FEATURES

44 V supply maximum rating $\pm 15 \mathrm{~V}$ analog signal range
Low Ros: 115Ω maximum
Low leakage: 0.5 nA typical
Break-before-make switching
Single supply operation possible
Extended plastic temperature range: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
TTL/CMOS compatible
Available in 16-lead PDIP/SOIC and 20-pead PLCC packages
Pin compatible to DG211/DG212

FUNCTIONAL BLOCK DIAGRAM

Figure 1.

Figure 2.

PRODUCT HIGHLIGHTS

1. Extended Signal Range.

These switches are fabricated on an enhanced LC 2 MOS process, resulting in high breakdown and an increased analog signal range of $\pm 15 \mathrm{~V}$.
2. Single Supply Operation.

For applications where the analog signal is unipolar (0 V to 15 V), the switches can be operated from a single 15 V supply.
3. Low Leakage.

Leakage currents in the range of 500 pA make these switches suitable for high precision circuits. The added feature of break-before-make allows for multiple outputs to be tied together for multiplexer applications while keeping leakage errors to a minimum.

Rev. C

[^0]
TABLE OF CONTENTS

Features 1
Functional Block Diagram 1
General Description 1
Product Highlights 1
Revision History 2
Specifications 3
Absolute Maximum Ratings 4
REVISION HISTORY
10/12—Rev. B to Rev. C
Updated Format .Universal
Added Pin Descriptions, Table 3 5
Moved Table 4 5
Changes to Figure 5, Figure 6, Figure 8, and Figure 9 6
Updated Outline Dimensions 13
Changes to Ordering Guide 14
ESD Caution 4
Pin Configurations and Function Descriptions 5
Typical Performance Characteristics 6
Terminology 9
Test Circuits 10
Outline Dimensions 12
Ordering Guide 13

SPECIFICATIONS

$\mathrm{V}_{\mathrm{DD}}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=5 \mathrm{~V}$, unless otherwise noted.
Table 1.

Parameter	$25^{\circ} \mathrm{C}$			$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			Unit	Test Conditions/Comments
	Min	Typ	Max	Min	Typ	Max		
ANALOG SWITCH Analog Signal Range Ron Ron vs. $\mathrm{V}_{\mathrm{D}}\left(\mathrm{V}_{\mathrm{s}}\right)$ Ron Drift Ron Match		$\begin{aligned} & \pm 15 \\ & \\ & 20 \\ & 0.5 \\ & 5 \end{aligned}$	115		± 15	175	$\begin{aligned} & \mathrm{V} \\ & \Omega \\ & \% \\ & \% /{ }^{\circ} \mathrm{C} \\ & \% \\ & \hline \end{aligned}$	$-10 \mathrm{~V} \leq \mathrm{V}_{\mathrm{s}} \leq+10 \mathrm{~V}, \mathrm{los}=1 \mathrm{~mA}$, see Figure 21 $\mathrm{V}_{\mathrm{s}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{DS}}=1 \mathrm{~mA}$
LEAKAGE CURRENTS I_{s} (Off) Off Input Leakage ID (Off) Off Output Leakage $\mathrm{I}_{\mathrm{D}}(\mathrm{On})$ On Channel Leakage		0.5 0.5 0.5	5 5			$\begin{aligned} & 100 \\ & 100 \\ & 200 \\ & \hline \end{aligned}$	nA nA nA nA nA nA	$\begin{aligned} & V_{D}= \pm 14 \mathrm{~V} ; \mathrm{V}_{S}=\mp 14 \mathrm{~V} \text {; see Figure } 22 \\ & \mathrm{~V}_{\mathrm{D}}= \pm 14 \mathrm{~V} ; \mathrm{V}_{\mathrm{S}}=\mp 14 \mathrm{~V} \text {; see Figure } 22 \\ & \mathrm{~V}_{\mathrm{D}}=\mathrm{V}_{\mathrm{S}}= \pm 14 \mathrm{~V} \text {; see Figure } 23 \end{aligned}$
DIGITAL CONTROL Vinн, Input High Voltage VIIL, Input Low Voltage I_{NL} or I_{NH} CiN, Digital Input Capacitance		5		2.4		$\begin{aligned} & 0.8 \\ & 1 \end{aligned}$	V V $\mu \mathrm{A}$ pF	TTL compatibility is independent of V_{L}
DYNAMIC CHARACTERISTICS topen ${ }^{1}$ ton ${ }^{1}$ toff ${ }^{1}$ Off Isolation Channel-to-Channel Crosstalk C_{5} (Off) C_{D} (Off) C_{S}, C_{D} (On) Qins, Charge Injection		$\begin{aligned} & 30 \\ & 80 \\ & 80 \\ & 5 \\ & 5 \\ & 16 \\ & 20 \end{aligned}$	$\begin{aligned} & 600 \\ & 450 \end{aligned}$				ns ns ns dB dB pF pF pF pC	See Figure 24 See Figure 25 See Figure 25 $\begin{aligned} & V_{S}=10 \mathrm{~V}(p-p) ; f=100 \mathrm{kHz} ; \\ & \mathrm{R}_{\mathrm{L}}=75 \Omega ; \text { see Figure } 26 \end{aligned}$ See Figure 27 $\mathrm{R}_{\mathrm{s}}=0 \Omega ; \mathrm{C}_{\mathrm{L}}=1000 \mathrm{pF} ; \mathrm{V}_{\mathrm{s}}=0 \mathrm{~V} \text {; see Figure } 28$
POWER SUPPLY ldo IDD Iss Iss IL		$\begin{aligned} & 0.6 \\ & 0.1 \end{aligned}$	$\begin{gathered} 1 \\ 0.2 \\ 0.9 \end{gathered}$				mA mA mA mA mA	Digital inputs $=\mathrm{V}_{\text {INL }}$ or $\mathrm{V}_{\text {INH }}$

