ne<mark>x</mark>peria

Important notice

Dear Customer,

On 7 February 2017 the former NXP Standard Product business became a new company with the tradename **Nexperia**. Nexperia is an industry leading supplier of Discrete, Logic and PowerMOS semiconductors with its focus on the automotive, industrial, computing, consumer and wearable application markets

In data sheets and application notes which still contain NXP or Philips Semiconductors references, use the references to Nexperia, as shown below.

Instead of <u>http://www.nxp.com</u>, <u>http://www.philips.com/</u> or <u>http://www.semiconductors.philips.com/</u>, use <u>http://www.nexperia.com</u>

Instead of sales.addresses@www.nxp.com or sales.addresses@www.semiconductors.philips.com, use **salesaddresses@nexperia.com** (email)

Replace the copyright notice at the bottom of each page or elsewhere in the document, depending on the version, as shown below:

- © NXP N.V. (year). All rights reserved or © Koninklijke Philips Electronics N.V. (year). All rights reserved

Should be replaced with:

- © Nexperia B.V. (year). All rights reserved.

If you have any questions related to the data sheet, please contact our nearest sales office via e-mail or telephone (details via **salesaddresses@nexperia.com**). Thank you for your cooperation and understanding,

Kind regards,

Team Nexperia

BCM857BV; BCM857BS; BCM857DS

PNP/PNP matched double transistors

Rev. 06 — 28 August 2009

Product data sheet

1. Product profile

1.1 General description

PNP/PNP matched double transistors in small Surface-Mounted Device (SMD) plastic packages. The transistors are fully isolated internally.

Table 1.	Product	overview
	Trouuci	

Type number			NPN/NPN	Matched version of	
			complement		
BCM857BV	SOT666	-	BCM847BV	BC857BV	
BCM857BS	SOT363	SC-88	BCM847BS	BC857BS	
BCM857DS	SOT457	SC-74	BCM847DS	-	

1.2 Features

- Current gain matching
- Base-emitter voltage matching
- Drop-in replacement for standard double transistors

1.3 Applications

- Current mirror
- Differential amplifier

1.4 Quick reference data

Table 2. **Quick reference data** Symbol Parameter Conditions Min Тур Max Unit Per transistor V_{CEO} collector-emitter voltage open base ---45 V collector current -100 mΑ I_{C} --200 290 h_{FE} DC current gain $V_{CE} = -5 V;$ 450 $I_{\rm C} = -2 \, \rm mA$

NXP Semiconductors

BCM857BV/BS/DS

PNP/PNP matched double transistors

	Quick reference data	Jillinded				
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Per device						
h_{FE1}/h_{FE2}	h _{FE} matching	$V_{CE} = -5 V;$ $I_{C} = -2 mA$	[<u>1]</u> 0.9	1	-	
$V_{BE1} - V_{BE2}$	V _{BE} matching	V _{CE} = -5 V; I _C = -2 mA	<u>[2]</u> _	-	2	mV

Table 2. Quick reference data ...continued

[1] The smaller of the two values is taken as the numerator.

[2] The smaller of the two values is subtracted from the larger value.

2. Pinning information

Table 3.	Pinning	
Pin	Description	Simplified outline Symbol
1	emitter TR1	
2	base TR1	
3	collector TR2	
4	emitter TR2	
5	base TR2	
6	collector TR1	001aab555
		sym018

3. Ordering information

Type number Pack	ade				
Name	Package				
	e Description	Version			
BCM857BV -	plastic surface-mounted package; 6 leads	SOT666			
BCM857BS SC-8	B plastic surface-mounted package; 6 leads	SOT363			
BCM857DS SC-7	plastic surface-mounted package (TSOP6); 6 leads	SOT457			

4. Marking

Table 5. Marking codes	
Type number	Marking code ^[1]
BCM857BV	3B
BCM857BS	A9*
BCM857DS	R8

