

ACPL-K70A/K73A

Low Input Current, High Current Gain, LVTTL, LVCMOS Optocoupler

Description

These high gain series couplers use a light-emitting diode (LED) and an integrated high gain photodetector to provide an extremely high current transfer ratio between input and output. Separate pins for photodiode and output stage result in LVTTL-compatible saturation voltages and high-speed operation. Where desired, the $\rm V_{CC}$ and $\rm V_{O}$ terminals may be tied together to achieve conventional photo-darlington operation. A base access terminal allows a gain bandwidth adjustment to be made.

These optocouplers are for use in LVTTL/LVCMOS or other low-power applications.

The ACPL-K70A and ACPL-K73A are surface-mount devices that are packaged in an industry-standard stretched SOIC-8 footprint.

The stretched SOIC-8 does not require through holes in a PCB.

Figure 1: Functional Diagram

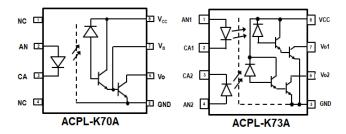


Table 1: Truth Table

LED	Output
ON	L
OFF	Н

A 0.1- μF bypass capacitor must be connected between pins V_{CC} and GND.

Features

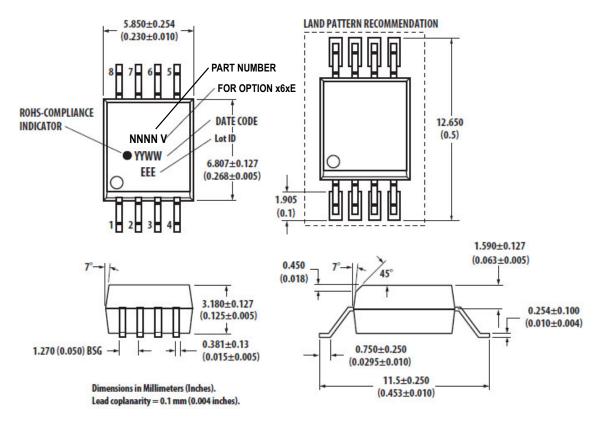
- 3.3V/5V dual supply voltages
- Low power consumption
- High current transfer ratio
- Low input current requirements: 0.04 mA
- Stretched SO8 package
- LVTTL/LVCMOS compatible output
- Guaranteed performance within the temperature range -40°C to +105°C
- Base access allows gain bandwidth adjustment
- High output current: 60 mA
- Worldwide Safety Approval:
 - UL1577 recognized: 5000 V_{rms}/1 min
 - CSA approval
 - IEC 60747-5-5 approval for reinforced insulation

Applications

- EIA RS-232C/low input current line receiver
- Low power systems: ground isolation
- Line voltage status indicator; low input power dissipation

CAUTION! Take normal static precautions in handling and assembling this component to prevent damage and/or degradation that may be induced by ESD. The components featured in this data sheet are not to be used in military or aerospace applications or environments.

Ordering Information


ACPL-K70A/K73A is UL recognized with 5000 V_{rms} for 1 minute per UL 1577.

Part Number	Option RoHS Compliant	Package	Surface Mount	Tape & Reel	UL 1577	IEC 60747-5-5	Quantity
ACPL-	-000E	Stretched SO8	Х		Х		80 per tube
K70A/K73A	-060E		X		Х	X	80 per tube
	-500E		Х	Х	Х		1000 per reel
	-560E		X	Χ	X	X	1000 per reel

To form an order entry, choose a part number from the Part Number column and combine with the desired option from the Option column.

Package Outline Drawing

Figure 2: ACPL-K70A/K73A Stretched SO8 Package

Solder Reflow Profile

Recommended reflow condition as per JEDEC standard J-STD-020 (latest revision). Non-halide flux should be used.