[^1]
ABSOLUTE MAXIMUM RATINGS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise stated.
Table 2.

Parameter	Rating
$\mathrm{V}_{\text {DD }}$ to $\mathrm{V}_{\text {SS }}$	44 V
VDD to GND	25 V
Vss to GND	-25V
VL to GND	-0.3 V, 25 V
Analog Inputs ${ }^{1}$	
Voltage at S, D	$\mathrm{V}_{S S}-0.3 \mathrm{~V}$ to V DD +0.3 V
Continuous Current, S or D	30 mA
Pulsed Current S or D	
1 ms Duration, 10\% Duty Cycle	70 mA
Digital Inputs ${ }^{1}$	
Voltage at IN	$\mathrm{V}_{S S}-2 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}+2 \mathrm{~V}$ or 20 mA , Whichever
	Occurs First
Power Dissipation (Any Package)	
Up to $+75^{\circ} \mathrm{C}$	470 mW
Derates above $+75^{\circ} \mathrm{C}$ by	$6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Operating Temperature	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering 10 sec)	$+300^{\circ} \mathrm{C}$

[^2]Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ESD CAUTION

	ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS

Figure 3. PDIP, SOIC Pin Configuration

Figure 4. PLCC Pin Configuration

Table 3. Pin Function Descriptions

Pin No.			
PDIP, SOIC	PLCC	Mnemonic	Description
1	2	IN1	Logic Control Input.
2	3	D1	Drain Terminal. Can be an input or output.
3	4	S1	Source Terminal. Can be an input or output.
4	5	VSS	Most Negative Power Supply Potential.
5	7	GND	Ground (0 V) Reference.
6	8	S4	Source Terminal. Can be an input or output.
7	9	IN	Drain Terminal. Can be an input or output.
8	10	IN3	Logic Control Input.
9	12	D3	Logic Control Input.
10	14	S3	Drain Terminal. Can be an input or output.
11	15	VL	Source Terminal. Can be an input or output.
12	17	VDD	Logic Supply Voltage.
13	18	S2	Most Positive Power Supply Potential.
14	19	D2	Source Terminal. Can be an input or output.
15	20	IN2	Drain Terminal. Can be an input or output.
16	$1,6,11,16$	NIC	Logic Control Input.
			No Internal Connection.

Table 4. Truth Table

ADG211A In	ADG212A In	Switch Condition
0	1	On
1	0	Off

TYPICAL PERFORMANCE CHARACTERISTICS

The switches can comfortably operate anywhere in the 10 V to 15 V single or dual supply range, with only a slight degradation in performance. The following graphs show the relevant performance curves. The test circuits and test conditions are given in a following section, Test Circuits.

Figure 5. Ron as a Function of $V_{D}\left(V_{S}\right)$, Dual $\pm 15 \mathrm{~V}$ Supplies

Figure 6. Ron as a Function of $V_{D}\left(V_{S}\right)$, Dual ± 10 V Supplies

Figure 7. Leakage Current as a Function of Temperature (Note That Leakage Current Reduces as the Supply Voltages Reduce)

Figure 8. Ron as a Function of $V_{D}\left(V_{S}\right)$, Single +15 V Supply

Figure 9. Ron as a Function of $V_{D}\left(V_{s}\right)$, Single +10 V Supply

Figure 10. Trigger Levels vs. Power Supply Voltage, Dual or Single Supply Voltage

Figure 11. ton vs. Supply Voltage (Dual Supply)

Figure 12. toff vs. Supply Voltage (Dual Supply)