[1] * = -: made in Hong Kong

- * = p: made in Hong Kong
- * = t: made in Malaysia
- * = W: made in China

PNP/PNP matched double transistors

5. Limiting values

Symbol	Parameter	Conditions	Min	Max	Unit
Per transis	stor				
V _{CBO}	collector-base voltage	open emitter	-	-50	V
V _{CEO}	collector-emitter voltage	open base	-	-45	V
V _{EBO}	emitter-base voltage	open collector	-	-5	V
I _C	collector current		-	-100	mA
I _{CM}	peak collector current	single pulse; t _p ≤ 1 ms	-	-200	mA
P _{tot}	total power dissipation	$T_{amb} \le 25 \ ^{\circ}C$			
	SOT666		<u>[1][2]</u> _	200	mW
	SOT363		<u>[1]</u> -	200	mW
	SOT457		<u>[1]</u> -	250	mW
Per device)				
P _{tot}	total power dissipation	$T_{amb} \le 25 \ ^{\circ}C$			
	SOT666		<u>[1][2]</u> _	300	mW
	SOT363		<u>[1]</u> _	300	mW
	SOT457		<u>[1]</u> -	380	mW
Тj	junction temperature		-	150	°C
T _{amb}	ambient temperature		-65	+150	°C
T _{stg}	storage temperature		-65	+150	°C

[1] Device mounted on an FR4 Printed-Circuit Board (PCB), single-sided copper, tin-plated and standard footprint.

[2] Reflow soldering is the only recommended soldering method.

6. Thermal characteristics

Table 7.	Thermal characteristics					
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Per trans	istor					
R _{th(j-a)}	thermal resistance from junction to ambient	in free air				
	SOT666		[1][2] _	-	625	K/W
	SOT363		<u>[1]</u> _	-	625	K/W
	SOT457		<u>[1]</u> _	-	500	K/W

PNP/PNP matched double transistors

Table 7.	Thermal characteristics	continued				
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Per devic	e					
R _{th(j-a)}	thermal resistance from junction to ambient	in free air				
	SOT666		[1][2] _	-	416	K/W
	SOT363		<u>[1]</u> _	-	416	K/W
	SOT457		<u>[1]</u> -	-	328	K/W

.

[1] Device mounted on an FR4 PCB, single-sided copper, tin-plated and standard footprint.

[2] Reflow soldering is the only recommended soldering method.

7. **Characteristics**

Table 8. **Characteristics**

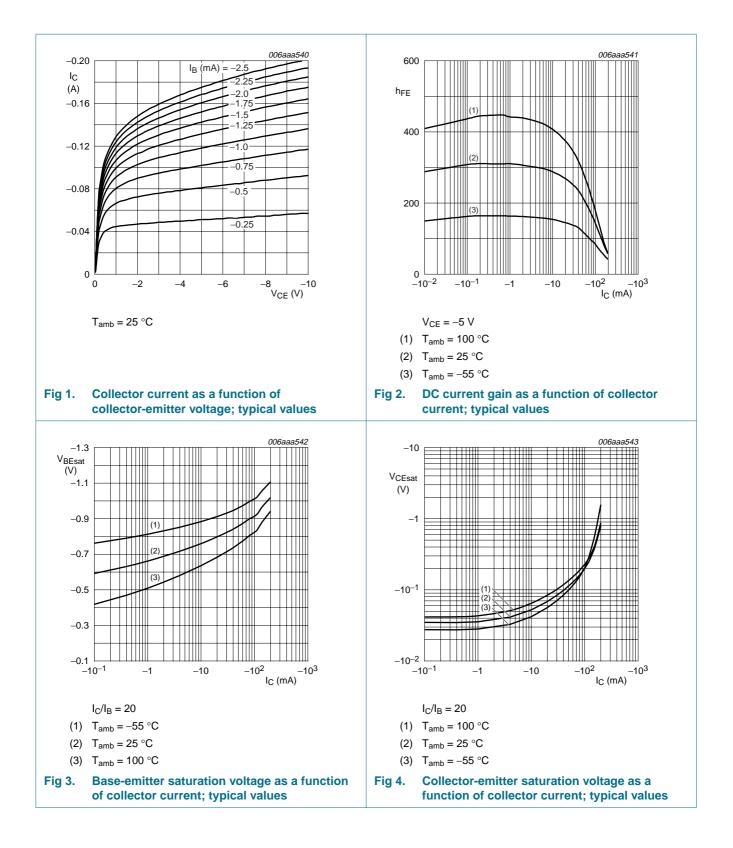
T_{amb} = 25 °C unless otherwise specified