Regulatory Information

The ACPL-K70A/K73A is pending approval by the following organizations:

- **UL** Approval under UL 1577, component recognition program up to V_{ISO} = 5000 V_{RMS} File E55361.
- CSA Approval under CSA Component Acceptance Notice #5, File CA 88324.
- IEC 60747-5-5

Table 2: Insulation and Safety Related Specifications

Parameter	Symbol	ACPL- K70A/K73A	Units	Conditions
Minimum External Air Gap (External Clearance)	L(101)	8	mm	Measured from input terminals to output terminals, shortest distance through air.
Minimum External Tracking (External Creepage)	L(102)	8	mm	Measured from input terminals to output terminals, shortest distance path along body.
Minimum Internal Plastic Gap (Internal Clearance)	_	0.08	mm	Through insulation distance conductor to conductor, usually the straight line distance thickness between the emitter and detector.
Tracking Resistance (Comparative Tracking Index)	CTI	175	V	DIN IEC 112/VDE 0303 Part 1.
Isolation Group	_	Illa	_	Material Group (DIN VDE 0110, 1/89, Table 1).

Table 3: IEC 60747-5-5 Insulation Characteristics¹

		Characteristic ACPL-	
Description	Symbol	K70A/K73A	Unit
Installation classification per DIN VDE 0110/39, Table 1	_		_
For rated mains voltage ≤ 150 V _{rms}		I - IV	
For rated mains voltage ≤ 300 V _{rms}		I - IV	
For rated mains voltage ≤ 600 V _{rms}		I - IV	
For rated mains voltage ≤ 1000 V _{rms}		I - III	
Climatic Classification	_	40/105/21	_
Pollution Degree (DIN VDE 0110/39)	_	2	_
Maximum Working Insulation Voltage	V _{IORM}	1140	V _{peak}
Input to Output Test Voltage, Method b ¹	V _{PR}	2137	V _{peak}
$V_{IORM} \times 1.875 = V_{PR}$, 100% Production Test with $t_m = 1$ sec,			
Partial discharge < 5 pC			
Input to Output Test Voltage, Method a ¹	V_{PR}	1824	V_{peak}
$V_{IORM} \times 1.6 = V_{PR}$, Type and Sample Test, $t_m = 10$ sec,			
Partial discharge < 5 pC			
Highest Allowable Overvoltage	V _{IOTM}	8000	V_{peak}
(Transient Overvoltage t _{ini} = 60 sec)			·

Table 3: IEC 60747-5-5 Insulation Characteristics¹ (Continued)

Description	Symbol	Characteristic ACPL- K70A/K73A	Unit
Safety-limiting values: maximum values allowed in the event of a failure.			
Case Temperature	T _S	175	°C
Input Current	I _{S, INPUT}	230	mA
Output Power	P _{S, OUTPUT}	600	mW
Insulation Resistance at T _S , V _{IO} = 500 V	R _S	>10 ⁹	Ω

^{1.} Refer to the optocoupler section of the *Isolation and Control Components Designer's Catalog*, under the "Product Safety Regulations" section, (IEC 60747-5-5) for a detailed description of Method a and Method b partial discharge test profiles.

Table 4: Absolute Maximum Ratings

Parameter		Symbol	Min.	Max.	Units
Storage Temperature		T _S	– 55	125	°C
Operating Temperature		T _A	-40	105	°C
Lead Soldering Cycle	Temperature	1	260	°C	
	Time		10	s	
Average Forward Input Current		I _{F(avg)}	_	20	mA
Peak Forward Input Current (50% duty cycle, 1-ms pulse width)		I _{F(peak)}	_	40	mA
Peak Transient Input Current (≤ 1 µs pulse width, 300 pps)	-	I _{F(trans)}	_	1.0	A
Reversed Input Voltage		V_{R}	_	5	V
Input Power Dissipation	_	P _{IN}	_	35	mW
Output Power Dissipation	_	Po	_	100	mW
Output Current		I _{O(AVG)}	_	60	mA
Emitter Base Reverse Voltage (Pin 5–7)		V _{EB}	_	0.5	V
Output Transistor Base Current		I _B	_	5	mA
Supply Voltage and Output Voltage		V _{CC}	-0.5	18	V
Solder Reflow Temperature Profile		See Package Ou	tline Drawing.	1	1

Table 5: Recommended Operating Conditions

Parameter	Symbol	Min.	Max.	Units
Supply Voltage	V _{CC}	3.3	18.0	V
Forward Input Current (ON)	I _{F(ON)}	0.04	12	mA
Operating Temperature	T _A	-40	105	°C
Forward Input Voltage (OFF)	V _{F(OFF)}	_	0.8	V
Output Current	I _{O(AVG)}	_	25	mA

Table 6: Electrical Specifications (DC)

Over-recommended operating ($T_A = -40^{\circ}C$ to $105^{\circ}C$) unless otherwise specified. All typical specifications are at $T_A = 25^{\circ}C$.