Figure 13. Off Isolation and Channel-to-Channel Crosstalk vs. Supply Voltage

Figure 14. ton vs. Supply Voltage (Single Supply)

Figure 15. toff vs. Supply Voltage (Single Supply)

Figure 16. Charge Injection vs. Source Voltage $\left(V_{s}\right)$ for Dual and Single 15 V Supplies

Figure 17. Charge Injection vs. Source Voltage for Dual and Single 10 V Supplies

Figure 18. Iss vs. Supply Voltage (Dual Supply)

Figure 19. IDD vs. Supply Voltage, (Dual Supply)

Figure 20. IDD vs. Supply Voltage (Single Supply)

TERMINOLOGY

Ron
Ohmic resistance between the out and S terminals.

Ron Match

Difference between the Ron of any two channels.
I_{s} (Off)
Source terminal leakage current when the switch is off.

I_{D} (Off)

Drain terminal leakage current when the switch is off.

I_{D} (On)

Leakage current that flows from the closed switch into the body.
$V_{D}\left(V_{S}\right)$
Analog voltage on the D, S terminals.
C_{s} (Off)
Switch input capacitance off condition.
C_{D} (Off)
Switch output capacitance off condition.
Cin
Digital input capacitance.
$\mathrm{C}_{\mathrm{D}}, \mathrm{Cs}_{\mathrm{s}}$ (On)
Input or output capacitance when the switch is on.

ton

Delay time between the 50% and 90% points of the digital input and switch on condition.
toff
Delay time between the 50% and 90% points of the digital input and switch off condition.
topen
Off time measured between 50% points of both switches, which are connected as a multiplexer when switching from one address state to another.
$V_{\text {INL }}$
Maximum input voltage for a logic low.
$\mathrm{V}_{\text {INH }}$
Minimum input voltage for a logic high.
$\mathbf{I}_{\text {INL }}\left(\mathbf{I}_{\text {INH }}\right)$
Input current of the digital input.
$V_{\text {DD }}$
Most positive voltage supply.
Vss
Most negative voltage supply.
V_{L}
Logic supply voltage.
I_{DD}
Positive supply current.
Iss
Negative supply current.

TEST CIRCUITS

Figure 21.

Figure 23.

Figure 22.

Figure 24.

Figure 25.

Figure 28. Charge Injection

OUTLINE DIMENSIONS

COMPLIANT TO JEDEC STANDARDS MS-001-AB
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN. REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.

Figure 29. 16-Lead Plastic Dual In-Line Package [PDIP] Narrow Body
(N -16)
Dimensions shown in inches and (millimeters)

COMPLIANT TO JEDEC STANDARDS MS-012-AC
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.

Figure 30.16-Lead Standard Small Outline Package [SOIC_N]
Narrow Body
(R-16)
Dimensions shown in millimeters and (inches)

Figure 31. 20-Lead Plastic Leaded Chip Carrier [PLCC]
(P-20)
Dimensions shown in inches and (millimeters)

ORDERING GUIDE

Model 1	Temperature Range	Package Description	Package Option
ADG211AKN	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 -Lead PDIP	$\mathrm{N}-16$
ADG211AKNZ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 -Lead PDIP	$\mathrm{N}-16$
ADG211AKPZ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20 -Lead PLCC	$\mathrm{P}-20$
ADG211AKR	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 -Lead SOIC_N	$\mathrm{R}-16$
ADG211AKRZ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 -Lead SOIC_N	$\mathrm{R}-16$
ADG211AKRZ-REEL	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 -Lead SOIC_N	$\mathrm{R}-16$
ADG211AKRZ-REEL7	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16-Lead SOIC_N	$\mathrm{R}-16$
ADG212AKNZ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 -Lead PDIP	$\mathrm{N}-16$
ADG212AKPZ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20-Lead PLCC	$\mathrm{P}-20$
ADG212AKPZ-REEL	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20-Lead PLCC	$\mathrm{P}-20$
ADG212AKR	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 -Lead SOIC_N	$\mathrm{R}-16$
ADG212AKRZ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16-Lead SOIC_N	$\mathrm{R}-16$
ADG212AKRZ-REEL	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16-Lead SOIC_N	$\mathrm{R}-16$

[^3]NOTES

NOTES

NOTES

[^0]: One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 ©2012 Analog Devices, Inc. All rights reserved. Technical Support www.analog.com

[^1]: ${ }^{1}$ Sample tested at $25^{\circ} \mathrm{C}$ to ensure compliance.

[^2]: ${ }^{1}$ Overvoltage at IN, S, or D will be clamped by diodes. Current should be limited to the Maximum Rating listed in Table 2.

[^3]: ${ }^{1} Z=$ RoHS Compliant Part.