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Per transis	stor					
I _{CBO}	collector-base cut-off current	V _{CB} = -30 V; I _E = 0 A	-	-	-15	nA
		V _{CB} = -30 V; I _E = 0 A; T _j = 150 °C	-	-	-5	μA
I _{EBO}	emitter-base cut-off current	$V_{EB} = -5 V;$ $I_C = 0 A$	-	-	-100	nA
h _{FE}	DC current gain	$V_{CE} = -5 V;$ $I_{C} = -10 \mu A$	-	250	-	
		$V_{CE} = -5 V;$ $I_{C} = -2 mA$	200	290	450	
V _{CEsat}	collector-emitter saturation voltage	$I_{C} = -10 \text{ mA};$ $I_{B} = -0.5 \text{ mA}$	-	-50	-200	mV
		$I_{C} = -100 \text{ mA};$ $I_{B} = -5 \text{ mA}$	-	-200	-400	mV
V _{BEsat}	base-emitter saturation voltage	$I_{C} = -10 \text{ mA};$ $I_{B} = -0.5 \text{ mA}$	<u>[1]</u> -	-760	-	mV
		l _C = -100 mA; l _B = -5 mA	<u>[1]</u> -	-920	-	mV
V _{BE}	base-emitter voltage	$V_{CE} = -5 V;$ $I_{C} = -2 mA$	[2] -600	-650	-700	mV
		$V_{CE} = -5 V;$ $I_{C} = -10 mA$	[2] -	-	-760	mV
C _c	collector capacitance	$V_{CB} = -10 \text{ V};$ $I_E = i_e = 0 \text{ A};$ f = 1 MHz	-	-	2.2	pF
C _e	emitter capacitance	$V_{EB} = -0.5 \text{ V};$ $I_C = i_c = 0 \text{ A};$ f = 1 MHz	-	10	-	pF

