARDS MS-026-BEC
Figure 53. 80-Lead Low Profile Quad Flat Package [LQFP]
(ST-80-2)
Dimensions shown in millimeters

ORDERING GUIDE

Model 1	Temperature Range	Package Description	Package Option
ADV7184BSTZ 2	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$80-$ Lead Low Profile Quad Flat Package [LQFP] Evaluation Board	ST-80-2

${ }^{1}$ The ADV7184 is a Pb-free, environmentally friendly product. It is manufactured using the most up-to-date materials and processes. The coating on the leads of each device is 100% pure Sn electroplate. The device is suitable for Pb -free applications and is able to withstand surface-mount soldering of up to $255^{\circ} \mathrm{C}\left(\pm 5^{\circ} \mathrm{C}\right)$. In addition, it is backward compatible with conventional SnPb soldering processes. This means that the electroplated Sn coating can be soldered with SnPb solder pastes at conventional reflow temperatures of $220^{\circ} \mathrm{C}$ to $235^{\circ} \mathrm{C}$.
${ }^{2} Z=P b-f r e e ~ p a r t . ~$

Purchase of licensed $I^{2} C$ components of Analog Devices or one of its sublicensed Associated Companies conveys a license for the purchaser under the Philips $I^{2} C$ Patent Rights to use these components in an $I^{2} C$ system, provided that the system conforms to the $I^{2} C$ Standard Specification as defined by Philips.

[^0]: One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
 Tel: 781.329.4700
 www.analog.com
 Fax: 781.461.3113 ©2005-2007 Analog Devices, Inc. All rights reserved.

[^1]: ${ }^{1}$ Temperature range $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$ is $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. The minimum/maximum specifications are guaranteed over this range.
 ${ }^{2}$ Guaranteed by characterization.
 ${ }^{3}$ Except Pin 40 (FB).

[^2]: ${ }^{1}$ Temperature range $\mathrm{T}_{\text {MII }}$ to $\mathrm{T}_{\text {MAX }}$ is $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. The minimum/maximum specifications are guaranteed over this range.
 ${ }^{2}$ Guaranteed by characterization.
 ${ }^{3} \mathrm{TL}$ input values are 0 V to 3 V , with rise/fall times of $\leq 3 \mathrm{~ns}$, measured between the 10% and 90% points.
 ${ }^{4}$ SDP timing figures obtained using default drive strength value (0xD5) in Register 0xF4.

[^3]: ${ }^{1}$ Selectable via RGB_IP_SEL.

[^4]: ${ }^{1}$ The first four UDWs are always the identification word.

[^5]: WSS_CGMS_CB_CHANGE, Enable Content-Based Updating for WSS/CGMS, Address 0x9C [4], User Sub Map
 $0-$ Disables content-based updating.
 1 (default)—Enables content-based updating.

[^6]: ${ }^{1}$ For $X / 26, X / 28$, and $X / 29$, further decoding needs 24×18 hamming decoding. Not supported at present.

[^7]: ${ }^{1}$ The register is a readback register; the default value does not apply.

[^8]: ${ }^{1}$ The register is a readback register; the default value does not apply.

[^9]: ${ }^{1}$ The bold values represent Gemstar- or CC-specific values.

[^10]: ${ }^{1}$ The bold values represent Gemstar- or CC-specific values.

[^11]: ${ }^{1}$ As indicated by the bold rows, two standards can use the same line for VBI data.

[^12]: ${ }^{1}$ This register is a readback register; the default value does not apply.

[^13]: ${ }^{1}$ Shading indicates default settings.

[^14]: ${ }^{1}$ Shading indicates default settings.