Parameter	Sym.	Min.	Тур.	Max.	Units	Con	ditions	Fig.
Current Transfer Ratio	CTR ¹	800	8000	25,000	%	I _F = 0.04 mA	V _{CC} = 3.3V or 5V	4, 5
		400	3500	8000	%	I _F = 0.5 mA	$V_0 = 0.4V$	
		300	1980	5000	%	I _F = 1.6 mA		
Logic Low Output Voltage	V _{OL}	_	0.02	0.4	V	I _F = 0.04 mA I _O = 280 μA	V _{CC} = 3.3V or 5V	_
		_	0.04	0.4	V	I _F = 0.5 mA or 1.6 mA, I _O = 3.0 mA		_
Logic High Output Current	I _{OH}	_	0.003	5	μΑ	-40°C ≤ T _A ≤ 70°C	$V_{O} = V_{CC} = 3.3V \text{ or } 5V$	_
		_	18	100	μΑ	70°C < T _A ≤ 105°C	I _F = 0 mA	
		_	0.01	80	μΑ	-40 °C $\leq T_A \leq 70$ °C	V _O = V _{CC} = 18V	
		_	50	250	μA	70°C < T _A ≤ 105°C	I _F = 0 mA	
Logic Low Supply Current ²	I _{CCL}	_	0.03	0.2	mA	I _F = 0.04 mA	V _O = open	_
		_	0.53	1	mA	I _F = 0.5 mA	V _{CC} = 18V	
		_	1.75	2.5	mA	I _F = 1.6 mA		
Logic High Supply Current ²	Іссн	_	0.08	10	μA	$I_F = 0 \text{ mA}$ $V_O = \text{open}$ $V_{CC} = 18V$	_	_
Input Forward Voltage	V _F	_	1.3	1.7	V	I _F = 0.04 mA to 1.6 mA	_	3
		_	1.4	1.8	V	I _F = 12 mA		
Input Reversed Breakdown Voltage	BV _R	2.5	5	_	V	I _R = 100 μA	_	_
Temperature Coefficient of Forward Voltage	$\Delta V_F/\Delta T_A$	_	-1.6	_	mV/°C	I _F = 1.6 mA	_	_
Input Capacitance	C _{IN}	_	18	_	pF	f = 1 MHz V _F = 0	_	

^{1.} Current transfer ratio in percent is defined as the ratio of output collector current, I_O, to the forward LED input current, I_F, multiplied by 100%.

^{2.} Each channel.

Table 7: Switching Specifications

Over-recommended operating ($T_A = -40$ °C to 105°C) unless otherwise specified. All typical specifications are at $T_A = 25$ °C.