PNP/PNP matched double transistors

Parameter	Conditions	Min	Тур	Max	Unit
transition frequency	V _{CE} = -5 V; I _C = -10 mA; f = 100 MHz	100	175	-	MHz
noise figure	$V_{CE} = -5 V;$ $I_{C} = -0.2 mA;$ $R_{S} = 2 k\Omega;$ f = 10 Hz to 15.7 kHz	-	1.6	-	dB
	$V_{CE} = -5 V; \\ I_{C} = -0.2 \text{ mA}; \\ R_{S} = 2 \text{ k}\Omega; \\ f = 1 \text{ kHz}; \\ B = 200 \text{ Hz}$	-	3.1	-	dB
h _{FE} matching	$V_{CE} = -5 V;$ $I_{C} = -2 mA$	<u>3</u> 0.9	1	-	
V _{BE} matching	$V_{CE} = -5 V;$ $I_{C} = -2 mA$	<u>[4]</u> _	-	2	mV
	transition frequency noise figure	$\label{eq:constraint} \begin{array}{ll} \mbox{transition frequency} & V_{CE} = -5 \ V; \\ I_C = -10 \ \text{mA}; \\ f = 100 \ \text{MHz} \end{array} \\ \mbox{noise figure} & V_{CE} = -5 \ V; \\ I_C = -0.2 \ \text{mA}; \\ R_S = 2 \ k\Omega; \\ f = 10 \ \text{Hz to} \\ 15.7 \ \text{kHz} \end{array} \\ \hline \hline V_{CE} = -5 \ V; \\ I_C = -0.2 \ \text{mA}; \\ R_S = 2 \ k\Omega; \\ f = 1 \ \text{Hz}; \\ B = 200 \ \text{Hz} \end{array} \\ \hline \hline \\ \mbox{h}_{FE} \ \text{matching} & V_{CE} = -5 \ V; \\ I_C = -2 \ \text{mA} } \end{array}$	$\begin{array}{c} \mbox{transition frequency} & V_{CE} = -5 \ V; & 100 \\ I_C = -10 \ mA; \\ f = 100 \ MHz & 100 \\ \mbox{noise figure} & V_{CE} = -5 \ V; & - \\ I_C = -0.2 \ mA; \\ R_S = 2 \ k\Omega; \\ f = 10 \ Hz \ to \\ 15.7 \ kHz & 100 \\ \hline V_{CE} = -5 \ V; & - \\ I_C = -0.2 \ mA; \\ R_S = 2 \ k\Omega; \\ f = 1 \ kHz; \\ B = 200 \ Hz & 100 \\ \hline H_{FE} \ matching & V_{CE} = -5 \ V; & [3] \ 0.9 \\ I_C = -2 \ mA & 100 \\ \hline V_{BE} \ matching & V_{CE} = -5 \ V; & [4] \ - \end{array}$	transition frequency $V_{CE} = -5 V$; $I_C = -10 mA$; $f = 100 MHz$ 100 175 noise figure $V_{CE} = -5 V$; $I_C = -0.2 mA$; $R_S = 2 k\Omega$; f = 10 Hz to $15.7 kHz$ - 1.6 $V_{CE} = -5 V$; $I_C = -0.2 mA$; $R_S = 2 k\Omega$; f = 10 Hz to $15.7 kHz$ - 3.1 $V_{CE} = -5 V$; $I_C = -0.2 mA$; $R_S = 2 k\Omega$; f = 1 kHz; $B = 200 Hz$ - 3.1 h_{FE} matching $V_{CE} = -5 V$; $I_C = -2 mA$ - - V_{BE} matching $V_{CE} = -5 V$; $V_{CE} = -5 V$; [3] 0.9 1	$\begin{array}{cccc} \text{transition frequency} & V_{CE} = -5 \ V; & 100 & 175 & -\\ I_{C} = -10 \ \text{mA}; \\ f = 100 \ \text{MHz} & & & & & \\ \text{noise figure} & V_{CE} = -5 \ V; & - & & & & \\ I_{C} = -0.2 \ \text{mA}; \\ R_{S} = 2 \ k\Omega; \\ f = 10 \ \text{Hz to} & & & & \\ 15.7 \ \text{Hz} & & & & & \\ \hline V_{CE} = -5 \ V; & - & & & & & \\ I_{C} = -0.2 \ \text{mA}; \\ R_{S} = 2 \ k\Omega; \\ f = 1 \ \text{Hz to} & & & \\ 15.7 \ \text{kHz} & & & & \\ \hline V_{CE} = -5 \ V; & - & & & & & \\ R_{S} = 2 \ k\Omega; \\ f = 1 \ \text{kHz}; \\ B = 200 \ \text{Hz} & & & & \\ \hline \end{array}$ $\begin{array}{c} \text{h}_{\text{FE}} \ \text{matching} & V_{CE} = -5 \ V; & & & & & \\ V_{CE} = -5 \ V; & & & & & \\ V_{CE} = -5 \ V; & & & & & \\ \hline \text{N}_{BE} \ \text{matching} & V_{CE} = -5 \ V; & & & & & \\ \hline \end{array}$

Table 8.Characteristics ... continued $T_{amb} = 25 \,^{\circ}C$ unless otherwise specified

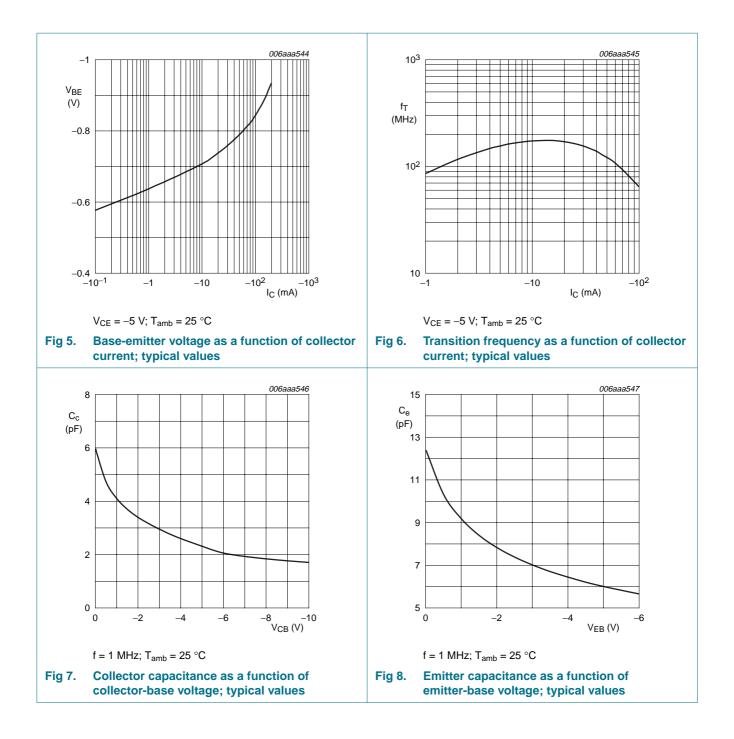

[1] V_{BEsat} decreases by about 1.7 mV/K with increasing temperature.

[2] V_{BE} decreases by about 2 mV/K with increasing temperature.

[3] The smaller of the two values is taken as the numerator.

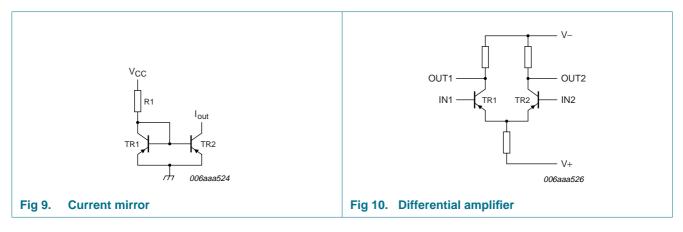
[4] The smaller of the two values is subtracted from the larger value.