Parameter	Symbol	Min.	Тур.	Max.	Units	Test C	onditions	Fig.	
Propagation Delay Time to Logic Low at Output	t _{PHL}	_	36	500	μs	$I_F = 0.04 \text{ mA}$ $V_{CC} = 3.3/5.0V$ $R_L = 11 \text{ k}\Omega$		8, 9, 14	
		_	3.5	30	μs	V _{CC} =	0.5 mA 3.3/5.0V 4.7 kΩ	10, 11, 14	
		_	1.2	25	μs	$I_F = 1.6 \text{ mA}$ $V_{CC} = 3.3/5.0 \text{V}$ $R_L = 2.2 \text{ k}\Omega$ $I_F = 12 \text{ mA}$ $V_{CC} = 3.3/5.0 \text{V}$ $R_L = 270\Omega$		14	
		_	0.2	2	μs			12, 13, 14	
Propagation Delay Time to	t _{PLH}	_	170	1500	μs	$I_F = 0.04 \text{ mA}$ $R_L = 11 \text{ k}\Omega$ $I_F = 0.5 \text{ mA}$	V _{CC} = 3.3V	8, 9, 14 10, 11, 14	
Logic High at Output		_	100	800	μs		V _{CC} = 5.0V		
		_	85	700	μs		V _{CC} = 3.3V		
		_	50	500	μs	$R_L = 4.7 \text{ k}\Omega$	V _{CC} = 5.0V		
		_	43	400	μs	I _F = 1.6 mA	V _{CC} = 3.3V	14	
		_	26	300	μs	$R_L = 2.2 \text{ k}\Omega$	V _{CC} = 5.0V		
		_	7	80	μs	I _F = 12 mA	V _{CC} = 3.3V	12, 13,	
		_	4.2	40	μs	$R_L = 270\Omega$	V _{CC} = 5.0V	14	
Common Mode Transient Immunity at Logic High Output ¹	CM _H	10	_	_	kV/μs	T _A = 25°C	V_{CM} = 1000V I_F = 0 mA R_L = 270 Ω V_{CC} = 3.3V/5V	15	
Common Mode Transient Immunity at Logic Low Output ²	CM _L	10	_	_	kV/μs	T _A = 25°C	V_{CM} = 1000V I_F = 12 mA R_L = 270 Ω V_{CC} = 3.3V/5V	15	

Common transient immunity in a Logic High level is the maximum tolerable (positive) dV_{CM}/dt on the rising edge of the common mode pulse, V_{CM}, to ensure that the output will remain in a Logic High state (that is, V_O > 2.0V).

Table 8: Package Characteristics

All typical specifications are at $T_A = 25$ °C.

Parameter	Symbol	Min.	Тур.	Max.	Units	Test Conditions
Input-Output Momentary Withstand Voltage ¹	V _{ISO}	5000	_	_	V _{rms}	RH ≤ 50%, t = 1 min., T _A = 25°C
Input-Output Resistance ¹	R _{I-O}	_	10 ¹²	_	Ω	V _{I-O} = 500 Vdc
Input-Output Capacitance ¹	C _{I-O}	_	0.6	_	pF	f = 1 MHz, T _A = 25°C

^{1.} Device considered a two-terminal device: pins 1, 2, 3, and 4 shorted together, and pins 5, 6, 7, and 8 shorted together.

^{2.} Common mode transient immunity in a Logic Low level is the maximum tolerable (negative) dV_{CM}/dt on the falling edge of the common mode pulse signal, V_{CM} to ensure that the output will remain in a Logic Low state (that is, $V_{CM} = 0.8V$).