PNP/PNP matched double transistors

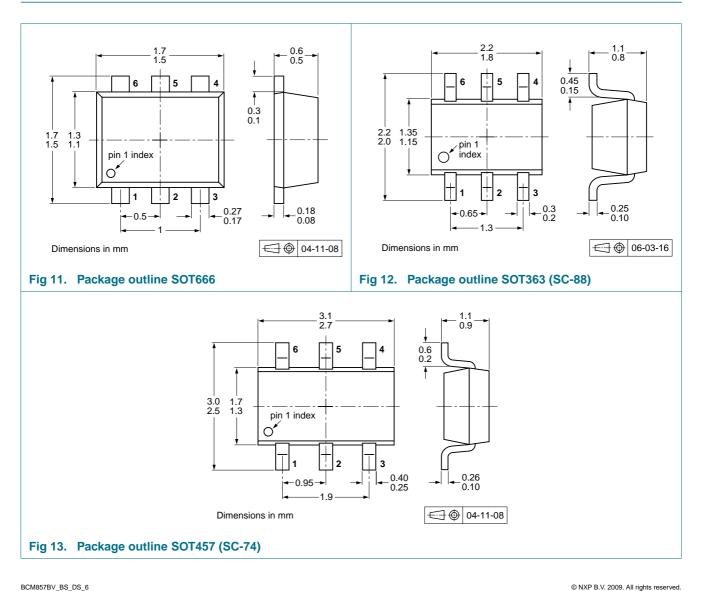


BCM857BV_BS_DS_6
Product data sheet

NXP Semiconductors


BCM857BV/BS/DS

PNP/PNP matched double transistors



PNP/PNP matched double transistors

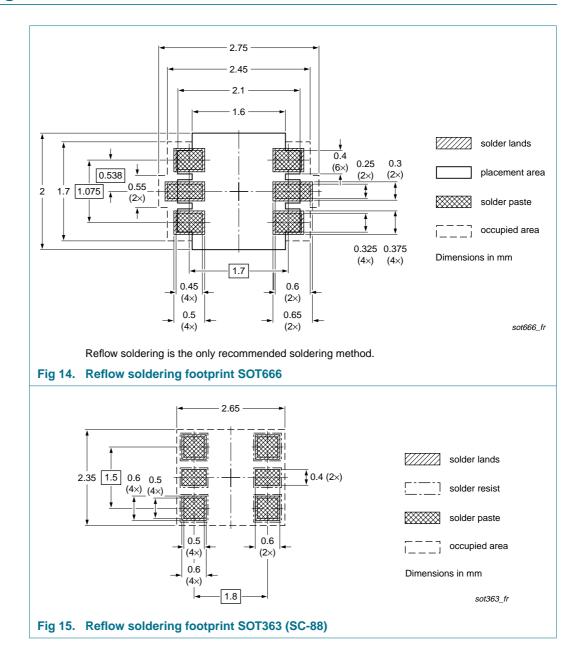
Application information 8.

Package outline 9.

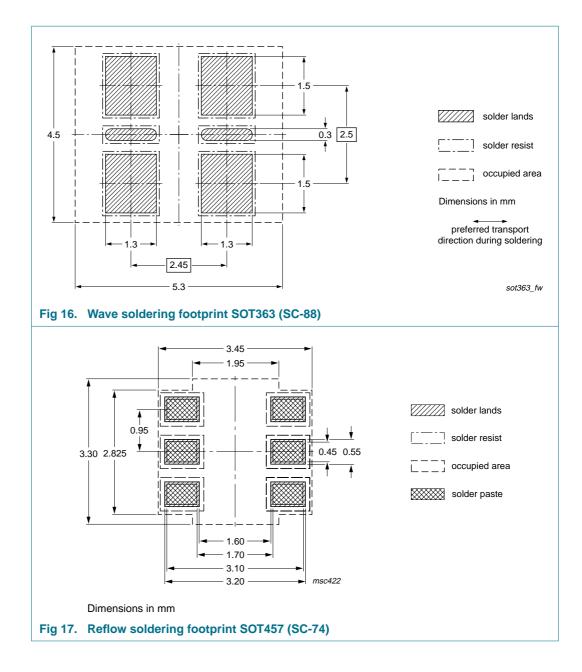
PNP/PNP matched double transistors

10. Packing information

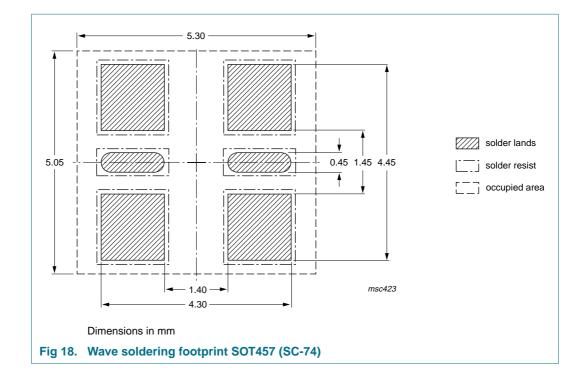
Table 9. Packing methods The indicated -xxx are the last three digits of the 12NC ordering code.[1]							
Type number Package		Description		Packing quantity			
				3000	4000	8000	10000
BCM857BV	M857BV SOT666	2 mm pitch, 8 mm tape and reel		-	-	-315	-
		4 mm pitch, 8 mm tape and reel		-	-115	-	-
BCM857BS	SOT363	4 mm pitch, 8 mm tape and reel; T1	[2]	-115	-	-	-135
		4 mm pitch, 8 mm tape and reel; T2	[3]	-125	-	-	-165
BCM857DS SOT45		4 mm pitch, 8 mm tape and reel; T1	[2]	-115	-	-	-135
		4 mm pitch, 8 mm tape and reel; T2	[3]	-125	-	-	-165


[1] For further information and the availability of packing methods, see Section 14.

[2] T1: normal taping


[3] T2: reverse taping

PNP/PNP matched double transistors


11. Soldering

PNP/PNP matched double transistors

PNP/PNP matched double transistors

PNP/PNP matched double transistors

12. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes		
BCM857BV_BS_DS_6	20090828	Product data sheet	-	BCM857BV_BS_DS_5		
Modifications:	 This data sheet was changed to reflect the new company name NXP Semiconductors, including new legal definitions and disclaimers. No changes were made to the technical content. 					
	 Figure 12 "Package outline SOT363 (SC-88)": updated 					
	 Figure 14 "Reflow soldering footprint SOT666": updated 					
	 Figure 15 "Reflow soldering footprint SOT363 (SC-88)": updated 					
	 Figure 16 "Wave soldering footprint SOT363 (SC-88)": updated 					
	Figure 18 "V	Vave soldering footprint SC	DT457 (SC-74)": updated	Ł		
BCM857BV_BS_DS_5	20060627	Product data sheet	-	BCM857BS_DS_4		
BCM857BS_DS_4	20060216	Product data sheet	-	BCM857BS_DS_3		
BCM857BS_DS_3	20060130	Product data sheet	-	BCM857BS_2		
BCM857BS_2	20050411	Product data sheet	-	BCM857BS_1		
BCM857BS_1	20040914	Product data sheet	-	-		

PNP/PNP matched double transistors

13. Legal information

13.1 Data sheet status

Document status[1][2]	Product status ^[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

[1] Please consult the most recently issued document before initiating or completing a design.

[2] The term 'short data sheet' is explained in section "Definitions".

[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

13.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

13.3 Disclaimers

General — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) may cause permanent damage to the device. Limiting values are stress ratings only and operation of the device at these or any other conditions above those given in the Characteristics sections of this document is not implied. Exposure to limiting values for extended periods may affect device reliability.

Terms and conditions of sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, including those pertaining to warranty, intellectual property rights infringement and limitation of liability, unless explicitly otherwise agreed to in writing by NXP Semiconductors. In case of any inconsistency or conflict between information in this document and such terms and conditions, the latter will prevail.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from national authorities.

Quick reference data — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding.

13.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

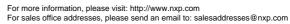
14. Contact information

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

BCM857BV_BS_DS_6

PNP/PNP matched double transistors


15. Contents

1	Product profile 1
1.1	General description
1.2	Features
1.3	Applications 1
1.4	Quick reference data
2	Pinning information 2
3	Ordering information 2
4	Marking 2
5	Limiting values 3
6	Thermal characteristics 3
7	Characteristics 4
8	Application information 8
9	Package outline 8
10	Packing information 9
11	Soldering 10
12	Revision history 13
13	Legal information 14
13.1	Data sheet status 14
13.2	Definitions 14
13.3	Disclaimers 14
13.4	Trademarks 14
14	Contact information 14
15	Contents 15

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

© NXP B.V. 2009.

All rights reserved.

Date of release: 28 August 2009 Document identifier: BCM857BV_BS_DS_6

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Nexperia:

BCM857BV,115 BCM857BV,315 BCM857BS,135 BCM857BS,115 BCM857DS,135 BCM857DS,115