Figure 3: Input Current vs. Forward Voltage

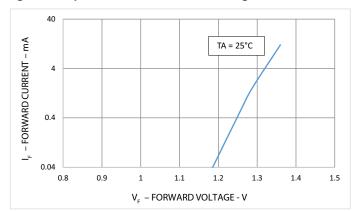


Figure 4: Current Transfer Ratio vs Forward Current

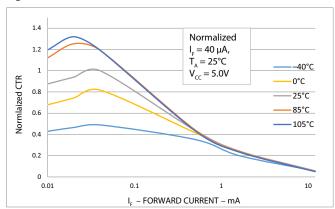


Figure 5: Current Transfer Ratio vs Forward Current

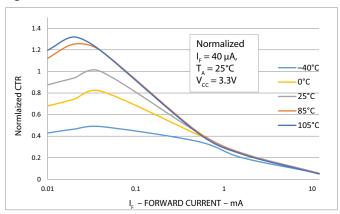


Figure 6: Logic Low Output Current vs. Temperature

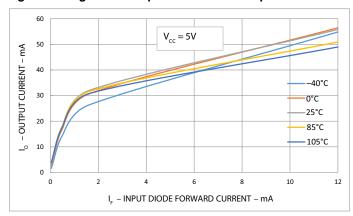


Figure 7: Logic Low Output Current vs. Temperature

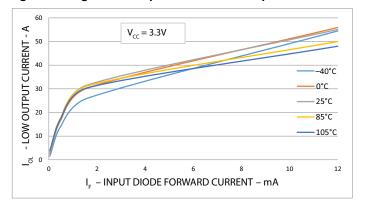


Figure 8: Typical Propagation Delay vs. Temperature

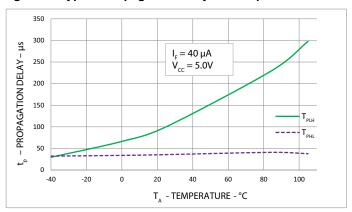


Figure 9: Typical Propagation Delay vs. Temperature

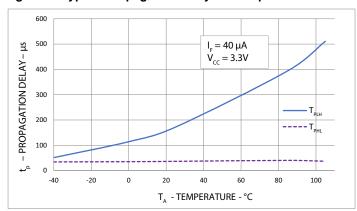


Figure 10: Typical Propagation Delay vs. Temperature

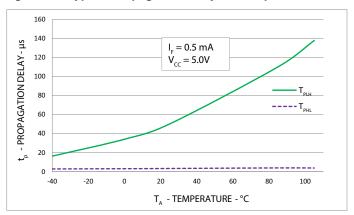


Figure 11: Typical Propagation Delay vs. Temperature

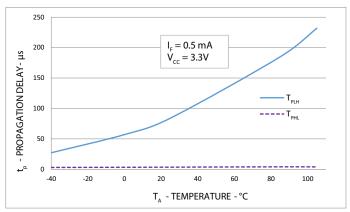


Figure 12: Typical Propagation Delay vs. Temperature

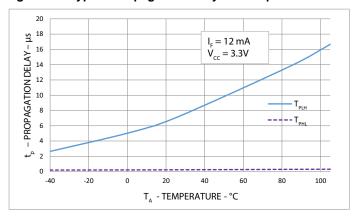
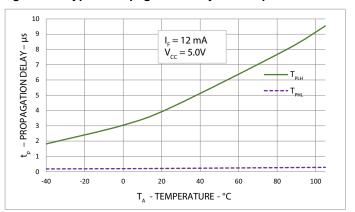



Figure 13: Typical Propagation Delay vs. Temperature

ACPL-K70A-K73A-DS101 Broadcom

Figure 14: Switching Test Circuits

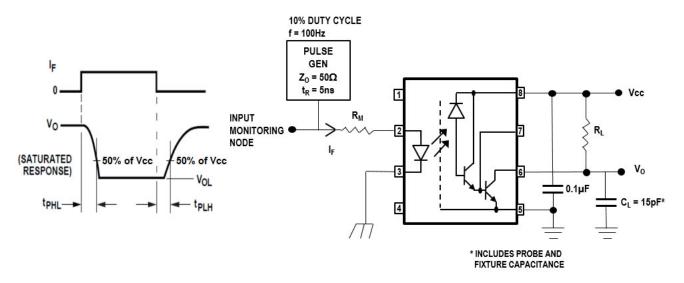
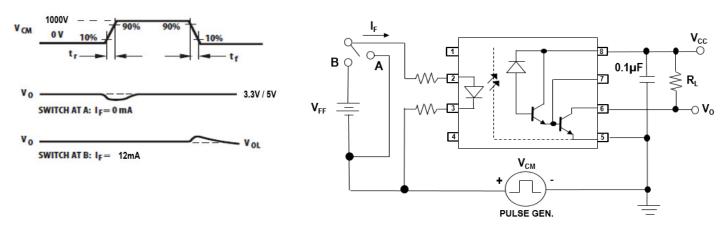



Figure 15: Test Circuit for Transient Immunity and Typical Waveforms

Broadcom, the pulse logo, Connecting everything, Avago Technologies, Avago, and the A logo are among the trademarks of Broadcom and/or its affiliates in the United States, certain other countries, and/or the EU. Copyright © 2019–2020 Broadcom. All Rights Reserved. The term "Broadcom" refers to Broadcom Inc. and/or its subsidiaries. For more information, please visit www.broadcom.com. Broadcom reserves the right to make changes without further notice to any products or data herein to improve reliability, function, or design. Information furnished by Broadcom is believed to be accurate and reliable. However, Broadcom does not assume any liability arising out of the application or use of this information, nor the application or use of any product or circuit described herein, neither does it convey any license under its patent rights nor the rights of others.